TWI713851B - 無線傳送裝置、無線接收裝置及無線通訊系統 - Google Patents

無線傳送裝置、無線接收裝置及無線通訊系統 Download PDF

Info

Publication number
TWI713851B
TWI713851B TW107118481A TW107118481A TWI713851B TW I713851 B TWI713851 B TW I713851B TW 107118481 A TW107118481 A TW 107118481A TW 107118481 A TW107118481 A TW 107118481A TW I713851 B TWI713851 B TW I713851B
Authority
TW
Taiwan
Prior art keywords
unit
phase rotation
frequency
signal
series
Prior art date
Application number
TW107118481A
Other languages
English (en)
Other versions
TW201937865A (zh
Inventor
東中雅嗣
佐野裕康
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW201937865A publication Critical patent/TW201937865A/zh
Application granted granted Critical
Publication of TWI713851B publication Critical patent/TWI713851B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • H04L27/2631Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators with polyphase implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3444Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power by applying a certain rotation to regular constellations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

本發明之無線傳送裝置係包括:相位旋轉系列產生部(110),係根據所輸入的傳送位元,而產生頻率響應具有頻寬的相位旋轉系列;向上取樣部(111),係變更相位旋轉系列的取樣率,更進而複製相位旋轉系列;及頻率位移部(112),係針對從向上取樣部所取得的相位旋轉系列,將頻率組成在頻率軸上位移所規定的位移量。

Description

無線傳送裝置、無線接收裝置及無線通訊系統
本發明係關於一種進行無線通訊的無線傳送裝置、無線接收裝置及無線通訊系統。
近年來,為了進行從遠端機器收集資料、及機器的遠端控制等,一種使用了無線通訊的感測器網路(sensor network)、M2M(Machine To Machine,機器對機器)通訊等已逐漸普及。在此種用途中,從開展網路之靈活性的觀點來看,無線通訊終端間的通訊距離係以長距離為理想。
為了要實現長距離無線通訊,例如,可考慮使用非專利文獻1所記載之直接頻譜(spectrum)擴散的構成。在非專利文獻1的19.1章中,係揭示了一種使用了二進制擴散符號的直接頻譜擴散方式,以作為LECIM(Low Energy,Critical Infrastructure Monitoring,低能量,關鍵基礎設施監控)用之無線通訊之實體層的通訊方式。在直接頻譜擴散方式中,係將所要使用的擴散率增大,使得相對於雜訊的承受度變強,通訊距離變長,另一方面傳送速度則變小。如此,在直接頻譜擴散方式中,通訊距離與傳送速度係一種取捨(trade-off)的關係。此外,當使用直接頻譜擴散方式時,縱使其他的無線通訊終端以相同時刻及相同頻率進行了通訊,只要在各個通訊中使用不 同的擴散符號,就可進行降低彼此干擾的通訊,此為其特徵。
[先前技術文獻] [非專利文獻]
[非專利文獻1]IEEE Standard for Local and metropolitan area networks Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), Amendment 5: Physical Layer Specifications for Low Energy, Critical Infrastructure Monitoring Networks
然而,在非專利文獻1所揭示的無線通訊技術中,雖可抑制因為干擾所導致的通訊品質劣化,但由於進行使用了二進制擴散符號的信號傳送,因此會有傳送信號的平均功率與峰值(peak)功率的差分變大的問題。當傳送信號的平均功率與峰值功率的差分較大時,為了抑制因為使用非線形的增幅器而產生的波形失真、頻帶外的無用輻射等,必須在增幅器中將回退(back off)取得較大。由於此情形,可使用之傳送功率的上限會被抑制得較低,故通訊距離會受到限制。
本發明係有鑑於上述問題而研創者,其目的為獲得一種既可減低因為干擾所導致的通訊品質劣化,又可實現長距離無線通訊的無線傳送裝置。
為了解決上述的問題而達成目的,本發明的無線傳送裝置係包括相位旋轉系列產生部,該相位旋轉系列產生部 係根據所輸入的傳送位元(bit),而產生頻率響應具有頻寬的相位旋轉系列。此外,無線傳送裝置係包括向上取樣(up sample)部,該向上取樣部係變更相位旋轉系列的取樣率(sample rate),進而複製相位旋轉系列。此外,無線傳送裝置之特徵為包括頻率位移(shift)部,該頻率位移部係針對從向上取樣部所取得的相位旋轉系列,將頻率組成在頻率軸上位移所規定的位移量。
本發明之無線傳送裝置係可達成既可減低因為干擾所導致的通訊品質劣化,又可實現長距離無線通訊的效果。
10‧‧‧第一傳送機
11‧‧‧第二傳送機
20‧‧‧接收機
30、70至73‧‧‧無線通訊系統
40至48‧‧‧終端
50至52‧‧‧中繼器
60至62‧‧‧存取點
70至73‧‧‧無線通訊系統
91‧‧‧處理器
92‧‧‧記憶體
93‧‧‧處理電路
100、100c‧‧‧傳送部
101‧‧‧編碼部
102、102c‧‧‧傳送信號產生部
103‧‧‧傳送濾波器
104‧‧‧高頻傳送處理部
105‧‧‧傳送天線
110、110c‧‧‧相位旋轉系列產生部
111‧‧‧向上取樣部
112‧‧‧頻率位移部
113‧‧‧CP附加部
114‧‧‧已知信號產生部
115‧‧‧訊框產生部
200、200a、200b、200c‧‧‧接收部
201‧‧‧接收天線
202‧‧‧高頻接收處理部
203‧‧‧接收濾波器
204、204a、204b、204c‧‧‧解調處理部
205‧‧‧解碼部
210‧‧‧接收同步處理部
211‧‧‧CP去除部
212‧‧‧等化處理部
213、213b‧‧‧系列乘法運算部
214‧‧‧N點DFT部
215、215a、215b、215c‧‧‧干擾測量部
216、216a、216b、216c‧‧‧判定部
217‧‧‧頻率逆位移部
218‧‧‧合成部
219‧‧‧M點DFT部
220‧‧‧切換部
221‧‧‧P點DFT部
250‧‧‧分配部
251‧‧‧傳送路徑推測部
252‧‧‧等化係數算出部
253‧‧‧失真修正部
300、301‧‧‧相位旋轉系列
400至403‧‧‧已知信號
404至415‧‧‧資料信號
500‧‧‧頻率軸
501至508‧‧‧傳送頻譜
800、900‧‧‧頻率軸
801至808、901至908‧‧‧頻率區域信號
1200‧‧‧頻率軸
1201、1202‧‧‧頻率區域信號
1800‧‧‧頻率軸
1801至1828‧‧‧傳送頻譜
2017至2020‧‧‧傳送頻譜
2101至2116‧‧‧傳送頻譜
c‧‧‧第二相位旋轉系列
h‧‧‧傳送路徑推測值
k‧‧‧參數
L‧‧‧係數
M‧‧‧樣本數
P‧‧‧樣本數
r‧‧‧參數
第1圖係顯示實施形態1之無線通訊系統之構成例的圖。
第2圖係顯示實施形態1之第一傳送機所包括之傳送部之構成例的圖。
第3圖係顯示實施形態1之第一傳送機所包括之傳送部之動作的流程圖。
第4圖係顯示實施形態1之傳送信號產生部產生傳送信號之動作的流程圖。
第5圖係顯示實施形態1之向上取樣部中之處理之圖像(image)的圖。
第6圖係顯示實施形態1之訊框(frame)產生部所產生之傳送信號之訊框構成之例的圖。
第7圖係顯示在實施形態1之第一傳送機及第二傳送機所 產生之傳送信號之頻率頻譜之圖像的圖。
第8圖係顯示實施形態1之接收機所包括之接收部之構成例的圖。
第9圖係顯示實施形態1之接收機所包括之接收部之動作的流程圖。
第10圖係顯示實施形態1之解調處理部產生編碼位元之推測值之動作的流程圖。
第11圖係顯示實施形態1之等化處理部之構成例的圖。
第12圖係顯示在實施形態1之系列乘法運算部中,根據對應第一傳送機的第二相位旋轉系列所處理之結果所對應的頻率區域信號之圖像的圖。
第13圖係顯示在實施形態1之系列乘法運算部中,根據對應第二傳送機的第二相位旋轉系列所處理之結果所對應的頻率區域信號之圖像的圖。
第14圖係顯示藉由處理器(processor)及記憶體(memory)構成實施形態1之傳送部所包括之處理電路時之例的圖。
第15圖係顯示藉由專用的硬體(hardware)構成實施形態1之傳送部所包括之處理電路時之例的圖。
第16圖係顯示實施形態2之接收機所包括之接收部之構成例的圖。
第17圖係顯示實施形態2之解調處理部產生編碼位元之推測值之動作的流程圖。
第18圖係顯示實施形態3之接收機所包括之接收部之構成例的圖。
第19圖係顯示輸入於實施形態3之干擾測量部之頻率區域信號之圖像的圖。
第20圖係顯示實施形態3之解調處理部產生編碼位元之推測值之動作的流程圖。
第21圖係顯示實施形態4之第一傳送機及第二傳送機所包括之傳送部之構成例的圖。
第22圖係顯示實施形態4之接收機所包括之接收部之構成例的圖。
第23圖係顯示實施形態5之無線通訊系統之構成例的圖。
第24圖係顯示實施形態5之終端之構成例的圖。
第25圖係顯示實施形態5之中繼器之構成例的圖。
第26圖係顯示實施形態5之存取點(access point)之構成例的圖。
第27圖係顯示實施形態5之無線通訊系統中在某時序(timing)之各裝置之資料之傳送接收之流程的圖。
第28圖係顯示實施形態5之無線通訊系統中在不同於第27圖之其他時序之各裝置之資料之傳送接收之流程的圖。
第29圖係顯示實施形態5之無線通訊系統中,於第27圖所示之資料傳送接收之時序在各裝置所使用之傳送頻譜之例的圖。
第30圖係顯示實施形態5之無線通訊系統中,於第28圖所示之資料傳送接收之時序在各裝置所使用之傳送頻譜之例的圖。
第31圖係顯示實施形態5中,於第23圖之無線通訊系統追 加了終端之無線通訊系統之構成例的圖。
第32圖係顯示在實施形態5的無線通訊系統中,於第31圖所示之資料傳送接收的時序在終端所使用之傳送頻譜之例的圖。
第33圖係顯示在實施形態5的無線通訊系統中,於第31圖所示之資料傳送接收的時序在各裝置所使用之傳送頻譜之例的圖。
第34圖係顯示在實施形態5的無線通訊系統中,於第31圖所示之資料傳送接收的時序在終端所使用之傳送頻譜之另一例的圖。
第35圖係顯示實施形態5中無線通訊系統所鄰接之情形之例的圖。
以下根據圖式來詳細說明本發明之實施形態之無線傳送裝置、無線接收裝置及無線通訊系統。另外,本發明並不限定於該實施形態。
(實施形態1)
第1圖係顯示本發明之實施形態1之無線通訊系統30之構成例的圖。無線通訊系統30係包括:第一傳送機10;第二傳送機11;及接收機20。在無線通訊系統30中,係由第一傳送機10對接收機20進行資料的傳送,並且由第二傳送機11對接收機20進行資料的傳送。在第1圖所示之無線通訊系統30中,接收機20與第一傳送機10之間的距離,係設為較接收機20與第二傳送機11之間的距離更短。第一傳送機10及第二傳送機11的構成, 係彼此相同。在以後的說明中,當不需區別第一傳送機10及第二傳送機11時,有將第一傳送機10及第二傳送機11之各者簡稱為傳送機之情形。
茲說明屬於無線傳送裝置之第一傳送機10及第二傳送機11的構成及動作。以下以第一傳送機10為例進行說明。第2圖係顯示實施形態1之第一傳送機10所包括之傳送部100之構成例的圖。傳送部100係包括:編碼部101;傳送信號產生部102;傳送濾波器(filter)103;高頻傳送處理部104:及傳送天線(antenna)105。傳送信號產生部102係包括:相位旋轉系列產生部110;向上取樣部111;頻率位移部112;CP(Cyclic Prefix,循環前置區間)附加部113;已知信號產生部114;及訊框產生部115。
首先說明第2圖所示之傳送部100的動作概要。第3圖係顯示實施形態1之第一傳送機10所包括之傳送部100之動作的流程圖。編碼部101係藉由對於資料位元以規定的方式進行錯誤訂正編碼來產生編碼位元(步驟S11)。以錯誤訂正編碼方式而言,可應用迴旋碼、渦輪(turbo)碼、LDPC(Low Density Parity Check,低密度同位元檢查)碼等一般所知的方式。此外,編碼部101亦可對編碼位元進行重排位元順序的交錯(Interleave)處理等。編碼部101係將所產生的編碼位元輸出至傳送信號產生部102。傳送信號產生部102係使用從編碼部101所交遞的傳送位元亦即編碼位元,進行後述的處理而產生傳送信號(步驟S12)。傳送信號產生部102係將所產生的傳送信號傳送至傳送濾波器103。傳送濾波器103係對於從傳送信號 產生部102所交遞的傳送信號進行頻帶限制(步驟S13)。傳送濾波器103係例如一般所知的根奈奎斯特濾波器(Root Nyquist Filter)等。傳送濾波器103係將頻帶限制後的傳送信號輸出至高頻傳送處理部104。高頻傳送處理部104係對於從傳送濾波器103所交遞之頻帶限制後的傳送信號,進行從數位(digital)信號轉換至類比(analogue)信號的處理、向上轉換(up convert)為載波(carrier)頻率等一般的高頻傳送處理(步驟S14),而從傳送天線105進行傳送信號的傳送(步驟S15)。
茲詳細說明傳送信號產生部102的動作。第4圖係顯示實施形態1之傳送信號產生部102產生傳送信號之動作的流程圖。第4圖所示之流程圖,係將第3圖所示之步驟S12之處理予以詳細地顯示者。
從編碼部101被交遞至傳送信號產生部102的編碼位元,係輸入至相位旋轉系列產生部110。相位旋轉系列產生部110係根據屬於傳送位元的編碼位元,而產生具有頻帶寬度的相位旋轉系列(步驟S21)。具體而言,相位旋轉系列產生部110係進行選擇與編碼位元建立1對1對應關係的相位旋轉系列並予以輸出的處理。本實施形態中所使用的相位旋轉系列係設為具有下列特徵:藉由頻率響應具有頻寬,對應所輸入的傳送位元,在此係對應編碼位元,而使顯示相位旋轉系列之種類的參數(parameter)變化而產生。在本實施形態中,傳送信號產生部102的相位旋轉系列產生部110,係使用不具頻寬的頻率調變信號(以下稱為第一相位旋轉系列)、及頻率組成與時間一同變化的相位旋轉系列(以下稱為第二相位旋轉系列),而如 下列公式產生相位旋轉系列。例如,將樣本編號設為m、相位旋轉系列設為x(m)、相位旋轉系列的系列長度設為M、與編碼位元對應的參數設為k(惟0≦k<M)。此外,將第一相位旋轉系列設為s(m)、第二相位旋轉系列設為c(m)。傳送信號產生部102係使用下列公式(1)而產生相位旋轉系列。
x(m)=s(m)×c(m)=exp(j2 π km/M)×exp(j π×r×m×m/M)=exp(j2 π(k+0.5r×m)m/M˙˙˙(1)
在公式(1)中,j係顯示虛數單位。此外,r係顯示第二相位旋轉系列c(m)之種類的參數。例如,當相位旋轉系列的系列長度設為M=4時,相位旋轉系列產生部110係從編碼部101以2位元單位接收編碼位元,當2位元的編碼位元為“00”時,選擇參數k=0,當“01”時選擇k=1,當“10”時選擇k=2,當“11”時選擇k=3。相位旋轉系列產生部110係使用所選擇的k、及預先規定之參數r的值而進行公式(1)的計算,以產生相位旋轉系列。另外,在公式(1)中所產生之相位旋轉系列的波形,只要M、k、r的各參數決定,就可唯一地決定。因此,亦可設為依據參數而選擇預先被保持於記憶體之相位旋轉系列之波形的構成。相位旋轉系列產生部110係將所產生的相位旋轉系列輸出至向上取樣部111。
向上取樣部111係對於從相位旋轉系列產生部110所交遞的相位旋轉系列,變更取樣率,進而複製取樣率變更後的相位旋轉系列(步驟S22)。具體而言,向上取樣部111係進 行將相位旋轉系列的取樣率設為所規定的係數(以下將所規定的係數設為L)倍,並且將相位旋轉系列的樣本數複製為L倍的向上取樣處理,以產生向上取樣後的相位旋轉系列。L係設為2以上的整數。第5圖係顯示實施形態1之向上取樣部111中之處理之圖像的圖。第5圖係顯示相位旋轉系列的系列長度M=4、所規定的係數L=2的情形。在第5圖中,相位旋轉系列300係顯示從相位旋轉系列產生部110所交遞之M=4樣本份的相位旋轉系列,相位旋轉系列301係顯示經由向上取樣部111進行向上取樣後的相位旋轉系列。在第5圖中,相位旋轉系列300、301的橫寬係示意取樣間隔,經由向上取樣部111將取樣率設為L=2倍的結果,在相位旋轉系列300之取樣間隔為向上取樣後的相位旋轉系列301中,係顯示出1/L=1/2的情形。此外,由於向上取樣部111將相位旋轉系列300的樣本數設為L=2倍,因此向上取樣後之相位旋轉系列301的樣本數,成為M×L=8樣本。向上取樣後之相位旋轉系列301中之樣本值的排列,當以n來表示樣本編號、以y(n)來表示向上取樣後的相位旋轉系列時,y(0)=x(0)、y(1)=x(1)、y(2)=x(2)、y(3)=x(3)、y(4)=x(0)、y(5)=x(1)、y(6)=x(2)、y(7)=x(3)。向上取樣部111係將向上取樣後的相位旋轉系列301輸出至頻率位移部112。
頻率位移部112係對於從向上取樣部111所交遞之向上取樣後的相位旋轉系列301,進行根據所規定的位移量而將信號的頻率組成在頻率軸上予以位移的頻率位移(步驟S23),以產生頻率位移後的相位旋轉系列。當設頻率位移後的 相位旋轉系列為yf(n)時,頻率位移部112的處理,如下列公式(2)所示,可藉由賦予對應於頻率軸上之位移量的相位旋轉θ而實現。
yf(n)=y(n)×exp(j2 π θ n/N)˙˙˙(2)
在公式(2)中,N係顯示向上取樣後之相位旋轉系列的樣本數,N=M×L。頻率位移部112係將頻率位移後的相位旋轉系列輸出至CP附加部113。
CP附加部113係將CP附加於從頻率位移部112所交遞之頻率位移後的相位旋轉系列(步驟S24)。具體而言,CP附加部113係從頻率位移後之相位旋轉系列的最末尾僅複製所規定的樣本數,且附加於頻率位移後之相位旋轉系列的開頭,以產生附帶CP之相位旋轉系列。CP附加部113係將所產生之附帶CP之相位旋轉系列輸出至訊框產生部115。
已知信號產生部114係產生為了在接收機20中進行解調處理所使用的已知信號(步驟S25)。在本實施形態中,係使用與在上述之相位旋轉系列產生部110中被賦予k=0之參數時所產生之附帶CP之相位旋轉系列相同的附帶CP之相位旋轉系列,以作為已知信號。相位旋轉系列的系列長度M、向上取樣的係數L、及用於頻率位移之相位旋轉θ等的參數,係設為與從上述之相位旋轉系列產生部110至CP附加部113所使用者相同。另外,已知信號產生部114係可設為將與上述之已知信號之信號波形相同者先保持於記憶體,且可予以讀取之構成,亦可構成為共用從相位旋轉系列產生部110至CP附加部113的電路而產生,以作為用以產生已知信號的處理。此外,亦可 設為專門包括與從相位旋轉系列產生部110至CP附加部113相同之電路的構成,以作為已知信號產生部114。已知信號產生部114係將所產生的已知信號輸出至訊框產生部115。
訊框產生部115係進行依照所規定的訊框構成而配置從CP附加部113所交遞之附帶CP之相位旋轉系列、與從已知信號產生部114所交遞之已知信號的處理,以產生傳送信號(步驟S26)。第6圖係顯示實施形態1之訊框產生部115所產生之傳送信號之訊框構成之例的圖。在第6圖中,已知信號400至403係顯示從已知信號產生部114所交遞之已知信號的記號(symbol),資料信號404至415係顯示從CP附加部113所交遞之根據編碼位元所產生之附帶CP之相位旋轉系列的記號。在第6圖所示的訊框構成中,係形成為在傳送信號中,於開頭配置4個已知信號,其後則排列有12個根據編碼位元所產生之附帶CP之相位旋轉系列的構成。訊框產生部115係將所產生的傳送信號輸出至傳送濾波器103。以下之傳送部100的動作係如前所述。
在此,說明對於第一傳送機10及第二傳送機11之各傳送信號產生部102的各種參數的設定方法。在本實施形態中,係在第一傳送機10與第二傳送機11之間,就有關在相位旋轉系列產生部110所使用的第二相位旋轉系列,使用顯示不同種類的參數r。例如,在第一傳送機10中係設定為r=1,在第二傳送機11中係設定為r=2。此外,向上取樣部111中的係數L係設為相同的值。再者,頻率位移部112中之相位旋轉θ的值係設定為不同的值。例如,在前述的公式(2)中,係構成為在 第一傳送機10中θ=0,亦即不進行頻率位移,而在第二傳送機11中係設定為θ=1。此時,茲將當以前述之例中所使用的M=4、L=2、N=8之參數產生傳送信號時,傳送信號的傳送頻譜的圖像顯示於第7圖。第7圖係顯示在實施形態1之第一傳送機10及第二傳送機11所產生之傳送信號之頻率頻譜之圖像的圖。在第7圖所示之頻率軸500上,傳送頻譜501至504係顯示經由第一傳送機10所產生之傳送信號的頻率頻譜,傳送頻譜505至508係顯示經由第二傳送機11所產生之傳送信號的頻率頻譜。在本實施形態中,係由第一傳送機10及第二傳送機11之各傳送信號產生部102以上述之方式產生傳送信號,使得在第一傳送機10及第二傳送機11所產生之傳送信號的傳送頻譜,將會在頻率軸上以均勻分散的形態產生。此外,藉由在第一傳送機10與第二傳送機11之間設定不同的相位旋轉θ,可使彼此之傳送信號的傳送頻譜在頻率軸上彼此不同,而配置成不會重疊。另外,關於對於第一傳送機10及第二傳送機11之各傳送信號產生部102的各種參數的設定,可考慮無線通訊系統30之管理者所設定的方法,但不限定於此。
接著說明屬於無線接收裝置之接收機20的構成及動作。第8圖係顯示實施形態1之接收機20所包括之接收部200之構成例的圖。接收部200係包括:接收天線201;高頻接收處理部202;接收濾波器203;解調處理部204;及解碼部205。解調處理部204係包括:接收同步處理部210;CP去除部211;等化處理部212;系列乘法運算部213;N點(point)DFT(Discrete Fourier Transform,離散傅立葉轉換)部214;干擾測量部215; 及判定部216。
首先說明第8圖所示之接收部200的動作概要。第9圖係顯示實施形態1之接收機20所包括之接收部200之動作的流程圖。接收天線201係接收高頻接收信號(步驟S31)。接收天線201係將所接收的高頻接收信號輸出至高頻接收處理部202。高頻接收處理部202係對於所交遞的高頻接收信號,進行向下轉換(down convert)、濾波(filting)、從類比信號轉換為數位信號的處理等一般的高頻接收處理(步驟S32)。高頻接收處理部202係將高頻接收處理後的接收信號輸出至接收濾波器203。接收濾波器203係例如使用與在傳送部100所包括之傳送濾波器103所使用者同等的根奈奎斯特濾波器等,而進行頻帶限制(步驟S33)。接收濾波器203係將頻帶限制處理後的接收信號作為複合基帶(Complex baseband)接收信號而輸出至解調處理部204。解調處理部204係對於複合基帶接收信號進行後述的處理,而產生編碼位元的推測值(步驟S34)。解調處理部204係將所產生之編碼位元的推測值輸出至解碼部205。解碼部205係對於所交遞之編碼位元的推測值,進行將在傳送部100所包括之編碼部101所應用之錯誤訂正碼予以解碼的處理(步驟S35),以獲得解碼位元。
茲詳細說明解調處理部204的動作。第10圖係顯示實施形態1之解調處理部204產生編碼位元之推測值之動作的流程圖。第10圖所示的流程圖,係將第9圖所示之步驟S34的處理予以詳細地顯示者。
從接收濾波器203被交遞至解調處理部204的複合 基帶接收信號係分別被輸入於接收同步處理部210及CP去除部211。接收同步處理部210係從複合基帶接收信號檢測出訊框中之已知信號的時序(步驟S41)。接收同步處理部210係例如預先保持與經由傳送機之已知信號產生部114所產生之已知信號相同波形的已知信號。接收同步處理部210係可藉由使用所保持的已知信號而對複合基帶接收信號進行互相關處理,以檢測出互相關值之峰值(peak)的手法,而檢測出已知信號的時序。藉由接收同步處理部210檢測出已知信號的時序,複合基帶接收信號與訊框構成的對應即得以建立,而可達成在解調處理部204中與訊框構成同步的解調處理。
CP去除部211係根據經由接收同步處理部210所檢測出的時序,從複合基帶接收信號,去除被傳送機之CP附加部113所附加的CP,抽出接收信號(步驟S42)。CP去除部211係將所抽出的接收信號輸出至等化處理部212。
等化處理部212係使用從CP去除部211所交遞的接收信號、與在後述之處理中所求出之從干擾測量部215所交遞的干擾測量值,而進行修正在無線傳送路經所受到之波形失真的等化處理。等化處理部212係將等化後的接收信號輸出至系列乘法運算部213。在此,等化處理部212係首先對於從在第6圖所示之訊框構成中相當於已知信號400至403之處所抽出之在CP去除部211中已被去除CP後之接收信號(以下稱接收已知信號)進行等化處理。再者,等化處理部212係如後所述,對於從在第6圖所示之訊框構成中相當於資料信號404至415,亦即附帶CP之相位旋轉系列之處所抽出之在CP去除部211中已 被去除CP後之接收信號(以下稱接收資料信號)進行等化處理。
茲詳細說明等化處理部212的等化處理。第11圖係顯示實施形態1之等化處理部212之構成例的圖。等化處理部212係包括:分配部250;傳送路徑推測部251;等化係數算出部252;及失真修正部253。在分配部250中係輸入有來自CP去除部211的接收信號,在等化係數算出部252中則從干擾測量部215輸入有干擾測量值。分配部250係當處理接收已知信號時,將接收已知信號輸出至傳送路徑推測部251及失真修正部253。另外,分配部250係如後所述,當處理接收資料信號時,將接收資料信號輸出至失真修正部253。
茲詳細說明在等化處理部212中,當處理接收已知信號時的動作。傳送路徑推測部251係使用接收已知信號而推測頻率區域的傳送路徑響應。傳送路徑推測部251係對於接收已知信號進行N點的離散傅立葉轉換,以獲得頻率區域的接收已知信號。此外,傳送路徑推測部251係保持住在第一傳送機10所使用之已知信號的頻率響應、及在第二傳送機11所使用之已知信號的頻率響應。傳送路徑推測部251係進行使用所保持之已知信號的頻率響應而從頻率區域之接收已知信號去除已知信號成分的處理,以獲得相對於第一傳送機10的傳送路徑推測值、及相對於第二傳送機11的傳送路徑推測值。具體而言,從第7圖所示之傳送頻譜的對應關係可得知,對應傳送頻譜501至504之頻率中的傳送路徑推測值,成為相對於第一傳送機10之頻率區域的傳送路徑推測值,而對應傳送頻譜505至508之頻率中的傳送路徑推測值,成為相對於第二傳送機11之頻率區域 的傳送路徑推測值。傳送路徑推測部251係例如當將某頻率中之頻率區域的接收已知信號設為z、所保持之已知信號的頻率響應設為y、頻率區域的傳送路徑推測值設為h時,即可藉由h=z×y*/|y|2的計算式,而從頻率區域的接收已知信號去除已知信號成分。在此,y*係y的複共軛。再者,傳送路徑推測部251係可依每一頻率將所算出之頻率區域的傳送路徑推測值在已知信號400至403之間進行時間平均,藉此提高推測精確度。傳送路徑推測部251係將平均化而得之頻率區域的傳送路徑推測值輸出至等化係數算出部252。
等化係數算出部252係使用相對於從傳送路徑推測部251所交遞之第一傳送機10之頻率區域的傳送路徑推測值、及相對於第二傳送機11之頻率區域的傳送路徑推測值,而算出屬於暫定之等化係數的暫定等化係數(步驟S43)。在此,當某頻率中的暫定等化係數設為w時,等化係數算出部252可使用頻率區域的傳送路徑推測值h而使用如w=h*/|h|2之廣為所知之源自逼零(zero forcing)規範的等化係數,而算出暫定等化係數。在此,h*係顯示頻率區域之傳送路徑推測值h的複共軛。另外,等化係數算出部252係於算出暫定等化係數時不使用干擾測量值。等化係數算出部252係將暫定等化係數輸出至失真修正部253。
失真修正部253係對於從分配部250所交遞之已知信號400至403所對應的接收已知信號進行N點離散傅立葉轉換,以獲得頻率區域的接收已知信號。失真修正部253係在傳送路徑推測部251及等化係數算出部252的處理完成,從等化係 數算出部252被交遞暫定等化係數之前,預先保持住頻率區域的接收已知信號。失真修正部253係當從等化係數算出部252被交遞暫定等化係數時,對於已知信號400至403所對應之頻率區域的接收已知信號,乘上暫定等化係數以進行等化處理(步驟S44)。失真修正部253係對於等化處理結果進行N點的逆離散傅立葉換,且作為等化後的接收已知信號而輸出至系列乘法運算部213。
返回解調處理部204的構成及第10圖所示之流程圖的說明。系列乘法運算部213係預先保持住在第一傳送機10及第二傳送機11之傳送部100之相位旋轉系列產生部110所使用之第二相位旋轉系列的複共軛。系列乘法運算部213係對於已知信號400至403所對應之等化後的接收已知信號,乘上所保持之第二相位旋轉系列的複共軛(步驟S45)。在此,從等化處理部212所交遞之等化後的接收已知信號,係相對於已知信號400至403的各者,樣本數為N=M×L。此係由於為第二相位旋轉系列之樣本數之L倍的長度,因此系列乘法運算部213要對於等化後的接收已知信號,重覆乘上L次的第二相位旋轉系列的複共軛。在本實施形態中,係在第一傳送機10與第二傳送機11之間使用了不同的參數r,以作為第二相位旋轉系列。因此,作為前述的處理,系列乘法運算部213係獨立實施在第一傳送機10所使用之第二相位旋轉系列之複共軛的情形、及在第二傳送機11所使用之第二相位旋轉系列之複共軛的情形之2次程度,以獲得2系統的處理結果。系列乘法運算部213係將所獲得的2系統份的處理結果輸出至N點DFT部214。
N點DFT部214係對於從系列乘法運算部213所交遞之2系統份之處理結果的各者,亦即對於接收已知信號,針對已知信號400至403獨立地進行N點的離散傅立葉轉換(步驟S46)。屬於離散傅立葉轉換部的N點DFT部214,係將進行離散傅立葉轉換所獲得之2系統份的頻率區域信號輸出至干擾測量部215。另外,在此,處理對象係已知信號,因此後述之處理中進行資料信號之判定之判定部216以後的處理不予以實施。
干擾測量部215係算出干擾測量值(步驟S47)。具體而言,干擾測量部215係根據從N點DFT部214所交遞的2系統份的頻率區域信號,而測量對於第一傳送機10的信號會造成影響之雜訊信號及干擾信號的位準。同樣地,干擾測量部215係測量對於第二傳送機11的信號會造成影響之雜訊信號及干擾信號的位準。干擾測量部215係以此等測量結果作為干擾測量值,而輸出至等化處理部212。
茲將被交遞於干擾測量部215之2系統份之頻率區域信號的圖像顯示於第12圖及第13圖。第12圖係顯示在實施形態1之系列乘法運算部213中,根據對應於第一傳送機10的第二相位旋轉系列所處理之結果所對應之頻率區域信號之圖像的圖。第12圖係顯示在頻率軸800上,頻率區域信號801至808從N點DFT部214被交遞至干擾測量部215的頻率區域信號。在此,頻率區域信號801至804係對應於第一傳送機10使用於傳送的頻率,頻率區域信號805至808係對應於第二傳送機11使用於傳送的頻率。同樣地,第13圖係顯示在實施形態1之系列乘法運算部213中,根據對應於第二傳送機11的第二相位旋轉系列所 處理之結果所對應之頻率區域信號之圖像的圖。第13圖係顯示在頻率軸900上,頻率區域信號901至908從N點DFT部214被交遞至干擾測量部215的頻率區域信號。在此,頻率區域信號901至904係對應於第一傳送機10使用於傳送的頻率,頻率區域信號905至908係對應於第二傳送機11使用於傳送的頻率。
如前所述,傳送機的已知信號產生部114係產生與對於相位旋轉系列產生部110賦予k=0之參數者同等的信號。此外,第一傳送機10之傳送部100的頻率位移部112係使用θ=0而設定,第二傳送機11之傳送部100的頻率位移部112係使用θ=1而設定。被輸入於干擾測量部215的頻率區域信號,係形成為對於接收已知信號,在等化處理部212中藉由暫定等化係數修正於無線傳送路徑所受到的失真,再者,在系列乘法運算部213中經去除第二相位旋轉系列之成分而得的信號。亦即,僅會殘留在已知信號產生部114所選擇之k=0所對應之頻率調變信號成分。第12圖係根據第一傳送機10所對應之第二相位旋轉系列所處理的結果,因此頻率區域信號801即成為對應第一傳送機10的頻率調變信號成分。同樣地,第13圖係根據第二傳送機11所對應之第二相位旋轉系列所處理的結果,因此頻率區域信號905即成為對應第二傳送機11的頻率調變信號成分。
另一方面,若考慮實際的環境,接收信號中,存在有被高頻接收處理部202所施加的雜訊、及因為存在於第一傳送機10與第二傳送機11之間的頻率誤差等所引起的干擾。一般而言,雜訊成分會相對於頻率以一致的平均功率而重疊。因頻率誤差所引起之第一傳送機10與第二傳送機11之間的干 擾,係以彼此的頻率組成在頻率軸上位移的形態而呈現出影響。亦即,若為第12圖所示之例,相對於第一傳送機10中所使用之頻率區域信號801至804所對應的頻率,第二傳送機11中所使用之頻率區域信號805至808所對應之頻率的信號成分,會對應頻率誤差量而滲入。干擾測量部215係對於頻率區域信號根據包含傳送信號成分之頻率以外之頻率的信號而算出干擾測量值。具體而言,干擾測量部215係相對於對應已知信號400至403之各者的輸入信號,而算出以對應第12圖所示之頻率區域信號802至804的頻率所觀測到之信號的平均功率值,且進一步算出在已知信號400至403之間進行時間平均而得的值,作為對於第一傳送機10之信號會造成影響之雜訊信號及干擾信號的位準。同樣地,干擾測量部215係相對於對應已知信號400至403之各者的輸入信號而算出以對應第13圖所示之頻率區域信號906至908的頻率所觀測到之信號的平均功率值,且進一步算出在已知信號400至403之間進行時間平均而得的值,作為對於第二傳送機11之信號會造成影響之雜訊信號及干擾信號的位準。
從干擾測量部215被交遞至等化處理部212之2系統的干擾測量值,係被輸入至等化係數算出部252。等化係數算出部252係使用此等干擾測量值、在先前的處理中於從傳送路徑推測部251所輸入之已知信號400至403之間經平均化而得之相對於第一傳送機10之頻率區域的傳送路徑推測值、及相對於第二傳送機11之頻率區域的傳送路徑推測值,而算出為了修正資料信號之波形失真所要使用的等化係數(步驟S48)。在此,若設等化係數為wd、干擾測量值為a、頻率區域的傳送路 徑推測值為h,則等化係數算出部252係例如可藉由根據一般所知之最小平均2乘誤差規範的處理從wd=h*/(|h|2+a)的計算式,來算出等化係數。等化係數算出部252係將等化係數輸出至失真修正部253。
接收部200係使用藉由以上之處理所求出之相對於第一傳送機10的等化係數、及相對於第二傳送機11的等化係數,而進行資料信號的判定處理。以下,以相對於第一傳送機10之資料信號的判定處理為例進行說明。
在等化處理部212中,係當從CP去除部211被交遞接收資料信號時,分配部250即將接收資料信號交遞至失真修正部253。失真修正部253係對於接收資料信號進行N點離散傅立葉轉換,以獲得頻率區域的接收資料信號。失真修正部253係藉由對於頻率區域的接收資料信號,乘上從等化係數算出部252所交遞的等化係數而進行等化處理(步驟S49)。失真修正部253係對於等化處理結果進行N點的逆離散傅立葉轉換,且作為等化後的接收資料信號而輸出至系列乘法運算部213。
系列乘法運算部213係對於從失真修正部253所交遞之等化後的接收資料信號,乘上在第一傳送機10所使用之對應r=1之第二相位旋轉系列的複素共軛(步驟S50)。系列乘法運算部213係以與對於前述之接收已知信號進行處理的情形同樣之方式,對於等化後的接收資料信號,亦重覆乘上L次之第二相位旋轉系列的複共軛。系列乘法運算部213係將處理結果輸出至N點DFT部214。
N點DFT部214係對於從系列乘法運算部213所交 遞的處理結果,亦即接收資料信號,進行N點的離散傅立葉轉換(步驟S51)。N點DFT部214係將進行離散傅立葉轉換所得的頻率區域信號輸出至判定部216。
判定部216係根據頻率區域信號而進行信號判定。具體而言,判定部216係對於頻率區域信號,從第7圖所示之第一傳送機10所使用的頻率(M種)之中,選擇信號功率最大的頻率。被判定部216所選擇的頻率,係與參數k對應,該參數k係與在傳送部100之相位旋轉系列產生部110中所使用的編碼位元建立對應關係。判定部216係根據編碼位元與參數k的對應關係,而推測編碼位元(步驟S52)。判定部216係將編碼位元的推測值輸出至解碼部205。另外,判定部216中選擇信號功率最大之頻率的處理,亦可例如改變為選擇振幅值最大之頻率的處理。此外,只要是作為在第一傳送機10及第二傳送機11中推測作為資料信號進行傳送之頻率調變信號的方法而為有用的處理,則可使用任意的手法,判定部216中選擇頻率的處理不限定於此。
解碼部205係進行在傳送部100之編碼部101所應用之錯誤訂正碼所對應的解碼處理,以獲得最終的解碼位元。
接著說明傳送機所包括之傳送部100的硬體構成。在傳送部100中,傳送濾波器103及高頻傳送處理部104係藉由傳送裝置而實現。傳送天線105係藉由天線裝置而實現。編碼部101及傳送信號產生部102係藉由處理電路而實現。處理電路係可為執行儲存於記憶體之程式的處理器及記憶體,亦可為專用的硬體。
第14圖係顯示以處理器及記憶體構成實施形態1之傳送部100所包括之處理電路時之例的圖。當處理電路以處理器91及記憶體92構成時,傳送部100之處理電路的各功能,係藉由軟體(software)、韌體(firmware)、或軟體與韌體的組合來實現。軟體或韌體係作為程式被記述,儲存於記憶體92。在處理電路中,係由處理器91讀取記憶於記憶體92的程式來執行,藉此而實現各功能。亦即,處理電路係包括用以儲存記憶體的記憶體92,該程式最終將會執行編碼部101及傳送信號產生部102的處理。此外,此等程式亦可稱為令電腦(computer)執行傳送部100的程序及方法者。
在此,處理器91係可為CPU(Central Processing Unit,中央處理單元)、處理裝置、運算裝置、微處理器(micro processor)、微電腦(micro computer)、或DSP(Digital Signal Processor,數位信號處理器)等。此外,在記憶體92中,係例如有RAM(Random Access Memory,隨機存取記憶體)、ROM(Read Only Memory,唯讀記憶體)、快閃記憶體(flash memory)、EPROM(Erasable Programmable ROM,可抹除可程式化ROM)、EEPROM(註冊商標)(Electrically EPROM,電子式EEPROM)等之非揮發性或揮發性的半導體記憶體、磁碟、軟碟(flexible disk)、光磁碟、CD(compact disk,光碟)、迷你碟(minidisk)、或DVD(Digital Versatile Disc,數位化多功能光碟)等屬之。
第15圖係顯示以專用的硬體來構成實施形態1之傳送部100所包括之處理電路時之例的圖。當處理電路以專用 的硬體構成時,第15圖所示的處理電路93,係例如為單一電路、複合電路、經程式化的處理器、經並聯程式化的處理器、ASIC(Application Specific Integrated Circuits,特殊應用積體電路)、FPGA(Field-Programmable Gate Array,現場可程式閘陣列)、或將此等予以組合者屬之。傳送部100的各功能可按功能別藉由處理電路93來實現,亦可將各功能予以統合而藉由處理電路93來實現。
另外,關於傳送部100的各功能,係可設為藉由專用的硬體來實現一部分,且藉由軟體或韌體來實現一部分。如此,處理電路係藉由專用的硬體、軟體、韌體、或此等的組合來實現上述的各功能。
接著說明接收機20所包括之接收部200的硬體構成。在接收部200中,接收天線201係藉由天線裝置而實現。高頻接收處理部202及接收濾波器203係藉由接收裝置而實現。解調處理部204及解碼部205係藉由處理電路而實現。處理電路係與傳送部100所包括的處理電路同樣地成為第14圖或第15圖所示的構成。
綜上所述,依據本實施形態,在第一傳送機10及第二傳送機11所包括的傳送信號產生部102中,相位旋轉系列產生部110係使用頻率響應具有頻寬的相位旋轉系列而產生已知信號及資料信號,向上取樣部111係進一步對應相位旋轉系列,將取樣率乘上預定的係數L倍進行複製。此外,頻率位移部112係依每一傳送機使用不同的參數而配置成傳送頻譜不會在頻率軸上重疊。由於相位旋轉系列無振幅變動,因此成為功 率效率高的信號。傳送信號產生部102係可僅藉由信號的複製及相位位移等,不會使相位旋轉系列所具有之高功率效率特性變化的信號處理來產生傳送信號。藉此,在第一傳送機10及第二傳送機11中,可減低因為干擾所導致的通訊品質劣化,而減小設定於增幅器之回退,結果有助於無線通訊的長距離化。
此外,傳送信號產生部102係可在頻率軸上將第一傳送機10的傳送信號與第二傳送機11的傳送信號配置成相互錯開。藉此,即使在如習知因為遠近問題而使通訊距離長之傳送機的信號無法解調的條件下,接收機20仍可區別在頻率軸上來自不同傳送機的信號,因此可實現良好的通訊性能。
再者,在本實施形態中,第一傳送機10及第二傳送機11係使用頻率調變信號及頻率組成隨時間一同變化的相位旋轉系列而產生傳送信號,使得接收機20的解調處理部204,可使用頻率軸上的信號處理而實施干擾測量,以進行等化係數的算出。藉此,即使來自不同之傳送機的傳送信號會彼此造成干擾的狀況下,接收機20仍可穩定地達成良好的通訊品質。
一般而言,在單純的頻率調變信號,亦即僅具單一頻率組成的相位旋轉系列中,即使應用向上取樣,信號的頻率也不會變化,無法獲得如本實施形態之具有相互錯開之頻率配置的信號。藉由將如相互錯開之頻率配置之不同之單一的頻率調變信號進行複數系統合成,即可產生具有相互錯開之頻率配置的信號,但會成為如在所謂OFDM(Orthogonal Frequency Division Multiplexing,正交分頻多工)所使用之信號般的波 形,因此不會成為功率效率高的信號。在本實施形態中,係由第一傳送機10及第二傳送機11使用頻率響應具有頻寬的相位旋轉系列而產生頻率調變信號,藉此可維持高的功率效率,同時可產生具有相互錯開之頻率配置的信號。在此,假定在對於一般的二進制系列等所產生的信號應用向上取樣及頻率位移的情形下,亦可產生會成為相互錯開之頻率配置的信號。亦即,可達成利用相互錯開之頻率配置之頻率上的使用者多工。然而,不同於如本實施形態般之具有根據頻率調變所產生之相互錯開之頻率配置之信號的情形,接收機20係如使用第12圖等所說明,無法簡單推測會滲入至自有頻率之其他使用者的干擾信號成分。在接收機20中可簡單推測干擾信號成分的效果,係源自於第一傳送機10及第二傳送機11根據頻率調變信號而產生具有相互錯開之頻率配置的信號者。
另外,在本實施形態中,雖設為藉由編碼部101產生要輸入於傳送信號產生部102的信號,且藉由解碼部205解碼解調處理部204所輸出之信號的構成,但係為一例,不限定於此。編碼部101及解碼部205並非必須的構成要素,關於傳送信號產生部102及解調處理部204,亦可適用於不應用錯誤訂正碼的構成。
此外,在本實施形態中,雖構成為對於分配部250的輸出,由傳送路徑推測部251及失真修正部253獨立地進行N點離散傅立葉轉換,但不限定於此。例如,亦可構成為對於分配部250進行1個N點離散傅立葉轉換,將頻率區域的信號交遞至傳送路徑推測部251與失真修正部253。藉此,即可實現解調 處理部204之電路構成的簡單化。
此外,在本實施形態中,雖在傳送信號產生部102中,使用以exp(j π×r×m×m/M)的數式所表現的信號以作為第二相位旋轉系列c(m),但不限定於此,只要是具有頻寬,振幅變動小的系列,可使用任意的信號。
此外,在本實施形態中,雖構成為將在第一傳送機10與第二傳送機11之間所使用的相位旋轉θ予以固定地分配,但例如亦可構成為可依預先規定的順序替換。藉此,將成為一邊替換對應各個傳送機所分配的頻率一邊進行傳送,因此獲得頻率多樣性(Diversity)、避免干擾的通訊品質改善效果。此外,亦可設為控制為分配相位旋轉θ以使相對於各傳送機的SINR(Signal to Interference and Noise power Ratio,信號對干擾加雜訊功率比)變高,以作為對於各傳送機之相位旋轉θ之另外的分配方法。
此外,在本實施形態中,雖以複數個傳送機同時對1個接收機20進行通訊的無線通訊系統30為例進行了說明,但所適用的無線通訊系統不限定於此。例如,亦可適用於同時進行通訊的傳送機及接收機僅1組的無線通訊系統。
此外,在本實施形態中,雖設為將在干擾測量部215所測量的干擾測量值予以反映於等化處理部212中之等化係數之算出的構成,但干擾測量值的活用方法不限定於此。例如,亦可構成為在判定部216中,算出編碼位元的推測值時,算出顯示推測值之可靠性的軟判定值,且構成為將干擾測量值反映於軟判定值的算出。
(實施形態2)
在實施形態2中,係在接收機20中,由干擾測量部於算出干擾測量值時,除已知信號外還使用資料信號。茲說明與實施形態1不同的部分。
在實施形態2中,無線通訊系統30的構成,係與第1圖所示之實施形態1之無線通訊系統30相同。在實施形態2中,接收機20所包括之接收部的構成,與第8圖所示之實施形態1之接收部200的構成不同。第16圖係顯示實施形態2之接收機20所包括之接收部200a之構成例的圖。相對於第8圖所示之實施形態1的接收部200,接收部200a係將解調處理部204置換為解調處理部204a者。相對於第8圖所示之實施形態1的解調處理部204,解調處理部204a係將干擾測量部215及判定部216置換為干擾測量部215a及判定部216a者。
實施形態2中的接收機20,係以與實施形態1相同的處理來實施對於已知信號的處理。判定部216a係對於接收資料信號使用與實施形態1相同的處理,而推測被作為資料信號傳送的頻率調變信號,且將所對應的編碼位元輸出至解碼部205。同時,判定部216a係將與所推測之頻率調變信號所對應之頻率的資訊輸出至干擾測量部215a。
干擾測量部215a係從N點DFT部214被交遞相對於接收資料信號的頻率區域信號,再者,被交遞與從判定部216a所推測之頻率調變信號對應之頻率的資訊。干擾測量部215a係根據被交遞的此等資訊,而進行算出使用了接收資料信號之干擾測量值的處理。具體而言,干擾測量部215a係從設為處理對 象的傳送機使用於傳送的M種頻率之中,算出除了從判定部216a所交遞之頻率以外之M-1種頻率之信號的平均功率值。干擾測量部215a係使用所算出之M-1種頻率之信號的平均功率值,而進一步以已知信號中的處理等,在與完成推測之干擾測量值之間進行平均化。干擾測量部215a係將經平均化而得的干擾測量值輸出至等化處理部212。在實施形態1中,干擾測量部215係在傳送信號成分為已知信號的情形下,算出了干擾測量值。在實施形態2中,干擾測量部215a係除傳送信號成分為已知信號的情形外,當傳送信號成分為資料信號的情形下,亦可算出干擾測量值。
等化處理部212係使用從干擾測量部215a所交遞之經平均化而得的干擾測量值而重新算出等化係數,適用於對於之後之資料信號的等化處理。
第17圖係顯示實施形態2之解調處理部204a產生編碼位元之推測值之動作的流程圖。至步驟S52為止的處理,係與第10圖所示之實施形態1的情形相同。在解調處理部204a中,干擾測量部215a係使用相對於從N點DFT部214所交遞之接收資料信號的頻率區域信號、及從判定部216a所交遞之經推測而得之頻率調變信號所對應之頻率的資訊,而算出使用了接收資料信號的干擾測量值(步驟S53)。等化處理部212係使用經平均化而得的干擾測量值而算出等化係數(步驟S54)。
綜上所述,依據本實施形態,在接收機20中,干擾測量部215a係設為除已知信號外對於資料信號亦可實施干擾測量值的算出處理。藉此,在接收機20中,干擾測量值的算 出精確度會變高,相較於實施形態1,可獲得良好的通訊性能。
另外,在本實施形態中,干擾測量部215a雖藉由已知信號中的處理等將過去完成算出的干擾測量值、與重新對於資料信號所算出的干擾測量值予以平均化,但不限定於此。亦可構成為干擾測量部215a係例如不進行重新對資料信號所算出之干擾測量值與過去的干擾測量值的平均化,而以重新對資料信號所算出之最新的干擾測量值進行置換。當接收機20所受到之干擾的狀況為時時刻刻地變化的環境時,藉由設為此種構成,接收機20可一邊跟隨著環境一邊實現穩定的通訊。此外,接收機20亦可為藉由調整用於平均化的時間常數等,來控制推測精確度與對於環境變化的跟隨速度的構成。
(實施形態3)
在實施形態3中,相較於實施形態1、2,係將接收機20的電路規模設為較小。茲說明與實施形態1、2不同的部分。
在實施形態3中,無線通訊系統30的構成,係與第1圖所示之實施形態1的無線通訊系統30相同。在實施形態3中,接收機20所包括之接收部的構成,與第8圖所示之實施形態1之接收部200的構成不同。第18圖係顯示實施形態3之接收機20所包括之接收部200b之構成例的圖。相對於第8圖所示之實施形態1的接收部200,接收部200b係將解調處理部204置換為解調處理部204b者。相對於第8圖所示之實施形態1的解調處理部204,解調處理部204b係將系列乘法運算部213、N點DFT部214、干擾測量部215及判定部216予以刪除,而追加了系列乘法運算部213b、干擾測量部215b、判定部216b、頻率逆位移 部217、合成部218、及M點DFT部219者。在實施形態3中,係構成為可藉由使用M點DFT部219,而將電路規模控制為較小而進行處理。
在解調處理部204b中,從接收同步處理部210至等化處理部212的處理,係與實施形態1、2相同。等化處理部212係將等化後的接收信號輸出至頻率逆位移部217。
頻率逆位移部217係進行從自傳送機所接收的信號,去除經傳送機位移頻率組成後的位移量予以去除的處理。亦即,頻率逆位移部217係在頻率軸上,進行與在傳送信號產生部102之頻率位移部112所應用之頻率位移相反方向的頻率位移。具體而言,頻率逆位移部217係進行對於在頻率位移部112所使用之相位旋轉θ賦予相當於逆旋轉之相位旋轉-θ的的處理。另外,相位旋轉θ係在第一傳送機10與第二傳送機11之間應用了不同的值。因此,頻率逆位移部217係依據欲進行處理的傳送機選擇相位旋轉θ的值。頻率逆位移部217係例如要進行對於第一傳送機10的處理時設為相位旋轉θ=0、要進行對於第二傳送機11的處理時設為相位旋轉θ=1,而進行使用相位旋轉θ之符號經反轉後的值而賦予相位旋轉的處理。當必須進行對於第一傳送機10的處理及對於第二傳送機11的處理之雙方時,頻率逆位移部217係分別獨立地實施相位旋轉θ=0時的處理及相位旋轉θ=1時的處理,且輸出2系統的處理結果。頻率逆位移部217係將處理結果輸出至合成部218。
合成部218係對於從頻率逆位移部217所交遞的處理結果,進行取樣間的合成。如實施形態1中所說明,在傳送 信號產生部102的向上取樣部111中,係進行了對於樣本數M的相位旋轉系列將樣本數設為L倍的複製處理。合成部218係針對經由向上取樣部111所複製後的樣本,加計相同的樣本值。亦即,合成部218係進行將經由傳送機複製後的相位旋轉系列予以合成的處理。若以實施形態1之向上取樣部111的說明中所使用之例來說明,係處於y(0)=x(0)、y(1)=x(1)、y(2)=x(2)、y(3)=x(3)、y(4)=x(0)、y(5)=x(1)、y(6)=x(2)、y(7)=x(3)的對應關係。亦即,將成為樣本編號0的信號與樣本編號4的信號係相同的樣本值,樣本編號1的信號與樣本編號5的信號係相同的樣本值,樣本編號2的信號與樣本編號6的信號係相同的樣本值,樣本編號3的信號與樣本編號7的信號係相同的樣本值的對應關係。合成部218係從該對應關係,加計所輸入之信號的樣本編號0與樣本編號4,加計樣本編號1與樣本編號5,加計樣本編號2與樣本編號6,加計樣本編號3與樣本編號7,藉此從樣本數8的信號系列而產生樣本數4之新的信號系列。亦即,合成部218係相對於樣本數N的輸入信號而產生樣本數M的輸出信號。合成部218係將所合成的處理結果輸出至系列乘法運算部213b。
系列乘法運算部213b雖進行與實施形態1、2之系列乘法運算部213相同的處理,但在實施形態3中,係對於從合成部218所交遞之輸入信號的處理結果亦即合成後的信號,進行乘上處理對象之傳送機所對應之第二相位旋轉系列之複共軛的處理。在此,不同於實施形態1、2的系列乘法運算部213,從合成部218所交遞之輸入信號之處理結果的樣本數係M,與 第二相位旋轉系列的樣本數相同。因此,在系列乘法運算部213b中,不需進行重複L次乘法運算。系列乘法運算部213b係將處理結果輸出至M點DFT部219。
屬於離散傅立葉轉換部的M點DFT部219,係對於從系列乘法運算部213b所交遞的處理結果,進行M點的離散傅立葉轉換,以產生頻率區域信號。M點DFT部219係在處理已知信號400至403的時序中,將進行離散傅立葉轉換所獲得的頻率區域信號輸出至干擾測量部215b。M點DFT部219係在處理資料信號404至415的時序中,將進行離散傅立葉轉換所獲得的頻率區域信號輸出至判定部216b及干擾測量部215b。
判定部216b係根據從M點DFT部219所交遞的頻率區域信號,而推測被作為資料信號傳送的頻率調變信號,且將所對應之編碼位元的推測值輸出至解碼部205,並且將所推測之頻率的頻率輸出至干擾測量部215b。
干擾測量部215b雖進行與第16圖所示之實施形態2之干擾測量部215a相同的處理,但所輸入之頻率區域信號的樣本數為M之點則有所不同。因此,要同時輸入如同使用第12圖及第13圖所說明之第一傳送機10於傳送中所使用的頻率、與第二傳送機11於傳送中所使用的頻率,故無須進行選擇要在干擾測量部215b的內部進行觀測之頻率的處理。第19圖係顯示輸入於實施形態3之干擾測量部215b之頻率區域信號之圖像的圖。第19圖係分別顯示在頻率軸1200上,頻率區域信號1201至1204為M個的頻率信號。例如,在頻率逆位移部217及系列乘法運算部213b中,當以對應第一傳送機10的參數進行了處理 時,第19圖所示的頻率區域信號1201至1204全都將對應由第一傳送機10使用於傳送之頻率的信號,不會存在與第二傳送機11使用於傳送之頻率相關的信號。在此,當頻率區域信號1201設為在頻率調變中所使用的頻率時,干擾測量部215b係求出頻率區域信號1202至1204之信號功率的平均值,且作為會對於第一傳送機10之信號造成影響的干擾測量值而予以輸出。此外,當輸入了以對應第二傳送機11的參數進行了處理的信號時,干擾測量部215b亦將藉由相同的處理所獲得的信號,作為對於第二傳送機11之信號會造成影響的干擾測量值而予以輸出。
第20圖係顯示實施形態3之解調處理部204b產生編碼位元之推測值之動作的流程圖。在實施形態3中,頻率逆位移部217係在步驟S44之等化處理部212的處理之後,進行在傳送信號產生部102之頻率位移部112中所應用的頻率位移、及在頻率軸上相反方向的頻率位移(步驟S61)。合成部218係對於從頻率逆位移部217所交遞的處理結果,進行樣本間的合成(步驟S62)。同樣地,在實施形態3中,頻率逆位移部217係在步驟S49之等化處理部212之處理之後,進行在傳送信號產生部102之頻率位移部112中所應用的頻率位移、及在頻率軸上相反方向的頻率位移(步驟S63)。合成部218係對於從頻率逆位移部217所交遞的處理結果,進行樣本間的合成(步驟S64)。
綜上所述,依據本實施形態,在接收機20中,解調處理部204b係設為在等化處理部212的後段包括頻率逆位移部217、合成部218、及系列乘法運算部213b的構成,且設為對樣本數M的信號進行M點DFT。此外,設為判定部216b及干擾 測量部215b根據M點DFT的處理結果而動作。藉此,相較於實施形態1、2,接收機20係可將離散傅立葉轉換的電路規模構成為較小,而可減低裝置的複雜度。
(實施形態4)
在實施形態4中,係由傳送機將複數個頻率調變信號進行多工傳送。茲說明與實施形態1至3不同的部分。
在實施形態4中,無線通訊系統30的構成,係與第1圖所示之實施形態1的無線通訊系統30相同。在實施形態4中,第一傳送機10及第二傳送機11所包括之傳送部的構成,與第2圖所示之實施形態1之接收部200的構成不同。此外,在實施形態4中,接收機20所包括之接收部的構成,與第8圖所示之實施形態1之接收部200的構成不同。
首先說明本實施形態之第一傳送機10及第二傳送機11所包括之傳送部的構成及動作。第21圖係顯示實施形態4之第一傳送機10及第二傳送機11所包括之傳送部100c之構成例的圖。相對於第2圖所示之實施形態1的傳送部100,傳送部100c係將傳送信號產生部102置換為傳送信號產生部102c者。相對於第2圖所示之實施形態1的傳送信號產生部102,傳送信號產生部102c係將相位旋轉系列產生部110置換為相位旋轉系列產生部110c者。在本實施形態中,傳送信號產生部102c係將複數個頻率調變信號進行多工傳送。
相位旋轉系列產生部110c係當從編碼部101被交遞編碼位元時,使用第一相位旋轉系列與第二相位旋轉系列而產生相位旋轉系列。具體而言,相位旋轉系列產生部110c係使用 從P個頻率依據編碼位元而選擇1個頻率的頻率調變信號以作為第一相位旋轉系列,且與實施形態1同樣地使用頻率組成會隨著時間變化的相位旋轉系列以作為第二相位旋轉系列,而產生相位旋轉系列。在此,係設為第一相位旋轉系列的樣本數,與可選擇作為頻率調變信號之頻率的個數P相同,且構成為相對於第二相位旋轉系列的樣本數M,成為2×P=M的關係。在本實施形態中,係假定P=4、M=8進行以下的說明以作為一例。
藉由設定為P=4,可藉由在第一相位旋轉系列中所使用的頻率調變信號來表現出2位元份的資訊。此外,由於設為M=8,因此第一相位旋轉系列2個份的樣本數與第二相位旋轉系列1個份的樣本數會相等。亦即,在本實施形態中,第一相位旋轉系列的系列長度,會較第二相位旋轉系列的系列長度更短。相位旋轉系列產生部110c係從編碼部101接收4位元的編碼位元,而產生2個第一相位旋轉系列。相位旋轉系列產生部110c係在連結2個第一相位旋轉系列而組合P×2=8樣本份的信號系列之後,將8樣本份的的信號系列乘上第二相位旋轉系列,藉此產生1系統的相位旋轉系列。相位旋轉系列產生部110c係將所產生的相位旋轉系列輸出至向上取樣部111。
向上取樣部111係以與實施形態1相同之方式依據向上取樣的係數L而將相位旋轉系列的取樣率設為L倍,並且將相位旋轉系列複製為L倍。在本實施形態中係設定為L=2。亦即,向上取樣後之相位旋轉系列的樣本數係成為N=M×L=16樣本。
傳送信號產生部102c在從之後的頻率位移部112至 訊框產生部115的處理中,係進行與實施形態1相同的處理來產生傳送信號。傳送信號產生部102c係將所產生的傳送信號輸出至傳送濾波器103。另外,已知信號產生部114並非如前述之相位旋轉系列產生部110c中所說明之使用2個第一相位旋轉系列而產生相位旋轉系列的處理,而是如實施形態1之110中所說明,使用以第一相位旋轉系列與第二相位旋轉系列相同的樣本數來構成的方法。已知信號產生部114係例如使用k=0作為將第一相位旋轉系列與編碼位元建立對應關係的參數,以與第二相位旋轉系列之樣本數M=8相等的長度,產生第一相位旋轉系列。
另外,本實施形態之傳送信號產生部102c的動作,如上所述在第4圖所示之實施形態1之流程圖的步驟S21中內容雖稍有不同,但動作的流程係與第4圖所示之實施形態1的流程相同。
接著說明本實施形態之接收機20所包括之接收部的構成及動作。第22圖係顯示實施形態4之接收機20所包括之接收部200c之構成例的圖。相對於第18圖所示之實施形態3之接收部200b,接收部200c係將解調處理部204b置換為解調處理部204c者。相對於解調處理部204b,解調處理部204c係將干擾測量部215b及判定部216b刪除,且追加了干擾測量部215c、判定部216c、切換部220、及P點DFT部221者。在實施形態4中,干擾測量部215c係藉由使用切換部220,根據M點DFT部219或P點DFT部221的輸出,而算出干擾測量值。
在解調處理部204c中,至接收同步處理部210、CP 去除部211、等化處理部212、頻率逆位移部217、合成部218、及系列乘法運算部213b為止的處理,係與實施形態3相同。系列乘法運算部213b係將處理結果輸出至切換部220。
切換部220係以當從系列乘法運算部213b所交遞之輸入信號的處理結果為對於已知信號400至403所處理的處理結果時,將處理結果輸出至M點DFT部219,而當為對於資料信號404至415所處理的處理結果時,則輸出至P點DFT部221之方式切換信號路徑。
M點DFT部219係當進行對於已知信號400至403的處理時,對於從切換部220所交遞的處理結果進行M點的離散傅立葉轉換。M點DFT部219係將所產生的頻率區域信號輸出至干擾測量部215c。干擾測量部215c係進行與實施形態3之干擾測量部215b相同的處理,且將干擾測量值輸出至等化處理部212。
另一方面,屬於離散傅立葉轉換部的P點DFT部221,係當進行對於資料信號404至415的處理時,對於從切換部220所交遞之樣本數M的信號進行P點的離散傅立葉轉換。P點DFT部221係將所產生的頻率區域信號輸出至干擾測量部215c及判定部216c。在此,離散傅立葉轉換的點數P,係較從切換部220所交遞之信號的樣本數M為更低的值,例如,在本實施形態中,由於設定為M=8、P=4,因此成為M=P×2的關係。P點DFT部221係對於從切換部220所交遞的信號實施M/P次的P點離散傅立葉轉換,以產生M/P系統的頻率區域信號。在本實施形態中,P點DFT部221係獨立實施從切換部220所交遞之信 號之前半的P=4樣本、與後半的P=4樣本,共計M/P=8/4=2次的離散傅立葉轉換,產生2系統份的頻率區域信號。
在P點DFT部221所產生之2系統份的頻率區域信號,係成為為了在第21圖之相位旋轉系列產生部110c產生相位旋轉系列所使用之與2個樣本數P之第一相位旋轉系列對應的頻率區域信號。
判定部216c係對於2系統份的頻率區域信號,分別各選擇1個信號功率最高的頻率,且將所選擇之頻率的資訊輸出至干擾測量部215c。此外,判定部216c係將所對應之合計4位元的編碼位元輸出至解碼部205。干擾測量部215c係使用從判定部216c所交遞之2種頻率的資訊、及從P點DFT部221所交遞之2系統份的頻率區域信號,而算出以從判定部216c所交遞之頻率之資訊所示之頻率以外的平均信號功率。干擾測量部215c係將所算出的平均信號功率,作為干擾測量值而輸出至等化處理部212。
另外,本實施形態之解調處理部204c的動作,係如上所述在第20圖所示之實施形態3之流程圖的步驟S51中內容稍有不同,但動作的流程係與第20圖所示之實施形態3的流程圖相同。具體而言,在步驟S51中,於實施形態3中雖由M點DFT部219進行M點的離散傅立葉轉換,但在實施形態4中,則係由P點DFT部221進行P點的離散傅立葉轉換。
綜上所述,依據本實施形態,在第一傳送機10及第二傳送機11中,傳送信號產生部102c係將複數個第一相位旋轉系列進行多工傳送。此外,係設為在接收機20中,解調處理 部204c包括與第一相位旋轉系列之樣本數P相同點數的離散傅立葉轉換,且處理相當於與經過多工後之第一相位旋轉系列相同的次數。藉此,除了實施形態1至3的效果外,還可增加可從第一傳送機10及第二傳送機11同時傳送至接收機20的資訊量,而實現通訊的高速化。
另外,在本實施形態中,雖構成為將第一相位旋轉系列的長度設定為第二相位旋轉系列之長度的一半,可將第一相位旋轉系列進行2次多工,但僅為一例,多工數不限定於此。將第一相位旋轉系列進行多工所得之結果的樣本數,只要與第二相位旋轉系列之樣本數相同,可為任意的組合。
此外,在本實施形態中,雖假定在相位旋轉系列產生部110c進行多工的第一相位旋轉系列全都為資料信號而進行了說明,但不限定於此,例如亦可設為以進行多工之信號的一部分作為已知信號,而將資料信號與已知信號予以多工傳送的構成。此時,相位旋轉系列產生部110c係使用資料信號及已知信號而產生第一相位旋轉系列。此時,屬於P點DFT部221之處理結果之複數個系統的頻率區域信號之中,對應分配了已知信號作為第一相位旋轉系列之處者,在接收機20側不需要判定處理。因此,干擾測量部215c在算出干擾測量值時,可不參照從判定部216c所交遞之頻率的資訊,而將作為已知信號在傳送機所使用之頻率以外之頻率中的信號功率經平均化而得的值作為干擾測量值。藉此,在無線通訊系統30中,可提升已知信號的插入頻率,而可更正確地掌握周圍之干擾量的變化,而可穩定地獲得良好的通訊品質。此外,至於資料信號與經多工 後的已知信號,亦可用於在接收機20中,組合公知的技術而進行傳送路徑推測、及其他同步處理。藉由以此方式構成,即可與干擾測量同樣地實現通訊品質的穩定化。
(實施形態5)
在實施形態5中係說明無線通訊系統,該無線通訊系統係包含包括實施形態1至4中所說明之傳送機及接收機之功能的中繼器。
第23圖係顯示實施形態5之無線通訊系統70之構成例的圖。無線通訊系統70係包括:終端40至43;中繼器50至52;及存取點60。在無線通訊系統70中,係透過經由中繼器的中繼而實現無法直接傳送接收信號的終端與存取點之間的通訊。在本實施形態中,當指出終端40至43、中繼器50至52、及存取點60的任一者時,有稱為裝置的情形。
第24圖係顯示實施形態5之終端40之構成例的圖。終端40至43係相同的構成,因此在此係以終端40為例進行說明。屬於無線傳送裝置的終端40,係包括第2圖所示的傳送部100。終端40係使用傳送部100而傳送資料。具體而言,終端40係對於中繼器50進行資料傳送。另外,終端41係對於中繼器51進行資料傳送。終端42、43係對於中繼器52進行資料傳送。終端40亦可包括傳送部100c以取代傳送部100。終端40亦可更包括第8圖所示的接收部200、200a、200b、200c的任一者。
第25圖係顯示實施形態5之中繼器50之構成例的圖。中繼器50至52係相同的構成,因此在此係以中繼器50為例進行說明。中繼器50係包括第2圖所示的傳送部100、及第8圖 所示的接收部200。中繼器50係使用接收部200而從終端或其他中繼器接收資料,且使用傳送部100而傳送資料,亦即轉送資料。具體而言,中繼器50係對於存取點60進行中繼傳送。另外,中繼器51係對於中繼器50進行中繼傳送。中繼器52係對於中繼器51進行中繼傳送。中繼器50亦可包括傳送部100c以取代傳送部100。此外,中繼器50亦可包括接收部200a、200b、200c的任一者以取代接收部200。
第26圖係顯示實施形態5之存取點60之構成例的圖。屬於無線接收裝置的存取點60係包括第8圖所示的接收部200。存取點60係使用接收部200而接收從中繼器或終端所傳送的資料。存取點60亦可包括接收部200a、200b、200c的任一者以取代接收部200。存取點60係可更包括第2圖所示之傳送部100、100c的任一者。
茲說明無線通訊系統70之各裝置傳送接收資料的時序。在本實施形態中,係設為使用各裝置的傳送時序及接收時序按時間分割的分時雙工(TDD:Time Division Duplex)。第27圖係顯示實施形態5之無線通訊系統70中某時序下之各裝置之資料之傳送接收之流程的圖。在第27圖所示的時序中,係由終端40及中繼器51傳送資料,且由中繼器50接收該資料。此外,由終端42、43傳送資料,且由中繼器52接收該資料。第28圖係顯示實施形態5之無線通訊系統70中不同於第27圖之其他時序下之各裝置之資料之傳送接收之流程的圖。在第28圖所示的時序中,係由中繼器50傳送資料,且由存取點60接收該資料。此外,由終端41及中繼器52傳送資料,且由中繼器51接收 該資料。在無線通訊系統70中,第27圖及第28圖所示之資料之傳送接收的處理,係依時間性交替實施。在本實施形態中,係設為使用相同的頻率頻道(channel)於各裝置間的無線傳送。此外,中繼器51與中繼器52之間、及中繼器50與中繼器51之間,係設為處於無線通訊會抵達的距離關係。此時,在第27圖之例中,當中繼器51傳送出資料時,該資料如虛線的箭頭符號所示亦會作為干擾信號而到達中繼器52。同樣地,在第28圖之例中,當中繼器50傳送出資料時,該資料會如虛線之箭頭符號所示亦會作為干擾信號而到達中繼器51。
茲說明第23圖之無線通訊系統70中之在各終端與各中繼器用於無線傳送之參數的設定方法。在本實施形態中,為使資料亦即所期望的傳送信號與前述的干擾信號不會在頻率軸上重疊,乃在要同時進行傳送的裝置間,設定傳送信號產生部中之頻率位移部的相位旋轉θ。茲將反映出具體之設定時的傳送頻譜的圖像顯示於第29圖及第30圖。
第29圖係顯示在實施形態5之無線通訊系統70中,於第27圖所示之資料傳送接收之時序中在各裝置所使用之傳送頻譜之例的圖。在第29圖中,係顯示可使用全部為16個的頻帶,應用了各裝置為M=4之相位旋轉系列及L=4之向上取樣處理的情形。在第29圖中,係構成為在要同時傳送信號的裝置中傳送頻譜不會在頻率軸上重疊。亦即,設定於某裝置之頻率之位移量的大小,係與設定於其他裝置之頻率之位移量的大小不同。具體而言,在頻率軸1800上,傳送頻譜1801至1804係終端42使用於傳送的頻率頻譜,傳送頻譜1805至1808係終端43使 用於傳送的頻率頻譜,傳送頻譜1809至1812係中繼器51使用於傳送的頻率頻譜,傳送頻譜1813至1816係終端40使用於傳送的頻率頻譜。
第30圖係顯示在實施形態5的無線通訊系統70中,於第28圖所示之資料傳送接收之時序在各裝置所使用之傳送頻譜之例的圖。在第30圖中,係顯示可使用全部16個的頻帶,應用了各裝置為M=4之相位旋轉系列及L=4之向上取樣處理的情形。惟在第30圖中,係顯示使用了16個頻帶中之12個頻帶的情形。在第30圖中,係構成為在要同時傳送信號的裝置中傳送頻譜不會在頻率軸上重疊。亦即,設定於某裝置之頻率的位移量,其大小與設定於其他裝置之頻率的位移量不同。具體而言,在頻率軸1800上,傳送頻譜1817至1820係終端41使用於傳送的頻率頻譜,傳送頻譜1821至1824係中繼器52使用於傳送的頻率頻譜,傳送頻譜1825至1828係中繼器50使用於傳送的頻率頻譜。
如此,針對無線通訊系統70的裝置,考慮各終端及各中繼器的傳送時序、及彼此會成為干擾的條件而構成傳送部100及接收部200,以使彼此的傳送頻譜不會在頻率軸上重疊。在無線通訊系統70中,係針對各裝置,根據各裝置的傳送時序及接收時序,設定頻率位移量及相位旋轉系列的種類。藉此,在透過中繼器50至52而進行通訊的無線通訊系統70中,可實現抑制住干擾之影響之良好的通訊品質。無線通訊系統70尤其當終端間之距離有極大不同的條件的情形下,可實現避免掉遠近問題之穩定的通訊。
接著說明本實施形態之別的參數的設定方法。第31圖係顯示在實施形態5中,於第23圖之無線通訊系統70追加了終端44之無線通訊系統71之構成例的圖。終端44係與終端40至43相同的構成,對於中繼器50進行資料傳送。在無線通訊系統71中,終端44以外之裝置之資料的傳送接收的時序,係與第29圖及第30圖的情形相同。在第31圖所示的無線通訊系統71中,同時傳送出信號的終端及中繼器合計存在有5台。因此,在第29圖所示的信號傳送方法中,可供使用的頻率將會不足。茲將對於此時之終端44的參數設定例顯示於第32圖。第32圖係顯示在實施形態5之無線通訊系統71中,於第31圖所示之資料傳送接收的時序在終端44所使用之傳送頻譜之例的圖。具體而言,在頻率軸1800上,傳送頻譜2017至2020係終端44使用於傳送的頻率頻譜。另外,在終端44傳送資料之第32圖的時序中,終端42、43、中繼器51及終端40係同時使用第29圖所示的傳送頻譜1801至1816而傳送出資料。在第31圖所示的無線通訊系統71中,終端44係與中繼器50進行通訊,終端44對於中繼器52造成之干擾量的影響,係較中繼器51對於中繼器52造成的干擾為小。因此,在無線通訊系統71中,終端44的傳送信號,係配置成不會在頻率軸上與中繼器51及終端40的傳送信號重疊,至於與終端42、43的傳送信號,則容許重疊。藉由以此方式構成,在無線通訊系統71中,可減低從合計5台裝置同時傳送的信號會彼此造成干擾的量。
此外,作為本實施形態之別的參數的設定方法,亦可構成為除配置成各傳送信號在頻率軸上不會彼此重疊之 外,還準備了裝置間彼此相關性較低的其他系列來分配傳送信號產生部中於相位旋轉系列產生部所使用的第二相位旋轉系列。其中,係例如準備複數種顯示實施形態1中所說明之第二相位旋轉系列之種類的參數r,可藉由在會有可能造成干擾的裝置間分配互相關較所規定之閾值更低的組合而實現。當將此構成應用於使用第29圖及第32圖所示之傳送頻譜的無線通訊系統71時,例如,將終端44所使用之第二相位旋轉系列的參數r、與終端42及終端43所使用之參數r分配不同的值,以使互相關變低。藉此,即使在終端44的信號抵達中繼器52的狀況下,亦可減低對於終端42及終端43的通訊造成的干擾量。此外,亦可構成為即使在設定為信號在頻率軸上不會彼此重疊的裝置間,亦分配互相關較低之不同的第二相位旋轉系列。藉由以此方式構成,即使信號因為裝置間之頻率偏移(offset)等的影響而造成彼此干擾時,由於在第二相位旋轉系列間互相關較低,因此可抑制通訊品質的劣化。在無線通訊系統71中,係針對各裝置,根據各裝置的傳送時序及中繼器中的干擾量,而設定頻率位移量及相位旋轉系列的種類。
再者,亦可在要同時進行信號傳送的裝置間,將相位旋轉系列的樣本數M與向上取樣的係數L分配成不同。例如,將第31圖所示之無線通訊系統71中之別的參數設定例顯示於第33圖及第34圖。
第33圖係顯示在實施形態5之無線通訊系統71中,於第31圖所示之資料傳送接收的時序在各裝置所使用之傳送頻譜之例的圖。在第33圖中,係構成為在要同時傳送信號的 裝置中傳送頻譜不會重疊。具體而言,在頻率軸1800上,傳送頻譜1801至1804係終端42使用於傳送的頻率頻譜,傳送頻譜2101至2104係中繼器51使用於傳送的頻率頻譜,傳送頻譜2105至2108係終端43使用於傳送的頻率頻譜,傳送頻譜1813至1816係終端40使用於傳送的頻率頻譜。第33圖所示之各裝置之傳送頻譜的配置,相較於第29圖所示之各裝置之傳送頻譜的配置,係替換了中繼器51及終端43所使用之傳送頻譜的配置。
第34圖係顯示在實施形態5之無線通訊系統71中,於第31圖所示之資料傳送接收的時序在各終端44所使用之傳送頻譜之另一例的圖。具體而言,在頻率軸1800上,傳送頻譜2109至2116係終端44使用於傳送的頻率頻譜。另外,在終端44傳送資料之第34圖的時序中,終端42、中繼器51、終端43、及終端40係同時使用第33圖所示的傳送頻譜而傳送出資料。在第34圖之例中,終端44係使用M=8、L=2作為傳送信號產生部中之參數。此外,頻率位移部中的相位旋轉θ,係設為與第32圖之情形相同。藉由以此方式構成,終端44所傳送之信號的傳送頻譜,不會與終端42及終端43重疊。此外,由於終端44所傳送之信號的傳送頻譜密度較第32圖的情形降低,因此可進一步降低中繼器52接收信號時所受到之干擾的影響。此外,作為其他的構成,亦可構成為相位旋轉系列的樣本數M及向上取樣的係數L係可依據通訊環境而動態地控制。例如,假設如第33圖及第34圖所示在將傳送頻譜的頻帶分配於各裝置而正要進行通訊的時候,終端42的通訊結束,第33圖所示之傳送頻譜1801至1804所對應的頻帶則變成了尚未使用。此時,可構成為藉由 將終端44的參數變更為與第32圖所使用者相同的值,使所有的傳送信號不會在頻率軸上重疊。
另外,綜上所述,在本實施形態中,雖已具體說明了在裝置間頻率配置及第二相位旋轉系列的參數分配方法,但此等參數的分配方法,係以根據裝置的設置條件、無線信號的接收位準等,而適當調整成干擾的影響可更進一步降低為理想。例如,當各裝置不移動而是固定地設置的情形下,可預先藉由裝置間的距離及傳遞狀況而掌握大致的干擾量。關於根據這樣的事前資訊,遠近問題會更為顯著表現的組合,係可構成為優先分配成傳送頻譜不會在頻率軸上重疊,而當在頻率軸上無法完全分配時,則容許傳送頻譜重疊,以分配不同的相位旋轉系列。此外,當假想各裝置在無線通訊系統運用中移動的情形時,係可在裝置間共享各中繼器及存取點接收信號時所測量的干擾測量值,且根據干擾測量值而變更傳送頻率或相位旋轉系列的分配方法。另外,亦可設為干擾測量值不在裝置間共享,而另行準備集中控制裝置,由集中控制裝置就有關針對所有裝置的頻率及相位旋轉系列的參數進行統合管理的構成。
此外,在本實施形態中,雖以進行中繼傳送作為無線通訊系統之情形為例進行了說明,但可適用的無線通訊系統不限定於此。例如,亦可構成為對於第35圖所示之所鄰接的不同的無線通訊系統,應用本發明的傳送機及接收機,藉由變更傳送頻譜的位置及第二相位旋轉系列的種類來謀求減低干擾。第35圖係顯示實施形態5中無線通訊系統所鄰接時之例的圖。無線通訊系統72係包括存取點61、及終端45、46。在無線 通訊系統72中,終端45、46係將資料傳送至存取點61,存取點61係接收來自終端45、46的資料。此外,無線通訊系統73係包括存取點62、及終端47、48。在無線通訊系統73中,終端47、48係將資料傳送至存取點62。存取點62係接收來自終端47、48的資料。例如,假設終端45至48同時使用相同的頻率頻道而傳送信號,存取點61接收終端45、46的信號,存取點62接收終端47、48的信號。此時,以與本實施形態中所說明者相等的思考方式,藉由分配成各終端所要傳送之信號的傳送頻譜不會在頻率軸上重疊,可實現抑制干擾的良好的通訊。此外,即使在未必僅以頻率軸上的分配方式就可抑制干擾時,亦可藉由分配互相關會彼此變低之不同的第二相位旋轉系列而減輕干擾。
以上實施形態所示之構成,係顯示本發明之內容之一例,亦可與其他公知的技術組合,只要不脫離本發明之要旨的範圍內,均可省略、變更構成的一部分。
100‧‧‧傳送部
101‧‧‧編碼部
102‧‧‧傳送信號產生部
103‧‧‧傳送濾波器
104‧‧‧高頻傳送處理部
105‧‧‧傳送天線
110‧‧‧相位旋轉系列產生部
111‧‧‧向上取樣部
112‧‧‧頻率位移部
113‧‧‧CP附加部
114‧‧‧已知信號產生部
115‧‧‧訊框產生部

Claims (10)

  1. 一種無線傳送裝置,其特徵在於包括:相位旋轉系列產生部,係根據所輸入的傳送位元,而產生頻率響應具有頻寬的相位旋轉系列;向上取樣部,係變更相位旋轉系列的取樣率,更進而複製相位旋轉系列;及頻率位移部,係針對從前述向上取樣部所取得的相位旋轉系列,將頻率組成在頻率軸上位移所規定的位移量;其中前述相位旋轉系列產生部係使用根據前述傳送位元而選擇頻率的頻率調變信號亦即第一相位旋轉系列、及頻率組成與時間一同變化的第二相位旋轉系列而產生前述相位旋轉系列;其中前述相位旋轉系列產生部係使用複數個系列長度較前述第二相位旋轉系列的系列長度更短的前述第一相位旋轉系列,而產生前述相位旋轉系列。
  2. 根據申請專利範圍第1項之無線傳送裝置,其中前述相位旋轉系列產生部係使用資料信號及已知信號,而產生前述第一相位旋轉系列。
  3. 根據申請專利範圍第1至2項中任一項之無線傳送裝置,其中前述規定之位移量的大小係與其他無線傳送裝置中所設定之位移量的大小不同;前述頻率位移部係根據前述規定的位移量而將前述相位旋轉系列的頻率組成在頻率軸上位移;藉此而以不會在頻率軸上與從前述其他無線傳送裝置所傳 送的信號重疊之方式傳送信號。
  4. 根據申請專利範圍第1至2項中任一項之無線傳送裝置,其中前述相位旋轉系列產生部係使用與其他無線傳送裝置之互相關較所規定之閾值更低的前述第二相位旋轉系列,而產生前述相位旋轉系列。
  5. 一種無線接收裝置,係接收從專利範圍第1至4項中任一項之無線傳送裝置所傳送的信號;其特徵在於包括:等化處理部,係修正在前述無線傳送路徑中所受到的失真;系列乘法運算部,係對於經前述等化處理部所修正的信號,乘上在前述無線傳送裝置產生相位旋轉系列時所使用之第二相位旋轉系列的複共軛;離散傅立葉轉換,係對於前述系列乘法運算部的處理結果進行離散傅立葉轉換,以獲得頻率區域信號;判定部,係根據前述頻率區域信號而進行信號判定;及干擾測量部,係對於前述頻率區域信號根據包含傳送信號成分之頻率以外之頻率的信號而算出干擾測量值。
  6. 根據申請專利範圍第5項之無線接收裝置,其中前述干擾測量部係當前述傳送信號成分為已知信號或資料信號時,算出前述干擾測量值。
  7. 根據申請專利範圍第5或6項之無線接收裝置,係包括:頻率逆位移部,係從自前述無線傳送裝置所接收的信號,去除經前述無線傳送裝置位移頻率組成而得的位移量;及合成部,係將經前述無線傳送裝置所複製的相位旋轉系列 予以合成;前述系列乘法運算部係對於合成後的信號,乘上前述複共軛。
  8. 一種無線通訊系統,其特徵在於包括:申請專利範圍第1項之無線傳送裝置;及申請專利範圍第5項之無線接收裝置;根據前述無線傳送裝置的傳送時序及前述無線接收裝置中的干擾量,在各無線傳送裝置及各無線接收裝置中,設定頻率位移量及相位旋轉系列的種類。
  9. 根據申請專利範圍第8項之無線通訊系統,係包括包括前述無線傳送裝置及前述無線接收裝置的中繼器;前述中繼器係將從其他無線傳送裝置所接收的信號中繼至其他無線接收裝置;藉此,透過經由前述中繼器的中繼而實現無法直接進行信號的傳送接收之無線傳送裝置與無線接收裝置之間的通訊。
  10. 根據申請專利範圍第9項之無線通訊系統,其中前述無線傳送裝置及前述中繼器的傳送時序、與前述無線接收裝置及前述中繼器的接收時序,係藉由分時雙工而控制,且根據被前述分時雙工所控制的傳送時序及接收時序,而設定前述無線傳送裝置、前述無線接收裝置、及前述中繼器之頻率位移量及相位旋轉系列的種類。
TW107118481A 2018-02-27 2018-05-30 無線傳送裝置、無線接收裝置及無線通訊系統 TWI713851B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/JP2018/007333 2018-02-27
PCT/JP2018/007333 WO2019167141A1 (ja) 2018-02-27 2018-02-27 無線送信装置、無線受信装置および無線通信システム
??PCT/JP2018/007333 2018-02-27

Publications (2)

Publication Number Publication Date
TW201937865A TW201937865A (zh) 2019-09-16
TWI713851B true TWI713851B (zh) 2020-12-21

Family

ID=67806072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118481A TWI713851B (zh) 2018-02-27 2018-05-30 無線傳送裝置、無線接收裝置及無線通訊系統

Country Status (6)

Country Link
US (1) US11329859B2 (zh)
EP (1) EP3742623B1 (zh)
JP (1) JP6735948B2 (zh)
MY (1) MY185466A (zh)
TW (1) TWI713851B (zh)
WO (1) WO2019167141A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090190633A1 (en) * 2008-01-24 2009-07-30 Smith Francis J Interference mitigation of signals within the same frequency spectrum
US20090303937A1 (en) * 2005-06-14 2009-12-10 Ntt Docomo, Inc. Mobile station, base station and communications method
CN101714966A (zh) * 2008-09-30 2010-05-26 索尼株式会社 接收装置、接收方法及程序
US20110038447A1 (en) * 2008-02-27 2011-02-17 Noritaka Iguchi Reception device, integrated circuit, and reception method
EP2296331B1 (en) * 2009-09-15 2013-09-11 Telefonaktiebolaget LM Ericsson (publ) Technique for SC-FDMA signal generation
US20170195156A1 (en) * 2013-03-04 2017-07-06 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, and communication system
US20170331653A1 (en) * 2014-11-13 2017-11-16 Mitsubishi Electric Corporation Transmitter and receiver

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3407254B1 (ja) * 2002-01-31 2003-05-19 富士通株式会社 データ伝送システム及びデータ伝送制御方法
JP4276009B2 (ja) 2003-02-06 2009-06-10 株式会社エヌ・ティ・ティ・ドコモ 移動局、基地局、無線伝送プログラム、及び無線伝送方法
JP3851612B2 (ja) 2003-02-10 2006-11-29 本田技研工業株式会社 内燃機関のノック制御装置
JP4583054B2 (ja) * 2004-03-05 2010-11-17 株式会社エヌ・ティ・ティ・ドコモ 移動局および基地局
US7457231B2 (en) * 2004-05-04 2008-11-25 Qualcomm Incorporated Staggered pilot transmission for channel estimation and time tracking
US7272521B1 (en) * 2005-02-15 2007-09-18 Lockheed Martin Corporation Measurement of phase nonlinearity of non-linear devices
US8180314B2 (en) * 2006-03-08 2012-05-15 Broadcom Corporation Method and system for utilizing givens rotation to reduce feedback information overhead
US7388923B2 (en) * 2005-06-07 2008-06-17 Motorola, Inc. Method and system for adaptive control of sub-carriers
JP4557859B2 (ja) * 2005-09-29 2010-10-06 富士通株式会社 周波数分割多重送受信装置及び送受信方法
JP2007221329A (ja) * 2006-02-15 2007-08-30 Fujitsu Ltd 周波数分割多重送受信装置及び送受信方法
JP4707577B2 (ja) * 2006-02-15 2011-06-22 富士通株式会社 周波数分割多重送受信装置及び送受信方法
JP5041715B2 (ja) * 2006-03-15 2012-10-03 富士通株式会社 周波数分割多重送受信装置及びその方法
WO2007142313A1 (ja) * 2006-06-07 2007-12-13 Sharp Kabushiki Kaisha 受信機および周波数情報推定方法
US7646258B2 (en) * 2007-06-26 2010-01-12 Karr Lawrence J Digital FM transmitter with variable frequency complex digital IF
US7760116B2 (en) * 2008-10-20 2010-07-20 Chrontel, Inc Balanced rotator conversion of serialized data
WO2012049912A1 (ja) * 2010-10-14 2012-04-19 三菱電機株式会社 送信装置、受信装置および中継装置
JP5712582B2 (ja) * 2010-12-02 2015-05-07 富士通株式会社 光送信器および光送信装置
WO2012176495A1 (ja) * 2011-06-22 2012-12-27 三菱電機株式会社 送信装置、受信装置、通信システムおよび通信方法
CN105659547B (zh) * 2013-10-22 2019-08-06 Oppo 广东移动通信有限公司 用于峰值均值功率比降低的方法和装置
WO2015094348A1 (en) * 2013-12-20 2015-06-25 Halliburton Energy Services, Inc. Downhole em sensing using sagnac interferometer for wellbore monitoring
US20160248364A1 (en) 2015-02-25 2016-08-25 Onesubsea Ip Uk Limited Variable speed drive with topside control and subsea switching
JP6817591B2 (ja) * 2017-03-16 2021-01-20 パナソニックIpマネジメント株式会社 検知装置、検知方法および検知プログラム
JP6946801B2 (ja) * 2017-07-14 2021-10-06 富士通株式会社 伝送システム、伝送装置、及び制御方法
US10153917B1 (en) * 2017-07-21 2018-12-11 Huawei Technologies Co., Ltd. Frequency/phase-shift-keying for back-channel serdes communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090303937A1 (en) * 2005-06-14 2009-12-10 Ntt Docomo, Inc. Mobile station, base station and communications method
US20090190633A1 (en) * 2008-01-24 2009-07-30 Smith Francis J Interference mitigation of signals within the same frequency spectrum
US20110038447A1 (en) * 2008-02-27 2011-02-17 Noritaka Iguchi Reception device, integrated circuit, and reception method
CN101714966A (zh) * 2008-09-30 2010-05-26 索尼株式会社 接收装置、接收方法及程序
EP2296331B1 (en) * 2009-09-15 2013-09-11 Telefonaktiebolaget LM Ericsson (publ) Technique for SC-FDMA signal generation
US20170195156A1 (en) * 2013-03-04 2017-07-06 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, and communication system
US20170331653A1 (en) * 2014-11-13 2017-11-16 Mitsubishi Electric Corporation Transmitter and receiver

Also Published As

Publication number Publication date
WO2019167141A1 (ja) 2019-09-06
JP6735948B2 (ja) 2020-08-05
EP3742623A1 (en) 2020-11-25
US20200403841A1 (en) 2020-12-24
TW201937865A (zh) 2019-09-16
JPWO2019167141A1 (ja) 2020-06-11
US11329859B2 (en) 2022-05-10
EP3742623B1 (en) 2022-08-24
MY185466A (en) 2021-05-19
EP3742623A4 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
RU2335087C1 (ru) Устройство и способ канальной оценки в системе сотовой связи с мультиплексированием с ортогональным частотным разделением, использующей множество передающих антенн
US7907512B1 (en) OFDM and SC-OFDM QLM
US8964887B2 (en) Wireless transmission device, wireless transmission method, wireless transmission program, and wireless communication system
TWI415430B (zh) 無線通信系統中用於引導多工之方法及裝置
JP2014161071A (ja) 無線通信システムにおけるパイロット多重化のための方法および装置
WO2006075733A1 (ja) 通信装置
JP2006211649A (ja) 無線通信装置及び方法
JP2008017144A (ja) 無線受信装置および方法
JP2008048092A (ja) Ofdmを用いる無線送信方法、送信機及び受信機
KR20140112898A (ko) 다수 톤 주파수 직각 진폭 변조를 사용하는 무선 통신 시스템에서 심볼 매핑 방법 및 장치
JP2009206682A (ja) 雑音電力推定装置及び方法
JP4719914B2 (ja) 送信装置、受信装置、送信方法、受信方法、ならびに、プログラム
TWI713851B (zh) 無線傳送裝置、無線接收裝置及無線通訊系統
US8630371B1 (en) Channel estimation using linear phase estimation
JP2009141740A (ja) Ici量推定装置、推定方法、およびこれを用いた受信装置
WO2021024311A1 (ja) 送信装置、受信装置、無線通信システム、制御回路、記録媒体および送信方法
JP2018074573A (ja) 送信装置、送信方法、及び、受信装置
CN108667532B (zh) 一种猝发式水声通信方法
JP2009141514A (ja) チャネル推定装置及び無線通信システム
JP6906720B1 (ja) 送信装置および受信装置
WO2014002528A1 (ja) 受信装置および受信方法、並びにコンピュータプログラム
JP7219157B2 (ja) 送信装置及び送信方法
JP6324260B2 (ja) 受信装置
US20230412244A1 (en) Receiving apparatus, transmitting apparatus, control circuit, storage medium, reception method, and transmission method
JP5554178B2 (ja) 送信装置、受信装置および通信システム