WO2007142313A1 - 受信機および周波数情報推定方法 - Google Patents

受信機および周波数情報推定方法 Download PDF

Info

Publication number
WO2007142313A1
WO2007142313A1 PCT/JP2007/061581 JP2007061581W WO2007142313A1 WO 2007142313 A1 WO2007142313 A1 WO 2007142313A1 JP 2007061581 W JP2007061581 W JP 2007061581W WO 2007142313 A1 WO2007142313 A1 WO 2007142313A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency information
subcarrier
frequency
information
subcarriers
Prior art date
Application number
PCT/JP2007/061581
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Hamaguchi
Hideo Nanba
Shimpei To
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US12/302,794 priority Critical patent/US8000224B2/en
Priority to EP07744907A priority patent/EP2028777A1/en
Priority to JP2008520628A priority patent/JP5042219B2/ja
Publication of WO2007142313A1 publication Critical patent/WO2007142313A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response

Definitions

  • the present invention performs propagation channel estimation by receiving multicarrier, in particular, Orthogonal Frequency Division Multiplexing (OFDM) symbols consecutively arranged on a predetermined number of predetermined subcarriers.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present invention relates to a multicarrier receiver and a receiving method.
  • the OFDM scheme is a scheme in which several tens to several thousands of carriers are arranged in a frequency interval that theoretically causes no interference, and information signals are transmitted in parallel by frequency division multiplexing.
  • the OFDM scheme has an advantage of being less susceptible to multipath interference since the symbol time becomes longer when the number of subcarriers used is increased compared to a single carrier scheme of the same transmission rate.
  • each subcarrier is subjected to different amplitude fluctuation and phase fluctuation, it is necessary to compensate for these fluctuation when demodulating data on the receiving side.
  • As a method of compensating for the propagation path on the transmitting side, all or a part of the subcarriers are modulated with a known code between the transceivers and transmitted as a pilot signal, and on the receiving side, the received pilot signal strength There is a method of estimating received channel fluctuation and compensating the estimated channel fluctuation.
  • a multicarrier signal including this pi-port signal is referred to as a “channel estimation symbol”. Also, when the signal form is OFDM, it is called “propagation channel estimation OFDM symbol”.
  • the time despreading gain can be obtained, the ratio of received signal power to noise power (SNR: Depending on the signal to noise power ratio, the adverse effect due to distortion was noticeable at the end of the frequency response estimation band. This distortion is more influential toward the end of the band for estimating the propagation path. For this reason, a technique is also disclosed that improves the time despreading channel estimation method.
  • Patent Document 1 frequency information (frequency information from which noise or the like has been removed) whose propagation path has been estimated by the time despreading propagation path estimation method is used for propagation path compensation in the central part of the band.
  • a method is disclosed in which the propagation path of subcarriers located at is used for propagation path compensation before removing noise and the like.
  • Patent Document 2 discloses a technique for facilitating the determination of a reference element related to noise generated in a transmission channel. That is, as a technique for determining a reference element relating to noise, it is disclosed that a threshold is set upon reception, transmission is performed by increasing the power of the reference element, or a combination of these.
  • MIMO Multi_Input Multi-Output
  • This technology transmits different data streams from two or more different antennas, identifies it at the receiver, and demodulates the data, which contributes significantly to the improvement of the transmission rate.
  • a MIMO-OFDM system which is OFDM using MIMO technology, is also being considered, in which the propagation paths between the transceivers can be estimated efficiently and accurately. It is an important issue.
  • Non-Patent Document 1 shows a channel estimation method using CI (Carrier Interferometry) (hereinafter referred to as "CI method”), and the feature of the present technology is that one channel estimation OFDM scheme is used. It is possible to estimate the propagation path from a plurality of transmitting antennas with a symbol.
  • CI method Carrier Interferometry
  • signals transmitted from each antenna can be distinguished by changing the phase rotation amount of one propagation path estimation signal and using different propagation path estimation signals in each antenna. Therefore, for example, when using antenna 1 and antenna 2, when calculating the propagation path from antenna 1, the frequency conversion is performed by removing the pulse corresponding to the signal power from antenna 2. It is possible to calculate the frequency response from one. Similarly, when the propagation path from the antenna 2 is calculated, the frequency response from the antenna 2 can be calculated by removing the pulse corresponding to the signal power from the antenna 1 and performing frequency conversion.
  • Patent Document 1 Japanese Patent Application Publication No. 2005-130485
  • Patent Document 2 Patent No. 3044899
  • Non-Patent Document 1 Kazunari Yokomakura et al., "A Study on Channel Estimation Method using Carrier Interferometry in MIMO-OFDM System," IEICE Technical Report, RCS 2005- 79, August 2005, p. 91 — 96
  • a channel estimation OFDM symbol multiplexed by CI method is used in a MIMO-OFDM system
  • a channel despreading channel estimation method is used as in the case of one transmit antenna.
  • the problem of distortion occurs because the number of Fourier transform points and the number of subcarriers do not match.
  • the frequency response is a waveform obtained by receiving channel estimation symbols transmitted from a plurality of antennas, and therefore, as in the method disclosed in Patent Document 1, the subcarrier It is not possible to use the frequency response result used for propagation path compensation by position
  • the present invention has been made in view of such circumstances, and uses a plurality of antennas to perform recording.
  • a receiver and frequency information estimation method for suppressing distortion of a calculation result of frequency response caused by removing noise etc. when estimating a propagation path by the time despreading channel estimation method Intended to be provided.
  • a receiver receives subcarriers for propagation path estimation transmitted from a plurality of transmission antennas, including subcarriers modulated with different known signals, and receives from each of the transmission antennas Receiver for estimating the propagation path of the channel, the Fourier transform unit calculating the first frequency information for each subcarrier by Fourier-transforming the received channel estimation symbol, and the propagation path estimation symbol
  • a signal generation unit that generates a known signal used to modulate subcarriers included in the signal; a division unit that divides the first frequency information by one of the known signals to calculate second frequency information; Calculating an information of frequency response from the transmitting antenna at a position where no subcarrier is transmitted from the first frequency information or the second frequency information; interpolating the third frequency information;
  • the third frequency Characterized in that it comprises an inverse Fourier transform unit for inverse Fourier transform to multi-address, the.
  • the receiver of the present invention when the propagation path estimation symbol received from each of the plurality of antennas is received and the propagation path is estimated, based on the characteristic of the known signal. , Calculate information of frequency response from the transmitting antenna at a position where no subcarrier is transmitted.
  • Channel estimation symbols are received at the receiver as symbols contained in multicarrier symbols.
  • propagation path estimation symbols include subcarriers modulated with known signals that are different for each transmit antenna at the transmitter side. The known signal used for modulation at the transmitter side is also known in advance by the receiver.
  • the receiver selects a subcarrier suitable for interpolation from the subcarriers in the signal band, and uses the first or second frequency information of the selected subcarrier as interpolation frequency information. Can be calculated.
  • the receiver since it is possible to estimate the propagation path by the time despreading propagation path estimation method using the frequency response at a frequency wider than the frequency band actually transmitted, it is possible to reduce distortion occurring at the end of the band. Become.
  • the extrapolation unit is a known signal obtained by modulating subcarriers at the same position of propagation path estimation symbols transmitted from the plurality of antennas.
  • the present invention is characterized by including an interpolation information generation unit that selects subcarriers based on the combination and generates frequency information to be interpolated using frequency information of the selected subcarriers.
  • the outer ring unit transmits the plurality of antennas per subcarrier.
  • the relationship between subcarriers is determined based on a combination of different known signals for each, and frequency information is selected based on the determined result. That is, the above-mentioned outer band part forms a plurality of signal bands based on the characteristics of known signals of different values for each antenna (combination of known signals of the same subcarrier number obtained by modulating the subcarriers of each antenna).
  • a part or all of the sub-carriers are selected from the sub-carriers, and frequency information to be interpolated is generated based on the selected sub-carrier frequency information.
  • the interpolation information generation unit is characterized by selecting a subcarrier in which a matrix generated by a different known signal is regular for each of the plurality of antennas. I assume.
  • the interpolation information generation unit It is possible to calculate the frequency response from each antenna. Then, by extrapolating out of the band using the calculated value, the propagation path can be estimated by the time despreading channel estimation method using the frequency response at a frequency wider than the actually transmitted frequency band. It is possible to reduce distortion that occurs on the end side of the
  • the receiver according to the present invention includes subcarriers modulated with different known signals generated by providing different amounts of phase rotation ⁇ for each transmitting antenna between elements of a predetermined code.
  • the outer portion selects a part of information based on the relationship of the phase difference given to the subcarriers of the same subcarrier number caused by a plurality of different phase rotation amounts set for each of the transmitting antennas.
  • the carrier can be selected, and the second frequency information of the selected subcarrier can be used to generate / exclude appropriate frequency information.
  • the outer ring section calculates a difference ⁇ ⁇ ⁇ for all two different ⁇ , selects a subcarrier based on ⁇ , and selects the selected subcarrier of
  • It is characterized by having an interpolation information generation unit that generates frequency information to be interpolated using frequency information.
  • the frequency information of the selected subcarrier is used to generate frequency information to be interpolated, appropriate frequency information can be generated and extrapolated.
  • the propagation path can be estimated by the time despreading channel estimation method using the frequency response at a frequency wider than the frequency band actually transmitted, it is possible to reduce the distortion generated at the end of the band.
  • Lm_A (LCM_A is an integer) is calculated as LCM_A (LCM_A is an integer) is calculated starting from the subcarrier to be interpolated. It is characterized in that frequency information is selected from subcarriers arranged at a distance from each other.
  • the propagation path can be estimated by the time despreading propagation path estimation method using the frequency response at a frequency wider than the frequency band actually transmitted. It is possible to reduce distortion that occurs at the end of the band.
  • the mantle has all the phase rotation amounts ⁇ .
  • the present invention is characterized in that frequency information is selected from subcarriers placed apart from the least common multiple LCM_B starting from the subcarrier to be interpolated.
  • the receiver according to the present invention is characterized in that the interpolation information generation unit selects frequency information of a subcarrier close to a subcarrier to be interpolated.
  • interpolation is performed based on frequency information of subcarriers close to propagation path characteristics by selecting frequency information of subcarriers close to the subcarrier to be interpolated in addition to the interrelation of the plurality of known signals.
  • Frequency information can be calculated. This can further reduce distortion.
  • a frequency information estimation method includes subcarriers each modulated by different known signals, receives a propagation path estimation symbol transmitted from a plurality of transmission antennas, and transmits each transmission antenna.
  • a method of estimating frequency information to be used for estimation of a propagation channel from the frequency domain comprising Fourier-transforming the received channel estimation symbol to calculate first frequency information for each subcarrier, and calculating the first frequency
  • the second frequency information is calculated by dividing the information by one of known signals used for modulation of the subcarrier included in the propagation path estimation symbol, and the first frequency information or the second frequency information is calculated. Calculating the information of the frequency response from the transmitting antenna at a position where no subcarrier is transmitted, and interpolating the third frequency Number information is calculated, and the third frequency information is inverse Fourier transformed.
  • the receiver of the present invention when the propagation path estimation symbol received from each of the plurality of antennas is received and the propagation path is estimated, based on the characteristics of the known signal. , Calculate information of frequency response from the transmitting antenna at a position where no subcarrier is transmitted.
  • Channel estimation symbols are received at the receiver as symbols contained in multicarrier symbols.
  • propagation path estimation symbols include subcarriers modulated with known signals that are different for each transmit antenna at the transmitter side. The known signal used for modulation at the transmitter side is also known in advance by the receiver.
  • the receiver selects a subcarrier suitable for interpolation from the subcarriers in the signal band, and uses the first or second frequency information of the selected subcarrier as interpolation frequency information. Can be calculated.
  • the receiver since it is possible to estimate the propagation path by the time despreading propagation path estimation method using the frequency response at a frequency wider than the frequency band actually transmitted, it is possible to reduce distortion occurring at the end of the band. Become.
  • a subcarrier modulated with a different known signal generated by giving a different amount of phase rotation ⁇ to each transmit antenna between each element of a predetermined code
  • a channel information estimation method for receiving propagation path estimation symbols transmitted from a plurality of transmit antennas and used to estimate the propagation paths from each of the transmit antennas, the received propagation path estimation symbols Fourier transform is performed to calculate first frequency information for each subcarrier, and the first frequency information is divided by one of known signals used for modulation of subcarriers included in propagation path estimation symbols.
  • second frequency information is calculated, and from the second frequency information, information of frequency response synthesized at a position where the subcarrier is not transmitted is calculated based on the phase rotation amount 'interpolation Te, generating the third frequency information, characterized by inverse Fourier transforming the third frequency information.
  • the outer ring portion is a phase given to subcarriers of the same subcarrier number generated by a plurality of different phase rotation amounts ⁇ set for each of the transmission antennas.
  • Subcarriers for selecting partial information can be selected based on the relationship of difference, and appropriate frequency information can be generated and extrapolated using the second frequency information of the selected subcarriers.
  • the present invention when receiving propagation path estimation symbols transmitted from different antennas and estimating the propagation path by the time despreading propagation path estimation method, the characteristics of different known signals are different for a plurality of antennas. By estimating the frequency information to be interpolated based on this, it is possible to suppress distortion of the calculation result of the frequency response that is generated by removing noise and the like.
  • each embodiment will be described using a MIMO-OFDM system.
  • the present invention is not limited to the MIMO-OFDM system, and is also referred to as a pilot symbol for propagation path estimation (a pilot symbol), which is transmitted from a plurality of antennas and modulated with different known signals (known codes) for each antenna.
  • the present invention can be applied to a receiver that receives a subcarrier to which known data is assigned in a pilot symbol as a pilot subcarrier) and a frequency information estimation method.
  • the propagation path estimation OFDM symbol is simultaneously transmitted from these two transmission antennas (transmission antenna 1 and transmission antenna 2). . It is assumed that two different antennas are in the same transmitter.
  • the present invention can be applied to a system in which propagation path estimation F FDM symbols are transmitted at almost the same timing even with antennas located at different transmitters (transmission devices) whose necessity is less.
  • the total number m of subcarriers used is 768, and the number of FFT points is 1024.
  • the propagation path estimation OFDM symbol it is assumed that all the subcarriers are modulated by the known signal between the transmitter and the receiver.
  • Known message here
  • the signal is composed of a plurality of elements (complex signals, which are often set to have an amplitude of 1 for simplicity), and each element modulates subcarriers in the channel estimation OFDM symbol.
  • the OFDM signal generated from transmitting antenna 1 with known signal C (ck is a component of C, k is a positive integer less than or equal to the number of subcarriers, and indicates the subcarrier number) is an OFDM symbol for channel estimation. It shall be sent as.
  • An OFDM signal generated from the transmitting antenna 2 with a known signal D (where dk is a component of D, k is a positive integer equal to or less than the number of subcarriers, and indicates a subcarrier number) is used as an OFDM symbol for channel estimation. It shall be sent.
  • the known signal C and the known signal D may be written as a code C and a code D, respectively.
  • the terms ck and dk are sometimes referred to as element ck, element dk, or component ck and component dk, respectively.
  • the known signal uses a different code for each antenna. For example, it is assumed that the known signal C and the known signal D described above are different. Also, in the CI method described in the second embodiment, a plurality of codes are generated by applying a different phase difference rotation between subcarriers for each antenna with respect to one known signal C. Such a code Is also called a different code.
  • Fourier transform includes Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT), and Inverse Fourier Transform includes Inverse Fast Fourier Transform (IFFT: Inverse). It is a concept including Fast Fourier Transform) and Inverse Direct Fourier Transform (IDFT).
  • FFT Fast Fourier Transform
  • DFT Discrete Fourier Transform
  • IFT Inverse Direct Fourier Transform
  • the number of points to be Fourier transformed is FFT point
  • the number of points to be inverse Fourier transformed is IFFT point
  • the number indicated by the FFT point or IFFT point is the same as the subcarrier number.
  • a band to be subjected to fast Fourier transform (inverse fast Fourier transform) processing is an FFT processing band (IFFT processing band), and a band to which a signal is allocated among the FFT processing bands is a signal band. Also for the FFT processing band power, the band excluding the signal band is a band that is a candidate for interpolation (cover). And the interpolation target band.
  • time despreading channel estimation method is used as a channel estimation method.
  • This channel estimation method uses Fourier transform, inverse Fourier transform, and concentration of the delay profile signal to a certain range of the output of inverse Fourier transform in estimation of channel variation and compensation.
  • “Time despreading gain” is a gain obtained by the time despreading channel estimation method.
  • An object of the present invention is to reduce the influence of this distortion as much as possible, and more specifically, based on a code used in generating an OFDM signal for propagation path estimation, a frequency response at a position where a signal is not actually transmitted. The problem is to be solved by
  • a propagation path called a CI method is used. This is shown when using the estimation OFDM symbol.
  • a channel estimation OFDM symbol modulated with known signals of different values is transmitted and received for each antenna.
  • the known signal C and the known signal D have different values.
  • the known signal C is a component ck (cl X e, c2 X e jei , c
  • the known signal D is a component dk (dl x e ⁇ ⁇ 2 , d 2 x e ⁇ ⁇ d 3
  • the channel estimation OFDM symbol is the same as in the case where each subcarrier is B PSK modulated.
  • FIG. 1 is a block diagram showing an example of the configuration of a receiver 100 according to the present invention.
  • the receiver (multicarrier wireless receiver) 100 shown in FIG. 1 includes an antenna unit 101, a wireless reception unit 102, an A / D (Analog Z Digital) conversion unit 103, an OFDM symbol synchronization unit 104, and an FFT unit (Fourier conversion unit). And 105, a propagation path compensation unit 112, a decoding unit 113, and a propagation path estimation unit 201.
  • the propagation path estimation unit 201 includes a pilot extraction unit 106, a multiplication unit 107, a pilot complex symbol combination signal generation unit 108, an IFFT unit (inverse Fourier transform unit) 109, a noise removal unit 110, an FFT unit 111, and an envelope.
  • a unit 120 is provided.
  • the signal received by the antenna unit 101 is first frequency-converted by the wireless reception unit 102 to a frequency band in which an analog signal can be converted into a digital signal.
  • the A / D conversion unit 103 converts the frequency-converted signal into a digital signal.
  • the OFDM symbol synchronization unit 104 performs OFDM symbol synchronization on the converted digital signal and removes a guard interval (GI: Guard Interval).
  • GI Guard Interval
  • the FFT unit 105 performs Fourier transform on the digital signal from which GI has been removed, and separates the signal into subcarriers.
  • channel estimation section 201 carries out the following processing.
  • the pilot extraction unit 106 extracts a pilot subcarrier signal from the Fourier transformed OFDM symbol for channel estimation.
  • frequency information of all subcarriers is extracted.
  • the extracted frequency information is multiplied by the complex conjugate signal of the pilot subcarrier signal generated by the pilot complex conjugate signal generator 108 used in the transmitter in the multiplier 107.
  • the propagation path fluctuation in the frequency domain can be obtained as the amplitude value and the phase value of the propagation coefficient by the multiplication in the multiplication unit 107. This amplitude value and phase value are called frequency information or frequency response.
  • this embodiment and the embodiment described below are for reducing the amount of calculation. Let the amplitude of the code used for the pilot subcarrier signal be 1, and substitute the complex division with the multiplication of the complex conjugate signal to obtain the frequency response. The frequency response calculated by this complex division contains noise and interference in the frequency response of the propagation path.
  • an input to the multiplication unit 107 that is, the signal extracted by the pilot extraction unit 106 after signal conversion by Fourier transform is used as the first frequency information.
  • the output from the multiplication unit 107 that is, the value obtained by multiplying the first frequency information by the complex conjugate signal is set as the second frequency information.
  • extrapolation section 120 extrapolates the signal of the subcarrier in the interpolation candidate band to which no signal is assigned, and interpolates the frequency response.
  • the output of the external 120 power that is, the information obtained by extrapolating the second frequency information is used as the third frequency information. A detailed operation of the mantle 120 will be described later.
  • IFFT section 109 performs inverse Fourier transform on the third frequency information, and changes propagation path fluctuation in the frequency domain into propagation path fluctuation (impulse response or delay profile) in the time domain. Convert.
  • the power is concentrated in a certain range of IFFT output, so the noise eliminator 110 regards signals other than the range in which the power is concentrated as noise and replaces it with zero. Do the processing.
  • the FFT unit 111 performs Fourier transform on the output of the noise removing unit 110, and thereby calculates frequency information of the OFDM signal band. This is because the noise removing unit 110 removes noise and interference from the second frequency information and the third frequency information which are obtained earlier, so that the frequency information becomes highly accurate.
  • the frequency information output from the FFT unit 111 is used as frequency information for compensation.
  • the propagation path compensation unit 112 performs propagation path compensation using the signal separated for each subcarrier output from the FFT unit 105 and the frequency information for compensation output from the FFT unit 111.
  • the data thus subjected to propagation path compensation is subjected to decoding processing such as demodulation and error correction in the decoding unit 113 to obtain data. Data are sent to upper layers and so on.
  • the extrapolation unit 120 is disposed between the pilot extraction unit 106 and the multiplication unit 107 only in the case of the first embodiment, which is disposed between the multiplication unit 107 and the IFFT unit 109. It is also possible. Further, since a MIMO system using two transmit antennas is assumed, the channel estimation unit 201 estimates channel information of each of the two antennas. Although not explicitly shown in FIG. 1, the power for preparing two propagation path estimation units 201 (the number of antennas), and the number of antennas looped around the propagation path estimation unit 201 enables a plurality of antennas to be prepared. Estimate the propagation path from Furthermore, although it is necessary for the channel compensation unit 112 and the decoding unit 113 to operate according to the MIMO reception, the contents are not affected by the present invention, so the description will be omitted.
  • the envelope unit 120 includes an interpolation information generation unit 121, a subcarrier interpolation unit 122, and the like. Equipped with Interpolation information generation section 121 is configured based on a combination of different known signals used in generating a channel estimation OFDM symbol for each antenna from either the first frequency information or the second frequency information. , And select partial information, and use the selected information to generate interpolation frequency information to interpolate information in the signal band to which no signal is assigned.
  • a combination of known signals obtained by modulating subcarriers at the same position (subcarrier number) a subcarrier to be a source of interpolation frequency information is selected, and first frequency information of the selected subcarrier is selected.
  • the interpolation frequency information is generated using the second frequency information.
  • the subcarrier interpolation unit 122 interpolates the interpolation frequency information generated by the interpolation information generation unit 121 into second frequency information to calculate third frequency information. Specifically, the subcarrier interpolation unit 122 adds the interpolation frequency information to the second frequency information.
  • FIG. 2 An example of an input waveform (second frequency information) to the mantle 120 (interpolation information generation unit 121) is shown in FIG.
  • the horizontal axis is the FFT point
  • the vertical axis is the power.
  • the propagation path estimation unit 201 inputs propagation path estimation OFDM signals transmitted from two transmission antennas.
  • FFT points 385 to 639 are not used for filtering, and zero corresponds to DC (DC potential), so an example of an input waveform when not used in a normal OFDM system Is shown. Therefore, in Fig.
  • the system uses the 384 waves of FFT point force 384 and the sub-carriers corresponding to 384 waves of up to 640 power 1023 (FFT point repulsive force et al. 384 waves
  • the system is configured with two signal bands of 384 waves up to 640 powers and 1023 in the frequency band where actual transmission is performed, the subcarriers are upper and lower frequencies centering on the subcarrier set to DC. Distributed).
  • the interpolation information generation unit 121 in the outer packet unit 120 estimates the frequency response of at least a part of the subcarrier of the interpolation target band in the guard band position where the FFT point is 385 to 639 unused FFT points. Then, the interpolation frequency information is generated, and the subcarrier interpolation unit 122 has a function of inserting into a subcarrier that interpolates the frequency response (interpolation frequency information) of the estimated subcarrier. In the present embodiment, the interpolation information generation unit 121 determines whether the FFT point (subcarrier number) is 3 among the FFT points (subcarriers) of the interpolation target band. Power to estimate the frequency response corresponding to the position of 85 or 386, 638, 639, etc. from the subcarrier where the signal actually exists (from the subcarrier of the signal band) As an example, extrapolate (interpolate) subcarrier number A case will be described in which the frequency response is outside the 385th subcarrier.
  • the sheath When calculating the frequency response from antenna 1, it is preferable that the sheath should also have the frequency response from antenna 1 at the sub-carrier position to be sheathed, as well as the frequency from antenna 2. In the case of calculating the response, it is preferable to extrapolate the frequency response from the antenna 2 at the subcarrier position to be enveloped. In the following example, the frequency response from antenna 1 is calculated and shown.
  • the multiplication section 107 the first frequency information for each subcarrier is multiplied by the complex conjugate signal C * to obtain the second frequency information.
  • the actual frequency response on subcarrier k from transmitting antenna 1 is f, the transmitting antenna
  • the interpolation information generation unit 121 determines which of the subcarriers (FFT points) in the signal band is to be used to generate interpolation frequency information for interpolating the 385th subcarrier using the second frequency information.
  • the generation unit 121 calculates the value 385 of the 385th outlier as (F383 + F384) Z2,
  • the interpolation information generation unit 121 can use simultaneous equations as a method of estimating the propagation characteristics of force for each of the two antennas. For example, when transmitting characteristics from transmitting antenna 1 to H1, transmitting characteristics from transmitting antenna 2 to H 2, subcarrier 1 received signal to subcarrier 1, subcarrier 2 received signal to S2, transmitter antenna 1 to transmit Assuming that the code used in subcarrier 1 is C11, the code used in subcarrier 2 is C12, and the code used in transmission from transmit antenna 2 is C21 and C22, the received signal (SIS 2) is
  • the propagation characteristics Hl and ⁇ 2 can be obtained by solving the simultaneous equations.
  • This formula (1) In order for the simultaneous equations represented by to have a solution,
  • C 22 ⁇ need to be regular. In other words, it is necessary to select subcarrier 1 and subcarrier 2 in which equation (2) is regular.
  • antenna 1 in order to calculate the frequency response from antenna 1 of subcarrier 385, antenna 1 (and 2) can be obtained by substituting the frequency response of subcarrier 383, 384 for the equation (1).
  • the frequency response from can be calculated.
  • the subcarrier interpolation unit 122 can improve the overall channel estimation accuracy by performing the same value interpolation as the frequency response of the subcarrier 385 by using the value calculated here.
  • the frequency response is calculated from the 381 and 382nd subcarriers, and the frequency response of the 385th subcarrier is calculated from the values previously calculated from the 383 and 384th subcarriers. It is also conceivable to use a method (such as a first order approximation).
  • the relationship between this determinant and the number of transmit antennas is at least M when the number of transmit antennas is M.
  • interpolation information generation section 121 performs interpolation using the same value as the frequency response from each antenna calculated at the actual pilot subcarrier position (in equivalent interpolation).
  • the case of generating frequency information has been described, the case of estimating frequency information of a subcarrier to be interpolated from a plurality of subcarriers in a signal band in consideration of fluctuation of frequency response will be described here.
  • the frequency response of the combination of extrapolation bands from the frequency response of the subcarrier to which the pilot is actually transmitted (combination means the combination of the frequency responses of antenna 1 and antenna 2 power), etc.
  • FIG. 3 shows the frequency response of subcarrier numbers 381 to 384 in Fig. 2 in the (1, Q) plane.
  • Fig. 3 (a) shows subcarrier number 381
  • Fig. 3 (b) shows subcarrier number 382
  • Fig. 3 (c) is subcarrier number 383
  • FIG. 3 (d) is subcarrier number 384.
  • the values in each I-Q plane be (X, Y) (k is a subcarrier number).
  • the module 121 performs the following procedure to estimate the 385th frequency response (to generate interpolated frequency information of the 385th subcarrier).
  • the interpolation information generation unit 121 obtains the following calculation result as the estimation method using linear interpolation in the form of phase plane.
  • (X, ⁇ ) is the subcarrier 381 frequency response (X,))
  • subcarriers of the same subcarrier number are used.
  • Frequency information to be interpolated can be calculated using frequency information of subcarriers selected in accordance with the characteristics of the carrier. This makes it possible to reduce distortion that occurs in the time despreading channel estimation method.
  • pilot complex conjugate generation section 108 when calculating the frequency response of the multicarrier symbol transmitted from transmission antenna 2, pilot complex conjugate generation section 108 generates a complex conjugate signal of Dk as a code.
  • the frequency response from the transmitting antenna 2 can be calculated by generating and performing an outer ring 120 in the same manner.
  • the transmitter side generates a channel estimation OFDM symbol using the CI method.
  • the configuration of the receiver 100 is the same as that of FIG.
  • a propagation path estimation symbol is generated, for example, by a code C, and further, a force generated by giving a constant phase rotation between subcarriers, by setting the phase rotation amount to a different value between antennas, the receiver Identification 'in method of enabling propagation channel estimation.
  • this phase rotation amount is also regarded as a part of the code, and it is considered that an OFDM signal for channel estimation is generated with a different code at each transmitting antenna.
  • the known signal C and the known signal D in the first embodiment have a specific relationship as a known signal for generating an OFDM symbol for channel estimation used in each antenna. It points to the case.
  • the specific relationship is a code that the known signal D is generated from the known signal C, and when assigning the known signal C to a subcarrier, a code that is generated by applying a constant phase rotation between successive subcarriers. Is pointing to the case.
  • the phase rotation amount is ⁇ , ck and dk are
  • component ck (k is a positive integer within the number of subcarriers) of known signal C is assigned to all subcarriers between the transmitter and receiver, Generate and transmit OFDM symbols for channel estimation.
  • dk of known signal D is allocated to all subcarriers between the transmitter and the receiver, and a channel estimation FF DM symbol is generated.
  • ck and dk are related as shown in the above equation (3), and dk is a code generated by converting the signal of ck according to a specific rule.
  • propagation channel estimation OFDM symbol generated by the CI method is received and propagation channel estimation section 201 estimates a propagation channel will be described.
  • FIG. 4 shows an example of the waveform of the output of IFFT section 109 of receiver 100.
  • the total number of paths in the propagation path from transmitting antenna 1 to the receiving antenna is 3 (each delay power Stl, t2 and t3), and the total number of multipaths from transmitting antenna 2 to the propagation path of the receiving antenna is 4 (each delay is t 1 , T2, t3, and t4) show waveforms of the IFFT unit 109, where tl to t4 are integral multiples of the time resolution of IFF T.
  • the horizontal axis indicates the point of IFFT (corresponding to the time of the delay profile), and the vertical axis indicates the power.
  • FIG. 4 (a) shows the case where the signal generated by the pilot complex conjugate signal generation unit 108 is a ck complex conjugate signal
  • Fig. 4 (b) shows this signal as a dk complex conjugate signal.
  • the situation is shown in Fig. 4 (a), where the pulse generation position is replaced.
  • N the total number of IFFT points
  • the difference between the path from transmit antenna 1 and the path from transmit antenna 2 is observed at a position separated by N / 2 points. This is because dk is set to ck and the amount of phase rotation between adjacent subcarriers is set to ⁇ (see equation (3)).
  • the noise removing unit 110 removes the pulse corresponding to the signal power from the transmitting antenna 2, and the frequency conversion is performed by the FFT unit 111, whereby the transmitting antenna 1 is obtained. It is possible to calculate the frequency response from Similarly, in the case of calculating the propagation path from the transmission antenna 2, the noise removing unit 110 removes the pulse corresponding to the signal power of the transmitting antenna 1 power, and frequency conversion is performed by the FFT unit 111. It is possible to calculate the frequency response from
  • the process can be similarly performed even with three or more transmitting antennas.
  • the phase rotation amount between subcarriers with respect to the component ck it is possible to calculate four types of imperorence responses by setting the phase rotation amount between subcarriers with respect to the component ck to be 0, ⁇ / 2, ⁇ , 3 ⁇ 2. It becomes possible. However, it is necessary to design in such a range that it does not overlap with the delay waves due to each multipath and other imprintless groups.
  • the interpolation information generation unit 121 generates interpolation frequency information using the second frequency information of the subcarrier selected based on the phase difference given to the known signal.
  • FIG. 5 is an example of a waveform (second frequency information) input to the mantle 120 in the present embodiment. The difference from FIG. 2 is that in the first embodiment, since the code is not relevant, the sub
  • 1-k 2-k carrier and subcarrier which becomes f-f is code combination (combination of ck and dk
  • the frequency response of the guard band position subcarrier in the outer ring unit 120 if the subcarrier number is even, estimation is performed from the actually received even subcarrier. In the case of an odd number, estimation is performed from an odd number of subcarriers.
  • the following shows an example of the case where two subcarriers (385 and 386th subcarriers) are covered by the mantle part 120.
  • the interpolation information generator 1 21 ⁇ , 385 ⁇ ⁇ subcarrier ⁇ ⁇ 383 ⁇ 386 ⁇ ⁇ ⁇ ⁇ Interpolation should be done.
  • the extrapolation processing is performed for each antenna, and when calculating the frequency response from the transmitting antenna 1, a method is adopted in which the frequency response of the transmitting antenna 1 is extrapolated. The need is to surpass the synthetic frequency response from all antennas. The reason is briefly described.
  • the purpose of the outer ring is to prevent the frequency response distortion due to the spread of signal power when obtaining the time response in the time despreading channel estimation method when the number of subcarriers and the number of FFT points are different. .
  • the first embodiment in the case of estimation similar to the second embodiment, there is a trade-off between reduction of distortion due to extrapolation and increase in distortion due to deterioration of accuracy due to increase in interference component. It becomes a relationship. Therefore, when obtaining the frequency response from the transmitting antenna 1 so as not to increase the interference component, the estimated value of only the frequency response with the transmitting antenna 1 is extrapolated.
  • the signal can be separated at the output of the IF FT unit. Furthermore, when the envelope as shown in this embodiment is performed, the signal component from the antenna for which the frequency response is calculated and the signal component of the antenna power as interference also contribute to the reduction of the spread in the time response. There is almost no increase in Therefore, in the present embodiment, the extrapolation means as described above is used.
  • the accuracy can be improved by estimating the frequency response of the subcarrier to be interpolated by means such as linear interpolation from a plurality of subcarriers in the signal band.
  • a method of performing linear interpolation from two actually received subcarriers is shown. In the case of performing the outer guard on the odd-numbered subcarriers, in the case of performing the outer guard on the even-numbered subcarriers from the received odd-numbered subcarriers, it is estimated from the received even-numbered subcarriers It will be outcast.
  • FIG. 6 is a diagram for explaining an example of selection of subcarriers to be interpolated.
  • H P is
  • the frequency response for the Qth subcarrier is shown for the known signal transmitted from antenna P.
  • R is the received signal of the Qth subcarrier and
  • the signal band (subcarriers from k-5 to k) is the signal actually received, and to the extrapolation section 120 outside the signal band (subcarriers after k + 1). This is an extrapolated signal.
  • Subcarrier k is at the end of the signal band.
  • the information calculated by the above calculation is interpolated, and the interpolation is similarly performed for k + 3 and thereafter.
  • the relationship between the position to be interpolated and the subcarrier position for generating information to be interpolated is unique by the number of antennas used and the amount of phase rotation when generating an OFDM symbol for channel estimation using the CI method, which will be described in detail later. It is possible to set it to S.
  • the interpolation information generation unit 121 generates interpolation frequency information using the frequency response of every other subcarrier.
  • the calculation of the frequency response of synthesis at the subcarrier position to be excluded is the same as the case shown by equivalence interpolation.
  • Fig. 7 shows the frequency response of subcarrier numbers 381 to 384 in Fig. 5 in the (1, Q) plane.
  • Fig. 7 (a) shows subcarrier numbers 381 and Fig. 7 (b) shows subcarrier numbers. 382, FIG. 7 (c) is subcarrier number 383, and FIG. 7 (d) is subcarrier number 384.
  • (X, Y) be the values in each I-Q plane.
  • the interpolation information generation unit 121 estimates the 385th frequency response k k
  • Another method of estimation is to follow only the phase. This means that when interpolating odd subcarriers after the 385th, the amplitude is the same as the 383th, the difference between the 381st phase and the 383th phase is the same as the 383th and 385th phase differences, and , Is a method to do the same process.
  • the number of lines to be interpolated is preferably large if the delay dispersion of the propagation path is small, and good characteristics can be obtained.
  • Lm be the smallest m (LCM-A is a natural number).
  • the received subcarrier at a position distant by a multiple of LCM-A from k may be used as the subcarrier used to perform the extrapolation. That is, the interpolation information generation unit 121 selects frequency information for the medium power of subcarrier kLCM_A, k ⁇ 2LCM_A, which is disposed apart from LCM_A starting from subcarrier k to be interpolated, and subcarrier k Estimate the frequency response of
  • m XI ⁇ I 2 ⁇ ⁇ (a, diff is MX (M l) Calculate the smallest m that satisfies / 2 or less and all integers). Then, let LCM-B be the aa least common multiple of all m, then LCM-B means the repetition of the waveform. That is, the interpolation information generation unit 121 uses LCM starting from the subcarrier k to be interpolated.
  • the frequency information is selected from among subcarrier k soil LCM_B, k ⁇ 2 LCM_B, which are arranged at multiples of _B, and the frequency response of subcarrier k is estimated. However, considering fluctuations in the frequency response, it is better to use a subcarrier close to the subcarrier that performs the outer ring as much as possible.
  • the first embodiment shows one example as an example of the number of extras
  • the second embodiment shows two examples as the number of extras.
  • the meaning depends on the propagation path environment in which the naive system is used. Also, when performing subcarrier interpolation even when power is inserted at regular intervals, which indicates that all subcarriers as OFDM symbols for channel estimation are used as pilot carriers, the intervals are taken into consideration. It is possible to estimate the propagation path with high accuracy as well.
  • FIG. 1 is a block diagram showing an example of the configuration of a multicarrier wireless receiver according to the present invention.
  • FIG. 2 is a view showing an example of an input waveform to the mantle according to the first embodiment.
  • FIG. 3 is a diagram showing frequency responses of subcarrier numbers 381 to 384 in FIG. 2 in the (1, Q) plane.
  • FIG. 4 is a diagram showing an example of the waveform of the output of the IFFT unit of the receiver.
  • FIG. 5 is a diagram showing an example of an input waveform to the mantle in the second embodiment.
  • FIG. 6 is a diagram for explaining selection of subcarriers to be interpolated.
  • FIG. 7 is a diagram showing frequency responses of subcarrier numbers 381 to 384 in FIG. 5 in the (1, Q) plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

【課題】時間逆拡散伝搬路推定法で伝搬路を推定する際、雑音等を除去することによって生じる周波数応答の算出結果の歪みを抑制する。 【解決手段】受信機100は、複数のアンテナ毎に異なる既知信号で変調されたサブキャリアを含む伝搬路推定用シンボルをフーリエ変換して、第一の周波数情報を算出するフーリエ変換部105と、複数の既知符号の複素数共役信号を第一の周波数情報に乗算して各サブキャリアの第二の周波数情報を算出する乗算部107と、複数の既知符号に基づいて、第二の周波数情報から一部分の情報を選択し、選択した情報を用いてサブキャリアを補間する補間周波数情報を生成する補間情報生成部121と、補間周波数情報を第二の周波数情報へ補間して第三の周波数情報を算出するサブキャリア補間部122と、第三の周波数情報を逆フーリエ変換する逆フーリエ変換部109と、を備える。

Description

明 細 書
受信機および周波数情報推定方法
技術分野
[0001] 本発明は、マルチキャリア、特に、予め決められた所定数のサブキャリアに連続的 に配置された直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)シンボルを受信し、伝搬路推定を行なうマルチキャリア受信機およ び受信方法に関する。
背景技術
[0002] 近年、無線通信システムへの高速化を求めるユーザ数が増加しており、高速化'大 容量化が実現可能な方式のひとつとして OFDMに代表されるマルチキャリア伝送方 式が注目されている。 OFDM方式は、数十から数千のキャリアを、理論上干渉の起 こらない最小となる周波数間隔に並べ、周波数分割多重で情報信号を並列に伝送 する方式である。 OFDM方式は、使用するサブキャリアの数を多くすると、同じ伝送 レートのシングルキャリア方式と比較してシンボル時間が長くなるため、マルチパス干 渉の影響を受けにくいという利点がある。
[0003] しかし、マルチパス環境下においては、各サブキャリアはそれぞれ異なる振幅変動 および位相変動を受けるため、受信側でデータを復調する際にこれらの変動を補償 する必要がある。伝搬路を補償する方法としては、送信側において、送受信機間で 既知の符号でサブキャリアの全部または一部を変調してパイロット信号として伝送し、 受信側では受信したパイロット信号力 各サブキャリアが受けた伝搬路変動を推定し 、推定した伝搬路変動を補償するという方法がある。以降本明細書では、このパイ口 ット信号が含まれるマルチキャリア信号を「伝搬路推定用シンボル」と呼ぶ。また、特 に信号形態が OFDMの場合は「伝搬路推定用 OFDMシンボル」と呼ぶ。
[0004] 伝搬路変動の推定'補償においては、フーリエ変換、逆フーリエ変換を用い、遅延 プロファイル信号が逆フーリエ変換の出力のある程度の範囲に集中することを利用し て、雑音や干渉を除去する時間逆拡散伝搬路推定法を採ることができる(特許文献 1 )。時間逆拡散伝搬路推定法により得られる利得を時間逆拡散利得とする。 OFDM システムにおいては、ガードバンドを作ること、あるいは送信機におけるフィルタリング 処理等に対応するため、送受信装置で用いるフーリエ変換ポイント数 (あるいは、逆 フーリエ変換ポイント数)と伝送する信号を割り当てる (信号伝送に使用する)サブキ ャリア数が一致することは殆どなレ、。通常フーリエ変換ポイント数は 2nである。
[0005] 特にフーリエ変換ポイント数とサブキャリア数が異なる場合、時間逆拡散伝搬路推 定法で伝搬路を推定すると、時間逆拡散利得は得られるものの、受信信号電力対雑 音電力比(SNR: Signal to Noise power Ratio)によっては周波数応答の推定 を行なう帯域の端側に歪みによる悪影響が顕著に見られるようになつていた。この歪 みは伝搬路を推定しょうとする帯域の端側ほど影響が大きくなる。このため、時間逆 拡散伝搬路推定法を改善した技術も開示されている。
[0006] 例えば特許文献 1では、帯域の中央部は時間逆拡散伝搬路推定法で伝搬路を推 定した周波数情報 (雑音等を除去した周波数情報)を伝搬路補償に用い、帯域の端 側に位置するサブキャリアの伝搬路は、雑音等を除去する前の周波数情報を伝搬路 補償に用いるといった方法が開示されている。また、特許文献 2では、送信通信路に 発生する雑音に関する基準要素の判別を容易にする技術が開示されている。すなわ ち、雑音に関する基準要素を判別する技術として、受信するときにスレショルドを設定 すること、基準要素の電力を増加させることによって送信すること、あるいはこれらの 組み合わせについて開示している。すなわち、遅延プロファイル信号が逆フーリエ変 換出力のある程度の範囲に集中することを利用することによって、雑音や干渉を除去 できるとともに、遅延プロファイルから雑音電力を除去する際、信号電力成分をも除 去してしまうことによる歪みが生じることを防止するものである。この方法によれは、歪 みの影響を受けることなぐまた、帯域の中央部では時間逆拡散利得により高精度な 周波数応答を算出することが可能になる。
[0007] また、昨今、 MIMO (Multi_Input Multi— Output)技術が盛んに検討されて いる。この技術は異なる 2つ以上のアンテナから、異なるデータストリームを送信し、 受信機ではそれを識別してデータを復調する技術であり、伝送レートの向上に大きく 貢献している。 MIMO技術を使う OFDMである MIMO— OFDMシステムも検討さ れており、そのシステム中では送受信機間の伝搬路を効率よく正確に推定することが 重要な課題となっている。
[0008] 非特許文献 1では、 CI (Carrier Interferometry)を用いた伝搬路推定方法(以 下「CI法」と称する)が示されており、本技術の特徴は 1つの伝搬路推定用 OFDMシ ンボルで複数の送信アンテナからの伝搬路を推定できることである。 CI法は、一つの 伝搬路推定用信号を、位相回転量を変化させ、各アンテナで異なる伝搬路推定用 信号を用いることにより、各アンテナから送信された信号を区別できるものである。従 つて、例えば、アンテナ 1とアンテナ 2とを用いる場合に、アンテナ 1からの伝搬路を算 出する場合は、アンテナ 2からの信号電力に相当するパルスを除去して周波数変換 することで、アンテナ 1からの周波数応答を算出することが可能となる。同様にアンテ ナ 2からの伝搬路を算出する場合は、アンテナ 1からの信号電力に相当するパルスを 除去して周波数変換することで、アンテナ 2からの周波数応答を算出することが可能 となる。
特許文献 1 :特開 2005— 130485号公報
特許文献 2:特許第 3044899号
非特許文献 1 :横枕一成 他著「MIMO— OFDMシステムにおける Carrier Interf erometryを用いた伝搬路推定方式に関する検討」、電子情報通信学会技術研究 報告、 RCS2005— 79、 2005年 8月、 p. 91— 96
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、 MIMO— OFDMシステムにおいて CI法によって多重された伝搬路 推定用 OFDMシンボルを用いた場合でも、送信アンテナが一本の場合と同様に、時 間逆拡散伝搬路推定法で伝搬路を推定する際に、フーリエ変換ポイント数とサブキ ャリア数とがー致しないことによる歪みの問題は生じる。また、 MIMO— OFDMシス テムでは、周波数応答は、複数のアンテナから送信された伝搬路推定シンボルを受 信した波形となっているため、特許文献 1に開示された方法のように、サブキャリアの 位置によって伝搬路補償に使用する周波数応答の結果を使いわけることはできない
[0010] 本発明は、このような事情に鑑みてなされたものであり、複数のアンテナを用いてマ ルチキャリアシンボルを送受信するシステムにおいて、時間逆拡散伝搬路推定法で 伝搬路を推定する際、雑音等を除去することによって生じる周波数応答の算出結果 の歪みを抑制する受信機および周波数情報推定方法を提供することを目的とする。 課題を解決するための手段
[0011] (1)本発明に係る受信機は、異なる既知信号で変調されたサブキャリアを含み、複 数の送信アンテナから送信された伝搬路推定用シンボルを受信し、前記各送信アン テナからの伝搬路を推定する受信機であって、受信した伝搬路推定用シンボルをフ 一リエ変換して、サブキャリア毎に第 1の周波数情報を算出するフーリエ変換部と、伝 搬路推定用シンボルに含まれるサブキャリアの変調に使用された既知信号を生成す る信号生成部と、前記第 1の周波数情報を前記既知信号の 1つで除算し第 2の周波 数情報を算出する除算部と、前記第 1の周波数情報または第 2の周波数情報から、 サブキャリアが送信されていない位置の前記送信アンテナからの周波数応答の情報 を算出'補間し、第 3の周波数情報を算出する外揷部と、前記第 3の周波数情報を逆 フーリエ変換する逆フーリエ変換部と、を備えることを特徴とする。
[0012] このように、本発明の受信機によれば、複数のアンテナそれぞれから送信された伝 搬路推定用シンボルを受信し伝搬路を推定する場合に、前記既知信号の特性に基 づいて、サブキャリアが送信されていない位置の前記送信アンテナからの周波数応 答の情報を算出 '補間する。伝搬路推定シンボルは、マルチキャリアシンボルに含ま れるシンボルとして受信機で受信される。また、伝搬路推定シンボルは、送信機側に おいて送信アンテナ毎に異なる既知信号で変調されたサブキャリアを含む。送信機 側で変調に用いた既知信号は、受信機でも予め既知となっている。従って、受信機 は、前記既知信号の特性に基づいて、信号帯域のサブキャリアから補間に適切なサ ブキャリアを選択し、選択したサブキャリアの第 1あるいは第 2の周波数情報を用いて 補間周波数情報を算出することができる。これにより、実際送信された周波数帯域よ り広い周波数での周波数応答を用いて時間逆拡散伝搬路推定法により伝搬路を推 定できるため、帯域の端側において生じる歪みを軽減することが可能となる。
[0013] (2)また、本発明に係る受信機において、前記外挿部は、前記複数のアンテナから 送信された伝搬路推定用シンボルの同じ位置のサブキャリアを変調した既知信号の 組み合わせに基づいてサブキャリアを選択し、選択したサブキャリアの周波数情報を 用いて補間する周波数情報を生成する補間情報生成部を有することを特徴とする。
[0014] このように、受信機が複数のアンテナそれぞれで、異なる値の既知信号で変調され たマルチキャリアシンボルを受信した場合には、前記外揷部は、サブキャリア毎に前 記複数のアンテナ毎に異なる既知信号の組み合わせに基づレ、て、サブキャリア相互 の関係を判断し、判断した結果に基づいて、周波数情報を選択する。すなわち、前 記外揷部は、アンテナ毎に異なる値の既知信号の特性(それぞれのアンテナのサブ キャリアを変調した、同じサブキャリア番号の既知信号の組み合わせ)に基づいて、 信号帯域を構成する複数のサブキャリアから一部分あるいは全部のサブキャリアを選 択し、選択したサブキャリアの周波数情報に基づいて、補間する周波数情報を生成 する。これにより、実際送信された周波数帯域より広い周波数での周波数応答を用い て時間逆拡散伝搬路推定法により伝搬路を推定できるため、帯域の端側において生 じる歪みを軽減することが可能となる。
[0015] (3)さらに、本発明に係る受信機において、前記補間情報生成部は、前記複数の アンテナ毎に異なる既知信号によって生成される行列が正則となるサブキャリアを選 択することを特徴とする。
[0016] このように、既知信号で生成される行列が正則となるサブキャリアを選択すると、そ の選択されたサブキャリア位置における周波数特性がほとんど変わらない場合には、 前記補間情報生成部は、各アンテナからの周波数応答を算出することが可能となる 。そして、算出した値を用い帯域外に外挿することで、実際送信された周波数帯域よ り広い周波数での周波数応答を用いて時間逆拡散伝搬路推定法により伝搬路を推 定できるため、帯域の端側において生じる歪みを軽減することが可能となる。
[0017] (4)本発明に係る受信機は、所定の符号の各要素間に送信アンテナ毎に異なる位 相回転量 Θを与えることにより生成される異なる既知信号で変調されたサブキャリア を含み、複数の送信アンテナから送信された伝搬路推定用シンボルを受信し、前記 各送信アンテナからの伝搬路を推定する受信機であって、受信した伝搬路推定用シ ンボルをフーリエ変換して、サブキャリア毎の第 1の周波数情報を算出するフーリエ 変換部と、伝搬路推定用シンボルに含まれるサブキャリアの変調に使用された既知 信号を生成する信号生成部と、前記第 1の周波数情報を前記既知信号の 1つで除算 し第 2の周波数情報を算出する除算部と、前記第 2の周波数情報から、前記位相回 転量 Θに基づいてサブキャリアが送信されていない位置において合成した周波数応 答の情報を算出'補間し、第 3の周波数情報を生成する外揷部と、前記第 3の周波数 情報を逆フーリエ変換する逆フーリエ変換部と、を備えることを特徴とする。
[0018] このように、前記異なる既知信号が、一つの既知信号を用いて、各サブキャリアに 与える位相回転量 Θを、送信アンテナ毎に異なる値にすることによって、異なる既知 信号とする場合、前記外揷部は、前記送信アンテナ毎に設定された複数の異なる位 相回転量 Θによって生じる、同じサブキャリア番号のサブキャリアに与えられる位相 差の関係に基づいて、一部分の情報を選択するサブキャリアを選択し、選択したサ ブキャリアの第 2の周波数情報を用いて、適切な周波数情報を生成 ·外揷することが できる。これにより、実際送信された周波数帯域より広い周波数での周波数応答を用 いて時間逆拡散伝搬路推定法により伝搬路を推定できるため、帯域の端側において 生じる歪みを軽減することが可能となる。
[0019] (5)本発明に係る受信機において、前記外揷部は、すべての異なる 2つの Θに関 して差 Θ を算出し、 Θ に基づいてサブキャリアを選択し、選択したサブキャリアの
diff diff
周波数情報を用いて補間する周波数情報を生成する補間情報生成部を有すること を特徴とする。
[0020] このように、すべての異なる 2つの Θに関して算出した差 Θ に基づいてサブキヤリ
diff
ァを選択し、選択したサブキャリアの周波数情報を用いて補間する周波数情報を生 成するので、適切な周波数情報を生成 ·外挿することができる。これにより、実際送信 された周波数帯域より広い周波数での周波数応答を用いて時間逆拡散伝搬路推定 法により伝搬路を推定できるため、帯域の端側において生じる歪みを軽減することが 可能となる。
[0021] (6)また、本発明に係る受信機において、前記補間情報生成部は、前記位相回転 量差 Θ 毎に m X I θ I = 2η π (m、nは自然数、 | θ | は、 Θの絶対値)を満 diff diff
たす最小の mを算出し、算出される mの最小公倍数を LCM_A(LCM_Aは整数) とした場合、補間対象となるサブキャリアを起点として前記最小公倍数 LCM Aの倍 数離れて配置されるサブキャリアの中から周波数情報を選択することを特徴とする。
[0022] このように、補間情報生成部が外揷を行なうことで、実際送信された周波数帯域より 広い周波数での周波数応答を用いて時間逆拡散伝搬路推定法により伝搬路を推定 できるため、帯域の端側において生じる歪みを軽減することが可能となる。
[0023] (7)本発明に係る受信機において、前記外揷部は、前記位相回転量 Θがすべて
0 gの整数倍である場合、 m X I 0 g I = 2η π (m、nは自然数、 | θ | は、 Θの絶 対値)を満たす最小の mを LCM_B (LCM_Bは整数)として算出し、補間対象とな るサブキャリアを起点として前記最小公倍数 LCM_Bの倍数離れて配置されるサブ キャリアの中から周波数情報を選択することを特徴とする。
[0024] このように、前記複数の既知信号相互の関係に基づいて、補間周波数情報を算出 するためのサブキャリアを選択することができる。これにより、既知信号の相互の関係 に基づいて適切な周波数情報を選択することが可能になり、実際送信された周波数 帯域より広い周波数での周波数応答を用いて時間逆拡散伝搬路推定法により伝搬 路を推定できるため、帯域の端側において生じる歪みを軽減することが可能となる。
[0025] (8)本発明に係る受信機において、前記補間情報生成部は、補間対象となるサブ キャリアに近いサブキャリアの周波数情報を選択することを特徴とする。
[0026] このように、前記複数の既知信号の相互関係に加え、補間するサブキャリアに近い サブキャリアの周波数情報を選択することにより、伝搬路特性の近いサブキャリアの 周波数情報に基づいて、補間周波数情報を算出することができる。これにより、より歪 みを軽減することができる。
[0027] (9)本発明に係る周波数情報推定方法は、異なる既知信号で変調されたサブキヤ リアを含み、複数の送信アンテナから送信された伝搬路推定用シンボルを受信し、前 記各送信アンテナからの伝搬路の推定に用レ、られる周波数情報推定方法であって、 受信した伝搬路推定用シンボルをフーリエ変換して、サブキャリア毎に第 1の周波数 情報を算出し、前記第 1の周波数情報を、伝搬路推定用シンボルに含まれるサブキ ャリアの変調に使用された既知信号の 1つで除算して、第 2の周波数情報を算出し、 前記第 1の周波数情報または第 2の周波数情報から、サブキャリアが送信されていな い位置の前記送信アンテナからの周波数応答の情報を算出'補間して、第 3の周波 数情報を算出し、前記第 3の周波数情報を逆フーリエ変換することを特徴とする。
[0028] このように、本発明の受信機によれば、複数のアンテナそれぞれから送信された伝 搬路推定用シンボルを受信し伝搬路を推定する場合に、前記既知信号の特性に基 づいて、サブキャリアが送信されていない位置の前記送信アンテナからの周波数応 答の情報を算出 '補間する。伝搬路推定シンボルは、マルチキャリアシンボルに含ま れるシンボルとして受信機で受信される。また、伝搬路推定シンボルは、送信機側に おいて送信アンテナ毎に異なる既知信号で変調されたサブキャリアを含む。送信機 側で変調に用いた既知信号は、受信機でも予め既知となっている。従って、受信機 は、前記既知信号の特性に基づいて、信号帯域のサブキャリアから補間に適切なサ ブキャリアを選択し、選択したサブキャリアの第 1あるいは第 2の周波数情報を用いて 補間周波数情報を算出することができる。これにより、実際送信された周波数帯域よ り広い周波数での周波数応答を用いて時間逆拡散伝搬路推定法により伝搬路を推 定できるため、帯域の端側において生じる歪みを軽減することが可能となる。
[0029] (10)本発明に係る周波数情報推定方法は、所定の符号の各要素間に送信アンテ ナ毎に異なる位相回転量 Θを与えることにより生成される異なる既知信号で変調され たサブキャリアを含み、複数の送信アンテナから送信された伝搬路推定用シンボルを 受信し、前記各送信アンテナからの伝搬路の推定に用いられる周波数情報推定方 法であって、受信した伝搬路推定用シンボルをフーリエ変換して、サブキャリア毎の 第 1の周波数情報を算出し、前記第 1の周波数情報を、伝搬路推定用シンボルに含 まれるサブキャリアの変調に使用された既知信号の 1つで除算して、第 2の周波数情 報を算出し、前記第 2の周波数情報から、前記位相回転量 Θに基づいてサブキヤリ ァが送信されていない位置において合成した周波数応答の情報を算出'補間して、 第 3の周波数情報を生成し、前記第 3の周波数情報を逆フーリエ変換することを特徴 とする。
[0030] このように、前記異なる既知信号が、一つの既知信号を用いて、各サブキャリアに 与える位相回転量 Θを、送信アンテナ毎に異なる値にすることによって、異なる既知 信号とする場合、前記外揷部は、前記送信アンテナ毎に設定された複数の異なる位 相回転量 Θによって生じる、同じサブキャリア番号のサブキャリアに与えられる位相 差の関係に基づいて、一部分の情報を選択するサブキャリアを選択し、選択したサ ブキャリアの第 2の周波数情報を用いて、適切な周波数情報を生成 ·外挿することが できる。これにより、実際送信された周波数帯域より広い周波数での周波数応答を用 レ、て時間逆拡散伝搬路推定法により伝搬路を推定できるため、帯域の端側において 生じる歪みを軽減することが可能となる。
発明の効果
[0031] 本発明によれば、異なるアンテナから送信された伝搬路推定用シンボルを受信し、 時間逆拡散伝搬路推定法で伝搬路を推定する際、複数のアンテナで異なる既知信 号の特性に基づいて補間する周波数情報を推定することによって、雑音等を除去す ることによって生じる周波数応答の算出結果の歪みを抑制することができる。
発明を実施するための最良の形態
[0032] 次に、本発明の実施形態について、図面を参照しながら説明する。各図面におい て同一の構成または機能を有する構成要素および相当部分には、同一の符号を付 し、その説明は省略する。各実施形態では、 MIMO— OFDMシステムを用いて説 明する。しかしながら、本発明は、 MIMO— OFDMシステムに限られることはなく、 複数のアンテナから送信され、アンテナ毎に異なる既知信号 (既知符号)で変調され た伝搬路推定用 OFDMシンボル(パイロットシンボルとも呼び、パイロットシンボル中 、既知のデータが割り当てられたサブキャリアをパイロットサブキャリアと呼ぶ)を受信 する受信機および周波数情報推定方法へ適用することができる。また、説明を簡単 にするために送信機側の送信アンテナは 2本とし、伝搬路推定用 OFDMシンボルは この 2本の送信アンテナ(送信アンテナ 1、送信アンテナ 2)から同時に送信されるもの とする。異なる 2つのアンテナは同一の送信装置にあると仮定している。しかしながら 、その必然性はなぐ異なる送信機 (送信装置)にあるアンテナでも、伝搬路推定用〇 FDMシンボルがほぼ同一のタイミングで送信されるシステムについて本発明を適応 可能である。また、各実施形態では、使用するサブキャリア総数 mは 768、 FFTボイ ント数は 1024として説明する。
[0033] また、以下の説明では、伝搬路推定用 OFDMシンボルにおいては、すべてのサブ キャリアが送受信機間で既知信号により変調されているものとする。ここでの既知信 号は複数の要素 (複素信号であり、簡単のため振幅を 1とする場合が多い)から構成 され、各要素により伝搬路推定用 OFDMシンボル中のサブキャリアが変調される。送 信アンテナ 1からは既知信号 C (ckが Cの構成要素で、 kはサブキャリア数以下の正 の整数であり、サブキャリア番号を示す)で生成された OFDM信号が伝搬路推定用 OFDMシンボルとして送信されているものとする。送信アンテナ 2からは既知信号 D ( dkが Dの構成要素で、 kはサブキャリア数以下の正の整数であり、サブキャリア番号 を示す)で生成された OFDM信号が伝搬路推定用 OFDMシンボルとして送信され ているものとする。既知信号 C、既知信号 Dは、符号 C、符号 Dとそれぞれ記すことも ある。 ck、 dkは、要素 ck、要素 dk、あるいは構成要素 ck、構成要素 dkとそれぞれ記 すことちある。
[0034] 既知信号は、アンテナ毎に異なる符号を用いる。例えば、上記で説明した既知信 号 Cと既知信号 Dとは異なるものとする。また、第 2の実施形態で説明する CI法では、 一つの既知信号 Cに対してアンテナ毎にサブキャリア間で異なる位相差回転を付け ることにより複数の符号を生成するが、このような符号も異なる符号と称している。
[0035] 本明細書では、フーリエ変換は、高速フーリエ変換(FFT: Fast Fourier Transf orm)、離散フーリエ変換(DFT: Direct Fourier Transform)を含み、逆フーリエ 変換は、逆高速フーリエ変換(IFFT: Inverse Fast Fourier Transform)、逆離 散フーリエ変換(IDFT: Inverse Direct Fourier Transf orm)を含む概念である 。以下の説明では、フーリエ変換として高速フーリエ変換、逆フーリエ変換として逆高 速フーリエ変換を用いて説明するが離散フーリエ変換、逆離散フーリエ変換であって も本発明を適用することは可能である。以下では、高速フーリエ変換と逆高速フーリ ェ変換とを用いて説明し、フーリエ変換するポイント数 (フーリエポイント数)は、 FFT ポイント、逆フーリエ変換するポイント数(逆フーリエポイント数)は、 IFFTポイント数と して説明する。また、 FFTポイントあるいは IFFTポイントが示す番号は、サブキャリア 番号と同じものである。
[0036] また、高速フーリエ変換 (逆高速フーリエ変換)処理する帯域を FFT処理帯域 (IFF T処理帯域)、 FFT処理帯域のうち、信号が割り当てられている帯域を信号帯域とす る。 FFT処理帯域力も信号帯域を除いた帯域が、補間 (外揷)の候補となる帯域であ り、補間対象帯域とする。
[0037] さらに、本発明では伝搬路の推定方法として「時間逆拡散伝搬路推定法」を用いる 。この伝搬路推定方法は、伝搬路変動の推定'補償においては、フーリエ変換、逆フ 一リエ変換を用レ、、遅延プロファイル信号が逆フーリエ変換の出力のある程度の範 囲に集中することを利用して、雑音や干渉を除去する方法であり、「時間逆拡散利得 」は、時間逆拡散伝搬路推定法により得られる利得である。ただし、雑音や干渉を除 去する際、信号帯域の端に推定誤差が生じ、特に伝搬路品質のよい場合は、問題と なる。本発明はこの歪みの影響をできるだけ軽減することを課題としており、具体的に は実際に信号が送信されない位置の周波数応答を、伝搬路推定用 OFDM信号を 生成する際に使用される符号に基づいて外揷することで課題を解決するものである。
[0038] 以下第 1の実施形態では、送信に使用される符号間に関係性がない信号で伝搬 路推定用 OFDMシンボルを使用した場合、第 2の実施形態では、 CI法と呼ばれる伝 搬路推定用 OFDMシンボルを使用した場合にっレ、て示す。
[0039] (第 1の実施形態)
第 1の実施形態では、アンテナ毎に異なる値の既知信号で変調した伝搬路推定用 OFDMシンボルを送受信する。第 1の実施形態では、既知信号 Cと既知信号 Dは異 なる値である。本実施形態では、既知信号 Cは構成要素 ck (cl X e 、 c2 X ej e i、 c
3 X ej 8 \ , cm X ei e i) ,既知信号 Dは構成要素 dk (dl X e〗 θ 2、 d2 X e〗 θ d3
X ej e 2、 、 dm X e 2)で表され、 ck、 dkは ± 1、 mはサブキャリア総数、 jは虚数 単位を示すものとする。従って、伝搬路推定用 OFDMシンボルは各サブキャリアを B PSK変調した場合と同様である。
[0040] 図 1は、本発明に係る受信機 100の構成の一例を示すブロック図である。図 1に示 す受信機(マルチキャリア無線受信機) 100は、アンテナ部 101、無線受信部 102、 A/D (AnalogZDigital)変換部 103、 OFDMシンボル同期部 104、 FFT部(フー リエ変換部) 105、伝搬路補償部 112、復号部 113、並びに、伝搬路推定部 201を 備える。伝搬路推定部 201は、ノ ィロット抽出部 106、乗算部 107、パイロット複素共 役信号生成部 108、 IFFT部(逆フーリエ変換部) 109、雑音除去部 110、 FFT部 11 1、並びに、外揷部 120を備える。 [0041] アンテナ部 101において受信された信号は、まず無線受信部 102でアナログ信号 からデジタル信号への A/D変換が可能な周波数帯域まで周波数変換される。 A/ D変換部 103は、周波数変換された信号をデジタル信号に変換する。 OFDMシンポ ル同期部 104は、変換されたデジタル信号について OFDMのシンボル同期を取り、 ガードインターバル(GI: Guard Interval)を除去する。
[0042] その後、 FFT部 105は、 GIを除去したデジタル信号についてフーリエ変換を行な レ、、サブキャリア毎の信号に分離する。
[0043] 次に、サブキャリア毎に分離された信号は、伝搬路補償部 112と伝搬路推定部 20 1とへ入力され、伝搬路推定部 201では、次のような処理を実施する。
[0044] パイロット抽出部 106は、フーリエ変換された伝搬路推定用 OFDMシンボルから、 パイロットサブキャリア信号を抽出する。本実施形態では伝搬路推定用 OFDMシン ボルではすべてのサブキャリアがパイロットサブキャリア信号と仮定しているため、す ベてのサブキャリアの周波数情報が抽出される。抽出された周波数情報は、乗算部 1 07において送信機において使用されたパイロット複素共役信号生成部 108が生成し たパイロットサブキャリア信号の複素共役信号と乗算される。乗算部 107における乗 算により周波数領域における伝搬路変動を伝搬係数の振幅値および位相値として 求めることができる。この振幅値および位相値を周波数情報あるいは周波数応答と 称す。
[0045] なお、本来は周波数情報を求めるためにはパイロットサブキャリア信号に使用する 符号で複素除算を行なう必要があるが、本実施形態、並びに以下に記述する実施形 態では演算量低減のためにパイロットサブキャリア信号に使用する符号の振幅を 1と して、複素除算を複素共役信号の乗算で代用して周波数応答を求めるものとする。 この複素除算により算出された周波数応答は伝搬路の周波数応答に雑音、干渉を 含んだものとなっている。
[0046] また、本明細書では、乗算部 107への入力、すなわち、パイロット抽出部 106が、フ 一リエ変換後の信号力 抽出した信号を第 1の周波数情報とする。また、乗算部 107 からの出力、すなわち、第 1の周波数情報へ複素共役信号を乗算した値を第 2の周 波数情報とする。 [0047] 算出された第 2の周波数情報に対し、外挿部 120は、信号が割り当てられていない 補間候補帯域のサブキャリアの信号を外挿し、周波数応答を補間する。外揷部 120 力 の出力、すなわち第 2の周波数情報に対し外挿処理した情報を第 3の周波数情 報とする。外揷部 120の詳細な動作にっレ、ては後述する。
[0048] 次に、 IFFT部 109は、第 3の周波数情報について逆フーリエ変換を行なレ、、周波 数領域における伝搬路変動を時間領域における伝搬路変動 (インパルス応答、また は遅延プロファイル)に変換する。通常、時間領域における伝搬路変動の信号にお いては、電力が IFFT出力のある程度の範囲に集中するため、雑音除去部 110は、 電力が集中する範囲以外の信号は雑音とみなし、零に置き換える処理を行なう。
[0049] FFT部 111は、雑音除去部 110の出力に対してフーリエ変換を行なレ、、これにより OFDM信号帯域の周波数情報を算出する。これは先に求まった第 2の周波数情報 並びに第 3の周波数情報より、雑音除去部 110で雑音や干渉が除去されるため高精 度な周波数情報となってレ、る。 FFT部 111から出力された周波数情報を補償用の周 波数情報とする。そして、伝搬路補償部 112は、 FFT部 105から出力されるサブキヤ リア毎に分離された信号と、 FFT部 111から出力される補償用の周波数情報とを利 用して伝搬路補償を行なう。このようにして伝搬路補償されたデータは、復号部 113 で復調、誤り訂正などの復号処理が行なわれ、データが得られる。データは上位層 などへ送られる。
[0050] 次に、外揷部 120の処理について説明する。図 1では、外挿部 120は、乗算部 107 と IFFT部 109との間に配置している力 第 1の実施形態の場合に限り、パイロット抽 出部 106と乗算部 107との間に配置することも可能である。また、 2つの送信アンテナ を用いる MIMOシステムを想定しているため、伝搬路推定部 201は 2つのアンテナ それぞれの伝搬路情報を推定することになる。図 1には明記していないが、伝搬路推 定部 201を 2つ(アンテナの数)用意する力、、伝搬路推定部 201内で、アンテナの数 のループをまわすことで、複数のアンテナからの伝搬路を推定する。さらに、伝搬路 補償部 112、復号部 113では MIMO受信に応じた動作をする必要があるが、本発 明には影響しない内容であるので、説明を省略する。
[0051] 図 1に示すように、外揷部 120は、補間情報生成部 121とサブキャリア補間部 122と を備える。補間情報生成部 121は、第 1の周波数情報または第 2の周波数情報のい ずれかから、アンテナ毎に伝搬路推定用 OFDMシンボルを生成する際に使用され た異なる既知信号の組み合わせに基づレ、て一部分の情報を選択し、選択した情報 を用いて信号が割り当てられていない信号帯域の情報を補間する補間周波数情報 を生成する。特に、本実施形態では、同じ位置 (サブキャリア番号)のサブキャリアを 変調した既知信号の組み合わせ力 補間周波数情報のもとになるサブキャリアを選 択し、選択したサブキャリアの第 1の周波数情報または第 2の周波数情報を用いて前 記補間周波数情報を生成する。サブキャリア補間部 122は、補間情報生成部 121が 生成した補間周波数情報を第 2の周波数情報へ補間して第 3の周波数情報を算出 する。具体的には、サブキャリア補間部 122は、補間周波数情報を第 2の周波数情 報へ加算する。
[0052] ここで、本実施形態の外揷部 120の動作の詳細を示す。外揷部 120 (補間情報生 成部 121)への入力波形(第 2の周波数情報)の一例を図 2に示す。図 2において、 横軸は FFTポイントであり、縦軸は電力を示している。伝搬路推定部 201は、 2つの 送信アンテナから送信された伝搬路推定用 OFDM信号を入力する。図 2では、 FFT ポイントの 385力ら 639までは、フィルタリングのために使用されず、また、零は DC ( 直流電位)に相当するため、通常の OFDMシステムでは使用しない場合の入力波 形の一例を示している。従って、図 2では、 FFTポイント力 力 384の 384波と、 640 力 1023までの 384波に相当する位置のサブキャリアを使用するシステムとなって レヽる(FFTポイン卜力 力ら 384の 384波と、 640力ら 1023までの 384波の二つの信 号帯域を設定したシステムとなっているが、実際の伝送を行なう周波数帯域では DC に設定したサブキャリアを中心に上下の周波数にサブキャリアは分布する)。
[0053] 外揷部 120における補間情報生成部 121は、 FFTポイントが 385から 639の使用 されなレ、 FFTポイントとなるガードバンド位置にある補間対象帯域のサブキャリアの 少なくとも一部分の周波数応答を推定して補間周波数情報を生成し、サブキャリア補 間部 122は、推定したサブキャリアの周波数応答 (補間周波数情報)を補間するサブ キャリアへ揷入する機能を有する。本実施形態では、補間情報生成部 121は、 FFT ポイント(サブキャリア番号)が、補間対象帯域の FFTポイント(サブキャリア)のうち、 3 85あるいは 386、 638、 639等の位置に相当する周波数応答を、実際に信号が存在 するサブキャリアから (信号帯域のサブキャリアから)推定する力 一例として、外挿す る(補間する)サブキャリア番号が 385番目のサブキャリアに対し周波数応答を外揷 する場合を説明する。
[0054] 外揷は、アンテナ 1からの周波数応答を算出する際においては、外揷するサブキヤ リア位置におけるアンテナ 1からの周波数応答を外揷することが好ましぐ同様にアン テナ 2からの周波数応答を算出する場合は、外揷するサブキャリア位置におけるアン テナ 2からの周波数応答を外揷することが好ましい。以下の例ではアンテナ 1からの 周波数応答を算出してレ、る場合を示してレ、る。
[0055] まず、送信アンテナ 1からの伝搬路情報を推定する処理を説明する。パイロット複素 共役信号生成部 108では、既知信号 Cの複素共役信号 C* = (cl X e"j
Figure imgf000017_0001
e"j θ 1、 ·■·、 c768 X e_j e i)が生成される。乗算部 107では、サブキャリア毎の第 1の周波 数情報へ複素共役信号 C*を乗算して第 2の周波数情報を算出する。
[0056] 送信アンテナ 1からのサブキャリア kにおける実際の周波数応答を f 、送信アンテ
1 -k
ナ 2からの実際の周波数応答を f とすると、外挿部 120に入力されるデータは ck=
2-k
± 1、 dk= ± lを前提としているので、アンテナ 1からの周波数応答を基準に考えると 、f につく演算がプ
Figure imgf000017_0002
ラスになるかマイナスになるかは、 ckと dkに依存し、 ck X dk= lならばプラス、 ck X d k= 1ならばマイナスになる。ここで、特に θ 1と Θ 2には制限の必要はないので、送 信する際 Θ 1 = Θ 2としておくと、外挿部 120に入力される周波数応答は f +f 、
1-k 2-k あるいは、 f f になる。
1 -k 2-k
[0057] 図 2では FFTポイント 381から 384の信号帯域のサブキャリアについて、 ckと dkとの 関ィ系により、 381、 384番目のサブキャリア力 Sf +f 、 382、 383番目のサブキヤリ
1-k 2-k
ァが f -f となる場合が示されている。算出された各サブキャリアの第 2の周波数
1 -k 2-k
情報は、乗算部 107から補間情報生成部 121へ入力される。補間情報生成部 121 は、信号帯域のどのサブキャリア (FFTポイント)の第 2の周波数情報を利用して 385 番目のサブキャリアを補間する補間周波数情報を生成するかを判断する。
[0058] まず、伝搬路の周波数変動が信号帯域全体であまりない環境 (伝搬路の周波数応 答がほぼ一定の環境)を想定する。この場合、各サブキャリア間の周波数応答の変 動が少ないと考えられるため、信号帯域内でありかつ補間帯域にできるだけ近接す る少数のサブキャリアの周波数応答を用いて、補間するサブキャリアの周波数応答を 推定することが好ましいと考えられる。ここでは 383、 384番目のサブキャリアの周波 数応答を用いる場合について説明する。 383番目のサブキャリアの第 2の周波数情 報である f — f を、 f — f =F383とし、 384番目のサブキャリアの第 2
1 - 383 2- 383 1 - 383 2- 383
の周波数情報である f +f を、 f +f =F384とした場合、補間情報
1 -384 2-384 1— 384 2- 384
生成部 121では、 385番目に外揷する値 f を(F383 + F384) Z2として算出し、
1 -385
補間周波数情報を生成する。ここでは、サブキャリア位置 383から 385では周波数変 動は一定と仮定しているため、これらのサブキャリア位置間でのアンテナ 1からの周波 数応答や、アンテナ 2からの周波数応答をほぼ同一とみなすことが可能となる。そし て (F383 + F384)を演算することで、アンテナ 1からの周波数応答のみを抽出する ことができる。サブキャリア補間部 122では、上記演算で算出した値を補間することに なる。アンテナ 2からの周波数応答を推定する際は、(F383— F384) /2を演算して 同様の処理を行なうことになる。
上記の方法では ck X dk= ± lとなる場合に限定して説明した力 次の例では、そ の限定がない一般的な場合について説明する。補間情報生成部 121では、 2アンテ ナそれぞれ力 の伝搬特性を推測する方法として連立方程式を使用することができ る。例えば送信アンテナ 1からの伝搬特性を Hl、送信アンテナ 2からの伝搬特性を H 2、サブキャリア 1での受信信号を Sl、サブキャリア 2での受信信号を S2、送信アンテ ナ 1からの送信時にサブキャリア 1で使用した符号を C 11、サブキャリア 2で使用した 符号を C12、送信アンテナ 2からの送信時に使用した符号を同様に C21、 C22とす ると、受信信号(SI S2)は、
[数 1]
Figure imgf000018_0001
で表され、連立方程式を解くことで伝搬特性 Hl、 Η2を求める事ができる。この式(1) で表される連立方程式が解を持っためには、
[数 2]
( | rし u cし 21
( 2 )
、 C22ノ の行列が正則である必要がある。つまり式(2)が正則となるサブキャリア 1、サブキヤリ ァ 2を選択する必要がある。
[0060] すなわち、 385番目のサブキャリアのアンテナ 1からの周波数応答を算出するには 、 383、 384番目のサブキャリアの周波数応答を式(1)に代入することで、アンテナ 1 (及び 2)からの周波数応答が算出できる。サブキャリア補間部 122では、ここで算出 した値をサブキャリア 385の周波数応答として同値補間することで、全体の伝搬路推 定精度を向上させることができる。また、周波数変動を考慮すると、さらに 381、 382 番目のサブキャリアから周波数応答を算出し、先に 383、 384番目のサブキャリアか ら算出した値とから、 385番目のサブキャリアの周波数応答を算出する(1次近似など )という方法も考えられる。
[0061] この行列式と送信アンテナ本数の関係は、送信アンテナ数が M本の場合、最低 M
X Mの行列を生成し、その行列が正則となることが必要条件である。本実施形態で は、送信アンテナ本数が 2本であるため、 2 X 2の行歹 1Jを例として示した。
[0062] 伝搬路の周波数変動があまりない環境では、補間情報生成部 121は、実際のパイ ロットサブキャリア位置で算出される各アンテナからの周波数応答と同じ値を用いて( 同値補間で)補間周波数情報を生成する場合を説明したが、ここでは、周波数応答 が変動することを考慮し、信号帯域内の複数のサブキャリアから、補間するサブキヤリ ァの周波数情報を推定する場合を説明する。この方法は実際にパイロットが送信さ れたサブキャリアの周波数応答から外挿帯域の合成 (合成とはアンテナ 1とアンテナ 2 力 の周波数応答を合成したもの意味する)の周波数応答を 1次近似などで複数パ ターン算出し、その後、そのサブキャリア位置の各アンテナからの周波数応答を、複 数のパターンから算出する方法である。具体的には、各サブキャリアの周波数応答の (1、 Q)平面で表す値を用いて補間周波数情報を生成する場合を説明する。図 3は 図 2におけるサブキャリア番号 381から 384の周波数応答を (1、 Q)平面で示した図 であり、図 3 (a)はサブキャリア番号 381、図 3(b)はサブキャリア番号 382、図 3(c)は サブキャリア番号 383、図 3(d)はサブキャリア番号 384である。図 3では、それぞれ の I— Q平面での値を (X、 Y ) (kは、サブキャリア番号)とする。例えば、補間情報生 k k
成部 121は、 385番目の周波数応答の推定するために(385番目のサブキャリアの 補間周波数情報を生成するために)、次の手順を実施する。
(11) ckX dk= 1となるサブキャリア群力、ら c385 X d385 = lとなる場合のサブキヤリ ァ 385周波数応答 (X 、Y )の推定。
385-1 385-1
(12) ckX dk= _ 1となるサブキャリア群から c385 X d385=- 1となる場合のサブ キャリア 385周波数応答 (X 、Y )の推定。
385-2 385-2
(13)上記(11)および(12)力 385番目のサブキャリアの周波数応答 (X 、 Υ
385 385
)を算出。
[0063] 補間位置の合成の周波数応答の推定に使用するサブキャリア群を 2本とすると、 (1 1)にはサブキャリア 381、 384が使用される。推定方法として位相平面状の線形補 間を用いる場合を一例として説明すると、補間情報生成部 121は次のような演算結 果を取得する。
(11)の結果、 (X 、Υ )は、サブキャリア 381の周波数応答 (X 、Υ )と
385-1 385-1 381 381 サブキャリア 381の周波数応答 (X 、Υ )を用いて 1次近似で推定されるので、((
384 384
4ΧΧ -X )/3、 (4ΧΥ — Υ )/3)となる。
384 381 384 381
同様に(12)から計算すると、(X 、Υ )は、((3ΧΧ —X )、(3ΧΥ
385-2 385-2 383 382 383 Υ ))となる。
382
(13)として、 385番目の周波数応答として外揷する値は、((X +Χ )Ζ2、
385-1 385-2
(Υ +Υ すなわち、 ((4ΧΧ +9ΧΧ -6ΧΧ —X )、(4ΧΥ
385-1 385-2 384 383 382 381 3
+ 9ΧΥ -6ΧΥ — Υ ))となる。
84 383 382 381
[0064] このように、本実施形態によれば、複数のアンテナそれぞれにおいて、各サブキヤリ ァを異なる既知信号で変調して伝送された伝送用シンボルを受信する場合、同じサ ブキャリア番号のサブキャリアを変調した既知信号の組み合わせに基づいて補間す るサブキャリアの周波数情報を選択することによって、複数のアンテナから受信した 搬送波の特性に応じて選択したサブキャリアの周波数情報を用いて、補間する周波 数情報を算出することができる。これにより、時間逆拡散伝搬路推定法において生じ る歪みを軽減することが可能となる。
[0065] なお、本実施形態ではアンテナが 2本の場合のみを扱っているが、同様の方法で 3 本以上に拡張する事が可能である。
[0066] また、上記では、送信アンテナ 1について説明したが、送信アンテナ 2から送信され たマルチキャリアシンボルの周波数応答を算出する際は、パイロット複素共役生成部 108が符号を Dkの複素共役信号を生成し、外揷部 120で同様の方法で外揷するこ とで、送信アンテナ 2からの周波数応答を算出することができる。
[0067] さらに、本実施形態では、同値補間と一次線形補間の二つの推定方法の一例を説 明したが、上記の説明に限るものではなぐさまざまな推定方法が考えられ、これらを 適用することも可能である。
[0068] (第 2の実施形態)
第 2の実施形態では、送信側で CI法を用いて伝搬路推定用 OFDMシンボルを生 成する場合について説明する。受信機 100の構成は図 1と同様である。 CI法では、 伝搬路推定用シンボルを例えば符号 Cで生成し、さらにサブキャリア間に一定の位 相回転を与えて生成する力 この位相回転量をアンテナ間で異なる値にすることで、 受信機での識別'伝搬路推定を可能とする方法である。ここでは、この位相回転量も 符号の一部とみなし、各送信アンテナで異なる符号で伝搬路推定用 OFDM信号が 生成されるとみなしている。
[0069] 従って、 CI法を用いる場合、各アンテナで用いる伝搬路推定用 OFDMシンボルを 生成するための既知信号は、第 1の実施形態における既知信号 C、既知信号 Dが特 定の関係を持つ場合を指している。特定の関係とは既知信号 Dが既知信号 Cから生 成される符号であり、既知信号 Cをサブキャリアに割り当てる際、さらに連続するサブ キャリア間で一定の位相回転を与えることにより生成される符号である場合を指して いる。本実施形態ではその位相回転量を πとして、 ckと dkは、
[数 3] dk = ck x eJ 7r x(k mod 2 ( 3 ) の関係にあるものとする。 (ただし、 j Xj =— l)すなわち、アンテナ 1で用いる既知信 号は符号 Cに対しサブキャリア間で 0の位相回転を与えたもの、アンテナ 2で用いる 既知信号は符号 Cに対してサブキャリア間で πの位相回転量を与えたものとなる。
[0070] ここで、 CI法を用レ、た伝搬路推定技術について説明する。以下では説明を簡単に するために、送信アンテナは 2本 (送信アンテナ 1、送信アンテナ 2)とする。また、伝 搬路推定用 OFDMシンボルではすベてのサブキャリアが伝搬路推定のためパイロッ トサブキャリアとして使用され、送受信機間で既知であるとする。
[0071] 送信アンテナ 1からは、伝搬路推定用 OFDMシンボルとして、送受信機間で既知 信号 Cの構成要素 ck (kはサブキャリア数内の正の整数)をすベてのサブキャリアに 割り当て、伝搬路推定用 OFDMシンボルを生成し送信する。
[0072] 送信アンテナ 2からは、同様に伝搬路推定用 OFDMシンボルとして、送受信機間 で既知信号 Dの構成要素 dkをすベてのサブキャリアに割り当て、伝搬路推定用〇F DMシンボルを生成し送信する。ただし、 ckと dkは上記の式(3)に示すような関係が あり、 dkは ckの信号を特定の規則に従って変換することによって、生成される符号と なっている。
[0073] 次に、 CI法により生成された伝搬路推定用 OFDMシンボルを受信し、伝搬路推定 部 201が伝搬路を推定する場合の概略動作について示す。
[0074] 図 4に受信機 100の IFFT部 109の出力の波形の一例を示す。送信アンテナ 1から 受信アンテナへの伝搬路におけるパス総数が 3 (それぞれの遅延力 Stl、 t2、 t3)、送 信アンテナ 2から受信アンテナの伝搬路にマルチパス総数が 4 (それぞれの遅延が t 1、 t2、 t3、 t4)の場合の IFFT部 109の波形を示しており、ただし、 tlから t4は、 IFF Tの時間解像度の整数倍としている。図 4においては、横軸が IFFTのポイント(遅延 プロファイルの時間に相当する)、縦軸が電力を示している。図 4 (a)は、ノ ィロット複 素共役信号生成部 108で生成される信号を ckの複素共役信号とした場合であり、図 4 (b)は、この信号を dkの複素共役信号とした場合を示しており、図 4 (a)とはパルス の発生位置が入れ替わる。 [0075] IFFTポイントの総数が Nの場合、送信アンテナ 1からのパスと送信アンテナ 2からの パスの差が N/2ポイント離れた位置に観測されることになる。これは、 dkを ckに対し 隣接サブキャリア間の位相回転量を πと設定したためである(式(3)参照)。従って、 送信アンテナ 1からの伝搬路を算出する場合は、雑音除去部 110において、送信ァ ンテナ 2からの信号電力に相当するパルスを除去し、 FFT部 111で周波数変換する ことで、送信アンテナ 1からの周波数応答を算出することが可能となる。同様に送信ァ ンテナ 2からの伝搬路を算出する場合は、雑音除去部 110において、送信アンテナ 1 力 の信号電力に相当するパルスを除去し、 FFT部 111で周波数変換することで、 送信アンテナ 2からの周波数応答を算出することが可能となる。
[0076] ここで示した位相回転量を変化させることにより、送信アンテナが 3本以上でも同様 に処理できる。例えば、 4本のアンテナを使用する場合は、構成要素 ckに対するサブ キャリア間の位相回転量を 0、 π /2、 π、 3 π Ζ2とすることで、 4種類のインパノレス 応答を算出することが可能となる。ただし、各マルチパスによる遅延波力 他のインパ ノレス群に重ならないような範囲で設計する必要がある。
[0077] 次に、本実施形態の外挿部 120の動作の詳細について説明する。本実施形態で は、補間情報生成部 121は、既知信号に与えられた位相差に基づいて選択したサ ブキャリアの第 2の周波数情報を用いて補間周波数情報を生成する。図 5は、本実施 形態における外揷部 120に入力される波形(第 2の周波数情報)の一例である。図 2 との違いは、第 1の実施形態では、符号に関連性がないため、 f +f になるサブ
1 -k 2-k キャリアと f -f になるサブキャリアが符号の組み合わせ(ckと dkとの組み合わせ
1 -k 2-k
)で決まっていたが、本実施形態では、 ckと dkとは式(3)で示したような関係にあるた め、 f +f と f -f 力 Siサブキャリアおきに繰り返されることである。
1 -k 2-k 1 -k 2-k
[0078] 従って、外揷部 120において外揷するガードバンド位置のサブキャリアの周波数応 答の推定を行なう際、サブキャリア番号が偶数の場合は、実際受信した偶数のサブ キャリアから推定を行なレ、、奇数の場合は奇数のサブキャリアから推定を行なうことに なる。以下に、外揷部 120でサブキャリア 2本(385、 386番目のサブキャリア)を外揷 する場合の一例を示す。
[0079] ある程度の周波数帯域で伝搬路の周波数変動が殆どない場合 (補間するサブキヤ リアの近傍のサブキャリアにおいて、伝搬路変動が少ない場合)、補間情報生成部 1 21 ίま、 385番目のサブキャリアに ίま 383の値を、 386番目に ίま 384番目のィ直を同ィ直 で補間すれば良い。第 1の実施形態では、アンテナ毎に外挿処理を行ない、送信ァ ンテナ 1からの周波数応答を算出する際は、送信アンテナ 1の周波数応答を外挿す る方法を取っている力 本実施形態ではその必要はなぐすべてのアンテナからの合 成の周波数応答を外揷している。その理由について簡単に説明する。
[0080] 外揷の目的は、サブキャリア数と FFTポイント数が異なる場合、時間逆拡散伝搬路 推定法において、時間応答を求める際の信号電力の広がりによる周波数応答の歪 みを防ぐことである。第 1の実施形態において、第 2の実施形態と同様の推定を行な つた場合、外揷することによる歪みの軽減と、干渉成分の増加による精度の劣化によ る歪みの増加のトレードオフの関係になる。従って、干渉成分の増加がないように送 信アンテナ 1からの周波数応答を求める際は送信アンテナ 1との周波数応答のみの 推定値を外挿していた。
[0081] 一方、本実施形態では dkは ckから式(3)に従って生成された符号であるため、 IF FT部の出力で信号を分離することができる。さらに本実施形態に示すような外揷を 行なうと、周波数応答を算出しているアンテナからの信号成分も、干渉となるアンテナ 力 の信号成分も時間応答における広がりが軽減に寄与するため、干渉成分の増加 はほとんどない。よって、本実施形態では、上記のような外挿手段が使用される。
[0082] 次に、周波数帯域で伝搬路の周波数変動が緩やかな場合について示す。この場 合、信号帯域内の複数のサブキャリアから線形補間等の手段で補間するサブキヤリ ァの周波数応答を推定することで、精度を上げることができる。本実施形態では、実 際に受信した 2つのサブキャリアから線形に補間する方法を示す。奇数番目のサブ キャリアに対し外揷を行なう場合は、受信した奇数番目のサブキャリアから、偶数番 目のサブキャリアに対し外揷を行なう場合は、受信した偶数番目のサブキャリアから 推定して、外揷することになる。
[0083] 図 6は、補間するサブキャリアの選択の一例を説明する図である。図 6中、 HP は、
Q
アンテナ Pから送信された既知信号について、 Q番目のサブキャリア(FFTポイント) についての周波数応答を示している。 R は、 Q番目のサブキャリアの受信信号であり 、本図においては、信号帯域 (k— 5から kまでのサブキャリア)については、実際に受 信される信号であり、信号帯域外 (k+ 1以降のサブキャリア)では、外挿部 120にお いて外挿される信号である。サブキャリア kは、信号帯域端となっている。外挿を行な う際サブキャリアの番号 k+ 1へは、 k_ lと k_ 3との周波数応答を用いて算出した情 報を、 k+ 2へは、 kと k— 2との周波数応答を用いて算出した情報を補間し、以下 k + 3以降についても同様に補間することを示している。補間する位置と補間するための 情報を生成するサブキャリア位置の関係は、詳しくは後述するが使用するアンテナ本 数と CI法を用いる伝搬路推定用 OFDMシンボルを生成する際の位相回転量で一意 に定めること力 Sできる。図 6に示すように、アンテナ 2本、位相回転量が πの場合、送 信アンテナ 2からの信号は、一サブキャリアおきに反転することになる。従って、補間 情報生成部 121は、一つおきのサブキャリアの周波数応答を用いて補間周波数情 報を生成することになる。また、外揷するサブキャリア位置における合成の周波数応 答を算出することについては、同値補間で示した場合と同じである。
[0084] ここでは例として 1次の線形補間を示す。具体的に、 385番目のサブキャリア位置と 、 386番目のサブキャリア位置に外挿する方法を示す。図 7は、図 5におけるサブキヤ リア番号 381から 384の周波数応答を(1、 Q)平面で示したものであり、図 7 (a)はサ ブキャリア番号 381、図 7 (b)はサブキャリア番号 382、図 7 (c)はサブキャリア番号 38 3、図 7 (d)はサブキャリア番号 384である。図 7では、それぞれの I— Q平面での値を (X、 Y )とする。例えば、補間情報生成部 121は、 385番目の周波数応答の推定す k k
るために、次の手順を実施する。
(21) 381、 383番目のサブキャリア群力ら 385番目を推定。
(22) 382、 384番目のサブキャリア群力 386番目を推定。
[0085] 第 1の実施形態と比べると 3番目のステップがないが、先に示したように、外揷する 位置の各アンテナからの伝搬路を推定しなくても、 IFFT後でインパルスが分離され るため、 2番目までのステップで帯域内の伝搬路推定特性を改善することが可能とな る (合成した周波数応答を算出するだけでょレ、)。
[0086] このようにすると、上記(21)から、(X 、Y )は、(Χ 、Υ )と (X 、Υ )を用
385 385 381 381 383 383 いて、 ((2 Χ Χ —X )、 (2 Χ Υ — Υ ) )となる。 同様に上記(22)から(X 、Y )は、 ((2 Χ Χ -X )、 (2 Χ Υ —Υ ) )とな
386 386 384 382 384 382 る。
[0087] 本実施形態においては、推定方法として同値補間と一次線形補間との 2つを述べ たが、これに限るものではなぐさまざまな推定方法を使用することができる。重要なこ とは外揷する周波数応答を算出する際、 CI法による回転位相と送信アンテナ数に基 づレ、て、推定するために使用するサブキャリアを決定することである。
[0088] 他の推定方法としては、位相のみを追従する方法がある。これは、 385番目以降の 奇数のサブキャリアを補間する際は、振幅は 383番目と同一にし、 381番目の位相と 383番目の位相の差を 383番目と 385番目の位相差と同じにし、以下、同様の処理 を行なう方法である。
[0089] また、補間する本数は伝搬路の遅延分散が小さい場合は多ぐ大きい場合は少なく するとよい特性が得られる。
[0090] さらに、本実施形態 2で示したように 1つの符号を基準とし、位相回転を与えることに より他の符号を生成し伝搬路推定用 OFDM信号の既知信号を生成する場合につい て、補間する周波数情報のもとになるサブキャリアをどのように選択するかを一般化 すると以下のようになる。各アンテナの位相回転量 Θが Θ gの整数倍で表すことがで きる場合、外揷を行なうために使用するサブキャリア群は以下のように決定することが できる。まず、 m X I θ I = 2η π (m、nは自然数、 | θ | は、 Θの絶対値)を満た
g
す最小の mを LCM (LCM— Aは自然数)とする。外挿を行なう位置のサブキャリア番 号を kとした場合、 kから LCM— Aの倍数離れた位置の受信したサブキャリアを、外 挿を行なうために使用するサブキャリアとすればよい。すなわち、補間情報生成部 12 1は、補間対象となるサブキャリア kを起点として LCM_Aの倍数離れて配置される サブキャリア k土 LCM_A、 k± 2LCM_A 、の中力も周波数情報を選択し、 サブキャリア kの周波数応答を推定する。
[0091] さらに位相回転量を一般化するためには、各アンテナ間で与えられる位相回転量 の差 Θ が必要となる。従って、使用するアンテナ数を Mとすると M X (M-D/2 diff
種類の位相回転量差を使用する必要がある。
[0092] すべての位相回転量差 Θ について、 m X I θ I = 2η π (a、 diffは M X (M l) /2以下のすべての整数)を満たす最小の mを算出する。そして、すべて mの a a 最小公倍数を LCM— Bとすると、 LCM— Bが波形の繰り返しを意味することになる。 すなわち、補間情報生成部 121は、補間対象となるサブキャリア kを起点として LCM
_Bの倍数離れて配置されるサブキャリア k土 LCM_B、 k± 2LCM_B 、の 中から周波数情報を選択し、サブキャリア kの周波数応答を推定する。ただし、周波 数応答の変動を考えると、できるだけ外揷を行なうサブキャリアに近いサブキャリアを 使用するほうがよい。
[0093] 以上のように外揷を行なうことで、 CI法で送信された伝搬路推定用 OFDMシンポ ルを用いて精度のよい伝搬路推定を行なうことが可能となる。
[0094] 上記各実施形態では、第 1の実施形態では外揷する本数の例として 1本、第 2の実 施形態では外揷する本数として 2本の例を示したが、この数に特に意味はなぐシス テムが使用される伝搬路環境に依存する。また、伝搬路推定用 OFDMシンボルとし てすベてのサブキャリアがパイロットキャリアとして使用される場合を示した力 一定間 隔おきに挿入される場合にも外揷補間を行なう際、その間隔を考慮するのみであり、 同様に精度の高い伝搬路推定が可能となる。
図面の簡単な説明
[0095] [図 1]本発明に係るマルチキャリア無線受信機の構成の一例を示すブロック図である
[図 2]第 1の実施形態の外揷部への入力波形の一例を示す図である。
[図 3]図 2におけるサブキャリア番号 381から 384の周波数応答を (1、 Q)平面で示し た図である。
[図 4]受信機の IFFT部の出力の波形の一例を示す図である。
[図 5]第 2の実施形態の外揷部への入力波形の一例を示す図である。
[図 6]補間するサブキャリアの選択を説明する図である。
[図 7]図 5におけるサブキャリア番号 381から 384の周波数応答を (1、 Q)平面で示し た図である。
符号の説明
[0096] 100 受信機 101 アンテナ部
102 無線受信部
103 A/D変換部
104 OFDMシンボル同期部
105、 111 FFT部
106 パイロット抽出部
107 乗算部
108 パイロット複素共役信号生成部
109 IFFT部
110 雑音除去部
112 伝搬路補償部
113 復号部
120 外挿部
121 補間情報生成部
122 サブキャリア補間部
201 伝搬路推定部

Claims

請求の範囲
[1] 異なる既知信号で変調されたサブキャリアを含み、複数の送信アンテナから送信さ れた伝搬路推定用シンボルを受信し、前記各送信アンテナからの伝搬路を推定する 受信機であって、
受信した伝搬路推定用シンボルをフーリエ変換して、サブキャリア毎に第 1の周波 数情報を算出するフーリヱ変換部と、
伝搬路推定用シンボルに含まれるサブキャリアの変調に使用された既知信号を生 成する信号生成部と、
前記第 1の周波数情報を前記既知信号の 1つで除算し第 2の周波数情報を算出す る除算部と、
前記第 1の周波数情報または第 2の周波数情報から、サブキャリアが送信されてい ない位置の前記送信アンテナからの周波数応答の情報を算出 ·補間し、第 3の周波 数情報を算出する外挿部と、
前記第 3の周波数情報を逆フーリエ変換する逆フーリエ変換部と、を備えることを特 徴とする受信機。
[2] 前記外揷部は、前記複数のアンテナから送信された伝搬路推定用シンボルの同じ 位置のサブキャリアを変調した既知信号の組み合わせに基づいてサブキャリアを選 択し、選択したサブキャリアの周波数情報を用いて補間する周波数情報を生成する 補間情報生成部を有することを特徴とする請求項 1記載の受信機。
[3] 前記補間情報生成部は、前記複数のアンテナ毎に異なる既知信号によって生成さ れる行列が正則となるサブキャリアを選択することを特徴とする請求項 2記載の受信 機。
[4] 所定の符号の各要素間に送信アンテナ毎に異なる位相回転量 Θを与えることによ り生成される異なる既知信号で変調されたサブキャリアを含み、複数の送信アンテナ 力 送信された伝搬路推定用シンボルを受信し、前記各送信アンテナからの伝搬路 を推定する受信機であって、
受信した伝搬路推定用シンボルをフーリエ変換して、サブキャリア毎の第 1の周波 数情報を算出するフーリエ変換部と、 伝搬路推定用シンボルに含まれるサブキャリアの変調に使用された既知信号を生 成する信号生成部と、
前記第 1の周波数情報を前記既知信号の 1つで除算し第 2の周波数情報を算出す る除算部と、
前記第 2の周波数情報から、前記位相回転量 Θに基づいてサブキャリアが送信さ れていない位置において合成した周波数応答の情報を算出'補間し、第 3の周波数 情報を生成する外揷部と、
前記第 3の周波数情報を逆フーリエ変換する逆フーリエ変換部と、を備えることを特 徴とする受信機。
[5] 前記外揷部は、すべての異なる 2つの Θに関して差 Θ を算出し、 Θ に基づい
diff diff
てサブキャリアを選択し、選択したサブキャリアの周波数情報を用レ、て補間する周波 数情報を生成する補間情報生成部を有することを特徴とする請求項 4記載の受信機
[6] 前記補間情報生成部は、前記位相回転量差 Θ 毎に m X θ
diff I diff I = 2η π (m, η は自然数、 I θ I は、 Θの絶対値)を満たす最小の mを算出し、算出される mの最小 公倍数を LCM— B (LCM— Bは整数)とした場合、補間対象となるサブキャリアを起 点として前記最小公倍数 LCM—Bの倍数離れて配置されるサブキャリアの中から周 波数情報を選択することを特徴とする請求項 5記載の受信機。
[7] 前記外挿部は、前記位相回転量 Θがすべて Θ gの整数倍である場合、 m X I Θ g
I = 2η π (m、 nは自然数、 | θ | は、 Θの絶対値)を満たす最小の mを LCM_A(
LCM— Aは整数)として算出し、補間対象となるサブキャリアを起点として前記最小 公倍数 LCM_Aの倍数離れて配置されるサブキャリアの中から周波数情報を選択 することを特徴とする請求項 4記載の受信機。
[8] 前記補間情報生成部は、補間対象となるサブキャリアに近いサブキャリアの周波数 情報を選択することを特徴とする請求項 1または請求項 4記載の受信機。
[9] 異なる既知信号で変調されたサブキャリアを含み、複数の送信アンテナから送信さ れた伝搬路推定用シンボルを受信し、前記各送信アンテナからの伝搬路の推定に 用いられる周波数情報推定方法であって、 受信した伝搬路推定用シンボルをフーリエ変換して、サブキャリア毎に第 1の周波 数情報を算出し、
前記第 1の周波数情報を、伝搬路推定用シンボルに含まれるサブキャリアの変調に 使用された既知信号の 1つで除算して、第 2の周波数情報を算出し、
前記第 1の周波数情報または第 2の周波数情報から、サブキャリアが送信されてい ない位置の前記送信アンテナからの周波数応答の情報を算出'補間して、第 3の周 波数情報を算出し、
前記第 3の周波数情報を逆フーリエ変換することを特徴とする周波数情報推定方 法。
所定の符号の各要素間に送信アンテナ毎に異なる位相回転量 Θを与えることによ り生成される異なる既知信号で変調されたサブキャリアを含み、複数の送信アンテナ 力 送信された伝搬路推定用シンボルを受信し、前記各送信アンテナからの伝搬路 の推定に用いられる周波数情報推定方法であって、
受信した伝搬路推定用シンボルをフーリエ変換して、サブキャリア毎の第 1の周波 数情報を算出し、
前記第 1の周波数情報を、伝搬路推定用シンボルに含まれるサブキャリアの変調に 使用された既知信号の 1つで除算して、第 2の周波数情報を算出し、
前記第 2の周波数情報から、前記位相回転量 Θに基づいてサブキャリアが送信さ れていない位置において合成した周波数応答の情報を算出 ·補間して、第 3の周波 数情報を生成し、
前記第 3の周波数情報を逆フーリエ変換することを特徴とする周波数情報推定方 法。
PCT/JP2007/061581 2006-06-07 2007-06-07 受信機および周波数情報推定方法 WO2007142313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/302,794 US8000224B2 (en) 2006-06-07 2007-06-07 Receiver and frequency information estimating method
EP07744907A EP2028777A1 (en) 2006-06-07 2007-06-07 Receiver and frequency information estimation method
JP2008520628A JP5042219B2 (ja) 2006-06-07 2007-06-07 受信機および周波数情報推定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006158789 2006-06-07
JP2006-158789 2006-06-07

Publications (1)

Publication Number Publication Date
WO2007142313A1 true WO2007142313A1 (ja) 2007-12-13

Family

ID=38801559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061581 WO2007142313A1 (ja) 2006-06-07 2007-06-07 受信機および周波数情報推定方法

Country Status (5)

Country Link
US (1) US8000224B2 (ja)
EP (1) EP2028777A1 (ja)
JP (1) JP5042219B2 (ja)
CN (1) CN101467372A (ja)
WO (1) WO2007142313A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126550A1 (ja) * 2007-03-13 2008-10-23 Sharp Kabushiki Kaisha スケジューリング方法、無線送信機および無線受信機
JP2009239756A (ja) * 2008-03-27 2009-10-15 Kyocera Corp 割り当て装置、無線基地局および割り当て方法
JP2010081401A (ja) * 2008-09-26 2010-04-08 Ntt Docomo Inc 受信装置及び受信方法
JP2011077942A (ja) * 2009-09-30 2011-04-14 Fujitsu Ltd 受信装置、通信システムおよびチャネル推定方法
US20110286436A1 (en) * 2009-01-26 2011-11-24 Sharp Kabushiki Kaisha Radio communication system, base station apparatus, mobile station apparatus, and radio communication method
JP4918597B2 (ja) * 2007-12-26 2012-04-18 京セラ株式会社 無線通信装置
US8422960B2 (en) 2007-11-29 2013-04-16 Kyocera Corporation Wireless communication apparatus and wireless communication method
US8527008B2 (en) 2007-09-25 2013-09-03 Kyocera Corporation Wireless communication apparatus and wireless communication method
JP2014112920A (ja) * 2014-01-31 2014-06-19 Sumitomo Electric Ind Ltd 通信装置
US9014149B2 (en) 2010-01-22 2015-04-21 Sumitomo Electric Industries, Ltd. Communication apparatus and base station apparatus
US9225557B2 (en) 2010-03-30 2015-12-29 Sharp Kabushiki Kaisha Radio communication system and receiving apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944106B2 (ja) * 2006-05-25 2012-05-30 シャープ株式会社 受信機および伝搬路推定方法
KR100973013B1 (ko) * 2008-12-22 2010-07-30 삼성전기주식회사 Ofdm 시스템의 샘플링 주파수 옵셋 추정 장치 및 그 방법
WO2013043201A1 (en) * 2011-09-23 2013-03-28 Hewlett-Packard Development Company, L.P. Extrapolating channel state information ("csi") estimates from multiple packets sent over different frequency channels to generate a combined csi estimate for a mimo-ofdm system
US9537684B2 (en) 2012-03-30 2017-01-03 Broadcom Corporation Adaptive transmit beamforming for frequency division duplexing systems
US10756831B2 (en) * 2017-07-31 2020-08-25 Massachusetts Institute Of Technology Characterizing transmit channels from an antenna array to a transceiver
MY185466A (en) * 2018-02-27 2021-05-19 Mitsubishi Electric Corp Wireless transmitter, wireless receiver, wireless communication system, control circuit, and storage medium
CN115604065B (zh) * 2022-09-29 2024-05-17 哈尔滨工业大学 一种基于带限信号外推的无保护间隔ofdm信号传输方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344899B2 (ja) 1983-02-28 1991-07-09 Ai Enu Tei Kk
JP2003110528A (ja) * 2001-09-28 2003-04-11 Toshiba Corp Ofdm用周波数特性検出器、ofdm用周波数特性補償器及びofdm用中継装置
JP2003218827A (ja) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp 受信装置および伝送路推定方法
JP2004266814A (ja) * 2003-02-10 2004-09-24 Mitsubishi Electric Corp 通信装置
JP2005130485A (ja) 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Ofdm信号受信装置及びofdm信号受信方法
JP2005151377A (ja) * 2003-11-19 2005-06-09 Japan Science & Technology Agency Ofdm通信方式における伝送路特性推定方法及び装置
WO2005081481A1 (en) * 2004-02-19 2005-09-01 Ntt Docomo, Inc. Channel estimator and method for estimating a channel transfer function and apparatus and method for providing pilot sequences

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671923B1 (fr) 1991-01-17 1993-04-16 France Etat Dispositif de demodulation coherente de donnees numeriques entrelacees en temps et en frequence, a estimation de la reponse frequentielle du canal de transmission et seuillage, et emetteur correspondant.
US6654429B1 (en) * 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
KR100510434B1 (ko) * 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
US7099270B2 (en) * 2002-06-06 2006-08-29 Texas Instruments Incorporated Multi-path equalization for orthogonal frequency division multiplexing communication system
EP1521413A3 (en) 2003-10-01 2009-09-30 Panasonic Corporation Multicarrier reception with channel estimation and equalisation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344899B2 (ja) 1983-02-28 1991-07-09 Ai Enu Tei Kk
JP2003110528A (ja) * 2001-09-28 2003-04-11 Toshiba Corp Ofdm用周波数特性検出器、ofdm用周波数特性補償器及びofdm用中継装置
JP2003218827A (ja) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp 受信装置および伝送路推定方法
JP2004266814A (ja) * 2003-02-10 2004-09-24 Mitsubishi Electric Corp 通信装置
JP2005130485A (ja) 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Ofdm信号受信装置及びofdm信号受信方法
JP2005151377A (ja) * 2003-11-19 2005-06-09 Japan Science & Technology Agency Ofdm通信方式における伝送路特性推定方法及び装置
WO2005081481A1 (en) * 2004-02-19 2005-09-01 Ntt Docomo, Inc. Channel estimator and method for estimating a channel transfer function and apparatus and method for providing pilot sequences

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUNARI YOKOMAKURA ET AL.: "A Study on Channel Technique using Carrier Interferometry for MIMO-OFDM Systems", IEICE TECHNICAL REPORT, vol. 105, no. 240, 18 August 2005 (2005-08-18), pages 91 - 96, XP003020146 *
KAZUNARI YOKOMAKURA ET AL.: "Investigation about a propagation path estimation system using carrier interferometry in a MIMO-OFDM system", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, TECHNICAL REPORT RCS2005-79, August 2005 (2005-08-01), pages 91 - 96

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126550A1 (ja) * 2007-03-13 2008-10-23 Sharp Kabushiki Kaisha スケジューリング方法、無線送信機および無線受信機
US8527008B2 (en) 2007-09-25 2013-09-03 Kyocera Corporation Wireless communication apparatus and wireless communication method
US8422960B2 (en) 2007-11-29 2013-04-16 Kyocera Corporation Wireless communication apparatus and wireless communication method
JP4918597B2 (ja) * 2007-12-26 2012-04-18 京セラ株式会社 無線通信装置
JP2009239756A (ja) * 2008-03-27 2009-10-15 Kyocera Corp 割り当て装置、無線基地局および割り当て方法
JP2010081401A (ja) * 2008-09-26 2010-04-08 Ntt Docomo Inc 受信装置及び受信方法
US9125194B2 (en) 2009-01-26 2015-09-01 Sharp Kabushiki Kaisha Radio communication system, base station apparatus, mobile station apparatus, and radio communication method
US20110286436A1 (en) * 2009-01-26 2011-11-24 Sharp Kabushiki Kaisha Radio communication system, base station apparatus, mobile station apparatus, and radio communication method
US8498259B2 (en) * 2009-01-26 2013-07-30 Sharp Kabushiki Kaisha Radio communication system, base station apparatus, mobile station apparatus, and radio communication method
JP2011077942A (ja) * 2009-09-30 2011-04-14 Fujitsu Ltd 受信装置、通信システムおよびチャネル推定方法
US9014149B2 (en) 2010-01-22 2015-04-21 Sumitomo Electric Industries, Ltd. Communication apparatus and base station apparatus
US9225557B2 (en) 2010-03-30 2015-12-29 Sharp Kabushiki Kaisha Radio communication system and receiving apparatus
JP2014112920A (ja) * 2014-01-31 2014-06-19 Sumitomo Electric Ind Ltd 通信装置

Also Published As

Publication number Publication date
JP5042219B2 (ja) 2012-10-03
JPWO2007142313A1 (ja) 2009-10-29
US20090196166A1 (en) 2009-08-06
US8000224B2 (en) 2011-08-16
EP2028777A1 (en) 2009-02-25
CN101467372A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
WO2007142313A1 (ja) 受信機および周波数情報推定方法
US10075272B2 (en) Transmission signal generation apparatus, transmission signal generation method, reception signal apparatus, and reception signal method
JP4413232B2 (ja) チャネル転送機能を評価するチャネル評価器及び方法、並びに、パイロットシーケンスを供給する装置及び方法
RU2454808C2 (ru) Схема модуляции на нескольких несущих, а также передающее устройство и приемное устройство, использующие указанную схему
CN1838656B (zh) 上行链路载波频率同步和天线加权向量估计的装置和方法
CN102342072B (zh) 补偿正交频分复用无线无线电传送系统中载频偏移的方法和设备
JP4087812B2 (ja) 多重アンテナを用いる直交周波分割多重システムにおけるチャネルの推定装置及び方法
US20050195734A1 (en) Transmission signals, methods and apparatus
JP5084092B2 (ja) パイロットを分散させ該パイロットに影響を及ぼす干渉を抑えるように設計されたマルチキャリア信号
US20080279292A1 (en) Wireless communication apparatus and method
EP3342084B1 (en) Apparatus and method for generating and using a pilot signal
CN101507221B (zh) 一种用于消除载波间干扰的传输方法和装置
JP5324562B2 (ja) 受信装置、集積回路、デジタルテレビ受像機、受信方法、及び受信プログラム
WO2006029313A1 (en) Method and apparatus for improved efficiency in an extended multiple antenna communication system
JP2006500864A (ja) 送信信号、方法および装置
JP2003304215A (ja) Ofdm通信装置およびofdm通信方法
JP4388077B2 (ja) 有効なチャネルの評価のための装置および方法ならびにパイロットシーケンスを提供するための装置および方法
CN106470180B (zh) 基于滤波器组多载波调制的信号发送方法、接收方法和装置
JP5645613B2 (ja) 無線通信システム、送信機および受信機
KR100943179B1 (ko) Ofdm/oqam 통신을 위한 데이터 송수신 방법 및파일럿 구성 방법
JP2009049792A (ja) 受信機および伝搬路推定方法
KR100877742B1 (ko) Ofdm 또는 ofdma를 지원하는 무선통신시스템에서의 채널 추정 장치 및 방법
JP5204256B2 (ja) 無線通信システム、無線通信装置及び無線通信方法
Prema et al. Joint Timing, Carrier Frequency and Sampling Clock Offset Estimation for MIMO OFDM WLAN Systems
Huang et al. for the Degree of

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021162.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520628

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12302794

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007744907

Country of ref document: EP