DE102018211853A1 - Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements - Google Patents

Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements Download PDF

Info

Publication number
DE102018211853A1
DE102018211853A1 DE102018211853.1A DE102018211853A DE102018211853A1 DE 102018211853 A1 DE102018211853 A1 DE 102018211853A1 DE 102018211853 A DE102018211853 A DE 102018211853A DE 102018211853 A1 DE102018211853 A1 DE 102018211853A1
Authority
DE
Germany
Prior art keywords
optical element
interferogram
polarization
measurements
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018211853.1A
Other languages
English (en)
Inventor
Steffen Siegler
Thomas Schicketanz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Priority to DE102018211853.1A priority Critical patent/DE102018211853A1/de
Priority to JP2021502619A priority patent/JP7140905B2/ja
Priority to EP19737006.7A priority patent/EP3824246A1/de
Priority to PCT/EP2019/066628 priority patent/WO2020015954A1/de
Publication of DE102018211853A1 publication Critical patent/DE102018211853A1/de
Priority to US17/151,017 priority patent/US11326872B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02011Interferometers characterised by controlling or generating intrinsic radiation properties using temporal polarization variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements. Bei einem erfindungsgemäßen Verfahren wird in wenigstens einer mit einer interferometrischen Prüfanordnung durchgeführten Interferogramm-Messung eine an dem optischen Element reflektierte Prüfwelle mit einer nicht an dem optischen Element reflektierten Referenzwelle zur Überlagerung gebracht. Dabei erfolgt eine Bestimmung der Passe des optischen Elements basierend auf wenigstens einer Interferogramm-Messung mit elektromagnetischer Strahlung von linearer Eingangspolarisation.

Description

  • HINTERGRUND DER ERFINDUNG
  • Gebiet der Erfindung
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements.
  • Stand der Technik
  • Mikrolithographie wird zur Herstellung mikrostrukturierter Bauelemente, wie beispielsweise integrierter Schaltkreise oder LCD's, angewendet. Der Mikrolithographieprozess wird in einer sogenannten Projektionsbelichtungsanlage durchgeführt, welche eine Beleuchtungseinrichtung und ein Projektionsobjektiv aufweist. Das Bild einer mittels der Beleuchtungseinrichtung beleuchteten Maske (= Retikel) wird hierbei mittels des Projektionsobjektivs auf ein mit einer lichtempfindlichen Schicht (Photoresist) beschichtetes und in der Bildebene des Projektionsobjektivs angeordnetes Substrat (z.B. ein Siliziumwafer) projiziert, um die Maskenstruktur auf die lichtempfindliche Beschichtung des Substrats zu übertragen.
  • In für den EUV-Bereich ausgelegten Projektionsobjektiven, d.h. bei Wellenlängen von z.B. etwa 13 nm oder etwa 7 nm, werden mangels Verfügbarkeit geeigneter lichtdurchlässiger refraktiver Materialien Spiegel als optische Komponenten für den Abbildungsprozess verwendet. Typische für EUV ausgelegte Projektionsobjektive, wie z.B. aus US 2016/0085061 A1 bekannt, können beispielsweise eine bildseitige numerische Apertur (NA) im Bereich von NA = 0.55 aufweisen und bilden ein (z.B. ringsegmentförmiges) Objektfeld in die Bildebene bzw. Waferebene ab.
  • Mit der Erhöhung der bildseitigen numerischen Apertur (NA) geht typischerweise eine Vergrößerung der erforderlichen Spiegelflächen der in der Projektionsbelichtungsanlage eingesetzten Spiegel einher. Dies hat wiederum zur Folge, dass neben der Fertigung auch die Prüfung der Oberflächenform der Spiegel eine anspruchsvolle Herausforderung darstellt. Hierbei kommen zur hochgenauen Prüfung der Spiegel insbesondere interferometrische Messverfahren zum Einsatz.
  • Dabei ist u.a. die Verwendung Computer-generierter Hologramme (CGH) bekannt, wobei insbesondere in ein- und dasselbe CGH zusätzlich zu der für die eigentliche Prüfung benötigten Funktionalität (d.h. der entsprechend der Spiegelform ausgelegten CGH-Struktur zur Formung der mathematisch der Prüflingsform entsprechenden Wellenfront) wenigstens eine weitere „Kalibrierfunktionalität“ zur Bereitstellung einer zur Kalibrierung bzw. Fehlerkorrektur dienenden Referenzwellenfront einkodiert werden kann.
  • Weiter ist es z.B. auch bekannt, in einer Fizeau-Anordnung ein Interferogramm zwischen einer an einer Referenzfläche („Fizeau-Platte“) reflektierten Referenzwelle und einer an dem Spiegel reflektierten Prüfwelle zu erzeugen.
  • Ein in der Praxis auftretendes Problem ist, dass die bei der jeweiligen Interferogramm-Messung ermittelte und für die jeweilige Passe-Bestimmung herangezogene Interferogramm-Phase neben dem eigentlich zu bestimmenden Phasenanteil (entsprechend der Oberflächenform bzw. Passe des Prüflings) weitere Phasenanteile aufweist. Diese weiteren Phasenanteile umfassen u.a. polarisationsinduzierte Phasenanteile z.B. aufgrund diverser, im jeweiligen optischen System auftretender Beeinflussungen des Polarisationszustandes (wie beispielsweise durch an optischen Elementen vorhandene doppelbrechende Schichten, Spannungsdoppelbrechung etc.), durch welche die bei der Passe-Bestimmung erhaltenen Ergebnisse verfälscht werden.
  • Eine Kompensation bzw. ein gezieltes Herausrechnen dieser polarisationsinduzierten Phasenanteile erfordert deren möglichst genaue Kenntnis. Hierzu durchführbare Polarisationsmessungen gestalten sich jedoch aufwändig und können wiederum ihrerseits fehlerbehaftet sein.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Vor dem obigen Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements bereitzustellen, welche eine erhöhte Genauigkeit unter zumindest teilweiser Vermeidung der vorstehend beschriebenen Probleme ermöglichen.
  • Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Patentansprüche gelöst.
  • Bei einem Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements wird in wenigstens einer mit einer interferometrischen Prüfanordnung durchgeführten Interferogramm-Messung eine an dem optischen Element reflektierte Prüfwelle mit einer nicht an dem optischen Element reflektierten Referenzwelle zur Überlagerung gebracht.
  • Das Verfahren ist dadurch gekennzeichnet, dass eine Bestimmung der Passe des optischen Elements basierend auf wenigstens einer Interferogramm-Messung mit elektromagnetischer Strahlung von linearer Eingangspolarisation erfolgt.
  • Gemäß einer Ausführungsform erfolgt eine Bestimmung der Passe des optischen Elements basierend auf wenigstens zwei Interferogramm-Messungen mit elektromagnetischer Strahlung von linearer Eingangspolarisation, wobei die Eingangspolarisationen für diese zwei Interferogramm-Messungen sich hinsichtlich der Polarisationsrichtung der elektromagnetischen Strahlung voneinander unterscheiden.
  • Gemäß einer Ausführungsform sind die Eingangspolarisationen für diese zwei Interferogramm-Messungen orthogonal zueinander.
  • Gemäß einer Ausführungsform erfolgt die Bestimmung der Passe des optischen Elements basierend auf einer Mittelung von bei den zwei Interferogramm-Messungen jeweils erhaltenen Interferogramm-Phasen.
  • Die Erfindung geht zunächst von der Überlegung aus, dass hinsichtlich der neben dem eigentlich zu bestimmenden Phasenanteil (entsprechend der Passe des Prüflings) vorhandenen weiteren Phasenanteile in der mit der interferometrischen Prüfanordnung ermittelten Interferogramm-Phase insbesondere zwei polarisationsinduzierte Anteile unterschieden werden können:
    • Ein erster polarisationsinduzierter Phasenanteil wird durch die Polarisationswirkung in denjenigen Bereichen des optischen Systems bzw. der interferometrischen Prüfanordnung verursacht, welche von den zur Interferenz gelangenden Lichtwellen (d.h. Referenzwelle und Prüfwelle) nicht gemeinsam durchlaufen werden.
  • Zusätzlich zu diesem ersten Anteil wird ein zweiter polarisationsinduzierter Phasenanteil durch die Polarisationswirkung in denjenigen Bereichen des optischen Systems verursacht, welche von den zur Interferenz gelangenden Lichtwellen (d.h. Referenzwelle und Prüfwelle) gemeinsam durchlaufen werden, genauer gesagt durch die Kopplung zwischen dieser Polarisationswirkung mit der zuvor genannten Polarisationswirkung des ersten Anteils.
  • Die Existenz dieses zweiten polarisationsinduzierten Phasenanteils ist vor dem Hintergrund, dass es sich eigentlich um einen Beitrag von Bereichen im optischen System handelt, welche von den zur Interferenz gelangenden Lichtwellen gleichermaßen durchlaufen werden, im Gegensatz zum ersten polarisationsinduzierten Phasenanteil nicht unmittelbar trivial, folgt jedoch aus der o.g. Kopplung und einer mathematischen Untersuchung unter Anwendung des für sich bekannten Jones-Formalismus.
  • In diesem Zusammenhang wird auf die Publikation B. Geh et al.: „The impact of projection lens polarization properties on lithographic process at hyper-NA", Proc. of SPIE Vol. 6520, 65200F, 2007 verwiesen.
  • Hierbei lassen sich die Jones-Matrizen für die Polarisationswirkungen der einzelnen, in der interferometrischen Prüfanordnung vorhandenen Abschnitte über eine Zerlegung in elementare Polarisationselemente darstellen, d.h. als Produkt aus einer skalaren Transmission, einem Faktor mit einer skalaren Phase und drei Jones-Matrizen für einen Rotator, einen gedrehten dichroitischen Polarisator und ein gedrehtes, in der Phase retardierend wirkendes (im Folgenden „Retarder“ genanntes) polarisationsbeeinflussendes Element.
  • Zur Abschätzung der Effekte wird vereinfacht nur eine lineare, jedoch keine (in Interferometer-Optiken i.d.R. vernachlässigbare) zirkulare bzw. chirale Polarisationswirkung durch Dichroismus und Retardierung betrachtet und weiter angenommen, dass Dichroismus und Retardierung in den jeweiligen Abschnitten des Interferometers jeweils vergleichsweise wenig ausgeprägt sind, so dass einige der resultierenden Gleichungen bis zu einer bestimmten Ordnung in diesen Größen entwickelt werden können. Dabei wird die Entwicklung in den Stärken von Dichroismus und Retardierung in den gemeinsam durchlaufenen Abschnitten nur bis zu linearen Termen in diesen Größen, also bis zur 1. Ordnung, durchgeführt.
  • In den jeweiligen Interferometer-Abschnitten, die von den in der Prüfanordnung zur Interferenz gelangenden Lichtwellen getrennt durchlaufen werden, werden Entwicklungen bis zu höheren Ordnungen als 1. Ordnung ausgeführt, und die Polarisationswirkung wird für jede aufgespaltene Welle durch Jones-Matrizen mit üblicherweise jeweils unterschiedlichen Stärken für Dichroismus und Retardierung und im Normalfall jeweils unterschiedlichen Achsrichtungen von Dichroismus und Retardierung beschrieben.
  • Da die Polarisationswirkung vor allem bei Polarisationselementen mit großen Strahlablenkungen groß ist, ist üblicherweise von einer in der Prüfanordnung vorhandenen beugenden Struktur eine größere Polarisationswirkung zu erwarten als von den übrigen in der Prüfanordnung vorhandenen Polarisationselementen. Daher werden für die Abschätzung Entwicklungen in den Größen für Dichroismus und Retardierung für den gemeinsam durchlaufenen Teil näherungsweise nur bis zur 1. Ordnung und für die nach der beugenden Struktur getrennt durchlaufenen Abschnitte bis zu höheren Ordnungen durchgeführt. Eine Entwicklung in den Stärken von Dichroismus und Retardierung für die beugende Struktur nur bis zu einer gewissen Ordnung kann dadurch motiviert werden, dass deren Phaseneffekt im Vergleich zur durch die beugende Struktur verursachten skalaren Phase i.d.R. deutlich geringer ist.
  • Des Weiteren wird die Vereinfachung getroffen, dass die Achsrichtungen des linearen dichroitischen Polarisators und des linearen Retarders in den Jones-Matrizen zu den durch die beugende Struktur aufgespaltenen Wellen jeweils für die einzelnen Wellen zusammenfallen. Diese Kollinearität in den Achsrichtungen je entstehende Welle ist näherungsweise bei einer beugenden Struktur gegeben.
  • Werden Abschnitte im Interferometer doppelt durchlaufen, so folgt die Jones-Matrix auf dem Rückweg der Lichtausbreitung aus der Jones-Matrix für den Hinweg gemäß der Publikation R. Clark Jones: „A New Calculus for the Treatment of Optical Systems: I Description and Discussion of the Calculus", JOSA, Vol. 31 (1941).
  • Um die Interferogramm-Phasen aus modulierenden Intensitäten für die orthogonalen linearen bzw. zirkularen Eingangspolarisationen analytisch einfacher ausrechnen zu können, werden sämtliche Jones-Matrizen in der Basis der für sich bekannten Pauli-Matrizen dargestellt, und es wird der zum Jones-Formalismus gleichwertige und für sich bekannte Stokes-Formalismus mit komplexwertigen, die Interferenz beschreibenden Müller-Matrizen verwendet.
  • In weiteren Anwendungen der Erfindung kann eine Referenzwelle auch durch Reflexion an einer Fizeau-Fläche erzeugt werden, wobei der beschriebene Formalismus weiterhin gültig bleibt. Für die an einer Fizeau-Fläche erzeugte Referenzwelle können die Größen des Dichroismus und der Retardierung dann näherungsweise zu Null gesetzt werden, da an der Fizeau-Fläche im Normalfall ein möglichst senkrechter Lichteinfall erwünscht ist, wodurch die Polarisationswirkung verschwindend klein ist.
  • Weitere, zu den vorstehend beschriebenen polarisationsinduzierten Phasenanteilen noch hinzukommende Phasenanteile (neben dem eigentlich zu bestimmenden Phasenanteil entsprechend der Passe des Prüflings) in der mit der interferometrischen Prüfanordnung ermittelten Interferogramm-Phase umfassen u.a. einen modulierenden Phasenanteil (z.B. infolge Verschiebungen des jeweiligen Referenzspiegels bzw. der Referenzfläche) sowie bei Einsatz einer beugenden (z.B. CGH-)Struktur einen durch die skalaren Phasen aus den Jones-Matrizen dieser beugenden Struktur resultierenden Phasenanteil.
  • Ausgehend von den o.g. Überlegungen liegt der Erfindung nun insbesondere das Konzept zugrunde, den zweiten polarisationsinduzierten Phasenanteil dadurch signifikant zu reduzieren, dass die Passe-Bestimmung auf Basis zweier Bestimmungen der Interferogramm-Phase erfolgt, welche sich in der jeweils gewählten Eingangspolarisation voneinander unterscheiden.
  • Insbesondere kann es sich bei den voneinander verschiedenen Eingangspolarisationen um zueinander orthogonale lineare Polarisationszustände handeln, welche wiederum derart gewählt sind, dass diese linearen Polarisationszustände in der Polarisationsrichtung mit der Richtung der Eigenvektoren der Jones-Matrix übereinstimmen, welche die Polarisationswirkung des optischen Systems in dessen von Referenzwelle und Prüfwelle gemeinsam durchlaufenen Bereich beschreibt.
  • Durch diese Wahl der Eingangspolarisationen wird zum einen eine Reduzierung der Polarisationswirkung in dem besagten, von Referenzwelle und Prüfwelle gemeinsam durchlaufenen Bereich und damit auch eine Reduzierung der vorstehend beschriebenen Kopplung erzielt. Zum anderen wird, wie aus einer im Weiteren noch ausgeführten mathematischen Betrachtung ersichtlich, durch Mittelung der jeweils anhand dieser Eingangspolarisationen berechneten Interferogramm-Phasen eine weitere Reduzierung der Polarisationswirkung erreicht.
  • Die Erfindung ist nicht auf die Durchführung von zwei Interferogramm-Messungen von linearer Eingangspolarisation beschränkt. Vielmehr sollen auch Ausführungsformen als von der vorliegenden Erfindung umfasst gelten, bei denen eine Bestimmung der Passe des optischen Elements basierend auf einer Interferogramm-Messung mit elektromagnetischer Strahlung von linearer Eingangspolarisation erfolgt, da bereits hiermit eine Reduzierung der Polarisationswirkung in dem von Referenzwelle und Prüfwelle gemeinsam durchlaufenen Bereich und damit auch eine Reduzierung der vorstehend beschriebenen Kopplung erzielt wird.
  • Die zuvor erwähnte Bestimmung der Passe des optischen Elements basierend auf einer Mittelung von bei zwei Interferogramm-Messungen mit zueinander orthogonalen Eingangspolarisationen jeweils erhaltenen Interferogramm-Phasen ist auch für beliebige andere (nicht notwendigerweise lineare) Eingangspolarisationen vorteilhaft.
  • Die Erfindung betrifft daher gemäß einem weiteren Aspekt auch ein Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements, wobei in wenigstens einer mit einer interferometrischen Prüfanordnung durchgeführten Interferogramm-Messung eine an dem optischen Element reflektierte Prüfwelle mit einer nicht an dem optischen Element reflektierten Referenzwelle zur Überlagerung gebracht wird, wobei eine Bestimmung der Passe des optischen Elements basierend auf einer Mittelung von bei zwei Interferogramm-Messungen jeweils erhaltenen Interferogramm-Phasen erfolgt, wobei die Eingangspolarisationen für diese zwei Interferogramm-Messungen orthogonal zueinander sind.
  • In Ausführungsformen der Erfindung werden die o.g. zwei Interferogramm-Messungen an dem hinsichtlich der Oberflächenform zu charakterisierenden optischen Element durchgeführt.
  • In weiteren Ausführungsformen der Erfindung kann die Durchführung der o.g. zwei Interferogramm-Messungen auch im Rahmen einer Vorab-Kalibrierung an einem beliebigen Kalibrier-Prüfling erfolgen, um z.B. auf diese Weise zunächst den Unterschied zwischen den polarisationsinduzierten Interferogramm-Phasen anhand dieser Interferogramm-Messungen zu ermitteln. Anschießend kann dann die Interferogramm-Messung am tatsächlich hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Element unter Verwendung nur einer einzigen der beiden bei der Vorab-Kalibrierung verwendeten Eingangspolarisationen durchgeführt werden, woraufhin die Passe des Prüflings auf Basis sowohl der hierbei erhaltenen Interferogramm-Phase als auch des zuvor anhand der Vorab-Kalibrierung ermittelten Unterschieds zwischen den polarisationsinduzierten Interferogramm-Phasen für die beiden zueinander orthogonalen Eingangspolarisationen bestimmt wird. Bei diesen zueinander orthogonalen Eingangspolarisationen kann es sich jeweils um lineare Eingangspolarisationen oder auch um zirkulare Eingangspolarisationen handeln.
  • Die bei der Vorab-Kalibrierung durchgeführten Interferogramm-Messungen können dann bei der am tatsächlich hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Element durchgeführten Interferogramm-Messung zur Umrechnung auf den entsprechenden Mittelwert für die beiden verwendeten Eingangspolarisationen genutzt werden, gemäß der Formel φ1 = 0.5 · (φ1 + φ2) - 0.5 · (φ1,k + (φ2,k) + φ1,k. Dabei bezeichnen φ1 und φ2 die beiden zueinander orthogonalen Eingangspolarisationen, wobei der Index k für die Vorab-Kalibrierung steht.
  • Im Ergebnis kann durch die vorstehend beschriebene Vorab-Kalibrierung eine mit der Durchführung von zwei Interferogramm-Messungen für den eigentlichen Prüfling einhergehende Vergrößerung der Messzeit vermieden werden.
  • In weiteren Ausführungsformen kann die o.g. Vorab-Kalibrierung auch - zusätzlich zu zwei zueinander senkrechten linearen Eingangspolarisationen - für eine zirkulare Eingangspolarisation durchgeführt werden. In Verbindung mit einer solchen Vorab-Kalibrierung kann die spätere Interferogramm-Messung am eigentlich hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Element auch für eine (ggf. zwecks Kontrastverbesserung gewünschte) zirkuläre Eingangspolarisation erfolgen, da die Vorab-Kalibrierung dann zur Umrechnung in entsprechende Interferogramm-Phasen für die beiden zueinander senkrechten linearen Eingangspolarisationen (bzw. eine analog zu den vorstehenden Ausführungsformen gemittelte Interferogramm-Phase) genutzt werden kann.
  • Das hinsichtlich seiner Oberflächenform zu charakterisierende optische Element kann insbesondere ein Spiegel sein. Des Weiteren kann das optische Element für eine Arbeitswellenlänge von weniger als 30nm, insbesondere weniger als 15nm, ausgelegt sein. Insbesondere kann das optische Element ein optisches Element einer mikrolithographischen Projektionsbelichtungsanlage sein.
  • Die Erfindung betrifft weiter eine Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements, insbesondere eines optischen Elements einer mikrolithographischen Projektionsbelichtungsanlage, wobei die Vorrichtung dazu konfiguriert ist, ein Verfahren mit den vorstehend beschriebenen Merkmalen durchzuführen.
  • Zu Vorteilen sowie vorteilhaften Ausgestaltungen der Vorrichtung wird auf die obigen Ausführungen im Zusammenhang mit dem erfindungsgemäßen Verfahren Bezug genommen.
  • Weitere Ausgestaltungen der Erfindung sind der Beschreibung sowie den Unteransprüchen zu entnehmen.
  • Die Erfindung wird nachstehend anhand von in den beigefügten Abbildungen dargestellten Ausführungsbeispielen näher erläutert.
  • Figurenliste
  • Es zeigen:
    • 1 eine schematische Darstellung zur Erläuterungen des möglichen Aufbaus einer bei dem erfindungsgemäßen Verfahren verwendbaren interferometrischen Prüfanordnung;
    • 2-3 Flussdiagramme zur Erläuterung beispielhafter Ausführungsformen eines erfindungsgemäßen Verfahrens;
    • 4 eine schematische Darstellung zur Erläuterung eines weiteren möglichen Aufbaus einer bei dem erfindungsgemäßen Verfahren verwendbaren interferometrischen Prüfanordnung; und
    • 5 eine schematische Darstellung einer für den Betrieb im EUV ausgelegten Projektionsbelichtungsanlage.
  • DETAILLIERTE BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMEN
  • 5 zeigt zunächst eine schematische Darstellung einer beispielhaften für den Betrieb im EUV ausgelegten Projektionsbelichtungsanlage, welche mit einem erfindungsgemäßen Verfahren prüfbare Spiegel aufweist.
  • Gemäß 5 weist eine Beleuchtungseinrichtung in einer für EUV ausgelegten Projektionsbelichtungsanlage 510 einen Feldfacettenspiegel 503 und einen Pupillenfacettenspiegel 504 auf. Auf den Feldfacettenspiegel 503 wird das Licht einer Lichtquelleneinheit, welche eine Plasmalichtquelle 501 und einen Kollektorspiegel 502 umfasst, gelenkt. Im Lichtweg nach dem Pupillenfacettenspiegel 504 sind ein erster Teleskopspiegel 505 und ein zweiter Teleskopspiegel 506 angeordnet. Im Lichtweg nachfolgend ist ein Umlenkspiegel 507 angeordnet, der die auf ihn treffende Strahlung auf ein Objektfeld in der Objektebene eines sechs Spiegel 521-526 umfassenden Projektionsobjektivs lenkt. Am Ort des Objektfeldes ist eine reflektive strukturtragende Maske 531 auf einem Maskentisch 530 angeordnet, die mit Hilfe des Projektionsobjektivs in eine Bildebene abgebildet wird, in welcher sich ein mit einer lichtempfindlichen Schicht (Photoresist) beschichtetes Substrat 541 auf einem Wafertisch 540 befindet.
  • Bei dem in einer im Weiteren beschriebenen interferometrischen Prüfanordnung mit dem erfindungsgemäßen Verfahren geprüften optischen Element kann es sich z.B. um einen beliebigen Spiegel der Projektionsbelichtungsanlage 510 handeln.
  • 1 zeigt eine schematische Darstellung zur Erläuterung einen möglichen Aufbaus einer interferometrischen Prüfanordnung zur Prüfung eines Spiegels unter Verwendung eines CGH.
  • Gemäß 1 tritt die von einer (nicht dargestellten) Lichtquelle erzeugte und aus der Austrittsfläche eines Lichtwellenleiters 101 austretende Beleuchtungsstrahlung als Eingangswelle 105 mit einer sphärischen Wellenfront aus, durchläuft einen Strahlteiler 110 und trifft anschließend auf ein komplex kodiertes CGH 120. Das CGH 120 erzeugt in Transmission im Beispiel gemäß seiner komplexen Kodierung aus der Eingangswelle 105 insgesamt vier Ausgangswellen, von denen eine Ausgangswelle als Prüfwelle auf die Oberfläche des hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Elements in Form eines Spiegels 140 mit einer an die Sollform der Oberfläche dieses Spiegels 140 angepassten Wellenfront auftrifft. Des Weiteren erzeugt das CGH 120 aus der Eingangswelle 105 in Transmission drei weitere Ausgangswellen, von denen jede auf jeweils ein weiteres reflektives optisches Element 131, 132 bzw. 133 trifft. Mit „135“ ist ein Shutter bezeichnet. Das CGH 120 dient auch zur Überlagerung der vom Spiegel 140 reflektierten Prüfwelle sowie der von den Elementen 131-133 reflektierten Referenzwellen, welche als konvergente Strahlen wieder auf den Strahlteiler 110 treffen und von diesem in Richtung einer als CCD-Kamera ausgelegten Interferometerkamera 160 reflektiert werden, wobei sie ein Okular 150 durchlaufen. Die Interferometerkamera 160 erfasst ein durch die interferierenden Wellen erzeugtes Interferogramm, aus welchem über eine (nicht dargestellte) Auswerteeinrichtung die tatsächliche Form der optischen Oberfläche des Spiegels 140 bestimmt wird.
  • Das optische System bzw. die interferometrischen Prüfanordnung wird in dem der vorliegenden Erfindung zugrundeliegenden Konzept in von den zur Interferenz gelangenden Lichtwellen gemeinsam durchlaufene Abschnitte und in von den zur Interferenz gelangenden Lichtwellen getrennt bzw. nicht gemeinsam durchlaufene Abschnitte unterteilt. Die Trennstelle zwischen den gemeinsam durchlaufenen Abschnitten und den getrennt durchlaufenen Abschnitten bildet hierbei eine beugende Struktur (in 1 das CGH 120). Dabei ist der Systemteil von der Beleuchtungsquelle bis zur beugenden Struktur (inklusive Beleuchtungsoptik) ebenfalls als gemeinsam durchlaufener Abschnitt anzusehen, da eine Trennung der Wellen erst an der beugenden Struktur entsteht. Ebenso handelt es sich bei dem Abschnitt des Interferometers von der beugenden Struktur bis zur Interferometerkamera um einen gemeinsam durchlaufenen Systemteil. Diese beiden gemeinsam durchlaufenen Systemteile können verschiedene Stärken für Dichroismus und Retardierung sowie jeweils verschiedene Achsrichtungen für den dichroitischen Polarisator und Retarder aufweisen. In den getrennt bzw. nicht gemeinsam durchlaufenen Abschnitten infolge Aufspaltung an der beugenden Struktur ist die Polarisationswirkung im Normalfall vorwiegend durch die Polarisationswirkung der beugenden Struktur gegeben; alle sonstigen Polarisationswirkungen in diesen Abschnitten können üblicherweise vernachlässigt werden, da der Lichteinfall auf die Prüf-, Referenz- und Kalibrierflächen vorzugsweise senkrecht und somit nahezu ohne Polarisationswirkung ist.
  • Erfindungsgemäß erfolgt nun eine Bestimmung der Passe des optischen Elements bzw. Spiegels 140 basierend auf wenigstens einer Interferogramm-Messung mit elektromagnetischer Strahlung von linearer Eingangspolarisation. Insbesondere kann das Verfahren gemäß der Erfindung wenigstens zwei Interferogramm-Messungen mit elektromagnetischer Strahlung von linearer Eingangspolarisation umfassen, wobei die Eingangspolarisationen für diese zwei Interferogramm-Messungen orthogonal zueinander sind. Dabei stimmen vorzugsweise die für diese zwei Interferogramm-Messungen verwendeten Eingangspolarisationen in ihrer Polarisatonsrichtung mit den Richtungen der Eigenvektoren einer Jones-Matrix überein, welche die Polarisationswirkung der interferometrischen Prüfanordnung in deren von Referenzwelle und Prüfwelle gemeinsam durchlaufenem Bereich beschreibt.
  • Zur Einstellung der entsprechenden Eingangspolarisation dient ein in 1 schematisch angedeutetes polarisationsbeeinflussendes Element 170, welches in beliebiger geeigneter Weise ausgestaltet und variabel im optischen Strahlengang angeordnet werden kann. In Ausführungsformen kann ein geeigneter Polarisator zur Einstellung linearer Polarisation in Kombination mit einer Lambda/2-Platte zum Umschalten zwischen den jeweiligen Polarisationsrichtungen eingesetzt werden. In weiteren Ausführungsformen kann ein geeigneter Polarisator in Kombination mit einer drehbaren Lambda/2-Platte sowie einer drehbaren Lambda/4-Platte zur Einstellung orthogonaler linearer und zirkularer Eingangspolarisationen eingesetzt werden.
  • Die vorstehend genannten zwei Interferogramm-Messungen können in einer ersten Ausführungsform des erfindungsgemäßen Verfahrens unmittelbar am hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Element vorgenommen werden, was anhand des in 2 gezeigten Flussdiagramms in den Schritten S210 und S220 erfolgt. Anschließend wird gemäß 2 im Schritt S230 aus den beiden in den Schritten S210 und S220 erhaltenen Interferogramm-Phasen eine gemittelte Interferogramm-Phase berechnet, und die Passe des Prüflings wird im Schritt S240 auf Basis dieser gemittelten Interferogramm-Phase bestimmt.
  • Dabei kann es sich bei den in den genannten zwei Interferogramm-Messungen verwendeten Eingangspolarisationen um lineare Eingangspolarisationen oder auch um zirkulare Eingangspolarisationen handeln.
  • Mit Hilfe einer analytischen Abschätzung lässt sich nun zeigen, dass der polarisationsinduzierte Phasenanteil in der Interferogramm-Phase bis zu einer bestimmten Ordnung sowohl für die zueinander orthogonalen Eingangspolarisationen identische (d.h. von der Eingangspolarisation unabhängige) Terme als auch einen Term umfasst, welcher für die zueinander orthogonalen Eingangspolarisationen denselben Betrag aber entgegengesetztes Vorzeichen besitzt. Dies hat zur Folge, dass bei der o.g. erfindungsgemäßen Mittelwertbildung nur die für die zueinander orthogonalen Eingangspolarisationen identischen bzw. hiervon unabhängigen Terme übrigbleiben.
  • Mit Hilfe der eingangs beschriebenen analytischen Abschätzung ergeben sich folgende formale Ausdrücke für den zweiten polarisationsinduzierten Phasenanteil in der Interferogramm-Phase bei Verwendung von zwei linearen und orthogonalen Eingangspolarisationen φ 2, l i n e a r = φ 2, u n p o l , l i n e a r ( 3 ) ± φ 2, p o l , l i n e a r ( 2 )
    Figure DE102018211853A1_0001
  • Bei Verwendung von zwei zirkulären und orthogonalen Eingangspolarisationen gilt: φ 2, z i r c u l a r = φ 2, u n p o l , z i r c u l a r ( 1 ) ± φ 2, p o l , z i r k u l a r ( 1 )
    Figure DE102018211853A1_0002
  • Für die jeweiligen beiden unterschiedlichen und zueinander orthogonalen Eingangspolarisationen unterscheidet sich der polarisationsabhängige Anteil, bezeichnet durch den tiefergestellten Index „pol“, durch die beiden voranstehenden unterschiedlichen Vorzeichen. Die angegebenen Ausdrücke gelten als Entwicklung nur näherungsweise und geben nur die Anteile des zweiten polarisationsinduzierten Phasenanteils in der Interferogramm-Phase wieder (andere Phasenanteile wie z.B. der erste polarisationsinduzierte Phasenanteil, der Phasenanteil aufgrund der skalaren Phasen der beugenden Struktur, ein Phasenanteil aufgrund der zu prüfenden Oberfläche und ggf. weitere Phasenanteile sind hier nicht enthalten).
  • In den o.g. Gleichungen (1) und (2) kennzeichnen die hochgestellten Zahlen in Klammern die Ordnung der Terme hinsichtlich der Entwicklung nach den kleinen Größen für Dichroismus und Retardierung der beugenden Struktur. Bezeichnet d die Stärke des Dichroismus und r die Stärke der Retardierung für eine an der beugenden Struktur entstandenen Welle, so enthält der Term φ(2) nur Terme mit den Produkten d2, r2 und d · r. Die hochgestellte Zahl kennzeichnet somit typischerweise die Größe des Betrags des jeweiligen Terms, z.B. ist φ(1) betragsmäßig größer als φ(2) .
  • Für die Diskussion der von der Polarisation unabhängigen Terme und der von der Polarisation abhängigen Terme im zweiten polarisationsinduzierten Phaseneffekt ist es ausreichend, nur den Betrag dieser Terme zu betrachten, weil z.B. die Vorzeichen (und auch die Beträge) der einzelnen Terme von der Position im Interferogramm und den jeweils betrachteten interferierenden Wellen abhängen können oder weil z.B. bei normalverteilten Fertigungsschwankungen der einzelnen optischen Elemente mit Polarisationswirkung die entsprechenden Phasen unter Abzug der nominellen Phasen bei idealer Kenntnis der Polarisationselemente unterschiedliche Vorzeichen (und Beträge) mit ähnlicher Wahrscheinlichkeit haben können.
  • Unter entsprechenden Voraussetzungen und Näherungen kann auch eine Abschätzung für die Interferogramm-Phase des ersten, nur durch die Polarisationswirkung der beugenden Struktur verursachten polarisationsinduzierten Phasenanteils für lineare und orthogonale Eingangspolarisationen φ 1, l i n e a r = φ 1, u n p o l , l i n e a r ( 2 ) ± φ 1, p o l , l i n e a r ( 1 )
    Figure DE102018211853A1_0003
    sowie für zirkuläre und orthogonale Eingangspolarisationen φ 1, z i r c u l a r = φ 1, u n p o l , z i r c u l a r ( 2 ) ± φ 1, p o l , z i r c u l a r ( 2 )
    Figure DE102018211853A1_0004
    angegeben werden. Es ist zu beachten, dass die Terme im zweiten polarisationsinduzierten Phaseneffekt noch linear von den sehr kleinen Größen für Dichroismus und Retardierung in den gemeinsam durchlaufenen Abschnitten abhängig sind, weshalb die Terme im zweiten polarisationsinduzierten Phaseneffekt üblicherweise kleiner sind als Terme im ersten polarisationsinduzierten Phaseneffekt.
  • Unter der Annahme, dass die beugende Struktur in idealer Weise bekannt ist, so dass deren skalare Phasen und der erste polarisationsinduzierte Phasenanteil in den getrennt durchlaufenen Abschnitten in idealer Weise bekannt sind, kann der zweite polarisationsinduzierte Phasenanteil durch den Übergang von einer zirkularen auf eine lineare Eingangspolarisation und weiter durch Mittelung der Interferogramm-Phasen für die beiden orthogonalen Eingangspolarisationen jeweils reduziert werden, da sich die Ordnung der Terme in den Stärken von Dichroismus und Retardierung für die beugende Struktur bei jedem Schritt um eine Ordnung erhöht und sich somit die Größe der Beträge der jeweiligen Terme schrittweise verkleinert.
  • Im Ergebnis wird bei dem erfindungsgemäßen Verfahren insgesamt eine Reduzierung des (neben dem eigentlich zu bestimmenden Phasenanteil entsprechend der Passe des Prüflings vorhandenen) polarisationsinduzierten Phasenanteils erzielt.
  • Um eine mit der Durchführung von zwei Interferogramm-Messungen am optischen Element gemäß 2 einhergehende Vergrößerung der Messzeit zu vermeiden, kann in weiteren Ausführungsformen gemäß 3 in einem Schritt S310 auch eine Vorab-Kalibrierung an einer (von dem hinsichtlich der Oberflächenform zu charakterisierenden optischen Element verschiedenen) Kalibrier-Probe durchgeführt werden.
  • Anhand dieser Vorab-Kalibrierung kann dann im Schritt S320 der Unterschied zwischen den für die zueinander orthogonalen Eingangspolarisationen erhaltenen polarisationsinduzierten Interferogramm-Phasen ermittelt werden. Die Durchführung der eigentlichen Interferogramm-Messung am hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Element muss dann nur noch für eine der beiden bei der Vorab-Kalibrierung verwendeten Eingangspolarisationen erfolgen (Schritt S330), wobei die Passebestimmung dann auf Basis der hierbei erhaltenen Interferogramm-Phase und des zuvor im Schritt S320 ermittelten Unterschieds vorgenommen werden kann.
  • Auch bei den bei der Vorab-Kalibrierung verwendeten, zueinander orthogonalen Eingangspolarisationen kann es sich um lineare Eingangspolarisationen oder auch um zirkulare Eingangspolarisationen handeln. Die bei der Vorab-Kalibrierung durchgeführten Interferogramm-Messungen können dann bei der am tatsächlich hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Element durchgeführten Interferogramm-Messung zur Umrechnung auf den entsprechenden Mittelwert für die beiden verwendeten Eingangspolarisationen genutzt werden, gemäß der Formel φ 1 = 0.5 ( φ 1 + φ 2 ) 0.5 ( φ 1, k + φ 2, k ) + φ 1, k
    Figure DE102018211853A1_0005
  • Dabei bezeichnen φ1 und φ2 die beiden zueinander orthogonalen Eingangspolarisationen, wobei der Index k für die Vorab-Kalibrierung steht.
  • Im Ergebnis kann durch die vorstehend beschriebene Vorab-Kalibrierung eine mit der Durchführung von zwei Interferogramm-Messungen für den eigentlichen Prüfling einhergehende Vergrößerung der Messzeit vermieden werden.
  • In weiteren Ausführungsformen kann die Vorab-Kalibrierung ferner eine Interferogramm-Messung unter Verwendung von elektromagnetischer Strahlung mit zirkularer Eingangspolarisation umfassen. In Verbindung mit einer solchen Vorab-Kalibrierung kann die spätere Interferogramm-Messung am eigentlich hinsichtlich seiner Oberflächenform zu charakterisierenden optischen Element auch für eine (ggf. zwecks Kontrastverbesserung gewünschte) zirkuläre Eingangspolarisation erfolgen, da die Vorab-Kalibrierung dann zur Umrechnung in entsprechende Interferogramm-Phasen für die beiden zueinander senkrechten linearen Eingangspolarisationen (bzw. eine analog zu den vorstehenden Ausführungsformen gemittelte Interferogramm-Phase) genutzt werden kann.
  • 4 zeigt alternativ zu 1 eine weitere beispielhafte Konfiguration einer interferometrischen Prüfanordnung.
  • Gemäß 4 wird in einer Fizeau-Anordnung ein Interferogramm zwischen einer an einer Referenzfläche 402 („Fizeau-Platte“) reflektierten Referenzwelle und einer an einem Spiegel 401 reflektierten Prüfwelle erzeugt. Dabei wird das Messlicht durch ein CGH 403 zu einer asphärischen Wellenfront geformt, die mathematisch exakt der „Prüflingsform“ (d.h. der Form des betreffenden Spiegels 401) in einem Sollabstand entspricht. Die von der Referenzfläche 402 einerseits und dem betreffenden Spiegel 401 bzw. Prüfling andererseits reflektierten Wellenfronten interferieren miteinander in einem Interferometer 404, welches gemäß 4 eine Lichtquelle 405, eine Strahlteilerplatte 406, ein Kollimator 407, eine Blende 408, ein Okular 409 und eine CCD-Kamera 410 aufweist. Mit der CCD-Kamera 410 wird ein Interferogramm des jeweiligen Spiegels 401 aufgenommen.
  • Auch hier dient zur Einstellung der entsprechenden Eingangspolarisation ein in 4 lediglich schematisch angedeutetes polarisationsbeeinflussendes Element 450, welches analog zu 1 in beliebiger geeigneter Weise ausgestaltet und variabel im optischen Strahlengang angeordnet werden kann.
  • Wenn die Erfindung auch anhand spezieller Ausführungsformen beschrieben wurde, erschließen sich für den Fachmann zahlreiche Variationen und alternative Ausführungsformen, z.B. durch Kombination und/oder Austausch von Merkmalen einzelner Ausführungsformen. Dementsprechend versteht es sich für den Fachmann, dass derartige Variationen und alternative Ausführungsformen von der vorliegenden Erfindung mit umfasst sind und die Reichweite der Erfindung nur im Sinne der beigefügten Patentansprüche und deren Äquivalente beschränkt ist.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2016/0085061 A1 [0003]
  • Zitierte Nicht-Patentliteratur
    • B. Geh et al.: „The impact of projection lens polarization properties on lithographic process at hyper-NA“, Proc. of SPIE Vol. 6520, 65200F, 2007 [0019]
    • R. Clark Jones: „A New Calculus for the Treatment of Optical Systems: I Description and Discussion of the Calculus“, JOSA, Vol. 31 (1941) [0025]

Claims (14)

  1. Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements, wobei in wenigstens einer mit einer interferometrischen Prüfanordnung durchgeführten Interferogramm-Messung eine an dem optischen Element reflektierte Prüfwelle mit einer nicht an dem optischen Element reflektierten Referenzwelle zur Überlagerung gebracht wird, dadurch gekennzeichnet, dass eine Bestimmung der Passe des optischen Elements basierend auf wenigstens einer Interferogramm-Messung mit elektromagnetischer Strahlung von linearer Eingangspolarisation erfolgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Bestimmung der Passe des optischen Elements basierend auf wenigstens zwei Interferogramm-Messungen mit elektromagnetischer Strahlung von linearer Eingangspolarisation erfolgt, wobei die Eingangspolarisationen für diese zwei Interferogramm-Messungen sich hinsichtlich der Polarisationsrichtung der elektromagnetischen Strahlung voneinander unterscheiden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Eingangspolarisationen für diese zwei Interferogramm-Messungen orthogonal zueinander sind.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Bestimmung der Passe des optischen Elements basierend auf einer Mittelung von bei diesen zwei Interferogramm-Messungen jeweils erhaltenen Interferogramm-Phasen erfolgt.
  5. Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements, wobei in wenigstens einer mit einer interferometrischen Prüfanordnung durchgeführten Interferogramm-Messung eine an dem optischen Element reflektierte Prüfwelle mit einer nicht an dem optischen Element reflektierten Referenzwelle zur Überlagerung gebracht wird, dadurch gekennzeichnet, dass eine Bestimmung der Passe des optischen Elements basierend auf einer Mittelung von bei zwei Interferogramm-Messungen jeweils erhaltenen Interferogramm-Phasen erfolgt, wobei die Eingangspolarisationen für diese zwei Interferogramm-Messungen orthogonal zueinander sind.
  6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die für diese zwei Interferogramm-Messungen verwendeten Eingangspolarisationen in ihrer Polarisatonsrichtung mit den Richtungen der Eigenvektoren einer Jones-Matrix übereinstimmen, welche die Polarisationswirkung der interferometrischen Prüfanordnung in deren von Referenzwelle und Prüfwelle gemeinsam durchlaufenem Bereich beschreibt.
  7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass diese, zwei Interferogramm-Messungen an dem hinsichtlich der.Oberflächenform zu charakterisierenden optischen Element durchgeführt werden.
  8. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass diese zwei Interferogramm-Messungen in einer Vorab-Kalibrierung an einer von dem hinsichtlich der Oberflächenform zu charakterisierenden optischen Element verschiedenen Kalibrier-Probe durchgeführt werden.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Bestimmung der Passe des optischen Elements auf Basis eines anhand der Vorab-Kalibrierung ermittelten Unterschieds zwischen den für die zwei Interferogramm-Messungen verwendeten Eingangspolarisationen erhaltenen polarisationsinduzierten Interferogramm-Phasen erfolgt.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Vorab-Kalibrierung wenigstens eine Interferogramm-Messung unter Verwendung von elektromagnetischer Strahlung mit zirkularer Eingangspolarisation umfasst.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das optische Element ein Spiegel ist.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das optische Element für eine Arbeitswellenlänge von weniger als 30nm, insbesondere weniger als 15nm, ausgelegt ist.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das optische Element ein optisches Element einer mikrolithographischen Projektionsbelichtungsanlage ist.
  14. Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements, insbesondere eines optischen Elements einer mikrolithographischen Projektionsbelichtungsanlage, dadurch gekennzeichnet, dass diese dazu konfiguriert ist, ein Verfahren nach einem der vorhergehenden Ansprüche durchzuführen.
DE102018211853.1A 2018-07-17 2018-07-17 Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements Pending DE102018211853A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102018211853.1A DE102018211853A1 (de) 2018-07-17 2018-07-17 Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements
JP2021502619A JP7140905B2 (ja) 2018-07-17 2019-06-24 光学素子の表面形状を評価する方法及び装置
EP19737006.7A EP3824246A1 (de) 2018-07-17 2019-06-24 Verfahren und vorrichtung zur charakterisierung der oberflächenform eines optischen elements
PCT/EP2019/066628 WO2020015954A1 (de) 2018-07-17 2019-06-24 Verfahren und vorrichtung zur charakterisierung der oberflächenform eines optischen elements
US17/151,017 US11326872B2 (en) 2018-07-17 2021-01-15 Method and device for characterizing the surface shape of an optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018211853.1A DE102018211853A1 (de) 2018-07-17 2018-07-17 Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements

Publications (1)

Publication Number Publication Date
DE102018211853A1 true DE102018211853A1 (de) 2020-01-23

Family

ID=67211678

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018211853.1A Pending DE102018211853A1 (de) 2018-07-17 2018-07-17 Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements

Country Status (5)

Country Link
US (1) US11326872B2 (de)
EP (1) EP3824246A1 (de)
JP (1) JP7140905B2 (de)
DE (1) DE102018211853A1 (de)
WO (1) WO2020015954A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019215707A1 (de) * 2019-10-14 2021-04-15 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021202820B3 (de) * 2021-03-23 2022-03-03 Carl Zeiss Smt Gmbh Interferometrisches Messverfahren und interferometrische Messanordnung
DE102021211963A1 (de) 2021-10-25 2022-12-29 Carl Zeiss Smt Gmbh Verfahren sowie interferometrische Messanordnung zur Bestimmung der Oberflächenform eines Prüflings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826385A1 (de) * 1997-06-12 1998-12-17 Nikon Corp Formmeßverfahren und hochpräzises Herstellungsverfahren für Linsen
DE10304822A1 (de) * 2002-07-29 2004-02-12 Carl Zeiss Smt Ag Verfahren und Vorrichtung zur Bestimmung der Polarisationszustandsbeeinflussung durch ein optisches System und Analysator
DE102009015393B3 (de) * 2009-03-20 2010-09-02 Carl Zeiss Smt Ag Messverfahren und Messsystem zur Messung der Doppelbrechung
US20150192769A1 (en) * 2014-01-09 2015-07-09 Zygo Corporation Measuring Topography of Aspheric and Other Non-Flat Surfaces
DE102014205406A1 (de) * 2014-03-24 2015-09-24 Carl Zeiss Smt Gmbh Messvorrichtung zum Bestimmen eines Polarisationsparameters
US20160085061A1 (en) 2013-07-29 2016-03-24 Carl Zeiss Smt Gmbh Projection optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such a projection optical unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163946A (ja) 1997-06-12 1999-03-05 Nikon Corp 形状測定方法及び高精度レンズ製造方法
JP2004061515A (ja) 2002-07-29 2004-02-26 Cark Zeiss Smt Ag 光学系による偏光状態への影響を決定する方法及び装置と、分析装置
DE602006008896D1 (de) 2005-01-20 2009-10-15 Zygo Corp Interferometer zur bestimmung von eigenschaften einer objektoberfläche
JP2007198896A (ja) * 2006-01-26 2007-08-09 Canon Inc 計測方法
DE102007056200A1 (de) * 2007-11-21 2009-05-28 Mathias Dr. Beyerlein Polarizations Inferferometer zur optischen Prüfung
JP6346410B2 (ja) * 2013-05-24 2018-06-20 国立大学法人 筑波大学 ジョーンズマトリックスoctシステム及び該octで得られた計測データを画像処理するプログラム
WO2016110467A1 (en) * 2015-01-08 2016-07-14 Koninklijke Philips N.V. Optical shape sensing system, medical apparatus and method for optical shape sensing
DE102015202695A1 (de) * 2015-02-13 2016-08-18 Carl Zeiss Smt Gmbh Prüfvorrichtung sowie Verfahren zum Prüfen eines Spiegels
DE102015209490A1 (de) * 2015-05-22 2016-11-24 Carl Zeiss Smt Gmbh Interferometrische Messanordnung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826385A1 (de) * 1997-06-12 1998-12-17 Nikon Corp Formmeßverfahren und hochpräzises Herstellungsverfahren für Linsen
DE10304822A1 (de) * 2002-07-29 2004-02-12 Carl Zeiss Smt Ag Verfahren und Vorrichtung zur Bestimmung der Polarisationszustandsbeeinflussung durch ein optisches System und Analysator
DE102009015393B3 (de) * 2009-03-20 2010-09-02 Carl Zeiss Smt Ag Messverfahren und Messsystem zur Messung der Doppelbrechung
US20160085061A1 (en) 2013-07-29 2016-03-24 Carl Zeiss Smt Gmbh Projection optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such a projection optical unit
US20150192769A1 (en) * 2014-01-09 2015-07-09 Zygo Corporation Measuring Topography of Aspheric and Other Non-Flat Surfaces
DE102014205406A1 (de) * 2014-03-24 2015-09-24 Carl Zeiss Smt Gmbh Messvorrichtung zum Bestimmen eines Polarisationsparameters

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B. Geh et al.: „The impact of projection lens polarization properties on lithographic process at hyper-NA", Proc. of SPIE Vol. 6520, 65200F, 2007
GEH, Bernd [u.a.]: The impact of projection lens polarization properties on lithographic process at hyper-NA. In: Proceedings of SPIE, Bd. 6520, 2007, Artikelnummer: 65200F. - ISSN 1996-756X (E); 0277-786X (P). DOI: 10.1117/12.722317. URL: https://www.spiedigitallibrary.org/proceedings/Download?fullDOI=10.1117%2F12.722317 [abgerufen am 2018-11-19]. *
JONES, R. Clark: New calculus for the treatment of optical systems. I. Description and discussion., II. Proof of 3 general equivalence theorems., III. The Sohncke theory of optical activity. In: Journal of the Optical Society of America (JOSA), Bd. 31, 1941, Bd. 7, S. 500-503. - ISSN 0030-3941 (P). DOI: 10.1364/JOSA.31.000500. URL: https://www.osapublishing.org/josa/viewmedia.cfm?uri=josa-31-7-500&seq=0 [abgerufen am 2018-11-19]. *
R. Clark Jones: „A New Calculus for the Treatment of Optical Systems: I Description and Discussion of the Calculus", JOSA, Vol. 31 (1941)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019215707A1 (de) * 2019-10-14 2021-04-15 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements
US11927500B2 (en) 2019-10-14 2024-03-12 Carl Zeiss Smt Gmbh Method and device for characterizing the surface shape of an optical element

Also Published As

Publication number Publication date
JP2021530705A (ja) 2021-11-11
US20210140762A1 (en) 2021-05-13
US11326872B2 (en) 2022-05-10
EP3824246A1 (de) 2021-05-26
JP7140905B2 (ja) 2022-09-21
WO2020015954A1 (de) 2020-01-23

Similar Documents

Publication Publication Date Title
EP1615062B1 (de) Mikroskopisches Abbildungssystem und Verfahren zur Emulation eines hochaperturigen Abbildungssystems, insbesondere zur Maskeninspektion
EP3256835B1 (de) Prüfvorrichtung sowie verfahren zum prüfen eines spiegels
DE102017115262B9 (de) Verfahren zur Charakterisierung einer Maske für die Mikrolithographie
DE102018209175B4 (de) Computer-generiertes Hologramm (CGH), interferometrische Prüfanordnung, sowie Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements
EP3824246A1 (de) Verfahren und vorrichtung zur charakterisierung der oberflächenform eines optischen elements
DE102016209616A1 (de) Verfahren und Vorrichtung zur Vorhersage des mit einer Maske bei Durchführung eines Lithographieprozesses erzielten Abbildungsergebnisses
DE102017217371A1 (de) Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements
DE102018221405A1 (de) Diffraktives optisches Element sowie Verfahren zu dessen Herstellung
DE102014206589A1 (de) Verfahren zum Justieren eines Spiegels einer mikrolithographischen Projektionsbelichtungsanlage
WO2021073821A1 (de) Verfahren und vorrichtung zur charakterisierung der oberflächenform eines optischen elements
DE102017216401A1 (de) Computer-generiertes Hologramm (CGH), sowie Verfahren zu dessen Herstellung
DE102013107976B4 (de) Positionsbestimmung von Strukturen auf einer Maske für die Mikrolithographie
DE102005041938A1 (de) Mikrolithographische Projektionsbelichtungsanlage
DE102017217372A1 (de) Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements
DE102019216447A1 (de) Interferometrische Prüfanordnung zur Prüfung der Oberflächenform eines Testobjekts
DE102018202637B4 (de) Verfahren zur Bestimmung einer Fokuslage einer Lithographie-Maske und Metrologiesystem zur Durchführung eines derartigen Verfahrens
DE102018202635B4 (de) Verfahren zur Bestimmung eines Abbildungsfehlerbeitrags einer abbildenden Optik zur Vermessung von Lithografie-Masken
DE102022203999A1 (de) Verfahren zur Kalibrierung einer diffraktiven Messstruktur, Vorrichtung zur Kalibrierung einer diffraktiven Messstruktur und Lithografiesystem
WO2022037898A1 (de) Verfahren und vorrichtung zur charakterisierung der oberflächenform eines optischen elements
DE102021205202A1 (de) Messanordnung und Verfahren zur Vermessung der Oberflächenform eines optischen Elements
DE102022209887A1 (de) Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements
DE102022207720A1 (de) Verfahren zur Vorhersage einer Abweichung zwischen einer für ein optisches Element in einem Messzustand gemessenen und einer im Betriebszustand zu erwartenden Passe
DE102020202623A1 (de) Verfahren zur komplexen Kodierung eines Computer-generierten Hologramms (CGH)
DE102019208620A1 (de) Interferometer zur Abstandsvermessung in einem optischen System
DE102021211963A1 (de) Verfahren sowie interferometrische Messanordnung zur Bestimmung der Oberflächenform eines Prüflings

Legal Events

Date Code Title Description
R012 Request for examination validly filed