TWI683469B - 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法 - Google Patents

粒子、電極、蓄電裝置、電子裝置以及電極的製造方法 Download PDF

Info

Publication number
TWI683469B
TWI683469B TW104134864A TW104134864A TWI683469B TW I683469 B TWI683469 B TW I683469B TW 104134864 A TW104134864 A TW 104134864A TW 104134864 A TW104134864 A TW 104134864A TW I683469 B TWI683469 B TW I683469B
Authority
TW
Taiwan
Prior art keywords
region
lithium
area
battery
crystal
Prior art date
Application number
TW104134864A
Other languages
English (en)
Other versions
TW201626623A (zh
Inventor
川上貴洋
落合輝明
吉富修平
廣橋拓也
元吉真子
門馬洋平
後藤準也
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201626623A publication Critical patent/TW201626623A/zh
Application granted granted Critical
Publication of TWI683469B publication Critical patent/TWI683469B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本發明的一個實施方式的目的之一是提高蓄電裝置的每重量的容量。本發明的一個實施方式是一種粒子,該粒子具有第一區域、與第一區域的表面的至少一部分接觸並位於第一區域的外側的第二區域、以及與第二區域的表面的至少一部分接觸並位於第二區域的外側的第三區域,第一區域及第二區域包含鋰和氧,第一區域和第二區域中的至少一個包含錳,第一區域和第二區域中的至少一個包含元素M,第一區域含有具有層狀岩鹽型結構的第一結晶,第二區域含有具有尖晶石型結構的第二結晶,第一結晶的配向和第二結晶的配向不同。

Description

粒子、電極、蓄電裝置、電子裝置以及電極的製造方法
本發明係關於一種物體、方法或製造方法。另外,本發明係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。尤其是,本發明的一個實施方式係關於一種半導體裝置、顯示裝置、發光裝置、成像裝置、蓄電裝置、記憶體裝置、它們的驅動方法或它們的製造方法。尤其是,本發明的一個實施方式係關於一種蓄電裝置的結構及其製造方法。尤其係關於一種鋰離子二次電池的正極活性物質。
近年來,智慧手機和平板電腦等可攜式電子裝置迅速普及。此外,隨著對環境問題的關心的提高,混合動力汽車和電動汽車受到注目,二次電池等蓄電裝置的重要性得到提高。作為二次電池可以舉出鎳氫電池、鉛蓄電池及鋰離子二次電池等。其中,尤其是鋰離子二次電池可以實現大容量化以及小型化,所以對其的開發日益火熱。
二次電池的基本結構是使電解質介於正極與負極之間的結構。作為包含電介質的物體,可以舉出固體電解質或電解液等。作為正極及負極的結構,典型的是都包括集電器和設置在集電器上的活性物質層的結構。在鋰離子二次電池中,使用能夠吸留並釋放鋰的材料作為正極及負極的活性物質。
在鋰離子二次電池中,作為正極活性物質,例如已知專利文獻1所示的磷酸鐵鋰(LiFePO4)、磷酸錳鋰(LiMnPO4)、磷酸鈷鋰(LiCoPO4)及磷 酸鎳鋰(LiNiPO4)等具有包含鋰(Li)及鐵(Fe)、錳(Mn)、鈷(Co)或鎳(Ni)的橄欖石型結構的磷酸化合物等。
[專利文獻1]日本專利申請公開第平11-25983號公報
本發明的一個實施方式的目的之一是提高蓄電裝置的每體積或/及每重量的容量。另外,本發明的一個實施方式的目的之一是提高電極的每體積或/及每重量的容量。
另外,本發明的一個實施方式的目的之一是提高具有正極活性物質的粒子的每體積或/及每重量的容量。另外,本發明的一個實施方式的目的之一是增大具有正極活性物質的粒子的每體積或/及每重量的鋰離子量,而實現高能量密度。
另外,本發明的一個實施方式的目的之一是在具有正極活性物質的正極中以高電位穩定進行電池反應。
另外,本發明的一個實施方式的目的之一是提供一種隨著充放電循環的容量減少得到抑制的蓄電裝置。另外,本發明的一個實施方式的目的之一是提供一種可以以低成本製造的正極活性物質。
鋰離子二次電池的正極活性物質被要求高離子傳導性及高導電率。因此,本發明的一個實施方式的目的之一是提供一種離子傳導性及/或導電率高的正極活性物質。
另外,本發明的一個實施方式的目的之一是提供一種蓄電裝置的電極的製造方法。另外,本發明的一個實施方式的目的之一是提供一種二次電池的正極活性物質的製造方法。
另外,本發明的一個實施方式的目的之一是提供一種新穎的物質。另 外,本發明的一個實施方式的目的之一是提供一種新穎的正極活性物質。另外,本發明的一個實施方式的目的之一是提供一種具有正極活性物質的新穎的粒子。另外,本發明的一個實施方式的目的之一是提供一種新穎的蓄電裝置。另外,本發明的一個實施方式的目的之一是提供一種新穎的電池。另外,本發明的一個實施方式的目的之一是提供一種新穎的鋰離子二次電池。
注意,這些目的的記載不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。另外,根據說明書、圖式、申請專利範圍等的記載,這些目的以外的目的是顯然的,可以從說明書、圖式、申請專利範圍等的記載中衍生這些以外的目的。
本發明的一個實施方式是一種包含鋰錳複合氧化物的粒子。
本發明的一個實施方式的包含鋰錳複合氧化物的粒子具有第一區域及第二區域。本發明的一個實施方式的包含鋰錳複合氧化物的粒子較佳為具有第三區域。
第二區域與第一區域的表面的至少一部分接觸,並位於第一區域的外側。在此,外側是指更靠近粒子表面一側。第三區域較佳為與第二區域的表面的至少一部分接觸,並位於第二區域的外側。
在本發明的一個實施方式的粒子具有第二區域的情況下,有時可以在將本發明的一個實施方式的粒子用作蓄電池的正極活性物質時提高放電容量。另外,有時可以提高放電電壓。
在本發明的一個實施方式的粒子具有第三區域的情況下,有時可以在將本發明的一個實施方式的粒子用作蓄電池的正極活性物質時提高放電容量。另外,有時可以提高放電電壓。
第一區域及第二區域包含鋰和氧。第一區域和第二區域中的至少一個包含錳。第一區域和第二區域中的至少一個包含元素M。在此,元素M較 佳為除鋰、錳之外的金屬元素、矽或磷,更佳為選自Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu和Zn中的金屬元素、Si或P,更佳為鎳。
第一區域及第二區域更佳為各包含錳和元素M的兩者。
第三區域較佳為包括本發明的一個實施方式的包含鋰錳複合氧化物的粒子的表面。
當使用本發明的一個實施方式的包含鋰錳複合氧化物的粒子製造蓄電裝置時,第三區域較佳為對電池反應,例如充電或放電比第一區域及第二區域穩定。
在此,第二區域也可以具有與第一區域不同的結晶結構。另外,第二區域也可以具有其配向與第一區域的結晶不同的結晶。在此,不同的配向是指結晶定向以大於10°的角度互不相同。
例如,較佳為第二區域具有尖晶石型結構,第一區域具有層狀岩鹽型結構。在第二區域具有尖晶石型結構的情況下,有時可以在將本發明的一個實施方式的粒子用作蓄電池的正極活性物質時提高放電容量。另外,有時可以提高放電電壓。
第二區域的組成較佳為與第一區域不同。
第二區域所包含的錳的化合價也可以與第一區域所包含的錳的化合價不同。第二區域所包含的元素M的化合價也可以與第一區域所包含的元素M的化合價不同。
另外,也可以在第二區域和第一區域之間包括遷移層。另外,也可以在第二區域和第一區域之間包括混合層。
本發明的一個實施方式是一種包含鋰錳複合氧化物的粒子,粒子具有 第一區域及第二區域,第二區域與第一區域的至少一部分接觸,第一區域及第二區域包含鋰和氧,第一區域和第二區域中的至少一個包含錳,第一區域和第二區域中的至少一個包含以M表示的元素,第一區域含有具有層狀岩鹽型結構的第一結晶,第二區域含有具有層狀岩鹽型結構的第二結晶,第一結晶所具有的{0 0 1}面平行於第二結晶所具有的{1 0 0}面、{1 3 - 1}面和{-1 3 1}面中的至少一個。在此,兩個面平行例如是指兩個面的法線的角度為10°以下,更佳為5°以下,進一步較佳為3°以下的情況。兩個線平行例如是指兩個線的角度為10°以下,更佳為5°以下,進一步較佳為3°以下的情況。
另外,本發明的一個實施方式是一種包含鋰錳複合氧化物的粒子,粒子具有第一區域、第二區域及第三區域,第二區域與第一區域的至少一部分接觸,第三區域與第二區域的至少一部分接觸,第一區域及第二區域包含鋰和氧,第一區域和第二區域中的至少一個包含錳,第一區域和第二區域中的至少一個包含以M表示的元素,第一區域含有具有層狀岩鹽型結構的第一結晶,第二區域含有具有層狀岩鹽型結構的第二結晶,第一結晶的配向和第二結晶的配向不同。第三區域較佳為包含碳。
在上述結構中,第一結晶所具有的{0 0 1}面較佳為平行於第二結晶所具有的{1 0 0}面、{1 3 -1}面和{-1 3 1}面中的至少一個。
本發明的一個實施方式是一種包含鋰錳複合氧化物的粒子,粒子具有第一區域及第二區域,第二區域與第一區域的至少一部分接觸,第一區域及第二區域包含鋰和氧,第一區域和第二區域中的至少一個包含錳,第一區域和第二區域中的至少一個包含以M表示的元素,第一區域含有具有層狀岩鹽型結構的第一結晶,第二區域含有具有尖晶石型結構的第二結晶。
另外,本發明的一個實施方式是一種包含鋰錳複合氧化物的粒子,粒子具有第一區域及第二區域,第二區域與第一區域的至少一部分接觸,第一區域及第二區域包含鋰和氧,第一區域和第二區域中的至少一個包含錳,第一區域和第二區域中的至少一個包含以M表示的元素,以a1:b1:c1:d1表示第一區域中的鋰、錳、元素M及氧的原子數比,以a2:b2:c2:d2表示第二 區域中的鋰、錳、元素M及氧的原子數比,d1/(b1+c1)(=A1)是2.2以上,d2/(b2+c2)(=A2)小於2.2。如此,在A2小於A1時,有時可以在將本發明的一個實施方式的粒子用作蓄電池的正極活性物質時使第二區域的對充放電的穩定性比第一區域高。另外,有時可以在將本發明的一個實施方式的粒子用作蓄電池的正極活性物質時提高放電容量。另外,有時可以提高放電電壓。
另外,在上述結構中,較佳為具有與第二區域的至少一部分接觸的第三區域,第三區域較佳為包含碳。
另外,在上述結構中,第三區域的厚度較佳為0.1nm以上且30nm以下。
另外,本發明的一個實施方式是一種包含鋰錳複合氧化物的粒子,粒子具有第一區域及第二區域,第二區域與第一區域的至少一部分接觸,第一區域及第二區域包含鋰、錳、以M表示的元素及氧,以a1:b1:c1:d1表示第一區域中的鋰、錳、元素M及氧的原子數比,以a2:b2:c2:d2表示第二區域中的鋰、錳、元素M及氧的原子數比,d1/(b1+c1)是2.2以上,d2/(b2+c2)小於2.2,第一區域含有具有層狀岩鹽型結構的第一結晶,第二區域含有具有層狀岩鹽型結構的第二結晶,第一結晶所具有的{0 0 1}面平行於第二結晶所具有的{1 0 0}面、{1 3 -1}面和{- 1 3 1}面中的至少一個。
在上述結構中,第二區域較佳為具有層狀區域,層狀區域的厚度較佳為0.1nm以上且30nm以下。
另外,本發明的一個實施方式是一種使用含有上述粒子的正極的二次電池。另外,本發明的一個實施方式是一種安裝有該二次電池的電子裝置。
在此,當使用本發明的一個實施方式的包含鋰錳複合氧化物的粒子製造蓄電裝置時,由於充電及放電等電池反應而該離子所包含的鋰量發生變化。例如,當進行充電時,鋰作為鋰離子脫離,而該粒子所包含的鋰量減少,根據充電深度減少量也發生變化。
本發明的一個實施方式是一種電極層的製造方法,包括如下步驟:混合粒子、黏合劑、溶劑形成混合物,粒子包含鋰、錳、元素M及氧,元素M是選自鉻、鈷、鋁、鎳、鐵、鎂、鉬、鋅、銦、鎵、銅、鈦、鈮、矽及磷中的一種以上的元素;在集電器上設置混合物形成混合物層;藉由對混合物層進行加熱處理形成電極層,電極層包括具有鋰、錳、元素M和氧中的至少一個與黏合劑所包含的元素中的至少一個的鍵合的化合物。另外,在上述結構中,化合物較佳為包含鋰、錳和元素M中的至少一個、以及氟。粒子較佳為含有包含鋰、錳、元素M及氧的氧化物。
另外,本發明的一個實施方式是一種設置在集電器上的電極層,電極層包括粒子、黏合劑、溶劑,粒子包含鋰、錳、元素M及氧,元素M是選自鉻、鈷、鋁、鎳、鐵、鎂、鉬、鋅、銦、鎵、銅、鈦、鈮、矽及磷中的一種以上的元素,電極層包括具有鋰、錳、元素M和氧中的至少一個與黏合劑所包含的元素中的至少一個的鍵合的化合物。另外,在上述結構中,化合物較佳為包含鋰、錳和元素M中的至少一個、以及氟。粒子較佳為含有包含鋰、錳、元素M及氧的氧化物。
在此,當使用本發明的一個實施方式的包含鋰錳複合氧化物的粒子製造蓄電裝置時,由於充電及放電等電池反應而該離子所包含的鋰量發生變化。例如,當進行充電時,鋰作為鋰離子脫離,而該粒子所包含的鋰量減少,根據充電深度減少量也發生變化。
根據本發明的一個實施方式可以提高蓄電裝置的每體積或/及每重量的容量。另外,根據本發明的一個實施方式可以提高電極的每體積或/及每重量的容量。
另外,根據本發明的一個實施方式可以提高具有正極活性物質的粒子的每體積或/及每重量的容量。另外,根據本發明的一個實施方式可以增大具有正極活性物質的粒子的每體積或/及每重量的鋰離子量,而實現高能量密度。
另外,根據本發明的一個實施方式,在具有正極活性物質的正極中以 高電位可以穩定進行電池反應。
另外,根據本發明的一個實施方式可以提供一種隨著充放電循環的容量減少得到抑制的蓄電裝置。另外,根據本發明的一個實施方式可以提供一種可以以低成本製造的正極活性物質。
鋰離子二次電池的正極活性物質被要求有高離子傳導性及高導電率的特性。根據本發明的一個實施方式可以提供一種離子傳導性及/或導電率高的正極活性物質。
另外,根據本發明的一個實施方式可以提供一種蓄電裝置的電極的製造方法。另外,根據本發明的一個實施方式可以提供一種二次電池的正極活性物質的製造方法。
另外,根據本發明的一個實施方式可以提供一種新穎的物質。另外,根據本發明的一個實施方式可以提供一種新穎的正極活性物質。另外,根據本發明的一個實施方式可以提供一種具有正極活性物質的新穎的粒子。另外,根據本發明的一個實施方式可以提供一種新穎的蓄電裝置。另外,根據本發明的一個實施方式可以提供一種新穎的電池。另外,根據本發明的一個實施方式可以提供一種新穎的鋰離子二次電池。
注意,這些效果的記載不妨礙其他效果的存在。本發明的一個實施方式並不需要實現所有上述效果。另外,根據說明書、圖式、申請專利範圍等的記載,這些效果以外的效果是顯然的,可以從說明書、圖式、申請專利範圍等的記載中衍生這些以外的效果。
100‧‧‧電極
101‧‧‧集電器
102‧‧‧活性物質層
120a‧‧‧石墨烯
131‧‧‧區域
132‧‧‧區域
133‧‧‧區域
141‧‧‧粒子
142‧‧‧區域
143‧‧‧區域
300‧‧‧蓄電池
301‧‧‧正極罐
302‧‧‧負極罐
303‧‧‧墊片
304‧‧‧正極
305‧‧‧正極集電器
306‧‧‧正極活性物質層
307‧‧‧負極
308‧‧‧負極集電器
309‧‧‧負極活性物質層
310‧‧‧隔離體
500‧‧‧蓄電池
501‧‧‧正極集電器
502‧‧‧正極活性物質層
503‧‧‧正極
504‧‧‧負極集電器
505‧‧‧負極活性物質層
506‧‧‧負極
507‧‧‧隔離體
508‧‧‧電解液
509‧‧‧外包裝體
510‧‧‧正極導線電極
511‧‧‧負極導線電極
512‧‧‧銲錫區域
513‧‧‧彎曲部
514‧‧‧密封部
600‧‧‧蓄電池
601‧‧‧正極蓋
602‧‧‧電池罐
603‧‧‧正極端子
604‧‧‧正極
605‧‧‧隔離體
606‧‧‧負極
607‧‧‧負極端子
608‧‧‧絕緣板
609‧‧‧絕緣板
611‧‧‧PTC元件
612‧‧‧安全閥機構
900‧‧‧電路基板
910‧‧‧簽條
911‧‧‧端子
912‧‧‧電路
913‧‧‧蓄電池
914‧‧‧天線
915‧‧‧天線
916‧‧‧層
917‧‧‧層
918‧‧‧天線
919‧‧‧端子
920‧‧‧顯示裝置
921‧‧‧感測器
922‧‧‧端子
951‧‧‧端子
952‧‧‧端子
981‧‧‧薄膜
982‧‧‧薄膜
990‧‧‧蓄電池
991‧‧‧外包裝體
992‧‧‧外包裝體
993‧‧‧捲繞體
994‧‧‧負極
995‧‧‧正極
996‧‧‧隔離體
997‧‧‧導線電極
998‧‧‧導線電極
1700‧‧‧曲面
1701‧‧‧平面
1702‧‧‧曲線
1703‧‧‧曲率半徑
1704‧‧‧曲率中心
1800‧‧‧曲率中心
1801‧‧‧薄膜
1802‧‧‧曲率半徑
1803‧‧‧薄膜
1804‧‧‧曲率半徑
1805‧‧‧電極及電解液等
7100‧‧‧可攜式顯示裝置
7101‧‧‧外殼
7102‧‧‧顯示部
7103‧‧‧操作按鈕
7104‧‧‧蓄電裝置
7200‧‧‧可攜式資訊終端
7201‧‧‧外殼
7202‧‧‧顯示部
7203‧‧‧帶子
7204‧‧‧帶扣
7205‧‧‧操作按鈕
7206‧‧‧輸入輸出端子
7207‧‧‧圖示
7300‧‧‧顯示裝置
7304‧‧‧顯示部
7400‧‧‧行動電話機
7401‧‧‧外殼
7402‧‧‧顯示部
7403‧‧‧操作按鈕
7404‧‧‧外部連接埠
7405‧‧‧揚聲器
7406‧‧‧麥克風
7407‧‧‧蓄電裝置
7408‧‧‧導線電極
7409‧‧‧集電器
8000‧‧‧顯示裝置
8001‧‧‧外殼
8002‧‧‧顯示部
8003‧‧‧揚聲器部
8004‧‧‧蓄電裝置
8021‧‧‧充電裝置
8022‧‧‧電纜
8024‧‧‧蓄電裝置
8100‧‧‧照明設備
8101‧‧‧外殼
8102‧‧‧光源
8103‧‧‧蓄電裝置
8104‧‧‧天花板
8105‧‧‧側壁
8106‧‧‧地板
8107‧‧‧窗戶
8200‧‧‧室內機
8201‧‧‧外殼
8202‧‧‧出風口
8203‧‧‧蓄電裝置
8204‧‧‧室外機
8300‧‧‧電冷藏冷凍箱
8301‧‧‧外殼
8302‧‧‧冷藏室門
8303‧‧‧冷凍室門
8304‧‧‧蓄電裝置
8400‧‧‧汽車
8401‧‧‧車頭燈
8406‧‧‧電發動機
8500‧‧‧汽車
9600‧‧‧平板終端
9625‧‧‧開關
9626‧‧‧開關
9627‧‧‧電源開關
9628‧‧‧操作開關
9629‧‧‧扣件
9630‧‧‧外殼
9630a‧‧‧外殼
9630b‧‧‧外殼
9631‧‧‧顯示部
9631a‧‧‧顯示部
9631b‧‧‧顯示部
9632a‧‧‧區域
9632b‧‧‧區域
9633‧‧‧太陽能電池
9634‧‧‧充放電控制電路
9635‧‧‧蓄電體
9636‧‧‧DCDC轉換器
9637‧‧‧轉換器
9638‧‧‧操作鍵
9639‧‧‧按鈕
9640‧‧‧可動部
S1‧‧‧控制信號
S2‧‧‧控制信號
S3‧‧‧變壓信號
S11‧‧‧步驟
S12‧‧‧步驟
S13‧‧‧步驟
S14‧‧‧步驟
S15‧‧‧步驟
S16‧‧‧步驟
S17‧‧‧步驟
S18‧‧‧步驟
S19‧‧‧步驟
S101‧‧‧步驟
S102‧‧‧步驟
S103‧‧‧步驟
S104‧‧‧步驟
S105‧‧‧步驟
S106‧‧‧步驟
S107‧‧‧步驟
S108‧‧‧步驟
BT00‧‧‧蓄電裝置
BT01‧‧‧一對端子
BT02‧‧‧一對端子
BT03‧‧‧切換控制電路
BT04‧‧‧切換電路
BT05‧‧‧切換電路
BT06‧‧‧變壓控制電路
BT07‧‧‧變壓電路
BT08‧‧‧電池部
BT09‧‧‧電池單元
BT10‧‧‧電晶體
BT11‧‧‧匯流排
BT12‧‧‧匯流排
BT13‧‧‧電晶體
BT14‧‧‧電流控制開關
BT15‧‧‧匯流排
BT16‧‧‧匯流排
BT17‧‧‧開關對
BT18‧‧‧開關對
BT21‧‧‧電晶體對
BT22‧‧‧電晶體
BT23‧‧‧電晶體
BT24‧‧‧匯流排
BT25‧‧‧匯流排
BT31‧‧‧電晶體對
BT32‧‧‧電晶體
BT33‧‧‧電晶體
BT34‧‧‧匯流排
BT35‧‧‧匯流排
BT41‧‧‧電池管理單元
BT51‧‧‧絕緣型DC-DC轉換器
BT52‧‧‧開關部
BT53‧‧‧變壓部
在圖式中:圖1是說明活性物質的形成方法的流程圖;圖2A和圖2B是示出本發明的一個實施方式的粒子的圖;圖3是說明結晶結構的圖; 圖4A和圖4B是說明結晶結構的圖圖5A和圖5B是示出電極的示意圖;圖6是說明薄型蓄電池的圖;圖7A和圖7B是說明電極的剖面圖的圖;圖8A和圖8B是說明薄型蓄電池的圖;圖9A和圖9B是說明薄型蓄電池的圖;圖10是說明薄型蓄電池的圖;圖11A至圖11C是說明面的曲率半徑的圖;圖12A至圖12D是說明薄膜的曲率半徑的圖;圖13A和圖13B是說明硬幣型蓄電池的圖;圖14A和圖14B是說明圓筒型蓄電池的圖;圖15A至圖15C是用來說明蓄電裝置的例子的圖;圖16A至圖16C是用來說明蓄電裝置的例子的圖;圖17A和圖17B是用來說明蓄電裝置的例子的圖;圖18A1、圖18A2、圖18B1和圖18B2是用來說明蓄電裝置的例子的圖;圖19A和圖19B是用來說明蓄電裝置的例子的圖;圖20A至圖20G是說明電子裝置的例子的圖;圖21A至圖21C是說明電子裝置的例子的圖;圖22是說明電子裝置的例子的圖;圖23A和圖23B是說明電子裝置的例子的圖;圖24是說明本發明的一個實施方式的方塊圖;圖25A至圖25C是說明本發明的一個實施方式的示意圖;圖26是說明本發明的一個實施方式的電路圖;圖27是說明本發明的一個實施方式的電路圖;圖28A至圖28C是說明本發明的一個實施方式的示意圖;圖29是說明本發明的一個實施方式的方塊圖;圖30是說明本發明的一個實施方式的流程圖;圖31是示出充放電特性的圖;圖32A和圖32B是說明本發明的一個實施方式的粒子的圖;圖33是示出EDX的測量結果的圖;圖34A和圖34B是HAADF-STEM觀察結果;圖35A和圖35B是示出電子繞射的圖; 圖36是示出充放電特性的圖;圖37是電極及隔離體的剖面圖;圖38A和圖38B是示出充放電特性的圖;圖39是利用穿透式電子顯微鏡的觀察結果;圖40是利用穿透式電子顯微鏡的觀察結果;圖41A和圖41B是示出電子繞射的圖;圖42是示出粒徑的分佈的圖;圖43A和圖43B是利用掃描性穿透式電子顯微鏡的觀察結果;圖44A和圖44B是利用掃描性穿透式電子顯微鏡的觀察結果;圖45是示出充放電循環次數和放電容量的關係的圖;圖46是示出差示掃描量熱曲線的圖;圖47A和圖47B是示出EDX測量的結果的圖;圖48A和圖48B是示出EDX測量的結果的圖;圖49A和圖49B是示出EDX測量的結果的圖;圖50A和圖50B是示出EDX測量的結果的圖;圖51A和圖51B是示出EDX測量的結果的圖;圖52是示出充放電特性的圖;圖53A和圖53B是示出XPS測量的結果的圖;圖54A和圖54B是示出XPS測量的結果的圖;圖55是示出充放電特性的圖。
下面,參照圖式對本發明的實施方式進行詳細說明。但是,本發明不侷限於以下說明,所屬技術領域的普通技術人員可以很容易地理解一個事實就是其方式和詳細內容可以被變換為各種形式。此外,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。
注意,在圖式中,有時為了清楚瞭解而誇大尺寸、膜(層)的厚度或區域。
另外,為方便起見,附加了第一、第二等序數詞,而其並不表示製程 順序或疊層順序。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。此外,本說明書等中所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。
注意,雖然活性物質只指有關作為載體的離子的嵌入及脫嵌的物質,但是在本說明書等中,有時包括覆蓋“活性物質”的層。
實施方式1
在本實施方式中,對本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”進行說明。還對包含該粒子的電極進行說明。
本發明的一個實施方式的鋰錳複合氧化物可以由組成式LiaMnbMcOd表示。作為元素M,較佳為使用選自鋰、錳之外的金屬元素、矽或磷。另外,較佳為滿足0
Figure 104134864-A0202-12-0011-119
a/(b+c)<2、c>0以及0.26
Figure 104134864-A0202-12-0011-120
(b+c)/d<0.5。注意,鋰錳複合氧化物是指至少包含鋰和錳的氧化物,還可以包含選自鉻、鈷、鋁、鎳、鐵、鎂、鉬、鋅、銦、鎵、銅、鈦、鈮、矽和磷等中的至少一種元素。此外,鋰錳複合氧化物較佳為具有層狀岩鹽型結晶結構。鋰錳複合氧化物也可以具有層狀岩鹽型結晶結構及尖晶石型結晶結構。另外,鋰錳複合氧化物的一次粒子的平均粒徑例如較佳為5nm以上且50μm以下。
〈合成〉
接著,對本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”的形成方法進行說明。在本實施方式中,首先合成鋰錳複合氧化物。然後,在鋰錳複合氧化物上形成覆蓋層,來形成包含第一區域、第二區域及第三區域的粒子。
作為鋰錳複合氧化物的原料,可以使用錳化合物及鋰化合物。另外,除了錳化合物及鋰化合物的原料之外,可以使用包含選自鉻、鈷、鋁、鎳、鐵、鎂、鉬、鋅、銦、鎵、銅、鈦、鈮、矽和磷等中的至少一種元素的化合物的原料。作為錳化合物,例如可以使用二氧化錳、三氧化二錳、四氧化三錳、水合錳氧化物、碳酸錳、硝酸錳等。作為鋰化合物,例如可以使 用氫氧化鋰、碳酸鋰、硝酸鋰等。
在本實施方式中,作為起始材料使用錳化合物的MnCO3、鋰化合物的Li2CO3及NiO。
首先,如圖1的步驟S11所示,作為起始材料使用Li2CO3、MnCO3和NiO,並分別稱量它們。
例如,在作為起始材料使用Li2CO3、MnCO3和NiO的情況下,當將稱量的比例(莫耳比)設定為Li2CO3:MnCO3:NiO=1:0.7:0.3時,形成作為最終產物的鋰錳複合氧化物Li2Mn0.7Ni0.3O3。在此情況下,鋰錳複合氧化物的原子數比為Li:(Mn+Ni)=2:1。
在本實施方式中,以鋰錳複合氧化物的原子數比與Li:(Mn+Ni)=2:1的原子數比稍微不同的方式調整起始材料的稱量的比例(莫耳比)。
在本實施方式中,將起始材料的稱量的比例(莫耳比)設定為Li2CO3:MnCO3:NiO=0.84:0.8062:0.318。
接著,如圖1的步驟S12所示,混合Li2CO3、MnCO3和NiO。對起始材料的混合方法沒有特別的限制,可以使用已知的研碎機或粉碎機。例如,可以使用球磨機、珠磨機、噴射磨機、輥磨機等。另外,研碎和粉碎的方式可以為乾法或濕法。對可用於濕法的溶劑沒有特別的限制,例如可以使用水、醇、丙酮等。
當混合起始材料時,在採用濕法的情況下,如圖1的步驟S13所示,進行用來使包含在所混合的起始材料中的溶劑蒸發的加熱處理。在此,以50℃以上且150℃以下的溫度進行加熱處理即可。藉由進行加熱處理,使包含在所混合的起始材料中的溶劑蒸發,由此得到混合原料。
接著,如圖1的步驟S14所示,將混合原料放入熔爐中,以800℃以上且1000℃以下的溫度進行燒成。燒成時間例如為5小時以上且20小時以下, 作為燒成氣體使用乾燥空氣,流量為10L/min。燒成氛圍既可以為大氣氛圍,又可以為包含氧氣體的氛圍。藉由對混合原料進行燒成,形成燒成物(鋰錳複合氧化物)。
如圖2A所示,在燒成合成的多個一次粒子燒結而形成的鋰錳複合氧化物中,多個一次粒子燒結而形成較大的二次粒子。接著,如圖1的步驟S15所示,對多個一次粒子燒結而成的鋰錳複合氧化物進行研碎處理。藉由對燒成物進行研碎處理,將燒成物碎成一次粒子或近似一次粒子的粉末。在本說明書等中,研碎處理還包括使燒結物粉碎的操作。注意,粉碎是指進一步磨碎一次粒子的操作。在研碎處理中,與起始材料的混合方法同樣,可以使用已知的研碎機或粉碎機。例如,可以使用舉出球磨機或珠磨機等。研碎和粉碎的方式可以為乾法或濕法。對可用於濕法的溶劑也沒有特別的限制,例如可以使用水、醇、丙酮等。
經過研碎及粉碎後的粒子的尺寸例如可以藉由對粒子的比表面積進行測定來評價。藉由增加包含鋰錳複合氧化物的粒子的比表面積,當將包含鋰錳複合氧化物的粒子用於正極製造蓄電池時,例如可以增加粒子與電解液的接觸面積。藉由增加粒子與電解液的接觸面積,可以提高蓄電池的反應速度,例如可以提高輸出特性。
藉由進行研碎處理,粒子的比表面積有時增加,所以是較佳的。包含鋰錳複合氧化物的粒子的比表面積例如較佳為0.1m2/g以上。當粒子的比表面積過大時,在使用該粒子製造的電極中,相對於表面積的黏結劑量有時變得不夠而導致強度下降。然而,當增加黏結劑量時,單位重量及單位體積的電極容量有時下降。因此,包含鋰錳複合氧化物的粒子的比表面積例如較佳為1m2/g以上且50m2/g以下,更佳為5m2/g以上且30m2/g以下。
在本實施方式中,利用丙酮的濕法使用珠磨機對一次粒子燒結而成的鋰錳複合氧化物進行研碎處理。
在採用濕法進行研碎處理時,在研碎處理之後進行用來使溶劑蒸發的加熱處理。在此,與步驟S13同樣地進行加熱處理即可。之後,進行真空 乾燥,由此得到粉末狀的鋰錳複合氧化物。
接著,進行加熱處理。如圖1的步驟S16所示,將經過研碎處理之後的鋰錳複合氧化物放入熔爐中,以300℃以上且1000℃以下,較佳為600℃以上且900℃以下的溫度進行加熱處理。加熱時間例如為5小時以上且20小時以下,使用乾燥空氣,流量為10L/min。加熱氛圍可以為大氣氛圍或包含氧氣體的氛圍。
藉由上述製程,可以形成以組成式LiaMnbMcOd表示的鋰錳複合氧化物。在本實施方式中,藉由將原料的稱量的比例(莫耳比)設定為Li2CO3:MnCO3:NiO=0.84:0.8062:0.318,可以形成以組成式Li1.68Mn0.8062M0.318O3表示的鋰錳複合氧化物。
另外,在經過步驟S15所示的研碎處理之後的鋰錳複合氧化物中,因研碎處理的衝擊而有時結晶性變得無序。另外,有時在鋰錳複合氧化物中產生氧缺陷。因此,較佳的是,對經過真空乾燥之後的粉末狀的鋰錳複合氧化物進行加熱處理。
藉由對經過研碎處理之後的鋰錳複合氧化物進行加熱處理,可以填補氧缺陷,並且可以修復進行研碎處理時的結晶性的無序。另外,也可以對經過加熱處理之後的粉末狀的鋰錳複合氧化物進一步進行研碎處理,此時,該研碎處理可以利用與圖1的步驟S15同樣的方法進行。
在此,使用Li2CO3:MnCO3:NiO=0.84:0.8062:0.318的原料,按照圖1所示的步驟S11至S16形成鋰錳複合氧化物,並且對其溫度穩定性進行評價。明確而言,藉由差示掃描量熱測定進行評價。圖46示出差示掃描量熱(DSC)曲線,其中,縱軸表示熱流,橫軸表示溫度。如圖46所示,在262.2℃下觀察到示出發熱的峰值。在比其低的溫度下,在DSC評價中鋰錳複合氧化物穩定。由此可知本發明的一個實施方式的鋰錳複合氧化物在260℃以下的高溫下也穩定。
在本實施方式所示的鋰錳複合氧化物中,以其原子數比與Li:(Mn+Ni) =2:1的原子數比稍微不同的方式進行調整。因此,與作為電極使用原子數比為Li:(Mn+Ni)=2:1的鋰錳複合氧化物的情況相比,可以增大電壓和放電容量。
藉由上述製程,可以獲得粒子狀的鋰錳複合氧化物。在此,鋰錳複合氧化物較佳為包含第一區域及第二區域。第二區域與第一區域的表面的至少一部分接觸,並位於第一區域的外側。在此,外側是指更靠近粒子表面一側。
第一區域及第二區域包含鋰和氧。第一區域和第二區域中的至少一個包含錳。第一區域和第二區域中的至少一個包含元素M。在此,元素M較佳為除鋰、錳之外的金屬元素、矽或磷,更佳為選自Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu和Zn中的金屬元素、Si或P,進一步較佳為鎳。
〈覆蓋層〉
接著,在所得到的鋰錳複合氧化物上設置覆蓋層。覆蓋層較佳為包含碳。由於碳具有高導電性,所以藉由將被碳覆蓋的粒子用於蓄電池的電極,例如可以降低電極的電阻。覆蓋層也可以包含氧化石墨烯,可以包含被還原的氧化石墨烯。
覆蓋層也可以包含金屬化合物。作為金屬,例如可以舉出鈷、鋁、鎳、鐵、錳、鈦、鋅、鋰、碳等。作為金屬化合物的一個例子,覆蓋層也可以包含這些金屬的氧化物或氟化物等。
在本實施方式中,作為覆蓋層,設置包含碳的層。作為包含碳的層較佳為使用石墨烯。石墨烯具有導電性高的優良的電特性、撓性以及機械強度高的優良的物理特性。
在本說明書中,石墨烯包括單層石墨烯或具有2層以上且100層以下的單層石墨烯的多層石墨烯。單層石墨烯是指具有π鍵的一原子層的碳分子的薄片。氧化石墨烯是指上述石墨烯被氧化的化合物。在使氧化石墨烯還原 而形成石墨烯時,包含於氧化石墨烯中的氧不全部脫離而使一部分的氧殘留於石墨烯中。在石墨烯包含氧的情況下,利用X射線光電子能譜法(XPS)測量的石墨烯整體中的氧的比率為2atomic%以上且20atomic%以下,較佳為3atomic%以上且15atomic%以下。
包含碳的層的厚度較佳為1nm以上且50nm以下。
接著,對在鋰錳複合氧化物上設置包含碳的層的方法進行說明。在本實施方式中,作為包含碳的層使用藉由使氧化石墨烯(Graphene Oxide;簡稱為GO)還原而得到的石墨烯(Reduced Graphene Oxide;簡稱為RGO)。
氧化石墨烯可以藉由Hummers法、Modified Hummers法或石墨類的氧化等各種合成法來製造。
例如,Hummers法是藉由使鱗片狀石墨等石墨氧化來形成氧化石墨的方法。所形成的氧化石墨是石墨被部分氧化而與羰基、羧基、羥基等官能基結合而形成的,石墨的結晶性受損而導致層間的距離變大。由此,可以藉由進行超聲波處理等容易分離層間而得到氧化石墨烯。
氧化石墨烯的一邊的長度(也稱為鱗片尺寸)為50nm以上且100μm以下,較佳為800nm以上且20μm以下。鱗片尺寸越大越容易覆蓋鋰錳複合氧化物的表面,所以是較佳的。
首先,將氧化石墨烯和水放入混煉機中,製造氧化石墨烯的分散溶液。此時,較佳為使用0.5wt%以上且5wt%以下的氧化石墨烯。如果低於0.5wt%,則難以覆蓋鋰錳複合氧化物的表面。另外,如果高於5wt%,則電極體積增大,導致電極重量變重。
接著,如圖1的步驟S17所示,將鋰錳複合氧化物放入分散溶液中,進行乾稠混煉。注意,乾稠混煉是指以高黏度進行的混煉。藉由進行乾稠混煉,可以使鋰錳複合氧化物的粉末的聚集解開,可以更均勻地分散氧化石墨烯和鋰錳複合氧化物。
接著,在鐘罩中對氧化石墨烯和鋰錳複合氧化物的混合物進行減壓乾燥,然後使用研缽進行研碎,由此得到被氧化石墨烯覆蓋的鋰錳複合氧化物。
接著,如圖1的步驟S18所示,對覆蓋鋰錳複合氧化物的表面的氧化石墨烯進行還原處理。氧化石墨烯的還原處理既可以利用加熱處理進行,又可以利用使用還原劑在溶劑中產生反應來進行。在本實施方式中,使用還原劑使氧化石墨烯在溶劑中產生反應。
藉由使用還原劑使氧化石墨烯在溶劑中產生反應來使覆蓋鋰錳複合氧化物的表面的氧化石墨烯還原,由此形成石墨烯。另外,也可以使包含於氧化石墨烯中的氧不全部脫離而使一部分的氧殘留於石墨烯中。在石墨烯包含氧的情況下,利用XPS測量的石墨烯整體中的氧的比率為2atomic%以上且20atomic%以下,較佳為3atomic%以上且15atomic%以下。上述還原處理較佳為在室溫以上且150℃以下,更佳為室溫以上且80℃以下的溫度下進行。藉由在還原處理中進行加熱,可以促進還原反應。另外,可以將氧化石墨烯的還原時間設定為3分鐘以上且10小時以下。
作為還原劑,可以使用抗壞血酸、肼、二甲基肼、對苯二酚、硼氫化鈉(NaBH4)、四丁基溴化銨(TBAB)、氫化鋁鋰(LiAlH4)、N,N-二乙基羥胺或它們的衍生物。例如,由於抗壞血酸及對苯二酚與肼及硼氫化鈉相比還原力較弱而具有較高的安全性,在工業上使用方便,因此是較佳的。
作為溶劑,可以使用極性溶劑。只要是能夠溶解還原劑的溶劑就對其材料沒有限制。例如,可以使用水、甲醇、醇、丙酮、四氫呋喃(THF)、二甲基甲醯胺(DMF)、1-甲基-2-吡咯烷酮(NMP)、二甲亞碸(DMSO)、乙二醇、二甘醇和甘油中的一種或兩種以上的混合液。
作為包含還原劑及溶劑的還原液,可以使用醇及抗壞血酸的混合液或者水、抗壞血酸及氫氧化鋰的混合液。在本實施方式中,對使用含有抗壞血酸、水及氫氧化鋰的還原液的情況進行說明。
藉由使覆蓋鋰錳複合氧化物的氧化石墨烯在還原液中產生反應,對氧化石墨烯附加抗壞血酸的質子。然後,H2O脫離,由此使氧化石墨烯還原。
在進行還原處理之後,如圖1的步驟S19所示,回收粉末。在此,過濾還原液。將在此得到的物質稱為物質A。過濾利用吸引過濾等進行即可。或者,也可以藉由離心分離進行物質A與液體的分離。
接著,對所得到的物質A進行洗滌。在洗滌中,例如較佳為使用作為包含在還原液中的溶劑的例子而舉出的溶劑。可以使用與包含在還原液中的溶劑相同的溶劑或與其不同的溶劑。
接著,進行乾燥。該乾燥製程例如可以以50℃以上且低於500℃,較佳為以120℃以上且400℃以下的溫度進行1小時以上且48小時以下。藉由上述乾燥製程,蒸發或去除極性溶劑或水分。在上述乾燥製程中也可以促進氧化石墨烯的還原。乾燥製程可以在減壓(真空)下、還原氛圍下或大氣壓下進行。另外,乾燥時的氛圍可以為空氣、氮或其他惰性氣體。
在物質A為粒子的情況下,該粒子例如較佳為形成二次粒子。
在物質A形成二次粒子的情況下,二次粒子的平均粒徑例如較佳為50μm以下,更佳為30μm以下,進一步較佳為1μm以上且20μm以下。注意,粒徑例如是指利用粒度分佈儀測定出的粒徑。或者,也可以是指物質A的二次粒子的粒徑。二次粒子的粒徑除了利用上述粒度分佈儀獲得之外,例如還可以藉由利用顯微鏡觀察粒子來算出。粒子的粒徑例如可以藉由算出具有與該粒子的剖面同等的面積的圓的直徑來獲得。
注意,當對物質A進行洗滌時,也可以製造將物質A分散在溶劑中的液,並對該溶液進行噴霧乾燥處理來進行乾燥。當進行噴霧乾燥處理時,物質A例如形成二次粒子而粒徑變化。
在進行噴霧乾燥處理之後,較佳為進行加熱處理。加熱處理例如可以 以50℃以上且低於500℃,較佳為以120℃以上且400℃以下的溫度進行1小時以上且48小時以下。藉由上述加熱處理,蒸發或去除極性溶劑或水分。在上述加熱處理中也可以促進氧化石墨烯的還原。加熱處理可以在減壓(真空)下或大氣壓下進行。還可以在還原氛圍下進行。另外,加熱時的氛圍可以為空氣、氮或其他惰性氣體。
藉由上述製程,可以使氧化石墨烯還原而在鋰錳複合氧化物的表面形成石墨烯。
注意,也可以使包含於氧化石墨烯中的氧不全部脫離而使一部分的氧殘留於石墨烯中。在石墨烯包含氧的情況下,當利用XPS測量時,氧的比例為石墨烯整體的2atomic%以上且20atomic%以下,較佳為3atomic%以上且15atomic%以下。
藉由在還原處理之後進行加熱處理,有時可以使所得到的石墨烯的導電率比進行加熱處理之前高。
藉由在還原處理之後進行加熱處理,例如,有時在本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”中形成第一區域至第三區域。“包含鋰錳複合氧化物的粒子”所包含的第一區域至第三區域也可以在加熱處理之前形成。或者,也可以在加熱處理的過程中形成。此外,例如在形成覆蓋層之前、形成覆蓋層之後以及進行還原處理之後形成的第一區域至第三區域的厚度、組成及結晶結構等也可以在加熱處理的過程中變化。
藉由進行加熱處理,例如,黏結劑所包含的元素與包含鋰錳複合氧化物的粒子有時起反應。例如,在作為黏結劑使用PVdF的情況下,包含鋰錳複合氧化物的粒子所包含的鋰、錳和元素M中的一個或多個與PVdF所包含的氟也可以形成金屬氟化物。
在上述示出鋰錳複合氧化物的覆蓋層(在此為包含碳的層)的例子。覆蓋層所包含的元素與氟也可以形成鍵合。例如,當作為覆蓋層使用包含碳的層時,也可以形成氟化碳。此時,該覆蓋層可以包含“包含鋰錳複合 氧化物的粒子”所包含的第三區域,也可以包含第一區域或第二區域的一部分及第三區域。另外,“包含鋰錳複合氧化物的粒子”所包含的第二區域例如也可以包含覆蓋層的一部分。
藉由上述製程,可以形成鋰錳複合氧化物的表面的至少一部分形成有石墨烯的粒子。
石墨烯具有導電性高的優良的電特性、撓性以及機械強度高的優良的物理特性。因此,藉由將包含該粒子的電極用於電池,例如可以進一步提高該電極的導電性及物理特性。
藉由上述製程,可以獲得本發明的一個實施方式的粒子。本發明的一個實施方式的粒子包含鋰錳複合氧化物。本發明的一個實施方式的粒子較佳為包含第一區域至第三區域。
本發明的一個實施方式是一種包含鋰錳複合氧化物的粒子。
本發明的一個實施方式的包含鋰錳複合氧化物的粒子具有第一區域及第二區域。本發明的一個實施方式的包含鋰錳複合氧化物的粒子較佳為具有第三區域。
第二區域與第一區域的表面的至少一部分接觸,並位於第一區域的外側。在此,外側是指更靠近粒子表面一側。第三區域較佳為與第二區域的表面的至少一部分接觸,並位於第二區域的外側。
在第二區域包含層狀區域的情況下,例如其厚度較佳為0.1nm以上且30nm以下,更佳為1nm以上且15nm以下。
第一區域及第二區域包含鋰和氧。第一區域和第二區域中的至少一個包含錳。第一區域和第二區域中的至少一個包含元素M。
第一區域及第二區域更佳為各包含錳和元素M的兩者。
第三區域較佳為包括本發明的一個實施方式的包含鋰錳複合氧化物的粒子的表面。
在第三區域包含層狀區域的情況下,例如其厚度較佳為0.1nm以上且30nm以下,更佳為1nm以上且20nm以下,進一步較佳為2nm以上且10nm以下。
圖2A示出粒子包括作為第一區域的區域131、作為第二區域的區域132及作為第三區域的區域133的例子。
如圖2A所示,區域132的至少一部分與區域131的表面接觸。區域133的至少一部分與區域132的表面接觸。
如圖2B所示,區域131也可以具有沒被區域132覆蓋的區域。區域132也可以具有沒被區域133覆蓋的區域。此外,例如,區域131也可以具有與區域133接觸的區域。區域131也可以具有沒被區域132及區域133中的兩者覆蓋的區域。
當使用本發明的一個實施方式的包含鋰錳複合氧化物的粒子製造蓄電裝置時,第三區域較佳為對電池反應,例如充電或放電比第一區域及第二區域穩定。
在此,第二區域也可以具有與第一區域不同的結晶結構。另外,第二區域也可以具有其配向與第一區域的結晶不同的結晶。
例如,較佳為第二區域具有尖晶石型結構,第一區域具有層狀岩鹽型結構。
另外,例如,較佳的是,第一區域及第二區域具有層狀岩鹽型結構,且第一區域所包含的結晶的第一面與第二區域所包含的結晶的第二面平行。
在此,在第一面為層狀岩鹽型結構的{0 0 1}面的情況下,層狀岩鹽型結構的{0 0 1}面較佳為平行於第二區域所包含的結晶所具有的{1 0 0}面、{1 3 -1}面和{-1 3 1}面中的至少一個。或者,在第一面為層狀岩鹽型結構的{1 0 0}面的情況下,層狀岩鹽型結構的{1 0 0}面較佳為平行於第二區域所包含的結晶所具有的{0 0 1}面、{1 3 -1}面和{-1 3 1}面中的至少一個。或者,在第一面為層狀岩鹽型結構的{1 3 -1}面的情況下,層狀岩鹽型結構的{1 3 -1}面較佳為平行於第二區域所包含的結晶所具有的{0 0 1}面、{1 0 0}面和{-1 3 1}面中的至少一個。或者,在第一面為層狀岩鹽型結構的{-1 3 1}面的情況下,層狀岩鹽型結構的{-1 3 1}面較佳為平行於第二區域所包含的結晶所具有的{0 0 1}面、{1 0 0}面和{1 3 -1}面中的至少一個。
另外,例如,較佳的是第一區域及第二區域具有層狀岩鹽型結構,且第一區域所包含的結晶的第一配向與第二區域所包含的結晶的第二配向平行。在此,對第一區域所包含的結晶及第二區域所包含的結晶的結晶定向進行說明。
在此,〈1 0 0〉、〈1 1 0〉及〈-1 1 0〉的三個結晶定向屬於第一群。〈0 0 1〉、〈0 1 1〉及〈0 1 -1〉屬於第二群。〈-3 2 3〉、〈3 1 6〉及〈6 -1 3〉屬於第三群。〈3 2 -3〉、〈3 -1 6〉及〈6 1 3〉屬於第四群。
第一區域所包含的結晶具有從第一群至第四群中的任一群中選擇的任一個配向。第二區域所包含的結晶具有從第一群至第四群中的第一區域所包含的結晶所具有的配向被選擇的群之外的三個群中選擇的任一配向。
下面,舉出上述的組合的具體例子進行說明。在此,對(001)面及(100)面進行說明。以下,為了具體地記載,以不考慮結晶的對稱性的方式記載指數。
圖3示出從b軸的負方向看Li2MnO3的結晶結構時的圖。圖4A示出在垂直於層A-1及層A-2的方向上從層A-2一側看圖3所示的由虛線A圍繞 的區域所包括的層A-1及層A-2時的圖。層A-1包含氧,層A-2包含鋰及錳。
圖4B示出在垂直於層B-1及層B-2的方向上從層B-2一側看圖3所示的由虛線B圍繞的區域所包括的層B-1及層B-2時的圖。
在圖4A中,在氧原子上鋰或錳在[110]方向、[-100]方向或者[1-10]方向上錯開地層疊。同樣地,在圖4B中,在氧所形成的六角形結構上鋰或錳在[0-11]方向、[00-1]方向或者[011]方向上錯開地層疊。另外,當將圖4A所示的由虛線圍繞的區域中的錳替換成鋰時,變成與圖4B相同的結構。換而言之,雖然金屬原子的種類不同,但是圖4A和圖4B中的金屬原子的位置大致相同。由此可認為,上述兩個結構具有很多共同點,層疊時的搭配良好。
第二區域的組成較佳為與第一區域不同。
例如,對如下情況進行說明:第一區域包含鋰、錳、元素M及氧,第二區域包含鋰、錳、元素M及氧,第一區域的鋰、錳、元素M及氧的原子數比由a1:b1:c1:d1表示,而且,第二區域的鋰、錳、元素M及氧的原子數比由a2:b2:c2:d2表示的情況。在此,d1/(b1+c1)較佳為2.2以上,更佳為2.3以上,進一步較佳為2.35以上且3以下。另外,d2/(b2+c2)較佳小於2.2,更較佳小於2.1,進一步較佳為1.1以上且1.9以下。
第二區域所包含的錳的化合價也可以與第一區域所包含的錳的化合價不同。第二區域所包含的元素M的化合價也可以與第一區域所包含的元素M的化合價不同。
在此,在各區域的組成或元素的化合價在空間上不均勻的情況下,例如,也可以藉由對多個部分的組成或化合價進行評價來算出其平均值,將其看作該區域的組成或化合價。
另外,也可以在第二區域與第一區域之間設置轉變層。在此,轉變層是指例如組成連續地或分階段地變化的區域。或者,轉變層是指結晶結構 連續地或分階段地變化的區域。或者,轉變層是指結晶的晶格常數連續地或分階段地變化的區域。
或者,也可以在第二區域與第一區域之間設置混合層。在此,混合層例如是指具有不同結晶定向的2個以上的結晶混在一起的層。或者,混合層例如是指具有不同結晶結構的2個以上的結晶混在一起的層。或者,混合層例如是指具有不同組成的2個以上的結晶混在一起的層。
第一區域較佳為具有層狀岩鹽型結構。第二區域較佳為具有尖晶石型結構和層狀岩鹽型結構中的至少一個。
例如,當使用本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”製造蓄電池等時,有時在直到製造蓄電池為止的各製程中形成第一區域至第三區域。
例如,第一區域至第三區域也可以在製造電極之前(例如,粒子的合成之後)形成。或者,也可以在電極的形成過程中形成。另外,例如,在合成粒子之後形成的第一區域至第三區域的厚度、組成和結晶結構等也可以在形成電極的過程中變化。
第一區域至第三區域也可以在製造蓄電池等的各製程的加熱處理中形成。
在鋰錳複合氧化物的製程中,S15等示出的一次粒子燒結而成的鋰錳複合氧化物的研碎處理製程是影響電池特性的重要的製程。在研碎處理製程中,藉由對一次粒子燒結而成的鋰錳複合氧化物施加剪應力(shear stress)(進行磨碎時的應力),形成粉末的鋰錳複合氧化物。此時,在鋰錳複合氧化物具有層狀岩鹽型結晶結構的情況下,一次粒子有時在平行於層的面或垂直於層的面劈開而裂開。在本說明書等中,將劈開而裂開的一次粒子稱為具有劈開面的粒子或露出劈開面的粒子。另外,裂開的一次粒子也包括不具有劈開面的粒子。
此外,使用如具有層狀岩鹽型結晶結構的鋰錳複合氧化物那樣的具有劈開性的粒子作為活性物質的情況下,不但在進行研碎處理時,而且在電極製程中,在對電極施加壓力進行成形時活性物質層受到壓力而有時導致活性物質的裂開。
另外,在製造捲繞型電池時,當捲繞電極時產生較大的應力。此外,在電極的捲繞體被容納於外殼的情況下,一直產生向捲繞軸的外側的應力,所以有活性物質進一步裂開的憂慮。
如此,如果作為活性物質的鋰錳複合氧化物的一次粒子劈開而裂開,則導致電池的放電容量和循環特性的下降。
此時,較佳為在鋰錳複合氧化物的劈開面設置包含碳的層。另外,包含碳的層既可以覆蓋劈開面的整體,又可以覆蓋具有劈開面的鋰錳複合氧化物的整體。在此,劈開面例如包括藉由劈開而露出的表面。
在本發明的一個實施方式中,以覆蓋鋰錳複合氧化物的方式形成石墨烯。石墨烯也可以設置在鋰錳複合氧化物的整個表面,又可以設置在表面的一部分。在粒子中,較佳為以覆蓋露出的劈開面的方式形成石墨烯。在鋰錳複合氧化物的劈開面的至少一部分設置石墨烯即可。藉由將劈開面的至少一部分被石墨烯覆蓋的活性物質用於電極,可以抑制電池電壓的下降和放電容量的下降。由此,可以提高電池的充放電循環特性。
石墨烯具有撓性以及機械強度高的優良的物理特性。因此,藉由將包含上述活性物質的電極用於電池,即使電池反復充放電而導致鋰錳複合氧化物的膨脹和收縮,也可以防止體積變化導致鋰錳複合氧化物進一步劈開而裂開。
此外,在電極的製程中,當對電極施加壓力進行成形時,可以利用石墨烯的機械強度緩和施加到鋰錳複合氧化物的壓力。由此,可以防止鋰錳複合氧化物進一步劈開而裂開。
再者,在捲繞型電池中,即使當捲繞電極時產生較大的應力,或者即使在將電極的捲繞體容納於外殼時,在電極中產生向捲繞軸的外側的應力,也可以防止鋰錳複合氧化物進一步劈開而裂開。
〈電極結構〉
接著,對使用本發明的一個實施方式的粒子的電極進行說明。
圖5A是電極100的俯視圖,圖5B是示出圖5A的由虛線圍繞的部分的剖面的圖。電極100具有在集電器101上設置有活性物質層102的結構。另外,雖然圖5A示出在集電器101的兩個表面上設置有活性物質層102的例子,但是也可以只在集電器101的一個表面上設置有活性物質層102。
作為集電器101,只要是在蓄電裝置中不會引起顯然的化學变化而呈現高導電性的材料,就沒有特別的限制。例如,可以使用不鏽鋼、金、鉑、鋅、鐵、鎳、銅、鋁、鈦、鉭、錳等金屬、這些金屬的合金、以及燒結的碳等。此外,也可以使用碳、鎳或鈦等覆蓋銅或不鏽鋼。另外,也可以使用添加有矽、釹、鈧、鉬等提高耐熱性的元素的鋁合金。此外,也可以使用能夠與矽起反應形成矽化物的金屬元素。作為與矽起反應形成矽化物的金屬元素,有鋯、鈦、鉿、釩、鈮、鉭、鉻、鉬、鎢、鈷、鎳等。另外,作為集電器101可以適當地採用包括箔狀、板狀(片狀)、網狀、圓柱狀、線圈狀、打孔金屬網狀、擴張金屬網狀、多孔狀及不織布等的各種各樣的形狀。此外,為了提高集電器與活性物質層的密接性,集電器101也可以在其表面具有微小凹凸。另外,集電器101較佳為具有5μm以上且30μm以下的厚度。
活性物質層102包含活性物質。活性物質只是指有關作為載體的離子的嵌入及脫嵌的物質,但是在本說明書等中,將除了原本為“活性物質”的材料之外還包括導電添加劑、黏結劑等的材料也稱為活性物質層。
當作為活性物質使用負極活性物質時,例如可以使用碳類材料、合金類材料等。
作為碳類材料,有石墨、易石墨化碳(軟碳)、難石墨化碳(硬碳)、碳奈米管、石墨烯、以及碳黑等。
作為石墨,有中間相碳微球(MCMB)、焦炭基人造石墨(coke-based artificial graphite)、瀝青基人造石墨(pitch-based artificial graphite)等人造石墨或球狀化天然石墨等天然石墨。
鋰離子被嵌入在石墨中時(鋰-石墨層間化合物的生成時)的電位為與鋰金屬相同程度的低電位(0.1V以上且0.3V以下vs.Li/Li+)。由此,鋰離子二次電池可以示出高工作電壓。石墨還有如下優點:每單位體積的容量較大;體積膨脹小;較便宜;與鋰金屬相比安全性高等,所以是較佳的。
作為負極活性物質,可以使用合金化材料。作為合金化材料也可以使用藉由與被用作載體離子的金屬形成合金能夠進行充放電反應的材料。例如,可以使用包含Ga、Si、Al、Ge、Sn、Pb、Sb、Bi、Ag、Zn、Cd和In等中的至少一種的材料。這種元素的容量比碳大,尤其是矽的理論容量大,為4200mAh/g,所以可以增加蓄電裝置的容量。作為使用這種元素的合金類材料,例如有SiO、Mg2Si、Mg2Ge、SnO、SnO2、Mg2Sn、SnS2、V2Sn3、FeSn2、CoSn2、Ni3Sn2、Cu6Sn5、Ag3Sn、Ag3Sb、Ni2MnSb、CeSb3、LaSn3、La3Co2Sn7、CoSb3、InSb、SbSn等。
在此,為了增加蓄電裝置的容量,作為負極活性物質,較佳為使用包含矽的材料,例如矽或SiO等。在此,SiO是包含矽和氧的化合物,在矽和氧的原子數比為矽:氧=α:β的情況下,α與β較佳為大致相同。在此,大致相同例如是指α與β之差的絕對值較佳為β的值的20%以下,更佳為10%以下。
此外,作為負極活性物質,可以使用氧化物諸如二氧化鈦(TiO2)、鋰鈦氧化物(Li4Ti5O12)、鋰-石墨層間化合物(LixC6)、五氧化鈮(Nb2O5)、氧化鎢(WO2)、氧化鉬(MoO2)等。
另外,作為負極活性物質,可以使用包含鋰和過渡金屬的氮化物的具 有Li3N型結構的Li3-xMxN(M=Co、Ni、Cu)。例如,Li2.6Co0.4N3示出較大的充放電容量(900mAh/g,1890mAh/cm3),所以是較佳的。
當作為負極活性物質使用包含鋰和過渡金屬的氮化物時,在負極活性物質中包含有鋰離子,因此可以將該負極活性物質與用作正極活性物質的V2O5、Cr3O8等不包含鋰離子的材料組合,所以是較佳的。注意,當將含有鋰離子的材料用作正極活性物質時,藉由預先使包含在正極活性物質中的鋰離子脫嵌,作為負極活性物質,也可以使用包含鋰和過渡金屬的氮化物。
此外,也可以將引起轉化反應的材料用於負極活性物質。例如,將氧化鈷(CoO)、氧化鎳(NiO)、氧化鐵(FeO)等不與鋰發生合金化反應的過渡金屬氧化物用於負極活性物質。作為引起轉化反應的材料,還可以舉出Fe2O3、CuO、Cu2O、RuO2、Cr2O3等氧化物、CoS0.89、NiS、CuS等硫化物、Zn3N2、Cu3N、Ge3N4等氮化物、NiP2、FeP2、CoP3等磷化物、FeF3、BiF3等氟化物。
在作為活性物質使用正極活性物質的情況下,作為正極活性物質可以使用鋰離子能夠嵌入和脫嵌的材料。例如,可以使用具有橄欖石型結構、層狀岩鹽型結構、尖晶石型結構或鈉超離子導體(NASICON)型結晶結構的材料等。
雖然在本實施方式中對作為正極活性物質使用包含鋰錳複合氧化物的粒子的情況進行說明,但是也可以包含其他活性物質。作為其他活性物質,例如可以使用LiFeO2、LiCoO2、LiNiO2、LiMn2O4、V2O5、Cr2O5、MnO2等化合物。
或者,可以使用含鋰複合磷酸鹽(通式LiMPO4(M是Fe(II)、Mn(II)、Co(II)、Ni(II)中的一種以上))。作為通式LiMPO4的典型例子,可以舉出LiFePO4、LiNiPO4、LiCOPO4、LiMnPO4、LiFeaNibPO4、LiFeaCobPO4、LiFeaMnbPO4、LiNiaCobPO4、LiNiaMnbPO4(a+b為1以下,0<a<1,0<b<1)、LiFecNidCoePO4、LiFecNidMnePO4、LiNicCodMnePO4(c+d+e為1以下,0<c<1,0<d<1,0<e<1)、LiFefNigCohMniPO4(f+g+h+i為1以下,0<f<1,0<g<1,0<h<1,0<i<1)等鋰 金屬磷酸化合物。
此外,可以使用通式Li(2-j)MSiO4(M是Fe(II)、Mn(II)、Co(II)、Ni(II)中的一種以上,0
Figure 104134864-A0202-12-0029-121
j
Figure 104134864-A0202-12-0029-122
2)等含鋰複合矽酸鹽。作為通式Li(2-j)MSiO4的典型例子,可以舉出Li(2-j)FeSiO4、Li(2-j)NiSiO4、Li(2-j)CoSiO4、Li(2-j)MnSiO4、Li(2-j)FekNilSiO4、Li(2-j)FekColSiO4、Li(2-j)FekMnlSiO4、Li(2-j)NikColSiO4、Li(2-j)NikMnlSiO4(k+l為1以下,0<k<1,0<l<1)、Li(2-j)FemNinCoqSiO4、Li(2-j)FemNinMnqSiO4、Li(2-j)NimConMnqSiO4(m+n+q為1以下,0<m<1,0<n<1,0<q<1)、Li(2-j)FerNisCotMnuSiO4(r+s+t+u為1以下,0<r<1,0<s<1,0<t<1,0<u<1)等鋰矽酸鹽化合物。
此外,作為活性物質,可以使用以通式AxM2(XO4)3(A=Li、Na、Mg,M=Fe、Mn、Ti、V、Nb、Al,X=S、P、Mo、W、As、Si)表示的鈉超離子導體型化合物。作為鈉超離子導體型化合物,可以舉出Fe2(MnO4)3、Fe2(SO4)3、Li3Fe2(PO4)3等。此外,作為正極活性物質,可以使用:以通式Li2MPO4F、Li2MP2O7、Li5MO4(M=Fe、Mn)表示的化合物;NaF3、FeF3等鈣鈦礦氟化物;TiS2、MoS2等金屬硫族化合物(硫化物、硒化物、碲化物);LiMVO4等具有反尖晶石型的結晶結構的材料;釩氧化物(V2O5、V6O13、LiV3O8等);錳氧化物;以及有機硫化合物等材料。
另外,當載體離子是鋰離子之外的鹼金屬離子、鹼土金屬離子時,作為正極活性物質,也可以使用鹼金屬(例如,鈉、鉀等)、鹼土金屬(例如,鈣、鍶、鋇、鈹或鎂等)等的載體代替上述鋰化合物、含鋰複合磷酸鹽及含鋰複合矽酸鹽中的鋰。
正極活性物質的平均粒徑較佳為例如5nm以上且50μm以下。
活性物質層102也可以包含導電添加劑。作為導電添加劑,例如可以使用天然石墨、中間相碳微球等人造石墨、碳纖維等。作為碳纖維,例如可以使用中間相瀝青類碳纖維、各向同性瀝青類碳纖維等。作為碳纖維,可以使用碳奈米纖維或碳奈米管等。例如,可以藉由氣相生長等製造碳奈米管。作為導電添加劑,例如可以使用碳黑(乙炔黑(AB)等)或石墨烯 等碳材料。例如,可以使用銅、鎳、鋁、銀、金等的金屬粉末或金屬纖維、導電性陶瓷材料等。
片狀的石墨烯具有導電性高的優良的電特性、撓性以及機械強度高的優良的物理特性。因此,藉由將石墨烯用作導電添加劑可以增加活性物質之間的接觸點或接觸面積。
活性物質層102較佳為包含黏結劑,黏結劑更較佳為包含水溶性高分子。另外,活性物質層102也可以包含多種黏結劑。
作為黏結劑,較佳為使用聚偏氟乙烯(PVdF)、聚苯乙烯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯(PMMA)、聚丙烯酸鈉、聚乙烯醇(PVA)、聚氧化乙烯(PEO)、聚氧化丙烯、聚醯亞胺(PI)、聚氯乙烯、聚四氟乙烯、聚乙烯、聚丙烯、異丁烯、聚對苯二甲酸乙二醇酯、尼龍、聚丙烯腈(PAN)等材料。
此外,作為黏結劑可以使用苯乙烯丁二烯橡膠(SBR;styrene-butadiene rubber)、苯乙烯-異戊二烯-苯乙烯橡膠(styrene-isoprene-styrene rubber)、丙烯腈-丁二烯橡膠、丁二烯橡膠(butadiene rubber)、乙烯-丙烯-二烯共聚物(ethylene-propylene-diene copolymer)等橡膠材料。更佳的是,組合這些橡膠材料與水溶性高分子而使用。這些橡膠材料由於具有橡膠彈性而容易伸縮,因此可以得到能夠耐受應力的可靠性高的電極,該應力是因充放電而發生的活性物質的膨脹收縮、電極的彎曲等所導致的。另一方面,這些橡膠材料有時具有疏水基而不容易溶解於水。在此情況下,因為粒子在不溶解的狀態下分散在水溶液中,所以有時難以將包含用於形成活性物質層102的溶劑的組成物(也稱為電極黏結劑組成物)的黏度提高到適合於塗佈的黏度。此時藉由使用黏度調節功能高的水溶性高分子,例如是多糖類,既可以適當地提高溶液的黏度,又可以使水溶性高分子與橡膠材料均勻地分散。由此,可以得到均勻性高的良好的電極(例如,電極膜厚度或電極電阻的均勻性高的電極)。
作為水溶性高分子,例如可以使用多糖類等。作為多糖類,可以使用 羧甲基纖維素(CMC)、甲基纖維素、乙基纖維素、羥丙基纖維素及二乙醯纖維素、再生纖維素等纖維素衍生物、澱粉等。
作為黏結劑,可以分別單獨使用,也可以組合兩種以上的黏結劑而使用。
〈電極的製造方法〉
下面,對本發明的一個實施方式的電極100的製造方法進行說明。
首先,製造電極黏結劑組成物。例如,使用上述活性物質,添加黏結劑或導電添加劑等,與溶劑一起進行混煉,可以製造電極黏結劑組成物。電極黏結劑組成物既可以是漿料狀,又可以是膏狀。作為溶劑,例如可以使用水或NMP(N-甲基-2-吡咯烷酮)等。從安全性及成本的觀點來看,較佳為使用水。
作為一個例子,說明電極100是蓄電池用正極的情況。在此,說明如下情況:作為活性物質使用根據本發明的一個實施方式的活性物質,作為導電添加劑使用乙炔黑,作為黏結劑使用PVdF,作為溶劑使用NMP的情況。
首先,混合根據本發明的一個實施方式的活性物質、乙炔黑、聚偏氟乙烯。直到得到規定的黏度為止對這些混合物添加NMP,進行混煉,由此可以形成電極黏結劑組成物。在上述製程中,也可以反復進行混煉和極性溶劑的添加。電極黏結劑組成物既可以是漿料狀,又可以是膏狀。
藉由上述製程,可以形成活性物質、導電添加劑、黏結劑的分散狀態均勻的電極黏結劑組成物。
在此,也可以在集電器上形成基底層(undercoat)。基底層是指用來降低接觸電阻並用來提高集電器與活性物質層的密接性的覆蓋層。例如,作為基底層可以使用碳層、金屬層、含有碳及高分子的層以及含有金屬及高分子的層。藉由在集電器上形成基底層,可以降低集電器與後面形成的活 性物質層的接觸電阻。另外,可以提高集電器與活性物質層的密接性。另外,在作為導電添加劑使用石墨烯的情況下,基底層較佳為在氧化石墨烯的還原製程中不溶解於還原液。
另外,作為基底層例如可以使用分散有石墨、乙炔黑等的水溶液或者混有高分子的上述水溶液,例如可以使用石墨與聚丙烯酸鈉(PAA)的混合物或者AB與PVdF的混合物等。可以將石墨與PAA的重量比設定為石墨:PAA=95:5至50:50,將AB與PVdF的混合比設定為AB:PVdF=70:30至50:50。
另外,當活性物質層與集電器的密接性以及電極強度、接觸電阻不存在問題時,不一定必須要在集電器上形成基底層。
接著,例如利用刮勻塗裝法等塗佈法將漿料塗佈於集電器的一個表面或兩個表面上。
接著,藉由以通風乾燥或減壓(真空)乾燥等方法對塗佈於集電器上的漿料進行乾燥來形成活性物質層。該乾燥例如可以使用50℃以上且180℃以下的熱風進行。藉由該步驟來使包含於活性物質層中的極性溶劑蒸發。另外,對其氛圍沒有特別的限制。
這裡,也可以藉由利用輥壓法或平板壓法等壓縮方法對活性物質層施加壓力來提高活性物質層的密度。另外,在進行按壓時,藉由以90℃以上且180℃以下,較佳為120℃以下的溫度進行加熱,以使包含於基底層或活性物質層中的黏結劑(例如,PVdF)在電極特性不發生變化的條件下軟化,由此可以進一步提高集電器與活性物質層的密接性。
接著,對活性物質層進行加熱處理,以使溶劑蒸發。加熱處理較佳為在減壓(真空)下或還原氛圍下進行。上述加熱處理製程例如較佳為以50℃以上且600℃以下,更佳為以120℃以上且500℃以下,進一步較佳為以200℃以上且400℃以下的溫度進行1小時以上且48小時以下。藉由上述加熱處理,蒸發或去除存在於活性物質層中的極性溶劑或水分。
例如,在使用本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”製造電極,並使用該電極製造蓄電池的情況下,“包含鋰錳複合氧化物的粒子”所包含的第一區域至第三區域可以在“包含鋰錳複合氧化物的粒子”的製造過程及蓄電池的製造過程的任一個中形成。
〈加熱處理〉
在此,藉由進行加熱處理,例如,有時在本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”中形成第一區域至第三區域。
“包含鋰錳複合氧化物的粒子”所包含的第一區域至第三區域也可以在製造電極之前(例如,粒子的合成之後)形成。或者,也可以在電極的形成過程中形成。另外,例如在合成粒子之後形成的第一區域至第三區域的厚度、組成和結晶結構等也可以在形成電極的過程中變化。第一區域至第三區域也可以在製造蓄電池等的各製程的加熱處理中形成。
藉由進行加熱處理,例如,黏結劑所包含的元素與包含鋰錳複合氧化物的粒子所包含的元素有時起反應。作為一個例子,對作為黏結劑使用PVdF的情況進行說明。PVdF為包含氟的高分子化合物。當將包含氟的高分子化合物用作黏結劑時,構成電極的其他的材料如活性物質、導電添加劑、集電器等所包含的元素與氟有時形成鍵合。在此,具有鍵合例如是指能夠利用XPS等進行分析而觀察到鍵合的狀態。或者,具有鍵合例如是指包含具有該鍵合的材料。例如,作為具有鍵合的材料,可以舉出金屬氟化物等。作為金屬氟化物,例如有時形成本發明的一個實施方式的鋰錳複合氧化物所包含的金屬(鋰、錳及元素M)的金屬氟化物。或者,有可能形成氟與用於集電器的金屬的鍵合。
在上述示出鋰錳複合氧化物的覆蓋層(在此為包含碳的層)的例子。覆蓋層所包含的元素與氟也可以形成鍵合。例如,當作為覆蓋層使用包含碳的層時,也可以形成氟化碳。此時,該覆蓋層可以包含“包含鋰錳複合氧化物的粒子”所包含的第三區域,也可以包含第一區域或第二區域的一部分及第三區域。另外,“包含鋰錳複合氧化物的粒子”所包含的第二區 域例如也可以包含覆蓋層的一部分。
藉由形成這種鍵合,例如有時可以提高電極強度。或者,藉由預先形成鍵合,例如有時可以在對製造的蓄電池進行充放電時抑制不可逆反應。另外,有時由於充放電而使活性物質的體積變化,而導致電極強度的下降。當電極強度下降時,例如活性物質之間或活性物質與導電添加劑的密接性下降。因此,有時電極的導電通路減少而降低容量。此時,藉由形成這種鍵合,有時可以提高電極強度而提高抗體積變化的電極耐性。
為了適合形成鍵合的加熱處理的溫度例如為120℃以上,較佳為160℃以上,更佳為200℃以上,進一步較佳為250℃以上。
作為加熱處理的氛圍可以使用氧、空氣、氮、稀有氣體等的氣體。加熱處理可以在大氣壓下或減壓下進行。在此,例如當使用包含氧的氣體時,構成電極的各材料(例如,包含鋰錳複合氧化物的粒子)與黏結劑的反應被促進。“與黏結劑的反應被促進”例如是指利用XPS等的分析觀察到黏結劑所包含的元素與包含鋰錳複合氧化物的粒子所包含的元素之間的鍵合。當使用氮或稀有氣體等惰性氣體時,有時可以抑制構成電極的各材料(例如,集電器)等的變質。當在減壓下進行加熱處理時,有時可以抑制構成電極的各材料(例如,集電器)等的變質。
當加熱處理的溫度過高時,有時發生構成電極的各材料的分解等。例如,包含鋰錳複合氧化物的粒子有可能發生分解反應而在用於蓄電池時降低其容量。因此,加熱處理的溫度較佳為600℃以下,更佳為500℃以下,進一步較佳為400℃以下。
〈擠壓〉
再者,也可以對形成有活性物質層的集電器進行按壓。由此,可以提高活性物質層與集電器的密接性。另外,可以提高活性物質層的密度。在進行按壓時,藉由以90℃以上且180℃以下,較佳為120℃以下的溫度進行加熱,以使包含於基底層或活性物質層中的黏結劑(例如,PVdF)在電極特性不發生變化的條件下軟化,由此可以進一步提高集電器與活性物質層 的密接性。
最後從集電器及活性物質層以規定的尺寸沖制出電極。
在本實施方式中,說明了本發明的一個實施方式。另外,在其他的實施方式中,說明本發明的一個實施方式。注意,本發明的一個實施方式不侷限於這些。換而言之,在本實施方式及其他的實施方式中,記載有各種各樣的發明的方式,因此本發明的一個實施方式不侷限於特定的方式。例如,雖然示出將本發明的一個實施方式應用於鋰離子二次電池的例子,但是本發明的一個實施方式不侷限於此。在一些情況下,或者,根據情況,也可以將本發明的一個實施方式應用於各種各樣的二次電池,例如,鉛蓄電池、鋰離子聚合物二次電池、鎳氫蓄電池、鎳鎘蓄電池、鎳鐵蓄電池、鎳鋅蓄電池、氧化銀鋅蓄電池、固體電池、空氣電池、一次電池、電容器、鋰離子電容器等。此外,例如,在一些情況下,或者,根據情況,也可以不將本發明的一個實施方式應用於鋰離子二次電池。例如,作為本發明的一個實施方式,示出活性物質包含石墨烯或氧化石墨烯的例子,但是本發明的一個實施方式不侷限於此。在一些情況下,或者,根據情況,在本發明的一個實施方式中,也可以將石墨烯或氧化石墨烯用於容量非常大的超級電容器(雙電層電容器)用電極、氧還原電極催化劑、其摩擦力比潤滑油低的分散水的材料、顯示裝置或太陽能電池等的透明電極、氣體阻隔材料、機械強度高且輕量的高分子材料、用來檢測放射性污染水所包含的鈾或鈈的高靈敏度奈米感測器的材料或者用來去除放射性物質的材料。
本實施方式可以與其他實施方式適當地組合而實施。
實施方式2
在本實施方式中,使用本發明的一個實施方式的電極的蓄電裝置的一個例子。
在本說明書等中,蓄電裝置是指具有蓄電功能的所有元件及裝置。例如,鋰離子二次電池等蓄電池、鋰離子電容器及雙電層電容器等都包括在 蓄電裝置的範疇內。
〈薄型蓄電池〉
圖6示出作為蓄電裝置的一個例子的薄型蓄電池。藉由將具有撓性的薄型蓄電池安裝在至少一部分具有撓性的電子裝置,可以使蓄電池根據電子裝置的變形彎曲。
圖6示出薄型蓄電池500的外觀圖。圖7A及圖7B示出沿著圖6的點劃線A1-A2的剖面以及B1-B2的剖面。薄型蓄電池500包括:包含正極集電器501及正極活性物質層502的正極503;包含負極集電器504及負極活性物質層505的負極506;隔離體507;電解液508;以及外包裝體509。在設置於外包裝體509內的正極503與負極506之間設置有隔離體507。此外,在外包裝體509內充滿電解液508。
對正極503和負極506中的至少一個使用本發明的一個實施方式的電極。另外,也可以對正極503和負極506的兩者使用本發明的一個實施方式的電極。
首先,對正極503的結構進行說明。作為正極503,較佳為使用根據本發明的一個實施方式的電極。在此,示出作為正極503使用實施方式2所示的電極100的例子。
作為電解液508的溶劑,較佳為使用非質子有機溶劑,例如,可以以任意組合及比率使用碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯、碳酸氯乙烯酯、碳酸伸乙烯酯(VC)、γ-丁內酯、γ-戊內酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯、醋酸甲酯、丁酸甲酯、1,3-二氧六環、1,4-二氧六環、二甲氧基乙烷(DME)、二甲亞碸、二乙醚、甲基二甘醇二甲醚(methyl diglyme)、乙腈、苯腈、四氫呋喃、環丁碸、磺內酯等中的一種或兩種以上。
當作為電解液的溶劑使用凝膠化的高分子材料時,如防液體洩漏等的安全性得到提高。並且,能夠實現二次電池的薄型化及輕量化。作為凝膠 化的高分子材料的典型例子,可以舉出矽酮膠、丙烯酸膠、丙烯腈膠、聚氧化乙烯類膠、聚氧化丙烯類膠、氟類聚合物膠等。
藉由作為電解液的溶劑使用一種或多種具有阻燃性及難揮發性的離子液體(室溫融鹽),即使因蓄電裝置的內部短路、過充電等而使內部溫度上升也可以防止蓄電裝置的破裂或起火等。離子液體由陽離子和陰離子構成,包含有機陽離子和陰離子。作為用於電解液的有機陽離子,可以舉出四級銨陽離子、三級鋶陽離子及四級鏻陽離子等脂肪族鎓陽離子或咪唑鎓陽離子及吡啶鎓陽離子等芳香族陽離子。此外,作為用於電解液的陰離子可以舉出一價醯胺類陰離子、一價甲基化物類陰離子、氟磺酸陰離子、全氟烷基磺酸陰離子、四氟硼酸鹽、全氟烷基硼酸鹽、六氟磷酸鹽或全氟烷基磷酸鹽等。
此外,作為溶解於上述溶劑的電解質,當使用鋰離子作為載體時,例如可以以任意組合及比率使用LiPF6、LiClO4、LiAsF6、LiBF4、LiAlCl4、LiSCN、LiBr、LiI、Li2SO4、Li2B10Cl10、Li2B12Cl12、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiN(CF3SO2)2、LiN(C4F9SO2)(CF3SO2)、LiN(C2F5SO2)2等鋰鹽中的一種或兩種以上。
作為用於蓄電裝置的電解液,較佳為使用粒狀的塵埃或電解液的構成元素以外的元素(以下,簡單地稱為“雜質”)的含量少的高度純化的電解液。明確而言,雜質相對於電解液的重量比為1%以下,較佳為0.1%以下,更佳為0.01%以下。
此外,也可以對電解液添加碳酸伸乙烯酯(VC)、丙磺酸內酯(PS)、三級丁基苯(TBB)、碳酸氟乙烯酯(FEC)及LiBOB等的添加劑。將添加劑的濃度可以設定為例如在溶劑整體中佔有0.1wt%以上且5wt%以下。
另外,也可以使用使聚合物以電解液溶脹了的凝膠電解質。作為凝膠電解質(聚合物凝膠電解質)的例子,可以舉出作為擔體使用主體聚合物並浸滲有上述電解液的電解質。
下面說明主體聚合物的例子。作為主體聚合物,可以使用例如聚氧化乙烯(PEO)等具有聚氧化烷烯結構的聚合物、PVdF及聚丙烯腈等、以及包含這些的共聚物等。例如,可以使用作為PVdF及六氟丙烯(HFP)的共聚物的PVdF-HFP。此外,所形成的聚合物也可以具有多孔形狀。
此外,可以使用包含硫化物類或氧化物類等的無機材料的固體電解質、包含PEO(聚氧化乙烯)類等的高分子材料的固體電解質。當使用固體電解質時,不需要設置隔離體或間隔物。另外,由於可以使電池整體固態化,所以沒有液體洩漏的擔憂而顯著提高安全性。
作為隔離體507,例如可以使用如下材料:紙、不織布、玻璃纖維、陶瓷或包含尼龍(聚醯胺)、維尼綸(聚乙烯醇類纖維)、聚酯、丙烯酸樹脂、聚烯烴、聚氨酯的合成纖維等。
較佳為將隔離體507加工為袋狀,並以包圍正極503和負極506中的任一個的方式配置。例如,如圖8A所示,以夾著正極503的方式將隔離體507對折,使用密封部514在與正極503重疊的區域的外側進行密封,因此隔離體507可以確實地包裹正極503。如圖8B所示,交替層疊負極506及被隔離體507包裹的正極503,將它們配置在外包裝體509內,由此形成薄型蓄電池500即可。
在此,對如下例子進行說明:作為正極活性物質使用實施方式1所示的包含鋰錳複合氧化物的粒子,作為正極503使用實施方式1所示的電極,並且,作為負極活性物質使用包含矽的活性物質的例子。
由於包含矽的活性物質(例如,矽或SiO)的單位重量及單位體積的容量較大,所以可以提高蓄電池的每重量及每體積的容量。
在此,在蓄電池的充電及放電中,除了載體離子的嵌入/脫離反應之外,有時發生電解液的分解反應。該分解反應有可能在正極和負極中發生。尤其是在負極中電解液經常不對較低的電池反應電位具有耐性而分解。這種分解反應大多是不可逆反應。當發生不可逆反應時,蓄電裝置的充放電效 率有可能降低而導致容量的減少。
這種情況下,較佳為預先在設置有負極506或正極503、對電極及電解液的電池中發生不可逆反應,然後從該電池提取負極506或正極503而製造蓄電池,因為這樣可以抑制不可逆反應所引起的蓄電池的容量下降。作為對電極,使用包含載體離子的材料即可。例如,可以使用包含載體離子的金屬或包含載體離子的化合物。作為包含載體離子的金屬,例如可以舉出鋰等。另外,作為包含載體離子的化合物,例如可以舉出在實施方式1中作為正極活性物質或負極活性物質而示出的材料。
接著,說明在製造蓄電池之後的熟成製程。較佳為在製造蓄電池之後進行熟成製程。以下,說明熟成製程條件的一個例子。首先,以0.001C以上且0.2C以下的速率進行充電。將溫度設定為室溫以上且50℃以下即可。此時,如果發生電解液的分解並產生氣體,則在電池中充滿該氣體,於是在有的區域中電解液不能與電極表面接觸。就是說,電極的實效反應面積減小,實效的電流密度增高。另外,本發明的一個實施方式的包含鋰錳複合氧化物的粒子在用於正極活性物質時具有高反應電位。當正極活性物質具有較高的反應電位時,可以提高蓄電池的電壓,而可以提高蓄電池的能量密度,所以是較佳的。
有時電解液不對這種高反應電位具有耐性。例如,電解液在正極表面上分解而產生氣體。在此情況下,較佳為進行脫氣。
在電流密度過高時,對應電極的電阻發生電壓降低,鋰嵌入石墨並析出在石墨表面。該鋰析出有時導致容量的降低。例如,在鋰析出之後,如果膜等在表面上生長時,析出在表面上的鋰不能再次溶出,而增加無助於容量的鋰。在所析出的鋰物理性地破損而不能與電極導通時,同樣地產生無助於容量的鋰。因此,較佳為在因電壓降低而電極的電位到達鋰電位之前,進行脫氣。
也可以在擠壓的同時進行熟成製程。例如,也可以在製造薄型蓄電池之後,在用擠壓機進行擠壓的同時進行充放電。
由於本發明的一個實施方式的鋰錳複合氧化物具有較大的放電容量,所以是較佳的。此外,本發明的一個實施方式的鋰錳複合氧化物具有較高的電池反應電位,並具有高能量密度,所以是較佳的。
另一方面,當作為蓄電池的正極使用具有高電池反應電位的活性物質時,有時容易發生電解液的分解。當電解液分解時,有時在正極表面附近產生氣體。
當在進行擠壓的同時進行熟成製程時,有時可以將所產生的氣體壓出進行擠壓的區域外,例如蓄電池的邊緣部,所以是較佳的。
在此,例如也可以在加熱的同時進行擠壓。此外,也可以在進行熟成製程之前或之後進行擠壓,但是更佳為在進行擠壓的同時進行熟成製程。
在進行脫氣之後,也可以在高於室溫,較佳為30℃以上且60℃以下,更佳為35℃以上且50℃以下的溫度下保持充電狀態例如1小時以上且100小時以下。在初次進行充電時,在表面分解的電解液在石墨表面形成膜。因此,例如藉由在進行脫氣之後在高於室溫的溫度下保持充電狀態,所形成的膜有可能緻密化。
如圖9A所示,藉由超音波銲錫等在銲錫區域512中將正極503所具有的正極集電器銲錫到正極導線電極510。將負極506所具有的負極集電器銲錫到負極導線電極511。圖9B示出將集電器銲錫到導線電極的例子。作為例子,示出將正極集電器銲錫到正極導線電極510的情況。由於正極集電器具有圖9B所示的彎曲部513,因此可以緩和在製造蓄電池500之後因從外部施加的力量而產生的應力,可以提高蓄電池500的可靠性。
在圖6、圖7A及圖7B所示的薄型蓄電池500中,藉由超音波銲錫使正極導線電極510及負極導線電極511分別與正極503所具有的正極集電器501及負極506所具有的負極集電器504銲錫,使正極導線電極510及負極導線電極511露出到外側。正極集電器501及負極集電器504也可以兼作與 外部電接觸的端子。此時,也可以不使用導線電極而將正極集電器501及負極集電器504的一部分露出到外包裝體509的外部。
在圖6中,將正極導線電極510及負極導線電極511配置在同一邊上,但是如圖10所示,也可以將正極導線電極510及負極導線電極511配置在不同的邊上。如此,在本發明的一個實施方式的蓄電池中,可以自由地配置導線電極,因此其設計彈性高。因此,可以提高使用本發明的一個實施方式的蓄電池的產品的設計彈性。另外,可以提高使用本發明的一個實施方式的蓄電池的產品的生產率。
在薄型蓄電池500中,作為外包裝體509,例如可以使用如下三層結構的薄膜:在由聚乙烯、聚丙烯、聚碳酸酯、離子聚合物、聚醯胺等材料構成的膜上設置鋁、不鏽鋼、銅、鎳等撓性高的金屬薄膜,並且在該金屬薄膜上作為外包裝體的外表面設置聚醯胺類樹脂、聚酯類樹脂等絕緣性合成樹脂薄膜。
在圖6中,作為一個例子,相對的正極和負極的組個數為5個,但是當然電極的組個數不侷限於5個,既可以多於5個又可以少於5個。當電極層數較多時,可以實現容量更大的蓄電池。當電極層數較少時,可以實現薄型且撓性高的蓄電池。
在上述結構中,二次電池的外包裝體509可以在曲率半徑為30mm以上,較佳為曲率半徑為10mm以上的範圍內變形。作為二次電池的外包裝體的薄膜是一個或兩個,在二次電池具有疊層結構的情況下,當彎曲時電池具有由作為外包裝體的薄膜的兩個曲線圍繞的剖面結構。
參照圖11A至圖11C說明面的曲率半徑。在圖11A中,在截斷曲面1700的平面1701上,使包括在曲面1700的曲線1702的一部分近似圓弧,將該圓的半徑作為曲率半徑1703,將圓中心作為曲率中心1704。圖11B示出曲面1700的俯視圖。圖11C示出沿著平面1701截斷曲面1700時的剖面圖。當沿著平面截斷曲面時,根據相對於曲面的平面角度或截斷的位置而曲線的曲率半徑不同,在本說明書等中,將最小的曲率定義為該面的曲率半徑。
在使由作為外包裝體的兩個薄膜夾著電極及電解液等1805的二次電池彎曲的情況下,離二次電池的曲率中心1800近的薄膜1801的曲率半徑1802比離曲率中心1800遠的薄膜1803的曲率半徑1804小(圖12A)。當使二次電池彎曲並具有圓弧狀剖面時,近於曲率中心1800的薄膜的表面被施加壓縮應力,離曲率中心1800遠的薄膜的表面被施加拉伸應力(圖12B)。當在外包裝體的表面形成由凹部或凸部構成的圖案時,即便如上所述那樣被施加壓縮應力或拉伸應力也能夠將變形的影響抑制在允許範圍內。因此,二次電池可以在離曲率中心近的外包裝體的曲率半徑為30mm以上,較佳為10mm以上的範圍內變形。
此外,二次電池的剖面形狀不侷限於簡單的圓弧狀,也可以為其一部分具有圓弧的形狀,例如可以為圖12C所示的形狀、波狀(圖12D)、S字形狀等。當二次電池的曲面為具有多個曲率中心的形狀時,二次電池可以在如下範圍內變形,該範圍是在多個曲率中心的每一個的曲率半徑中的曲率半徑最小的曲面中,兩個外包裝體中的近於曲率中心一側的一個的曲率半徑為10mm以上,較佳為30mm以上的範圍。
〈硬幣型蓄電池〉
接著,作為蓄電裝置的一個例子,參照圖13A和圖13B說明硬幣型蓄電池的一個例子。圖13A是硬幣型(單層扁平型)蓄電池的外觀圖,圖13B是其剖面圖。
在硬幣型蓄電池300中,兼用作正極端子的正極罐301和兼用作負極端子的負極罐302由使用聚丙烯等形成的墊片303絕緣並密封。正極304由正極集電器305和以與此接觸的方式設置的正極活性物質層306形成。至於正極活性物質層306,可以參照正極活性物質層502的記載。
另外,負極307由負極集電器308和以與此接觸的方式設置的負極活性物質層309形成。負極活性物質層309可以參照負極活性物質層505的記載。隔離體310可以參照隔離體507的記載。電解液可以參照電解液508的記載。
用於硬幣型蓄電池300的正極304及負極307分別形成在活性物質層的一個表面即可。
作為正極罐301及負極罐302,可以使用對電解液具有抗腐蝕性的鎳、鋁、鈦等金屬、它們的合金或者它們和其他金屬的合金(例如不鏽鋼等)。另外,為了防止因電解液所引起的腐蝕,正極罐301及負極罐302較佳為被鎳或鋁等覆蓋。正極罐301與正極304電連接,並且負極罐302與負極307電連接。
藉由將這些負極307、正極304及隔離體310浸滲在電解質中,如圖13B所示,將正極罐301設置下方按順序層疊正極304、隔離體310、負極307及負極罐302,並且夾著墊片303壓合正極罐301和負極罐302來製造硬幣型蓄電池300。
〈圓筒型蓄電池〉
接著,作為蓄電裝置的一個例子示出圓筒型蓄電池。對圓筒型蓄電池,參照圖14A和圖14B進行說明。如圖14A所示,圓筒型蓄電池600在頂面具有正極蓋(電池蓋)601,並在側面及底面具有電池罐(外裝罐)602。上述正極蓋與電池罐(外裝罐)602藉由墊片(絕緣墊片)610絕緣。
圖14B是示意性地示出圓筒型蓄電池的剖面的圖。在中空圓柱狀電池罐602的內側設置有電池元件,在該電池元件中,帶狀的正極604和帶狀的負極606夾著隔離體605被捲繞。雖然未圖示,但是電池元件以中心銷為中心被捲繞。電池罐602的一端關閉且另一端開著。作為電池罐602可以使用對電解液具有抗腐蝕性的鎳、鋁、鈦等金屬、它們的合金或者它們和其他金屬的合金(例如不鏽鋼等)。另外,為了防止電解液所引起的腐蝕,電池罐602較佳為被鎳或鋁等覆蓋。在電池罐602的內側,正極、負極及隔離體被捲繞的電池元件由對置的一對絕緣板608和絕緣板609夾著。另外,在設置有電池元件的電池罐602的內部中注入有非水電解液(未圖示)。作為非水電解液,可以使用與硬幣型蓄電池相同的電解液。
可以與上述薄型蓄電池的正極及負極同樣地製造正極604及負極606。另外,因為用於圓筒型蓄電池的正極及負極被捲繞,從而活性物質較佳為形成在集電器的兩個表面。正極604與正極端子(正極集電導線)603連接,而負極606與負極端子(負極集電導線)607連接。正極端子603及負極端子607都可以使用鋁等金屬材料。將正極端子603電阻銲錫到安全閥機構612,而將負極端子607電阻銲錫到電池罐602底。安全閥機構612與正極蓋601藉由PTC(Positive Temperature Coefficient:正溫度係數)元件611電連接。當電池的內壓上升到超過指定的臨界值時,安全閥機構612切斷正極蓋601與正極604的電連接。另外,PTC元件611是在溫度上升時其電阻增大的熱敏感電阻元件,並藉由電阻的增大來限制電流量以防止異常發熱。作為PTC元件,可以使用鈦酸鋇(BaTiO3)類半導體陶瓷等。
如圖14A和圖14B所示的圓筒型蓄電池那樣,當捲繞電極時產生較大的應力。另外,在電極的捲繞體被容納於外殼的情況下,一直在電極中產生向捲繞軸的外側的應力。如此,即使較大的應力施加到電極,也可以防止活性物質的劈開。
在本實施方式中,雖然作為蓄電池示出硬幣型、圓筒型及薄型蓄電池,但是可以使用密封型蓄電池、方型蓄電池等各種形狀的蓄電池。此外,也可以採用層疊有多個正極、負極、隔離體的結構以及捲繞有正極、負極、隔離體的結構。例如,在圖15A至圖15C、圖16A至圖16C、圖17A和圖17B、圖18A1、圖18A2、圖18B1和圖18B2以及圖19A和圖19B中示出其他蓄電池的例子。
〈蓄電池的結構例子〉
在圖15A至圖16C中示出薄型蓄電池的結構例子。圖15A所示的捲繞體993包括負極994、正極995及隔離體996。
捲繞體993是夾著隔離體996使負極994和正極995彼此重疊來形成疊層片,並且將該疊層片捲繞而形成的。藉由使用方型密封容器等覆蓋該捲繞體993,製造方型二次電池。
另外,由負極994、正極995以及隔離體996構成的疊層的疊層個數根據所需的容量和元件體積適當地設計,即可。負極994藉由導線電極997和導線電極998中的一個與負極集電器(未圖示)連接,正極995藉由導線電極997和導線電極998中的另一個與正極集電器(未圖示)連接。
在圖15B及圖15C所示的蓄電池990中,在藉由熱壓合等貼合將成為外包裝體的薄膜981和具有凹部的薄膜982而形成的空間中容納上述捲繞體993。捲繞體993包括導線電極997和導線電極998,並在薄膜981和具有凹部的薄膜982所形成的空間中浸滲在電解液。
薄膜981和具有凹部的薄膜982例如由鋁等金屬材料或樹脂材料構成。當作為薄膜981及具有凹部的薄膜982的材料使用樹脂材料時,可以在從外部被施加力量時使薄膜981及具有凹部的薄膜982變形,而可以製造具有撓性的蓄電池。
此外,在圖15B及圖15C中示出使用兩個膜的例子,但是也可以將一個膜彎折形成空間,並且在該空間中容納上述捲繞體993。
藉由由樹脂材料等構成薄型蓄電池的外包裝體或密封容器,可以製造具有撓性的蓄電裝置。注意,當使用樹脂材料構成外包裝體或密封容器時,使用導電材料構成連接到外部的部分。
例如,圖16A至圖16C示出具有撓性的薄型蓄電池的其他的例子。圖16A的捲繞體993與圖15A所示的捲繞體相同,因此省略詳細的說明。
在圖16B及圖16C所示的蓄電池990中,在外包裝體991的內部容納上述捲繞體993。捲繞體993包括導線電極997及導線電極998,並在外包裝體991、外包裝體992中浸滲在電解液。外包裝體991、外包裝體992例如可以使用鋁等金屬材料或樹脂材料。當作為外包裝體991、外包裝體992的材料使用樹脂材料時,可以在從外部被施加力量時使外包裝體991、外包裝體992變形,而可以製造具有撓性的薄型蓄電池。
藉由將包含根據本發明的一個實施方式的活性物質的電極用於具有撓性的薄型蓄電池,即使由於反復彎折薄型蓄電池導致對電極施加應力,也可以防止活性物質的劈開。
由此,藉由將劈開面的至少一部分被石墨烯覆蓋的活性物質用於電極,可以抑制電池的電壓或放電容量的下降。由此,可以提高隨著充放電的電池的循環特性。
〈蓄電系統的結構例子〉
此外,對蓄電系統的結構例子,使用圖17A和圖17B、圖18A1、圖18A2、圖18B1和圖18B2以及圖19A和圖19B進行說明。在此,蓄電系統是指例如安裝有蓄電裝置的設備。
圖17A和圖17B是示出蓄電系統的外觀圖的圖。蓄電系統包括電路基板900及蓄電池913。在蓄電池913上貼合有簽條910。再者,如圖17B所示,蓄電系統包括端子951和端子952、天線914和天線915。
電路基板900包括端子911和電路912。端子911與端子951、端子952、天線914、天線915及電路912連接。另外,也可以設置多個端子911,將多個端子911分別用作控制信號輸入端子、電源端子等。
電路912也可以設置在電路基板900的背面。另外,天線914及天線915的形狀不侷限於線圈狀,例如也可以為線狀、板狀。另外,還可以使用平面天線、口徑天線、行波天線、EH天線、磁場天線或介質天線等天線。或者,天線914或天線915也可以為平板狀的導體。該平板狀的導體也可以用作電場鍵合用的導體之一。換言之,也可以將天線914或天線915用作電容器所具有的兩個導體中之一。由此,不但利用電磁、磁場,而且還可以利用電場交換電力。
天線914的線寬度較佳大於天線915的線寬度。由此,可以增大天線914所受的電力量。
蓄電裝置在天線914及天線915與蓄電池913之間包括層916。層916例如具有遮蔽來自蓄電池913的電磁場的功能。作為層916,例如可以使用磁性體。
蓄電系統的結構不侷限於圖17A和圖17B所示的結構。
例如,如圖18A1及圖18A2所示,也可以在圖17A及圖17B所示的蓄電池913的對置的一對表面分別設置天線。圖18A1是示出上述一對表面中的一個表面一側的外觀圖,圖18A2是示出上述一對表面中的另一個表面一側的外觀圖。另外,與圖17A及圖17B所示的蓄電系統相同的部分可以適當地援用圖17A及圖17B所示的蓄電系統的說明。
如圖18A1所示,在蓄電池913的一對表面中的一個表面上夾著層916設置有天線914,如圖18A2所示,在蓄電池913的一對表面中的另一個表面上夾著層917設置有天線915。層917例如具有遮蔽來自蓄電池913的電磁場的功能。作為層917,例如可以使用磁性體。
藉由採用上述結構,可以增大天線914和天線915兩者的尺寸。
或者,如圖18B1及圖18B2所示,在圖17A及圖17B所示的蓄電池913的對置的一對表面分別設置不同的天線。圖18B1是示出上述一對表面中的一個表面一側的外觀圖,圖18B2是示出上述一對表面中的另一個表面一側的外觀圖。另外,與圖17A及圖17B所示的蓄電系統相同的部分可以適當地援用圖17A及圖17B所示的蓄電系統的說明。
如圖18B1所示,在蓄電池913的一對表面中的一個表面上夾著層916設置有天線914和天線915,如圖18B2所示,在蓄電池913的一對表面中的另一個表面上夾著層917設置有天線918。天線918例如具有與外部設備進行資料通信的功能。作為天線918,例如可以使用具有應用於天線914及天線915的形狀的天線。作為利用天線918的蓄電系統與其他設備之間的通信方法,可以使用NFC等能夠在蓄電系統與其他設備之間使用的回應方式等。
或者,如圖19A所示,也可以在圖17A及圖17B所示的蓄電池913上設置顯示裝置920。顯示裝置920藉由端子919與端子911電連接。另外,也可以在設置有顯示裝置920的部分不貼合有簽條910。此外,與圖17A及圖17B所示的蓄電系統相同的部分可以適當地援用圖17A及圖17B所示的蓄電系統的說明。
在顯示裝置920上,例如可以顯示示出是否正在進行充電的影像、示出蓄電量的影像等。作為顯示裝置920,例如可以使用電子紙、液晶顯示裝置、電致發光(也稱為EL)顯示裝置等。例如,藉由使用電子紙可以降低顯示裝置920的耗電量。
或者,如圖19B所示,也可以在圖17A及圖17B所示的蓄電池913中設置感測器921。感測器921藉由端子922與端子911電連接。此外,與圖17A及圖17B所示的蓄電系統相同的部分可以適當地援用圖17A及圖17B所示的蓄電系統的說明。
感測器921例如可以具有測量如下因素的功能:力量、位移、位置、速度、加速度、角速度、轉動數、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、斜率、振動、氣味或紅外線。藉由設置感測器921,例如可以檢測出示出設置有蓄電系統的環境的資料(溫度等),而將其儲存在電路912中的記憶體。
對本實施方式所示的蓄電池或蓄電系統使用根據本發明的一個實施方式的電極。因此,可以增加蓄電池或蓄電系統的容量。另外,也可以提高能量密度。另外,也可以提高可靠性。另外,也可以延長壽命。
本實施方式可以與其他實施方式適當地組合而實施。
實施方式3
在本實施方式中,說明將具有撓性的蓄電池安裝在電子裝置的例子。
圖20A至圖20G示出將實施方式2所示的具有撓性的蓄電池安裝在電子裝置的例子。作為應用具有撓性形狀的蓄電裝置的電子裝置,例如可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、彈珠機等大型遊戲機等。
此外,也可以將具有撓性形狀的蓄電裝置沿著在房屋及高樓的內壁或外壁、汽車的內部裝修或外部裝修的曲面組裝。
圖20A示出行動電話機的一個例子。行動電話機7400除了組裝在外殼7401中的顯示部7402之外還具備操作按鈕7403、外部連接埠7404、揚聲器7405、麥克風7406等。另外,行動電話機7400具有蓄電裝置7407。
圖20B示出使行動電話機7400彎曲的狀態。在利用外部的力量使行動電話機7400變形而使其整體彎曲時,設置在其內部的蓄電裝置7407也被彎曲。圖20C示出此時被彎曲的蓄電裝置7407的狀態。蓄電裝置7407是薄型蓄電池。蓄電裝置7407在彎曲狀態下被固定。蓄電裝置7407具有與集電器7409電連接的導線電極7408。
圖20D示出手鐲型顯示裝置的一個例子。可攜式顯示裝置7100具備外殼7101、顯示部7102、操作按鈕7103及蓄電裝置7104。另外,圖20E示出被彎曲的蓄電裝置7104。當將彎曲的蓄電裝置7104戴上使用者的胳膊時,蓄電裝置7104的外殼變形,使得蓄電裝置7104的一部分或全部的曲率發生變化。以等價圓半徑的值表示曲線的任一點的彎曲程度的值是曲率半徑,並且將曲率半徑的倒數稱為曲率。明確而言,外殼或蓄電裝置7104的主表面的一部分或全部在曲率半徑為40mm以上且150mm以下的範圍變形。只要蓄電裝置7104的主表面中的曲率半徑在40mm以上且150mm以下的範圍內,就可以保持高可靠性。
圖20F是手錶型可攜式資訊終端的一個例子。可攜式資訊終端7200包括外殼7201、顯示部7202、帶子7203、帶扣7204、操作按鈕7205、輸入輸 出端子7206等。
可攜式資訊終端7200可以執行行動電話、電子郵件、文章的閱讀及編寫、音樂播放、網路通訊、電腦遊戲等各種應用程式。
顯示部7202的顯示面彎曲,能夠沿著彎曲的顯示面進行顯示。另外,顯示部7202具備觸控感測器,可以用手指或觸控筆等觸摸螢幕來進行操作。例如,藉由觸摸顯示於顯示部7202的圖示7207,可以啟動應用程式。
操作按鈕7205除了時刻設定之外,還可以具有電源開關、無線通訊的開關、靜音模式的設置及取消、省電模式的設置及取消等各種功能。例如,藉由利用組裝在可攜式資訊終端7200中的作業系統,可以自由地設定操作按鈕7205的功能。
另外,可攜式資訊終端7200可以執行被通信標準化的近距離無線通訊。例如,藉由與可無線通訊的耳麥通信,可以進行免提通話。
另外,可攜式資訊終端7200具備輸入輸出端子7206,可以藉由連接器直接向其他資訊終端發送資料或從其他資訊終端接收資料。另外,也可以藉由輸入輸出端子7206進行充電。另外,充電工作也可以利用無線供電進行,而不利用輸入輸出端子7206。
可攜式資訊終端7200的顯示部7202包括具備根據本發明的一個實施方式的電極構件的蓄電裝置。例如,可以將彎曲狀態的圖20E所示的蓄電裝置7104組裝在外殼7201的內部,或者,將能夠彎曲狀態的蓄電裝置7104組裝在帶子7203的內部。
圖20G示出袖章型顯示裝置的一個例子。顯示裝置7300具備顯示部7304以及根據本發明的一個實施方式的蓄電裝置。顯示裝置7300也可以在顯示部7304具備觸控感測器,並被用作可攜式資訊終端。
顯示部7304的顯示面彎曲,能夠沿著彎曲的顯示面進行顯示。另外, 顯示裝置7300可以利用被通信標準化的近距離無線通訊等改變顯示情況。
顯示裝置7300具備輸入輸出端子,可以藉由連接器直接向其他資訊終端發送資料或從其他資訊終端接收資料。另外,也可以藉由輸入輸出端子進行充電。另外,充電工作也可以利用無線供電進行,而不利用輸入輸出端子。
本實施方式可以與其他實施方式適當地組合而實施。
實施方式4
在本實施方式中,示出能夠安裝蓄電裝置的電子裝置的一個例子。
圖21A和圖21B示出能夠進行對折的平板終端的一個例子。圖21A及圖21B所示的平板終端9600包括外殼9630a、外殼9630b、連接外殼9630a和外殼9630b的可動部9640、具有顯示部9631a及顯示部9631b的顯示部9631、顯示模式切換開關9626、電源開關9627、省電模式切換開關9625、扣件9629以及操作開關9628。圖21A示出打開平板終端9600的狀態,圖21B示出合上平板終端9600的狀態。
平板終端9600在外殼9630a及外殼9630b的內部具備蓄電體9635。蓄電體9635穿過可動部9640設置在外殼9630a及外殼9630b。
在顯示部9631a中,可以將其一部分用作觸控面板的區域9632a,並且可以藉由接觸所顯示的操作鍵9638來輸入資料。此外,作為一個例子,顯示部9631a的一半只具有顯示的功能,並且另一半具有觸控面板的功能,但是不侷限於該結構。也可以採用顯示部9631a的整個區域具有觸控面板的功能的結構。例如,可以使顯示部9631a的整個面顯示鍵盤按鈕來將其用作觸控面板,並且將顯示部9631b用作顯示螢幕。
此外,在顯示部9631b中與顯示部9631a同樣,也可以將其一部分用作觸控面板的區域9632b。此外,藉由使用手指或觸控筆等接觸觸控面板上的 鍵盤顯示切換按鈕9639的位置上,可以在顯示部9631b上顯示鍵盤按鈕。
此外,也可以對觸控面板的區域9632a和觸控面板的區域9632b同時進行觸摸輸入。
另外,顯示模式切換開關9626能夠切換豎屏顯示和橫屏顯示等顯示的方向並選擇黑白顯示或彩色顯示等的切換。根據藉由平板終端9600所內置的光感測器所檢測的使用時的外光的光量,省電模式切換開關9625可以使顯示的亮度設定為最適合的亮度。平板終端除了光感測器以外還可以內置陀螺儀和加速度感測器等檢測傾斜度的感測器等的其他檢測裝置。
此外,圖21A示出顯示部9631b的顯示面積與顯示部9631a的顯示面積相同的例子,但是不侷限於此,既可以使一方的尺寸和另一方的尺寸不同,也可以使它們的顯示品質有差異。例如顯示部9631a和顯示部9631b中的一個可以比另一方進行更高精細的顯示。
圖21B是合上的狀態,並且平板終端包括具備外殼9630、太陽能電池9633、DCDC轉換器9636的充放電控制電路9634。作為蓄電體9635使用本發明的一個實施方式的蓄電體。
此外,平板終端9600能夠進行對折,因此不使用時可以以重疊的方式折疊外殼9630a及外殼9630b。藉由折疊外殼9630a及外殼9630b,可以保護顯示部9631a和顯示部9631b,而可以提高平板終端9600的耐久性。使用根據本發明的一個實施方式的蓄電體的蓄電體9635具有撓性,即使被反復彎曲,充放電容量也不容易減少。因此可以提供一種可靠性高的平板終端。
此外,圖21A和圖21B所示的平板終端還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等);將日曆、日期或時刻等顯示在顯示部上;對顯示在顯示部上的資訊進行操作或編輯的觸摸輸入;藉由各種各樣的軟體(程式)控制處理等。
藉由利用安裝在平板終端的表面上的太陽能電池9633,可以將電力供 應到觸控面板、顯示部或影像信號處理部等。注意,太陽能電池9633可以設置在外殼9630的一面或兩個表面,並且可以高效地對蓄電體9635進行充電。另外,當作為蓄電體9635使用鋰離子電池時,有可以實現小型化等優點。
另外,參照圖21C所示的方塊圖而對圖21B所示的充放電控制電路9634的結構和工作進行說明。圖21C示出太陽能電池9633、蓄電體9635、DCDC轉換器9636、轉換器9637、開關SW1至開關SW3以及顯示部9631,蓄電體9635、DCDC轉換器9636、轉換器9637、開關SW1至開關SW3對應圖21B所示的充放電控制電路9634。
首先,說明在利用外光使太陽能電池9633發電時的工作的例子。使用DCDC轉換器9636對太陽能電池所產生的電力進行升壓或降壓以使它成為用來對蓄電體9635進行充電的電壓。並且,當利用來自太陽能電池9633的電力使顯示部9631工作時使開關SW1導通,並且,利用轉換器9637將其升壓或降壓到顯示部9631所需要的電壓。另外,採用當不進行顯示部9631中的顯示時,使SW1截止且使SW2導通來對蓄電體9635進行充電的結構即可。
注意,作為發電單元的一個例子示出太陽能電池9633,但是不侷限於此,也可以使用壓電元件(piezoelectric element)或熱電轉換元件(珀耳帖元件(Peltier element))等其他發電單元進行蓄電體9635的充電。例如,也可以使用以無線(不接觸)的方式能夠收發電力來進行充電的無線電力傳輸模組或組合其他充電方法進行充電。
圖22示出其他電子裝置的例子。在圖22中,顯示裝置8000是使用根據本發明的一個實施方式的蓄電裝置8004的電子裝置的一個例子。明確地說,顯示裝置8000相當於電視廣播接收用顯示裝置,包括外殼8001、顯示部8002、揚聲器部8003及蓄電裝置8004等。根據本發明的一個實施方式的蓄電裝置8004設置在外殼8001的內部。顯示裝置8000既可以接受來自商業電源的電力供應,又可以使用蓄積在蓄電裝置8004中的電力。因此,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將根據本發明 的一個實施方式的蓄電裝置8004用作不斷電供應系統,也可以利用顯示裝置8000。
作為顯示部8002,可以使用半導體顯示裝置諸如液晶顯示裝置、在每個像素中具備有機EL元件等發光元件的發光裝置、電泳顯示裝置、DMD(數位微鏡裝置:Digital Micromirror Device)、PDP(電漿顯示面板:Plasma Display Panel)及FED(場致發射顯示器:Field Emission Display)等。
另外,除了電視廣播接收用的顯示裝置之外,顯示裝置還包括所有顯示資訊用顯示裝置,例如個人電腦用顯示裝置或廣告顯示用顯示裝置等。
在圖22中,安鑲型照明設備8100是使用根據本發明的一個實施方式的蓄電裝置8103的電子裝置的一個例子。明確地說,照明設備8100包括外殼8101、光源8102及蓄電裝置8103等。雖然在圖22中例示出蓄電裝置8103設置在安鑲有外殼8101及光源8102的天花板8104的內部的情況,但是蓄電裝置8103也可以設置在外殼8101的內部。照明設備8100既可以接受來自商業電源的電力供應,又可以使用蓄積在蓄電裝置8103中的電力。因此,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將根據本發明的一個實施方式的蓄電裝置8103用作不斷電供應系統,也可以利用照明設備8100。
另外,雖然在圖22中例示出設置在天花板8104的安鑲型照明設備8100,但是根據本發明的一個實施方式的蓄電裝置既可以用於設置在天花板8104以外的例如側壁8105、地板8106或窗戶8107等的安鑲型照明設備,又可以用於臺式照明設備等。
另外,作為光源8102,可以使用利用電力人工性地得到光的人工光源。明確地說,作為上述人工光源的例子,可以舉出白熾燈泡、螢光燈等放電燈以及LED或有機EL元件等發光元件。
在圖22中,具有室內機8200及室外機8204的空調器是使用根據本發明的一個實施方式的蓄電裝置8203的電子裝置的一個例子。明確地說,室 內機8200包括外殼8201、出風口8202及蓄電裝置8203等。雖然在圖22中例示出蓄電裝置8203設置在室內機8200中的情況,但是蓄電裝置8203也可以設置在室外機8204中。或者,也可以在室內機8200和室外機8204的兩者中設置有蓄電裝置8203。空調器既可以接受來自商業電源的電力供應,又可以使用蓄積在蓄電裝置8203中的電力。尤其是,當在室內機8200和室外機8204的兩者中設置有蓄電裝置8203時,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將根據本發明的一個實施方式的蓄電裝置8203用作不斷電供應系統,也可以利用空調器。
另外,雖然在圖22中例示由室內機和室外機構成的分體式空調器,但是也可以將根據本發明的一個實施方式的蓄電裝置用於在一個外殼中具有室內機的功能和室外機的功能的一體式空調器。
在圖22中,電冷藏冷凍箱8300是使用根據本發明的一個實施方式的蓄電裝置8304的電子裝置的一個例子。明確地說,電冷藏冷凍箱8300包括外殼8301、冷藏室門8302、冷凍室門8303及蓄電裝置8304等。在圖22中,蓄電裝置8304設置在外殼8301的內部。電冷藏冷凍箱8300既可以接受來自商業電源的電力供應,又可以使用蓄積在蓄電裝置8304中的電力。因此,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將根據本發明的一個實施方式的蓄電裝置8304用作不斷電供應系統,也可以利用電冷藏冷凍箱8300。
另外,在上述電子裝置中,微波爐等高頻加熱裝置和電鍋等電子裝置在短時間內需要高功率。因此,藉由將根據本發明的一個實施方式的蓄電裝置用作用來輔助商業電源不能充分供應的電力的輔助電源,在使用電子裝置時可以防止商業電源的總開關跳電。
另外,在不使用電子裝置的時間段,尤其是在商業電源的供應源能夠供應的電力總量中的實際使用的電力量的比率(稱為電力使用率)低的時間段中,將電力蓄積在蓄電裝置中,由此可以抑制在上述時間段以外的時間段中電力使用率增高。例如,在為電冷藏冷凍箱8300時,在氣溫低且不進行冷藏室門8302或冷凍室門8303的開關的夜間,將電力蓄積在蓄電裝置 8304中。並且,在氣溫高且進行冷藏室門8302或冷凍室門8303的開關的白天,將蓄電裝置8304用作輔助電源,由此可以抑制白天的電力使用率。
本實施方式可以與其他實施方式適當地組合而實施。
實施方式5
在本實施方式中,示出將蓄電裝置安裝在車輛中的例子。
當將蓄電裝置安裝在車輛時,可以實現混合動力汽車(HEV)、電動汽車(EV)或插電式混合動力汽車(PHEV)等新一代清潔能源汽車。
在圖23A和圖23B中,例示出使用本發明的一個實施方式的車輛。圖23A所示的汽車8400是作為用來行駛的動力源使用電發動機的電動汽車。或者,汽車8400是作為用來行駛的動力源能夠適當地使用電發動機或引擎的混合動力汽車。藉由使用本發明的一個實施方式,可以實現行駛距離長的車輛。另外,汽車8400具備蓄電裝置。蓄電裝置不但驅動電發動機8406,而且還可以將電力供應到車頭燈8401或室內燈(未圖示)等發光裝置。
另外,蓄電裝置可以將電力供應到汽車8400所具有的速度表、轉速計等顯示裝置。此外,蓄電裝置可以將電力供應到汽車8400所具有的導航系統等半導體裝置。
在圖23B所示的汽車8500中,可以藉由利用插件方式或非接觸供電方式等從外部的充電設備被供應電力,來對汽車8500所具有的蓄電裝置進行充電。圖23B示出從地上設置型的充電裝置8021藉由電纜8022對安裝在汽車8500中的蓄電裝置8024進行充電的情況。當進行充電時,作為充電方法或連接器的規格等,根據CHAdeMO(在日本註冊的商標)或聯合充電系統“Combined Charging System”等的規定的方式而適當地進行,即可。作為充電裝置8021,也可以使用設置在商業設施的充電站或家庭的電源。例如,藉由利用插件技術從外部供應電力,可以對安裝在汽車8500中的蓄電裝置8024進行充電。可以藉由AC/DC轉換器等轉換裝置將交流電力轉換成直流 電力來進行充電。
另外,雖然未圖示,但是也可以將受電裝置安裝在車輛中並從地上的送電裝置非接觸地供應電力來進行充電。當利用非接觸供電方式時,藉由在公路或外壁中組裝送電裝置,不但停車中而且行駛中也可以進行充電。此外,也可以利用該非接觸供電方式,在車輛之間進行電力的發送及接收。再者,還可以在車輛的外部設置太陽能電池,在停車時或行駛時進行蓄電裝置的充電。可以利用電磁感應方式或磁場共振方式實現這樣的非接觸供電。
根據本發明的一個實施方式,可以提高蓄電裝置的循環特性及可靠性。此外,根據本發明的一個實施方式,可以提高蓄電裝置的特性,而可以使蓄電裝置本身小型輕量化。另外,如果可以使蓄電裝置本身小型輕量化,就有助於實現車輛的輕量化,從而可以延長行駛距離。另外,可以將安裝在車輛中的蓄電裝置用作車輛之外的電力供應源。此時,可以避免在電力需求高峰時使用商業電源。
本實施方式可以與其他實施方式適當地組合而實施。
實施方式6
參照圖24至圖30說明可以與包含在上述實施方式中說明的材料的電池單元組合而使用的電池管理單元(Battery Management Unit:BMU)及適合於構成該電池管理單元的電路的電晶體。在本實施方式中,特別說明具有串聯連接的電池單元的蓄電裝置的電池管理單元。
當對串聯連接的多個電池單元反復進行充放電時,各電池單元之間的充放電特性變得不均勻,使得各電池單元的容量(輸出電壓)不同。串聯連接的多個電池單元整體的放電時容量取決於容量小的電池單元。在各電池單元之間的容量不均勻的情況下,所有電池單元的放電時的容量變小。當以容量小的電池單元為基準進行充電時,有充電不足的憂慮。當以容量大的電池單元為基準進行充電時,有過充電的憂慮。
由此,具有串聯連接的多個電池單元的蓄電裝置的電池管理單元具有抑制成為充電不足或過充電的原因的電池單元之間的容量不均勻的功能。作為用來抑制電池單元之間的容量不均勻的電路結構,有電阻方式、電容器方式或電感器方式等,這裡,作為一個例子舉出可以利用關態電流小的電晶體抑制容量不均勻的電路結構來進行說明。
作為關態電流小的電晶體,較佳為在通道形成區中含有氧化物半導體的電晶體(OS電晶體)。藉由將關態電流小的OS電晶體應用於蓄電裝置的電路控制單元的電路結構,可以減少從電池洩漏的電荷量,以抑制隨時間經過的容量下降。
作為用於通道形成區的氧化物半導體,使用In-M-Zn氧化物(M是Ga、Sn、Y、Zr、La、Ce或Nd)。在用來形成氧化物半導體膜的靶材中,假設金屬元素的原子數比為In:M:Zn=x1:y1:z1,x1/y1較佳為1/3以上且6以下,更佳為1以上且6以下,z1/y1較佳為1/3以上且6以下,更佳為1以上且6以下。注意,藉由使z1/y1為1以上且6以下,可以使用作氧化物半導體膜的CAAC-OS膜容易形成。
這裡,說明CAAC-OS膜。
CAAC-OS膜是包含呈c軸配向的多個結晶部的氧化物半導體膜之一。
根據利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)觀察CAAC-OS膜的明視野影像及繞射圖案的複合分析影像(也稱為高解析度TEM影像),可以觀察到多個結晶部。但是,在高解析度TEM影像中觀察不到結晶部與結晶部之間的明確的邊界,亦即晶界(grain boundary)。因此,在CAAC-OS膜中,不容易發生起因於晶界的電子移動率的降低。
根據從大致平行於樣本面的方向觀察的CAAC-OS膜的高解析度剖面TEM影像可知在結晶部中金屬原子排列為層狀。各金屬原子層具有反映了被形成CAAC-OS膜的面(也稱為被形成面)或CAAC-OS膜的頂面的凸凹 的形狀並以平行於CAAC-OS膜的被形成面或CAAC-OS膜的頂面的方式排列。
另一方面,根據從大致垂直於樣本面的方向觀察的CAAC-OS膜的高解析度平面TEM影像可知在結晶部中金屬原子排列為三角形狀或六角形狀。但是,在不同的結晶部之間金屬原子的排列沒有規律性。
使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS膜進行結構分析。例如,當利用out-of-plane法分析包括InGaZnO4結晶的CAAC-OS膜時,在繞射角(2θ)為31°附近時會出現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可知CAAC-OS膜中的結晶具有c軸配向性,並且c軸朝向大致垂直於CAAC-OS膜的被形成面或頂面的方向。
注意,當利用out-of-plane法分析包括InGaZnO4結晶的CAAC-OS膜時,除了在2θ為31°附近的峰值之外,有時還在2θ為36°附近觀察到峰值。2θ為36°附近的峰值意味著CAAC-OS膜的一部分中含有不呈c軸配向的結晶。較佳的是,在CAAC-OS膜中在2θ為31°附近時出現峰值而在2θ為36°附近時不出現峰值。
CAAC-OS膜是雜質濃度低的氧化物半導體膜。雜質是指氫、碳、矽、過渡金屬元素等氧化物半導體膜的主要成分以外的元素。尤其是,矽等元素因為其與氧的結合力比構成氧化物半導體膜的金屬元素與氧的結合力更強而成為因從氧化物半導體膜奪取氧而打亂氧化物半導體膜的原子排列使得結晶性降低的主要因素。另外,鐵或鎳等重金屬、氬、二氧化碳等因為其原子半徑(分子半徑)大而在包含在氧化物半導體膜內部時成為打亂氧化物半導體膜的原子排列使得結晶性降低的主要因素。注意,包含在氧化物半導體膜中的雜質有時成為載體陷阱或載體發生源。
另外,CAAC-OS膜是缺陷態密度低的氧化物半導體膜。例如,氧化物半導體膜中的氧缺陷有時成為載體陷阱或者藉由俘獲氫而成為載體發生源。
將雜質濃度低且缺陷態密度低(氧缺陷的個數少)的狀態稱為“高純度本質”或“實質上高純度本質”。高純度本質或實質上高純度本質的氧化物半導體膜具有較少的載體發生源,因此可以具有較低的載體密度。因此,使用該氧化物半導體膜的電晶體很少具有負臨界電壓的電特性(也稱為常導通特性)。另外,高純度本質或實質上高純度本質的氧化物半導體膜具有較少的載體陷阱。因此,使用該氧化物半導體膜的電晶體的電特性變動小,而成為高可靠性電晶體。另外,被氧化物半導體膜的載體陷阱俘獲的電荷到被釋放需要長時間,有時像固定電荷那樣動作。因此,使用雜質濃度高且缺陷態密度高的氧化物半導體膜的電晶體的電特性有時不穩定。
另外,在使用CAAC-OS膜的電晶體中,起因於可見光或紫外光的照射的電特性的變動小。
因為OS電晶體的能帶間隙比在通道形成區中含有矽的電晶體(Si電晶體)大,所以不容易發生被施加高電壓時的絕緣擊穿。在串聯連接電池單元的情況下發生幾百V的電壓,由此在蓄電裝置中,作為應用於這種電池單元的電池管理單元的電路,上述OS電晶體是適合的。
圖24示出蓄電裝置的方塊圖的一個例子。圖24所示的蓄電裝置BT00包括:端子對BT01;端子對BT02;切換控制電路BT03;切換電路BT04;切換電路BT05;變壓控制電路BT06;變壓電路BT07;以及包括串聯連接的多個電池單元BT09的電池部BT08。
另外,在圖24所示的蓄電裝置BT00中,將由端子對BT01、端子對BT02、切換控制電路BT03、切換電路BT04、切換電路BT05、變壓控制電路BT06以及變壓電路BT07構成的部分可以稱為電池管理單元。
切換控制電路BT03控制切換電路BT04及切換電路BT05的工作。明確而言,切換控制電路BT03根據每個電池單元BT09的測定電壓決定要放電的電池單元(放電電池單元群)及要充電的電池單元(充電電池單元群)。
再者,切換控制電路BT03根據上述所決定的放電電池單元群及充電電 池單元群輸出控制信號S1及控制信號S2。將控制信號S1輸出到切換電路BT04。控制信號S1是用來控制切換電路BT04以連接端子對BT01和放電電池單元群的信號。將控制信號S2輸出到切換電路BT05。控制信號S2是用來控制切換電路BT05以連接端子對BT02和充電電池單元群的信號。
另外,切換控制電路BT03根據切換電路BT04、切換電路BT05以及變壓電路BT07的連接關係產生控制信號S1及控制信號S2,以在端子對BT01與放電電池單元群之間,或者,在端子對BT02與充電電池單元群之間連接同一極性的端子。
以下詳細描述切換控制電路BT03的工作。
首先,切換控制電路BT03測定多個電池單元BT09的每一個的電壓。然後,切換控制電路BT03例如將電壓為規定臨界值以上的電池單元BT09判斷為高電壓的電池單元(高電壓單元),並將電壓低於規定臨界值的電池單元BT09判斷為低電壓的電池單元(低電壓單元)。
另外,可以使用各種方法判斷高電壓單元及低電壓單元。例如,切換控制電路BT03也可以以多個電池單元BT09中的電壓最高的電池單元BT09或電壓最低的電池單元BT09為基準判斷各電池單元BT09是高電壓單元還是低電壓單元。在此情況下,切換控制電路BT03判定各電池單元BT09的電壓相對於基準電壓是否為規定比例以上等,由此可以判斷各電池單元BT09是高電壓單元還是低電壓單元。然後,切換控制電路BT03根據上述判斷結果決定放電電池單元群和充電電池單元群。
在多個電池單元BT09中,高電壓單元和低電壓單元有可能在各種狀態下混合存在。例如,在高電壓單元和低電壓單元混合存在的狀態下,切換控制電路BT03進行如下工作:將最多的高電壓單元連續串聯連接的部分判斷為放電電池單元群;將最多的低電壓單元串連續聯連接的部分判斷為充電電池單元群。另外,切換控制電路BT03也可以將近於過充電或過放電的電池單元BT09優先地作為放電電池單元群或充電電池單元群選出。
這裡,參照圖25A至圖25C說明本實施方式中的切換控制電路BT03的工作例子。圖25A至圖25C是用來說明切換控制電路BT03的工作例子的圖。為了說明的方便起見,在圖25A至圖25C中,以四個電池單元BT09串聯連接的情況為例子進行說明。
首先,圖25A示出以電壓Va至Vd表示電池單元a至d的電壓時處於Va=Vb=Vc>Vd的關係的情況。就是說,串聯連接有連續的三個高電壓單元a至c和一個低電壓單元d。在此情況下,切換控制電路BT03將連續的三個高電壓單元a至c判定為放電電池單元群。另外,切換控制電路BT03將低電壓單元d判定為充電電池單元群。
其次,圖25B示出處於Vc>Va=Vb>>Vd的關係的情況。就是說,串聯連接有連續的兩個低電壓單元a和b、一個高電壓單元c以及一個即將成為過放電狀態的低電壓單元d。在此情況下,切換控制電路BT03將高電壓單元c判定為放電電池單元群。另外,因為低電壓單元d即將成為過放電狀態,所以切換控制電路BT03不是將連續的兩個低電壓單元a和b判定為充電電池單元群,而是將低電壓單元d優先地判定為充電電池單元群。
最後,圖25C示出處於Va>Vb=Vc=Vd的關係的情況。就是說,串聯連接有一個高電壓單元a和連續的三個低電壓單元b至d。在此情況下,切換控制電路BT03將高電壓單元a判定為放電電池單元群。另外,切換控制電路BT03將連續的三個低電壓單元b至d判定為充電電池單元群。
根據如圖25A至圖25C所示的例子那樣決定的結果,切換控制電路BT03將控制信號S1和控制信號S2分別輸出到切換電路BT04和切換電路BT05。將表示切換電路BT04的連接目標的放電電池單元群的資訊設定為控制信號S1。將表示顯示切換電路BT05的連接目標的充電電池單元群的資訊設定為控制信號S2。
對有關切換控制電路BT03的工作的詳細說明到此為止。
切換電路BT04根據從切換控制電路BT03輸出的控制信號S1將端子對 BT01的連接目標設定為由切換控制電路BT03決定的放電電池單元群。
端子對BT01由一對端子A1及端子A2構成。切換電路BT04將該一對端子A1及端子A2中的任何一個連接於放電電池單元群中的位於上游端(高電位一側)的電池單元BT09的正極端子,並將該端子A1及端子A2中的另一個連接於放電電池單元群中的位於下游端(低電位一側)的電池單元BT09的負極端子,以設定端子對BT01的連接目標。切換電路BT04根據在控制信號S1中設定的資訊得知放電電池單元群的位置。
切換電路BT05根據從切換控制電路BT03輸出的控制信號S2將端子對BT02的連接目標設定為由切換控制電路BT03決定的充電電池單元群。
端子對BT02由一對端子B1及端子B2構成。切換電路BT05將該一對端子B1及端子B2中的任何一個連接於充電電池單元群中的位於上游端(高電位一側)的電池單元BT09的正極端子,並將該端子B1及端子B2中的另一個連接於充電電池單元群中的位於下游端(低電位一側)的電池單元BT09的負極端子,以設定端子對BT02的連接目標。另外,切換電路BT05根據儲存在控制信號S2中的資訊識別充電電池單元群的位置。
圖26和圖27是示出切換電路BT04及切換電路BT05的結構例子的電路圖。
在圖26中,切換電路BT04具有多個電晶體BT10、匯流排BT11及BT12。匯流排BT11與端子A1連接。匯流排BT12與端子A2連接。多個電晶體BT10的源極和汲極中的一個的每一個交替連接於匯流排BT11及BT12。另外,多個電晶體BT10的源極和汲極中的另一個的每一個連接於相鄰的兩個電池單元BT09之間。
多個電晶體BT10中的位於上游端的電晶體BT10的源極和汲極中的另一個連接於位於電池BT08的上游端的電池單元BT09的正極端子。另外,多個電晶體BT10中的位於下游端的電晶體BT10的源極和汲極中的另一個連接於位於電池BT08的下游端的電池單元BT09的負極端子。
切換電路BT04根據被供應到多個電晶體BT10的閘極的控制信號S1使連接於匯流排BT11的多個電晶體BT10中的一個及連接於匯流排BT12的多個電晶體BT10中的一個分別成為導通狀態,以連接放電電池單元群和端子對BT01。由此,放電電池單元群中的位於上游端的電池單元BT09的正極端子連接於一對端子A1及A2中的任何一個。另外,放電電池單元群中的位於下游端的電池單元BT09的負極端子連接於一對端子A1及A2中的另一個,亦即沒連接於正極端子的一個端子。
電晶體BT10較佳為使用OS電晶體。因為OS電晶體的關態電流小,所以可以減少從不屬於放電電池單元群的電池單元洩漏的電荷量,以抑制隨時間經過的容量下降。另外,OS電晶體不容易發生被施加高電壓時的絕緣擊穿。由此,即使放電電池單元群的輸出電壓大,也可以使連接於處於非導通狀態的電晶體BT10的電池單元BT09和端子對BT01成為絕緣狀態。
另外,在圖26中,切換電路BT05具有多個電晶體BT13、電流控制開關BT14、匯流排BT15及匯流排BT16。匯流排BT15及匯流排BT16被配置在多個電晶體BT13與電流控制開關BT14之間。多個電晶體BT13的源極和汲極中的一個的每一個交替連接於匯流排BT15及匯流排BT16。另外,多個電晶體BT13的源極和汲極中的另一個的每一個連接於相鄰的兩個電池單元BT09之間。
多個電晶體BT13中的位於上游端的電晶體BT13的源極和汲極中的另一個連接於位於電池BT08的上游端的電池單元BT09的正極端子。另外,多個電晶體BT13中的位於下游端的電晶體BT13的源極和汲極中的另一個連接於位於電池BT08的下游端的電池單元BT09的負極端子。
與電晶體BT10同樣,電晶體BT13較佳為使用OS電晶體。因為OS電晶體的關態電流小,所以可以減少從不屬於充電電池單元群的電池單元洩漏的電荷量,以抑制隨時間經過的容量下降。另外,OS電晶體不容易發生被施加高電壓時的絕緣擊穿。由此,即使用來對充電電池單元群充電的電壓大,也可以使連接於處於非導通狀態的電晶體BT13的電池單元BT09和 端子對BT02成為絕緣狀態。
電流控制開關BT14具有開關對BT17和開關對BT18。開關對BT17的一端連接於端子B1。開關對BT17的另一端分歧為兩個開關,其中一個開關連接於匯流排BT15,而另一個開關連接於匯流排BT16。開關對BT18的一端連接於端子B2。開關對BT18的另一端分歧為兩個開關,其中一個開關連接於匯流排BT15,而另一個開關連接於匯流排BT16。
與電晶體BT10及電晶體BT13同樣,開關對BT17及開關對BT18所具有的開關較佳為使用OS電晶體。
切換電路BT05根據控制信號S2控制電晶體BT13及電流控制開關BT14的導通/截止狀態的組合,以連接充電電池單元群和端子對BT02。
作為一個例子,切換電路BT05使用如下方法連接充電電池單元群和端子對BT02。
切換電路BT05根據被供應到多個電晶體BT13的閘極的控制信號S2使連接於位於充電電池單元群中的上游端的電池單元BT09的正極端子的電晶體BT13成為導通狀態。另外,切換電路BT05根據被供應到多個電晶體BT13的閘極的控制信號S2使連接於位於充電電池單元群中的下游端的電池單元BT09的負極端子的電晶體BT13成為導通狀態。
被施加到端子對BT02的電壓的極性有可能根據連接於端子對BT01的放電電池單元群及變壓電路BT07的結構而變化。另外,為了使電流向對充電電池單元群充電的方向流動,需要在端子對BT02與充電電池單元群之間連接同一極性的端子。由此,電流控制開關BT14被控制信號S2控制,以使其相應於被施加到端子對BT02的電壓的極性分別切換開關對BT17及開關對BT18的連接目標。
作為一個例子,舉出將電壓施加到端子對BT02以使端子B1和B2分別成為正極和負極的狀態來進行說明。此時,在電池部BT08的下游端的電池 單元BT09為充電電池單元群的情況下,開關對BT17受到控制信號S2的控制,以使其與該電池單元BT09的正極端子連接。就是說,開關對BT17中的連接於匯流排BT16的開關成為導通狀態,而開關對BT17中的連接於匯流排BT15的開關成為截止狀態。另一方面,開關對BT18受到控制信號S2的控制,以使其與該電池單元BT09的負極端子連接。就是說,開關對BT18中的連接於匯流排BT15的開關成為導通狀態,而開關對BT18中的連接於匯流排BT16的開關成為截止狀態。如此,在端子對BT02與充電電池單元群之間連接同一極性的端子。由此,來自端子對BT02的電流的方向被控制為對充電電池單元群充電的方向。
另外,電流控制開關BT14也可以不包括在切換電路BT05中而包括在切換電路BT04中。在此情況下,根據電流控制開關BT14及控制信號S1控制被施加到端子對BT01的電壓的極性,以控制被施加到端子對BT02的電壓的極性。由此,電流控制開關BT14控制從端子對BT02流過充電電池單元群的電流的方向。
圖27是示出與圖26不同的切換電路BT04及切換電路BT05的結構例子的電路圖。
在圖27中,切換電路BT04具有多個電晶體對BT21、匯流排BT24及BT25。匯流排BT24與端子A1連接,而匯流排BT25與端子A2連接。多個電晶體對BT21的每一端被電晶體BT22及電晶體BT23分歧。電晶體BT22的源極和汲極中的一個連接於匯流排BT24。電晶體BT23的源極和汲極中的一個連接於匯流排BT25。另外,多個電晶體對BT21的每另一端連接於相鄰的兩個電池單元BT09之間。多個電晶體對BT21中的位於上游端的電晶體對BT21的另一端連接於位於電池BT08的上游端的電池單元BT09的正極端子。另外,多個電晶體對BT21中的位於下游端的電晶體對BT21的另一端連接於位於電池BT08的下游端的電池單元BT09的負極端子。
切換電路BT04根據控制信號S1切換電晶體BT22及電晶體BT23的導通/非導通狀態,以將該電晶體對BT21的連接目標切換為端子A1和A2中的任何一個。明確而言,當電晶體BT22成為導通狀態時,電晶體BT23成 為非導通狀態,其連接目標成為端子A1。另一方面,當電晶體BT23成為導通狀態時,電晶體BT22成為非導通狀態,其連接目標成為端子A2。成為導通狀態的是電晶體BT22還是電晶體BT23取決於控制信號S1。
為了連接端子對BT01和放電電池單元群,使用兩個電晶體對BT21。明確而言,藉由根據控制信號S1分別決定兩個電晶體對BT21的連接目標,連接放電電池單元群和端子對BT01。由控制信號S1控制,以使兩個電晶體對BT21的連接目標中的一個和另一個分別成為端子A1和端子A2。
切換電路BT05具有多個電晶體對BT31、匯流排BT34及BT35。匯流排BT34與端子B1連接。匯流排BT35與端子B2連接。多個電晶體對BT31的每一端被電晶體BT32及BT33分歧。被電晶體BT32分歧的一個端連接於匯流排BT34。被電晶體BT33分歧的一個端連接於匯流排BT35。另外,多個電晶體對BT31的每另一端連接於相鄰的兩個電池單元BT09之間。多個電晶體對BT31中的位於上游端的電晶體對BT31的另一端連接於位於電池BT08的上游端的電池單元BT09的正極端子。另外,多個電晶體對BT31中的位於下游端的電晶體對BT31的另一端連接於位於電池BT08的下游端的電池單元BT09的負極端子。
切換電路BT05根據控制信號S2切換電晶體BT32及電晶體BT33的導通/非導通狀態,以將該電晶體對BT31的連接目標切換為端子B1和端子B2中的任何一個。明確而言,當電晶體BT32成為導通狀態時,電晶體BT33成為非導通狀態,其連接目標成為端子B1。另一方面,當電晶體BT33成為導通狀態時,電晶體BT32成為非導通狀態,其連接目標成為端子B2。成為導通狀態的是電晶體BT32還是BT33取決於控制信號S2。
為了連接端子對BT02和充電電池單元群,使用兩個電晶體對BT31。明確而言,藉由根據控制信號S2分別決定兩個電晶體對BT31的連接目標,連接充電電池單元群和端子對BT02。由控制信號S2控制,以使兩個電晶體對BT31的連接目標中的一個和另一個分別成為端子B1和端子B2。
兩個電晶體對BT31的每個連接目標取決於被施加到端子對BT02的電 壓的極性。明確而言,在對端子對BT02施加電壓以使端子B1和端子B2分別成為正極和負極的情況下,上游側的電晶體對BT31受到控制信號S2的控制,以使電晶體BT32成為導通狀態並使電晶體BT33成為非導通狀態。另一方面,下游側的電晶體對BT31受到控制信號S2的控制,以使電晶體BT33成為導通狀態並使電晶體BT32成為非導通狀態。在對端子對BT02施加電壓以使端子B1和端子B2分別被用作負極和正極的情況下,上游側的電晶體對BT31受到控制信號S2的控制,以使電晶體BT33成為導通狀態並使電晶體BT32成為非導通狀態。另一方面,下游側的電晶體對BT31受到控制信號S2的控制,以使電晶體BT32成為導通狀態並使電晶體BT33成為非導通狀態。如此,在端子對BT02與充電電池單元群之間連接同一極性的端子。由此,來自端子對BT02的電流的方向被控制為對充電電池單元群充電的方向。
變壓控制電路BT06控制變壓電路BT07的工作。變壓控制電路BT06根據包括在放電電池單元群中的電池單元BT09的個數及包括在充電電池單元群中的電池單元BT09的個數產生控制變壓電路BT07的工作的變壓信號S3,並將其輸出到變壓電路BT07。
當包括在放電電池單元群中的電池單元BT09的個數多於包括在充電電池單元群中的電池單元BT09的個數時,需要防止對充電電池單元群施加過大的充電電壓。為此,變壓控制電路BT06輸出用來控制變壓電路BT07的變壓信號S3,以在能夠對充電電池單元群充電的範圍內降低放電電壓(Vdis)。
另外,當包括在放電電池單元群中的電池單元BT09的個數為包括在充電電池單元群中的電池單元BT09的個數以下時,需要確保足以對充電電池單元群充電的充電電壓。為此,變壓控制電路BT06輸出用來控制變壓電路BT07的變壓信號S3,以在不對充電電池單元群施加過大的充電電壓的範圍內提高放電電壓(Vdis)。
被當作過大充電電壓的電壓值可以鑒於用於電池部BT08的電池單元BT09的產品規格等而決定。另外,將被變壓電路BT07進行了升壓及降壓 的電壓作為充電電壓(Vcha)施加到端子對BT02。
這裡,參照圖28A至圖28C說明本實施方式中的變壓控制電路BT06的工作例子。圖28A至圖28C是用來說明對應於圖25A至圖25C所示的放電電池單元群及充電電池單元群的變壓控制控制電路BT06的工作例子的概念圖。圖28A至圖28C示出電池管理單元BT41。如上所述,電池管理單元BT41由端子對BT01、端子對BT02、切換控制電路BT03、切換電路BT04、切換電路BT05、變壓控制電路BT06以及變壓電路BT07構成。
在圖28A所示的例子中,如圖25A所示,串聯連接有連續的三個高電壓單元a至c和一個低電壓單元d。在此情況下,如參照圖25A所說明,切換控制電路BT03將高電壓單元a至c判定為放電電池單元群,並將低電壓單元d判定為充電電池單元群。然後,變壓控制電路BT06基於以包括在放電電池單元群中的電池單元BT09的個數為基準時的其與包括在充電電池單元群中的電池單元BT09的個數比計算出從放電電壓(Vdis)轉換為充電電壓(Vcha)的轉換比率N。
當包括在放電電池單元群中的電池單元BT09個數多於包括在充電電池單元群中的電池單元BT09時,若將放電電壓不改變地直接施加到端子對BT02,則過大的電壓可能會藉由端子對BT02被施加到包括在充電電池單元群中的電池單元BT09。因此,在圖28A所示的情況下,被施加到端子對BT02的充電電壓(Vcha)需要低於放電電壓。再者,為了對充電電池單元群充電,充電電壓需要大於包括在充電電池單元群中的電池單元BT09的總和電壓。由此,變壓控制電路BT06將轉換比率N設定為大於以包括在放電電池單元群中的電池單元BT09的個數為基準時的其與包括在充電電池單元群中的電池單元BT09的個數比。
變壓控制電路BT06較佳為將轉換比率N設定為比以包括在放電電池單元群中的電池單元BT09的個數為基準時的其與包括在充電電池單元群中的電池單元BT09的個數比大1至10%左右。此時,充電電壓雖然大於充電電池單元群的電壓,但實際上與充電電池單元群的電壓相等。注意,變壓控制電路BT06根據轉換比率N將充電電池單元群的電壓設定為與充電電壓相 等,由此使對充電電池單元群充電的電流流動。該電流為由變壓控制電路BT06設定的值。
在圖28A所示的例子中,因為包括在放電電池單元群中的電池單元BT09的個數為三個且包括在充電電池單元群中的電池單元BT09的個數為一個,所以變壓控制電路BT06將稍微大於1/3的值作為轉換比率N算出。然後,變壓控制電路BT06輸出用來將放電電壓根據該轉換比率N降低並轉換成充電電壓的變壓信號S3輸出到變壓電路BT07。變壓電路BT07將根據變壓信號S3改變的充電電壓施加到端子對BT02。然後,利用被施加到端子對BT02的充電電壓給包括在充電電池單元群中的電池單元BT09充電。
另外,在圖28B和圖28C所示的例子中,與圖28A同樣地算出轉換比率N。在圖28B和圖28C所示的例子中,包括在放電電池單元群中的電池單元BT09的個數為包括在充電電池單元群中的電池單元BT09的個數以下,由此轉換比率N成為1以上。因此,在此情況下,變壓控制電路BT06輸出用來將放電電壓升高並轉換成充電電壓的變壓信號S3。
變壓電路BT07根據變壓信號S3將被施加到端子對BT01的放電電壓改變成充電電壓。然後,變壓電路BT07將改變了的充電電壓施加到端子對BT02。這裡,變壓電路BT07對端子對BT01與端子對BT02之間進行電絕緣。由此,變壓電路BT07防止由在放電電池單元群中位於下游端的電池單元BT09的負極端子的絕對電壓與在充電電池單元群中位於下游端的電池單元BT09的負極端子的絕對電壓的差異導致的短路。再者,如上所述,變壓電路BT07根據變壓信號S3將作為放電電池單元群的總和電壓的放電電壓轉換成充電電壓。
另外,在變壓電路BT07中可以使用例如絕緣型DC(Direct Current:直流)-DC轉換器等。在此情況下,變壓控制電路BT06將控制絕緣型DC-DC轉換器的導通/截止比(工作比)的信號作為變壓信號S3輸出,以控制被變壓電路BT07轉換的充電電壓。
作為絕緣型DC-DC轉換器,有返馳式(Flyback)方式、順向式(Forward) 方式、RCC(Ringing Choke Converter:振盪阻塞轉換器)方式、推挽(Push-Pull)方式、半橋(Half-Bridge)方式、全橋(Full-Bridge)方式等,根據目標輸出電壓的大小選擇適當的方式。
圖29示出使用絕緣型DC-DC轉換器的變壓電路BT07的結構。絕緣型DC-DC轉換器BT51具有開關部BT52和變壓部BT53。開關部BT52是切換絕緣型DC-DC轉換器的工作的導通/截止的開關,例如,使用MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金屬氧化物半導體場效應電晶體)或雙極型電晶體等。另外,開關部BT52基於從變壓控制電路BT06輸出的控制導通/截止比的變壓信號S3週期性地切換絕緣型DC-DC轉換器BT51的導通狀態和截止狀態。開關部BT52的結構有可能根據所採用的絕緣型DC-DC轉換器的方式而不同。變壓部BT53將從端子對BT01施加的放電電壓轉換成充電電壓。明確而言,變壓部BT53與開關部BT52的導通/截止狀態聯動而工作,並根據該導通/截止比將放電電壓轉換成充電電壓。在開關部BT52的開關週期中成為導通狀態的時間越長,上述充電電壓越大。另一方面,在開關部BT52的開關週期中成為導通狀態的時間越短,上述充電電壓越小。在使用絕緣型DC-DC轉換器的情況下,可以在變壓部BT53的內部使端子對BT01與端子對BT02彼此絕緣。
以下參照圖30說明本實施方式中的蓄電裝置BT00的處理流程。圖30是示出蓄電裝置BT00的處理順序的流程圖。
首先,蓄電裝置BT00獲取多個電池單元BT09的每一個的測定電壓(步驟S101)。蓄電裝置BT00判定是否滿足多個電池單元BT09的電壓的調整工作的開始條件(步驟S102)。例如,該開始條件可以為如下:多個電池單元BT09的每一個的測定電壓的最大值與最小值的差值是否為規定的臨界值以上等。當不滿足該開始條件時(步驟S102:NO),各電池單元BT09之間得到平衡,由此,蓄電裝置BT00不執行以後的處理。另一方面,當滿足該開始條件時(步驟S102:YES),蓄電裝置BT00執行各電池單元BT09的電壓的調整處理。在該處理中,蓄電裝置BT00基於每個單元的測定電壓判定各電池單元BT09是高電壓單元還是低電壓單元(步驟S103)。然後,蓄電裝置BT00基於判定結果決定放電電池單元群及充電電池單元群(步驟 S104)。再者,蓄電裝置BT00生成用來將所決定的放電電池單元群設定為端子對BT01的連接目標的控制信號S1、及用來將所決定的充電電池單元群設定為端子對BT02的連接目標的控制信號S2(步驟S105)。蓄電裝置BT00將所生成的控制信號S1和S2分別輸出到切換電路BT04和BT05。由此,切換電路BT04連接端子對BT01和放電電池單元群,而切換電路BT05連接端子對BT02和充電電池單元群(步驟S106)。另外,蓄電裝置BT00基於包括在放電電池單元群中的電池單元BT09的個數及包括在充電電池單元群中的電池單元BT09的個數生成變壓信號S3(步驟S107)。然後,蓄電裝置BT00基於變壓信號S3將被施加到端子對BT01的放電電壓轉換成充電電壓,並將其施加到端子對BT02(步驟S108)。由此,放電電池單元群的電荷遷移到充電電池單元群。
雖然在圖30所示的流程圖中依次記載有多個步驟,但是各步驟的執行順序不侷限於該記載的順序。
總之,根據本實施方式,當使電荷從放電電池單元群遷移到充電電池單元群時,不需要像電容器方式那樣暫時儲存來自放電電池單元群的電荷再將其釋放到充電電池單元群的結構。由此,可以提高每單位時間的電荷移動率。另外,可以利用切換電路BT04和切換電路BT05分別獨立地切換放電電池單元群和充電電池單元群中的與變壓電路連接的電池單元。
再者,變壓電路BT07基於包括在放電電池單元群中的電池單元BT09的個數和包括在充電電池單元群中的電池單元BT09的個數將被施加到端子對BT01的放電電壓轉換成充電電壓,並將其施加到端子對BT02。由此,無論怎樣選擇放電一側及充電一側的電池單元BT09,都可以實現電荷的遷移而不發生問題。
再者,藉由使用OS電晶體作為電晶體BT10及電晶體BT13,可以減少從不屬於充電電池單元群及放電電池單元群的電池單元BT09洩漏的電荷量。由此,可以抑制不對充電及放電做貢獻的電池單元BT09的容量的下降。另外,與Si電晶體相比,OS電晶體的熱所導致的特性變動小。由此,即使電池單元BT09的溫度上升,也可以進行如根據控制信號S1及S2切換導通狀 態和非導通狀態等正常工作。
[實施例1]
在本實施例中,製造本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”,並且對其特性進行評價。參照圖1的流程圖說明製造步驟。
〈合成〉
首先,製造包含鋰錳複合氧化物的粒子。
(步驟S11)
首先,作為起始材料使用Li2CO3、MnCO3、NiO,以它們的比例(莫耳比)為Li2CO3:MnCO3:NiO=0.84:0.8062:0.318的方式進行稱量。
(步驟S12)
接著,對起始材料添加醇,然後利用珠磨機進行混合。在混合處理中,使珠磨機的處理室以10m/s的圓周速度旋轉,混合時間為30分鐘,由此得到混合原料。
(步驟S13)
接著,對混合原料進行加熱處理。藉由在大氣氛圍下以75℃的加熱溫度進行加熱處理,使包含於所混合的混合原料中的醇蒸發,由此得到混合原料。
(步驟S14)
接著,將混合材料放入熔爐中,進行燒成。在燒成處理中,採用流量為10L/min的乾燥空氣氛圍,燒成溫度為1000℃,燒成時間為10小時,由此合成鋰錳複合氧化物。
(步驟S15)
接著,為了分離一次粒子燒結而成的鋰錳複合氧化物的燒結,進行研碎處理。在研碎處理中,對燒結的鋰錳複合氧化物添加醇,然後使珠磨機 的處理室以12m/s的圓周速度旋轉,進行處理4小時,由此得到粉末狀的鋰錳複合氧化物。
(步驟S16)
接著,對研碎處理之後的鋰錳複合氧化物進行加熱處理。藉由在大氣氛圍下以75℃的加熱溫度進行加熱處理,使包含於所混合的混合原料中的醇蒸發。接著,將所得到的鋰錳複合氧化物放入熔爐中,進行燒成。在10L/min.的乾燥空氣氛圍下,以800℃進行3小時的燒成。將燒成之後得到的粉末稱為樣本A。樣本A以組成式Li1.68Mn0.8062Ni0.318O3表示,而有時與該組成稍微不同。
〈覆蓋層〉
接著,在所得到的樣本A上形成包含碳的層。首先,對0.1g的氧化石墨烯添加1g的水,使用混煉機進行混煉,製造氧化石墨烯的分散溶液。以2000rpm的轉速進行四次混煉,每次混煉為5分鐘。在第一次的混煉中,加入整個水量的十分之三,在第二次的混煉中還加入十分之三,在第三次的混煉中還加入十分之三,在第四次的混煉中還加入十分之一,由此進行混煉。
(步驟S17)
接著,對所製造的分散溶液添加5g的樣本A,還添加1.1g的水,進行四次的乾稠混煉。在乾稠混煉中,使用混煉機,以2000rpm的轉速進行混煉,每次混煉為5分鐘。在鐘罩中對得到的混合物以50℃進行減壓乾燥,然後使用氧化鋁研缽進行研碎,由此得到作為被氧化石墨烯覆蓋的鋰錳複合氧化物的樣本B。
(步驟S18)
接著,使覆蓋鋰錳複合氧化物的表面的氧化石墨烯還原。作為還原劑使用抗壞血酸,作為溶劑使用醇和水的混合溶液。在混合溶液中,醇的濃度為80體積%。加入相對於覆蓋氧化石墨烯的鋰錳複合氧化物的重量的16.87wt%的抗壞血酸和3.9wt%的氫氧化鋰,製造還原液。將所得到的粉末放入還原液中,以60℃進行3小時的處理,由此進行還原。
(步驟S19)
接著,藉由吸引過濾將得到的溶液過濾。當進行過濾時,使用顆粒保持能力為1μm的濾紙。然後,進行洗滌,再次進行過濾。
接著,使用研缽將藉由過濾得到的粉末粉碎。然後,以170℃在減壓下進行10小時的乾燥。
藉由上述製程,製造在表面形成有石墨烯的粉末狀的鋰錳複合氧化物(樣本C)。
〈電極的製造〉
下面,使用所得到的樣本C製造電極。作為活性物質使用樣本C,作為導電添加劑使用乙炔黑(AB),作為黏結劑使用PVdF。
首先,將PVdF、AB、作為極性溶劑的NMP(N-甲基-2-吡咯烷酮)混煉。以2000rpm的轉速進行五次混煉,每次混煉為5分鐘。再者,作為活性物質添加樣本C進行混煉。以2000rpm的轉速進行五次混煉,每次混煉為5分鐘。再者,添加NMP進行混煉。以2000rpm的轉速進行兩次混煉,每次混煉為10分鐘。藉由上述製程,得到漿料狀的電極黏結劑組成物。電極黏結劑組成物的混合比為樣本C:AB:PVdF=90:5:5(重量比)。
接著,將該電極黏結劑組成物塗佈在作為集電器的鋁箔上。另外,在鋁箔表面預先形成基底層。然後,在循環乾燥爐中,以80℃進行30分鐘的乾燥。
接著,以使塗佈電極之後的厚度減少20%左右的方式調整擠壓的壓力,並使用輥壓機對電極進行擠壓。擠壓溫度為120℃。
然後,還進行加熱處理。在減壓氛圍(1kPa)下,以270℃進行10小時的加熱處理。藉由上述步驟,得到包括本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”的電極X。
〈半電池特性〉
接著,使用所得到的電極X製造半電池。作為電池使用硬幣電池。另外,作為半電池的對電極使用鋰。此外,作為電解液使用如下混合溶液:作為電解質使用LiPF6,以1:1的體積比混合作為非質子有機溶劑的EC和DEC的混合溶液。另外,作為隔離體使用聚丙烯(PP)。
接著,以25℃對所製造的半電池進行熟成。明確而言,在第一循環中,以0.1C(電流密度為30mA/g)進行150mAh/g的恆流充電,然後以0.1C且以下限電壓為2V進行恆流放電,在第二循環中,以0.1C進行180mAh/g的恆流充電,然後以0.1C且以下限電壓為2V進行恆流放電,在第三循環中,以0.1C進行210mAh/g的恆流充電,然後以0.1C且以下限電壓為2V進行恆流放電,在第四循環中,以0.1C進行240mAh/g的恆流充電,然後以0.1C且以下限電壓為2V進行恆流放電,在第五循環中,以0.1C進行270mAh/g的恆流充電,然後以0.1C且以下限電壓為2V進行恆流放電。
在上述熟成之後,以25℃測量充放電特性。在以0.1C且上限電壓為4.8V的條件下進行恆流充電,在以0.1C且下限電壓為2V的條件下進行恆流放電。圖31示出所得到的充放電曲線。藉由使用根據本發明的一個實施方式的包含鋰錳複合氧化物的粒子,可以獲得超過300mAh/g的大放電容量。
[實施例2]
在本實施例中,藉由掃描穿透式電子顯微法(STEM:Scanning Transmission Electron Microscopy)、能量色散X射線光譜(EDX:Energy Dispersive X-ray spectroscopy)及奈米束電子繞射法對本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”進行評價。
首先,製造觀察用樣本H-1及電極H-3。
關於樣本H-1,進行圖1所示的步驟S11至步驟S17。關於各步驟的條件參照實施例1的條件。
使用在進行圖1所示的步驟S11至步驟S19之後得到的樣本(在此,將所得到的樣本稱為樣本H-2)製造電極H-3。關於電極的製造條件,參照實施例1所示的電極X的製造條件。
在利用FIB(Focused Ion Beam System:聚焦離子束加工觀察系統)對樣本H-1及電極H-3進行薄片化加工之後,利用掃描穿透式電子顯微法觀察樣本H-1及電極H-3。圖32A和圖32B示出TEM觀察影像。圖32A和圖32B分別示出樣本H-1和電極H-3的觀察結果。在各影像中,都觀察到本發明的一個實施方式的包含鋰錳複合氧化物的粒子141。
接著,利用EDX對圖32A和圖32B所示的以數字1至5表示的部分進行評價。表1和表2分別示出樣本H-1和電極H-3的評價結果。在表1和表2中,示出各測量點的離粒子表面的距離。圖47A至圖51B示出各測量點的光譜。圖47A、圖47B、圖48A、圖48B、圖49A分別示出樣本H-1的測量點1、測量點2、測量點3、測量點4、測量點5的光譜。圖49B、圖50A、圖50B、圖51A、圖51B分別示出電極H-3的測量點1、測量點2、測量點3、測量點4、測量點5的光譜。
[表1]
Figure 104134864-A0202-12-0078-1
Figure 104134864-A0202-12-0078-2
在此,在表1和表2中,以使錳、鎳和氧的原子數比的總和大約為100%的方式使數值正規化。
接著,將利用EDX得到的錳、鎳和氧的原子數比分別看作b、c和d,計算出各評價點的d/(b+c)(=A)的值。圖33示出標繪出樣本H-1和電極H-3的圖表,其中橫軸為離粒子表面的距離,縱軸為A值。
首先,對離表面的距離小於10nm的區域進行說明。樣本H-1的離表面1.2nm的測量點的A值為1.6,電極H-3的離表面2.2nm的測量點的A值為1.9。
接著,對離表面的距離為20nm以上的區域進行說明。樣本H-1的離表面26nm的測量點的A值為2.4,離表面的距離大於上述值的測量點的A值大於2.4。電極H-3的離表面22nm的測量點的A值為2.9,離表面的距離大 於上述值的測量點的A值大於2.9。
由此可知,在表面附近的區域和比該區域更靠近粒子內部的區域之間,對錳和鎳的原子數總和的氧的原子數之比A不同。本發明的一個實施方式的包含鋰錳複合氧化物的粒子具有至少兩個A值彼此不同的區域,兩個區域中的更靠近表面的區域的A值有時更小。
表面附近的區域,例如離表面的距離小於10nm的區域的A值小於比該區域更靠近粒子內部的區域,例如離表面的距離為20nm以上的區域的A值。
接著,圖34A和圖34B是觀察電極H-3的高角度環形暗場-掃描穿透式電子顯微法(HAADF-STEM:High-Angle Annular Dark Field Scanning Transmission Electron Microscopy)影像。圖34A和圖34B分別示出觀察圖32B中的由實線圍繞的區域142和圖32B中的由實線圍繞的區域143的結果。在此,利用球面像差校正(Spherical Aberration Corrector)功能的TEM影像進行HAADF-STEM影像的觀察。藉由將TEM觀察得到的明視野影像以及繞射圖案的複合分析影像稱為高解析度TEM影像。並且,尤其將利用球差校正功能而得到的高解析度TEM影像稱為Cs校正高解析度TEM影像。使用日本電子株式會社所製造的原子解析度分析型電子顯微鏡JEM-ARM200F來得到Cs校正高解析度TEM影像。將加速電壓設定為200kV。在此,圖34A示出離粒子表面更遠一側的由明亮的亮點形成的層V1和層V2、位於層V1和層V2之間並由比形成層V1和層V2的明亮度小的亮點形成的層T1。層V1和層T1之間的距離與層T1和層V2之間的距離大致相同。在此,例如鋰的原子序數比錳或鎳小,因此在HAADF-STEM觀察中,其明亮度更小。因此,例如,在層狀岩鹽型結構中,層T1有可能是在(001)面主要由鋰形成的層。
接著,示出位於比層V1、層V2和層T1更靠近粒子表面的區域的層U1至層U3。在此,層U1至層U3由其明亮度大致相同的亮點形成。在此,層U1和層U3之間的距離與層V1和層V2之間的距離大致相同。夾在層U1和層U3之間的層U2的亮點的明亮度比層T1大。因此,例如,層U2 中的錳和鎳的存在比有可能比層T1中大。
接著,利用奈米束電子繞射對圖39所示的TEM影像中的測量點1(*1)和測量點2(*2)進行評價。圖39所示的測量點2更靠近粒子表面,是離粒子表面的距離為10nm以內的區域。測量點1是比測量點2更靠近粒子內部的區域。圖35A和圖35B示出各測量點的奈米束電子繞射結果。圖35A和圖35B分別是圖39所示的測量點1和測量點2的奈米束電子繞射結果。
所得到的繞射圖案的斑點的位置關係(距離、角度)的實測值與JCPDS卡片的記載於No.84-1634的Li2MnO3的結晶結構的對應關係良好。更詳細地說,測量點1(圖35A)的繞射圖案與上述結晶結構中的入射方向為[-1 -1 0]的繞射圖案的對應關係良好,測量點2(圖35B)的繞射圖案與上述結晶結構中的入射方向為[3 2 -3]的繞射圖案的對應關係良好。各圖式的右側記載有對應JCPDS卡片的No.84-1634的距離、角度。各圖式的左側記載有其實測值。
對與圖39所示的粒子不同的粒子進行電子繞射。明確而言,利用奈米束電子繞射對圖40所示的TEM影像中的測量點1(*1)和測量點2(*2)進行評價。圖40所示的測量點2更靠近粒子表面,是離粒子表面的距離為10nm以內的區域。測量點1是比測量點2更靠近粒子內部的區域。圖41A和圖41B示出各測量點的奈米束電子繞射結果。圖41A和圖41B分別是圖40所示的測量點1和測量點2的奈米束電子繞射結果。
所得到的繞射圖案的斑點的位置關係(距離、角度)的實測值與JCPDS卡片的記載於No.84-1634的Li2MnO3的結晶結構的對應關係良好。更詳細地說,測量點1(圖41A)的繞射圖案與上述結晶結構中的入射方向為[1 0 0]的繞射圖案的對應關係良好,測量點2(圖41B)的繞射圖案與上述結晶結構中的入射方向為[3 2 -3]的繞射圖案的對應關係良好。各圖式的右側記載有對應JCPDS卡片的No.84-1634的距離、角度。各圖式的左側記載有其實測值。
在此,如在實施方式1中說明,第一區域和第二區域較佳為具有層狀 岩鹽型結構,並且第一區域所包括的〈1 1 0〉方位和第二區域所包括的〈3 2 -3〉方位較佳為互相平行。由於這些方位互相平行,因此例如可以邊大致保持包含鋰及錳的層或氧的層的平面內的配置邊進行結合,因此可以說兩個區域的整合性良好。
[實施例3]
在本實施例中,說明本發明的一個實施方式的粒子的表面積與特性之間的關係。
設定實施例1所示的步驟S15中的研碎條件,對該條件和所得到的粒子的表面積之間的關係進行評價。
按照圖1所示的步驟S11至步驟S19製造本發明的一個實施方式的粒子。在此,在步驟S15的研碎製程中,採用表2所示的研碎條件,製造樣本Z-1至樣本Z-6。關於樣本Z-4至樣本Z-6,不形成覆蓋層。
Figure 104134864-A0202-12-0081-3
對所得到的樣本Z-1至樣本Z-6的比表面積進行評價。表3示出其結果。
接著,使用所得到的樣本Z-1至樣本Z-6製造電極。關於電極的製造條件參照實施例1的記載。
接著,使用所製造的電極、與實施例1相同的電解液、隔離體及對電極製造硬幣型半電池。
接著,對所得到的半電池進行充放電。在上限電壓為4.8V的條件下進行30mA/g的恆流充電,在下限電壓為2.0V的條件下進行30mA/g左右的恆流放電。表3示出所得到的放電容量。
有隨著圓周速度的增大比表面積增加的傾向。在形成覆蓋層的條件下,比表面積越大容量越大,得到非常高的值,為樣本Z-2的比表面積為14.0m2/g,所得到的放電容量為274mAh/g,樣本Z-3的比表面積為14.8m2/g,所得到的放電容量為291mAh/g。
另一方面,在沒有形成覆蓋層的樣本中,雖然隨著圓周速度的增大比表面積增加,但是放電容量小,為樣本Z-5的比表面積為14.6m2/g而放電容量為91mAh/g,樣本Z-6的比表面積為30.3m2/g而放電容量為101mAh/g,所以可以想到由於利用珠磨機的研碎而例如損傷層形成在粒子表面上,或者粒子表面的層的一部分被削等現象。藉由形成被覆蓋層可以增加表面積並得到大容量。
[實施例4]
在本實施例中,使用本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”製造實施方式2所示的薄型蓄電池。
〈正極的製造〉
首先,製造本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”。
首先,進行實施例1所示的步驟S11至S14。
(步驟S15)
接著,進行研碎處理。在每鋰錳複合氧化物240g的圓周速度為8m/s下利用珠磨機進行12小時的處理。作為溶劑使用醇。
(步驟S16)
接著,對研碎處理之後的鋰錳複合氧化物進行加熱處理及乾燥。將乾燥之後得到的粉末稱為樣本A2。然後,將所得到的鋰錳複合氧化物放入熔爐中,進行燒成。在10L/min.的乾燥空氣氛圍下,以800℃進行3小時的燒成。
(步驟S17)
接著,在所得到的樣本A2上形成包含碳的層。首先,對4g的氧化石墨烯添加50ml的水,使用混煉機進行混煉,製造氧化石墨烯的分散溶液。接著,對所製造的分散溶液添加200g的樣本A2,還添加90mL的水,進行兩次的乾稠混煉。在乾稠混煉中,使用混煉機,以80rpm的轉速進行兩次混煉,每次混煉為30分鐘。在循環乾燥爐中對得到的混合物以50℃進行減壓乾燥,然後使用氧化鋁研缽進行研碎,由此得到作為被氧化石墨烯覆蓋的鋰錳複合氧化物的樣本B2。
(步驟S18)
接著,使覆蓋鋰錳複合氧化物的表面的氧化石墨烯還原。作為還原劑使用抗壞血酸,作為溶劑使用濃度為80體積%的醇水溶液。加入相對於覆蓋氧化石墨烯的鋰錳複合氧化物的重量的16.87wt%的抗壞血酸和3.9wt%的氫氧化鋰,製造還原液。將所得到的樣本B2放入還原液中,以60℃進行3小時的處理,由此進行還原。
(步驟S19)
接著,利用離心分離機從所得到的溶液分離溶劑,去除分離液。然後,添加純水進行洗滌,反復進行在進行離心分離之後去除分離液的製程四次。離心分離的轉速為9000rpm,每次離心分離為3分鐘。接著,對分離溶劑的樣本加入純水,得到濃度為121g/l的溶液。然後,將所得到的溶液加熱為 150℃,進行噴霧乾燥處理。
接著,在減壓下,對藉由進行噴霧乾燥處理得到的粉末進行10小時的乾燥。
藉由上述製程,製造在表面形成石墨烯的粉末狀的鋰錳複合氧化物(樣本C2)。
下面,使用所得到的樣本C2製造蓄電池的正極。作為活性物質使用樣本C2,作為導電添加劑使用乙炔黑(AB),作為黏結劑使用PVdF。活性物質、AB和PVdF的配合比為90:5:5(weight%)。
利用混煉機混煉活性物質、AB、PVdF和NMP,製造漿料。然後,利用連續塗佈機將漿料塗佈在進行過基底層處理的20μm厚的鋁箔的一個表面上。然後,在利用乾燥爐以70℃進行10分鐘的乾燥之後,以90℃進行10分鐘的乾燥。
然後,還進行加熱處理。在減壓氛圍(1kPa)下以250℃進行10小時的加熱處理。然後,將擠壓壓力設定為1.5MPa,將擠壓溫度設定為120℃。藉由上述製程,得到包括本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”的正極X2。所得到的正極的活性物質的含量為7.2mg/cm2
接著,使用所製造的正極X2、將石墨用作活性物質的負極製造作為在實施方式2中示出的薄型蓄電池的蓄電池A,進行正極X2的熟成。
作為蓄電池A的外包裝體,使用被熱熔接樹脂覆蓋的鋁薄膜。作為鹽使用LiPF6,作為溶劑使用混合EC、DEC以及EMC而成的溶劑,由此製造電解液。作為隔離體使用PP。
接著,邊使用壓機對所製造的蓄電池A以20MPa進行擠壓,邊對蓄電池A進行充放電三次。放電的下限電壓為2V。
〈負極的製造〉
接著,製造用於蓄電池的負極。作為活性物質使用SiO,作為導電添加劑使用AB,作為黏結劑使用聚醯亞胺。
首先,以SiO:AB:聚醯亞胺前體為80:5:15(weight%)的方式稱量SiO、AB、聚醯亞胺前體。作為聚醯亞胺前體,使用將NMP用作溶劑的濃度為13.7weight%的溶液。
首先,利用混煉機混煉SiO和AB。然後,逐漸添加NMP,利用行星方式的混煉機進行乾稠混煉,由此製造膏料。將為製造膏料添加的NMP的總量設定為膏料的固含量比的60%左右。在此,乾稠混煉是指高黏度的混煉。藉由進行乾稠混煉,可以提高活性物質和導電添加劑之間的分散性。
接著,對所製造的膏料添加將溶劑用作NMP的聚醯亞胺前體溶液,利用混煉機進行混煉。藉由上述製程,製造漿料。所得到的漿料的固含量比為40weight%。
接著,利用連續塗佈機將漿料塗佈在18μm厚的壓延銅箔的一個表面上。然後,利用乾燥爐藉由加熱處理使溶劑蒸發。以50℃進行180秒鐘的加熱處理,接著以75℃進行180秒鐘的加熱處理。將藉由上述製程得到的負極稱為負極Y。所得到的負極Y的活性物質含量為1.9mg/cm2
接著,使用所製造的負極Y、將鈷酸鋰用作活性物質的正極製造作為薄型蓄電池的蓄電池B,進行負極Y的熟成。
作為蓄電池B的外包裝體,使用被熱熔接樹脂覆蓋的鋁薄膜。作為鹽使用LiPF6,作為溶劑使用混合EC和DEC而成的溶劑,由此製造電解液。作為隔離體使用PP。
接著,對所製造的蓄電池B進行充放電。
〈蓄電池C的製造〉
開拆蓄電池A的外包裝體,取出正極X2。開拆蓄電池B的外包裝體,取出負極Y。
接著,使用所取出的正極X2、負極Y製造蓄電池C。
作為蓄電池C的外包裝體,使用被熱熔接樹脂覆蓋的鋁薄膜。此外,作為電解液使用如下混合溶液:作為電解質使用LiPF6,以3:7的體積比混合作為非質子有機溶劑的EC和DEC的混合溶液。另外,作為隔離體使用PP。
接著,對所製造的蓄電池C進行充放電。在25℃下,以4.6V為上限電壓,以0.1C(電流密度為25mA/g)進行恆流充電,以1.5V為下限電壓,以0.1C(電流密度為25mA/g)進行恆流放電。圖36示出充放電曲線。在此,橫軸表示每正極活性物質重量的容量。
藉由將每單位重量的容量大的良好材料用於正極活性物質和負極活性物質,可以得到容量大的蓄電池。
[實施例5]
在本實施例中,使用本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”製造實施方式2所示的薄型蓄電池。在本實施例中的蓄電池中,層疊多個正極活性物質層和多個負極活性物質層,以具有大容量。
〈正極的製造〉
合成用於蓄電池的正極活性物質。首先,進行實施例1所示的步驟S11至S14。
(步驟S15)
接著,進行研碎處理。在每鋰錳複合氧化物600g的圓周速度為12m/s的條件下利用珠磨機進行10小時的處理。
(步驟S16)
接著,對研碎處理之後的鋰錳複合氧化物進行加熱處理及乾燥。在以75℃利用加熱板進行加熱之後,在減壓氛圍下以100℃進行乾燥。然後,將所得到的鋰錳複合氧化物放入熔爐中,進行燒成。在10L/min.的乾燥空氣氛圍下,以800℃進行3小時的燒成。將燒成之後得到的粉末稱為樣本A3。
(步驟S17)
接著,在所得到的樣本A3上形成包含碳的層。首先,製造氧化石墨烯的水分散液。將水總量分為三等分,每次對氧化石墨烯添加水時使用混煉機進行混煉,製造氧化石墨烯的分散溶液。對10g的氧化石墨烯加入的水總量為150ml。接著,對150ml的所製造的水分散液添加500g的樣本A2、200mL的水,進行乾稠混煉。接著,在循環乾燥爐中對得到的混合物以70℃進行乾燥,然後使用氧化鋁研缽進行研碎,由此得到作為被氧化石墨烯覆蓋的鋰錳複合氧化物的樣本B3。
(步驟S18)
接著,使覆蓋鋰錳複合氧化物的表面的氧化石墨烯還原。作為還原劑使用抗壞血酸,作為溶劑使用濃度為80體積%的醇水溶液。加入相對於覆蓋氧化石墨烯的鋰錳複合氧化物的重量的16.87wt%的抗壞血酸和3.9wt%的氫氧化鋰,製造還原液。將所得到的樣本B3放入還原液中,以60℃進行3小時的處理,由此進行還原。
(步驟S19)
接著,利用離心分離機從所得到的溶液分離溶劑,去除分離液。然後,添加純水進行洗滌,反復進行在進行離心分離之後去除分離液的製程五次。離心分離的轉速為2000rpm至6000rpm,每次離心分離為3分鐘。接著,對分離溶劑的樣本加入純水。對還原之前的80g的樣本B3添加1L的水,得到溶液。然後,將所得到的溶液加熱為150℃,進行噴霧乾燥處理。
接著,在減壓下,以170℃對藉由進行噴霧乾燥處理得到的粉末進行10小時的乾燥。
藉由上述製程,製造其表面形成有石墨烯的粉末狀的鋰錳複合氧化物(樣本C3)。
接著,使用所得到的樣本C3製造蓄電池的正極。作為活性物質使用樣本C3,作為導電添加劑使用乙炔黑(AB),作為黏結劑使用PVdF。活性物質、AB和PVdF的配合比為90:5:5(weight%)。
利用混煉機混煉活性物質、AB、PVdF和NMP,製造漿料。接著,利用連續塗佈機將漿料塗佈在進行過基底層處理的20μm厚的鋁箔上。準備在鋁箔的兩個表面上設置活性物質層的正極、以及在鋁箔的一個表面上設置活性物質的正極。接著,在利用乾燥爐以70℃及10分鐘使溶劑蒸發之後,以90℃及10分鐘使溶劑蒸發。
在減壓氛圍(1kPa)下以250℃進行10小時的加熱處理。然後,使用壓機進行擠壓。藉由上述製程,得到包括本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”的正極X3。所得到的正極的每一個表面的活性物質含量為15.5mg/cm2
將鋰金屬用於所製造的正極X3的對電極,進行充放電。作為鹽使用LiPF6,作為溶劑使用聚碳酸亞乙酯(PC),由此製造電解液。放電的下限電壓為2V。
然後,從電解液取出正極X3。
〈負極的製造〉
接著,製造用於蓄電池的負極。作為活性物質使用SiO,作為導電添加劑使用AB,作為黏結劑使用聚醯亞胺。
首先,以SiO:AB:聚醯亞胺前體為80:5:15(weight%)的方式稱量SiO、AB、聚醯亞胺前體。作為聚醯亞胺前體,使用將NMP用作溶劑的濃度為13.7%的溶液。
混合SiO、AB、聚醯亞胺前體和NMP製造漿料。關於漿料的製造,參照實施例4所示的負極Y的製程。
接著,利用連續塗佈機將漿料塗佈在18μm厚的壓延銅箔上。負極活性物質層設置在銅箔的兩個表面上。然後,利用乾燥爐進行乾燥。在如下條件下進行乾燥:以50℃進行180秒鐘的加熱處理,接著,以75℃進行180秒鐘的加熱處理。將藉由上述製程得到的負極稱為負極Y2。所得到的負極Y的每一個表面的活性物質含量為1.8mg/cm2
將鋰金屬用於所製造的負極Y2的對電極,進行充電。作為鹽使用LiPF6,作為溶劑使用聚碳酸亞乙酯(PC),由此製造電解液。然後,從電解液取出負極Y2。
〈蓄電池的製造〉
接著,製造作為在實施方式2中示出的薄型蓄電池的蓄電池C2。作為正極準備一個在兩個表面上設置有活性物質層的正極X3,兩個在一個表面上設置有活性物質層的正極X3。作為負極準備兩個在兩個表面設置有活性物質層的負極Y2。
如圖37所示,依次層疊包括正極活性物質層502和作為正極集電器501的鋁箔的正極X3、隔離體507、包括負極活性物質層505、作為負極集電器504的銅箔的負極Y2。
作為蓄電池C2的外包裝體,使用被熱熔接樹脂覆蓋的鋁薄膜。此外,作為電解液使用如下混合溶液:作為電解質使用LiPF6,以3:6:1的重量比混合EC、DEC、碳酸甲乙酯(EMC)的混合溶液。另外,作為隔離體使用聚丙烯(PP)。作為添加劑添加1%以下的VC(碳酸伸乙烯酯)以及1%以下的丙磺酸內酯(PS)。
接著,對所製造的蓄電池C2進行充放電。在25℃下,以4.6V為上限電壓以0.1C(電流密度為12mA/g)進行恆流充電,以1.5V為下限電壓以0.1C(電流密度為12mA/g)進行恆流放電。圖38A示出充放電曲線。在此, 橫軸表示每正極活性物質重量的容量。另外,圖38B示出以如下容量為橫軸的充放電曲線:使用從正極和負極的重量的總和減去正極集電器和負極集電器的重量的總和而求得的值進行正規化的容量。
藉由將每單位重量的容量大的良好材料用於正極活性物質和負極活性物質,可以得到容量大的蓄電池。
[實施例6]
在本實施例中,對本發明的一個實施方式的粒子形成二次粒子的情況進行說明。
首先,進行圖1所示的步驟S11至S16,得到鋰錳複合氧化物的樣本A4。關於步驟S11至S16的製程,可以參照實施例1的記載。以下,將說明詳細的條件。
在步驟S11,以Li2CO3:MnCO3:NiO的重量比為0.84:0.8062:0.318的方式對起始材料進行稱量。
在步驟S12,利用珠磨機以圓周速度為10m/s進行30分鐘的處理。
在步驟S13,在大氣氛圍下,以75℃進行乾燥之後,在減壓下以100℃進行1小時的乾燥。
在步驟S14,在流量為10L/min.的乾燥空氣氛圍下以1000℃進行10小時的燒成。
在步驟S15,在每鋰錳複合氧化物600g的圓周速度為4m/s的條件下利用珠磨機進行25小時的處理。然後,在以75℃進行乾燥之後,以100℃進行乾燥。
在步驟S16,在流量為10L/min.的乾燥空氣氛圍下以800℃進行3小時 的燒成。將在步驟S16得到的粉末稱為樣本A4。
(步驟S17)
接著,在所得到的樣本A4上形成包含碳的層。首先,製造氧化石墨烯的水分散液。將水總量分為三等分,每次對氧化石墨烯添加水時使用混煉機進行混煉,製造氧化石墨烯的水分散液。對10g的氧化石墨烯加入的水總量為150ml。接著,對所製造的水分散液加入樣本A4和水,進行乾稠混煉。所添加的樣本A4的量為500g,水量為200ml。接著,在循環乾燥爐中對得到的混合物以70℃進行乾燥,然後使用氧化鋁研缽進行研碎,由此得到作為被氧化石墨烯覆蓋的鋰錳複合氧化物的樣本B4。
(步驟S18)
接著,使樣本B4所包含的氧化石墨烯還原。作為還原劑使用抗壞血酸,作為溶劑使用濃度為80體積%的醇水溶液。加入相對於覆蓋氧化石墨烯的鋰錳複合氧化物的重量的16.87wt%的抗壞血酸和3.9wt%的氫氧化鋰,製造還原液。將所得到的樣本B4放入還原液中,以60℃進行3小時的處理,由此進行還原。
(步驟S19)
接著,利用離心分離機從所得到的溶液分離溶劑,去除分離液。然後,添加純水進行洗滌,反復進行在進行離心分離之後去除分離液的製程五次。離心分離的轉速為6000rpm,每次離心分離為3分鐘。接著,對分離溶劑的樣本加入純水,得到其濃度互不相同的4種溶液。將該濃度互不相同的溶液分別稱為溶液A、溶液B、溶液C和溶液D。
作為溶液A,以對純水的樣本B4的量為10g/L的方式進行調整。以溶液B的濃度為100g/L的方式進行調整。以溶液C的濃度為300g/L的方式進行調整。以溶液D的濃度為500g/L的方式進行調整。然後,將溶液A至溶液D加熱為60℃。將噴霧乾燥器的入口溫度設定為150℃,對各溶液進行噴霧乾燥處理。
接著,在減壓下,以170℃對藉由對各溶液進行噴霧乾燥處理得到的粉 末進行10小時的乾燥。使用將乾燥了的各樣本分散在NMP而成的溶液進行粒徑分佈的測量。注意,在此主要測量出的是二次粒子的粒徑。使用雷射繞射式粒度分佈測定裝置(SALD-2200型、日本SHIMADZU(島津)製造)進行測量。作為細微性的計算方式,利用雷射繞射.散亂法。根據所得到的結果對其平均粒徑以及D90(在粒度分佈測定結果的粒度分佈曲線上其累積量為90%時的粒子直徑)的值進行評價。圖42示出橫軸表示粒徑、縱軸表示頻率的圖。以實線、虛線、點劃線、雙點劃線分別表示從溶液A、溶液B、溶液C和溶液D收集的樣本的結果。
從溶液A、溶液B、溶液C和溶液D收集的樣本的平均粒徑分別是3.26μm、2.45μm、3.84μm和3.40μm。
從溶液A、溶液B、溶液C和溶液D收集的樣本的D90之值分別是7.94μm、9.73μm、13.92μm和13.18μm。
從溶液C和溶液D收集的樣本的D90之值大,為13μm以上,並如圖42所示在20μm以上的區域有尾。
圖43A、圖43B、圖44A和圖44B分別示出利用SEM觀察溶液A、溶液B、溶液C和溶液D的結果。在溶液B至溶液D中,觀察到其粒徑超過15μm的二次粒子。
根據圖42至圖44B的結果可認為進行噴霧乾燥處理時的溶液濃度例如較佳為100g/L以下,更佳為10g/L以下。
[實施例7]
在本實施例中,測量出充放電時的蓄電池的氣體釋放量。
〈正極的製造〉
合成用於蓄電池的正極活性物質。進行實施例6所示的步驟S11至S14。
(步驟S15)
接著,進行研碎處理。在利用珠磨機對480g的鋰錳複合氧化物以8m/s的圓周速度進行20分鐘的處理之後,以12m/s的圓周速度進行10小時的處理。然後,進行乾燥。
(步驟S16)
接著,進行燒成。在10L/min.的乾燥空氣氛圍下,以800℃進行3小時的燒成。將在步驟S16中得到的粉末稱為樣本A5。
(步驟S17)
接著,在所得到的樣本A5上形成包含碳的層。首先,混合水和氧化石墨烯,製造氧化石墨烯的水分散液。對2g的氧化石墨烯加入的水總量為10mL。接著,對所製造的水分散液加入100g的樣本A5和20mL的水,進行乾稠混煉。接著,對所得到的混合物進行乾燥,然後使用氧化鋁研缽進行研碎,由此得到作為被氧化石墨烯覆蓋的鋰錳複合氧化物的樣本B5。
(步驟S18)
接著,使樣本B5所包含的氧化石墨烯還原。作為還原劑使用抗壞血酸,作為溶劑使用醇和水的混合溶劑。在混合溶劑中,醇的濃度為80體積%。加入相對於覆蓋氧化石墨烯的鋰錳複合氧化物的重量的16.87wt%的抗壞血酸和3.9wt%的氫氧化鋰,製造還原液。將所得到的樣本B5放入還原液中,以60℃進行3小時的處理,由此進行還原。
(步驟S19)
對所得到的溶液進行過濾,得到分離溶劑的樣本。然後,進行乾燥而得到樣本C5。
使用所得到的樣本C5製造正極。作為活性物質使用樣本C5,作為導電添加劑使用乙炔黑(AB),作為黏結劑使用PVdF。活性物質、AB和PVdF的配合比為90:5:5(weight%),作為溶劑使用NMP製造漿料。
接著,將所製造的漿料塗佈在進行過基底層處理的20μm厚的鋁箔的一個表面上。接著,進行加熱處理使溶劑蒸發。接著,進行擠壓。然後,進行加熱處理。在1kPa的壓力下以250℃進行10小時的加熱處理。
將藉由上述製程得到的正極稱為正極X4。正極X4中的活性物質含量為6.5mg/cm2
〈負極的製造〉
接著,將石墨用作活性物質製造負極。使用混煉機對石墨、碳纖維、CMC、SBR、水進行混煉,製造漿料。將石墨、碳纖維、CMC和SBR的比率設定為96:1:1:2(weight%)。
將所製造的漿料塗佈在18μm厚的壓延銅箔的一個表面上。然後,進行乾燥,形成負極活性物質層。將所得到的負極稱為負極Y3。負極Y3中的活性物質含量為8.8mg/cm2
〈比較電極的製造〉
接著,作為比較電極製造將LiFePO4用作活性物質的正極。作為集電器使用鋁箔。將所製造的正極稱為正極X5。正極X5的活性物質含量為10.8mg/cm2
〈負極的製造〉
接著,將石墨用作活性物質製造負極。使用混煉機對石墨、碳纖維、CMC、SBR、水進行混煉,製造漿料。將石墨、碳纖維、CMC和SBR的比率設定為96:1:1:2(weight%)。將所製造的漿料塗佈在18μm厚的壓延銅箔的一個表面上。然後,進行乾燥,形成負極活性物質層。將所得到的負極稱為負極Y4。負極Y4中的活性物質含量為7.5mg/cm2
〈蓄電池的製造〉
接著,使用六個所製造的正極X4、六個所製造的負極Y3製造蓄電池C3。另外,使用六個作為比較電極的正極X5、六個負極Y4製造蓄電池C4。
作為蓄電池C3和蓄電池C4的外包裝體,使用被熱熔接樹脂覆蓋的鋁薄膜。此外,作為電解液使用如下混合溶液:作為電解質使用LiPF6,以3:6:1的體積比混合EC、DEC和EMC的混合溶劑。作為添加劑使用PS和VC。作為隔離體使用PP。
以六個正極活性物質層和負極活性物質層隔著隔離體互相相對的方式層疊正極、負極和隔離體。
接著,對所製造的蓄電池C3進行充放電。在25℃下,以4.6V為上限電壓,以0.1C(電流密度為17mA/g)進行恆流充電之後,以4.6V的恆電壓和0.01C為終止條件進行充電。然後,以2.0V為下限電壓進行恆流放電。放電容量為207mAh/g。藉由將本發明的一個實施方式的粒子用作正極活性物質得到大容量。
接著,對所製造的蓄電池C4也進行充放電。在25℃下,以3.2V為上限電壓,以0.01C(電流密度為24mA/g)進行恆流充電之後,以4V為上限電壓,以0.1C進行恆流充電。然後,以2.0V為下限電壓,以0.2C進行恆流放電。接著,在以4V為上限電壓,以0.2C進行恆流充電之後,以2V為下限電壓,以0.2C進行恆流放電。在此,以正極活性物質重量使蓄電池C3、蓄電池C4的電流密度和容量正規化。第一次放電時的放電容量為109mAh/g,第二次放電時的放電容量為123mAh/g。
接著,對進行過充放電的蓄電池C3和蓄電池C4中的氣體進行取樣。
接著,使用GC-TCD(Gas Chromatography-Thermal Conductivity Detector:氣相色譜熱導檢測器)對所取樣的每個氣體進行測量。表4示出所得到的氣體的種類和存在比例。在此,表4示出H2、O2、N2、CO,CH4、CO2、C2H4及C2H6的八種氣體的存在比例的總和為100%的比例。在此,沒有數值記載的氣體意味著其氣量為檢測下限以下,或者,因為檢測出的是微量的所以難以進行定量化的情況。雖然檢測出蓄電池C4的CO2,但是其很微量。
[表4]
Figure 104134864-A0202-12-0096-4
根據表4可知,將LiFePO4用於正極的蓄電池C4中的CO2的存在比例低,而將樣本C5用於正極的蓄電池C3中的CO2的存在比例高,為在8種氣體中佔有30%。在蓄電池C3、蓄電池C4中分別檢測出45%、64%的氫。蓄電池C3中的氣體的總發生量比蓄電池C4多。
由於蓄電池C3的充電電位和放電電位高,而可以提高作為蓄電池的能量密度,所以是較佳的。另一方面,在充電電位和放電電位高時,有時容易發生電解液的氧化分解。可認為蓄電池C3的充電電壓的上限高,為4.6V,所以在充電過程等中電解液發生分解而CO2等氣體容易發生。因此,當將本發明的一個實施方式的粒子用於正極活性物質時,如實施例4及實施例5所示,藉由在對蓄電池的正極進行充放電之後,開拆蓄電池而釋放氣體,然後再次組裝蓄電池,由此可以抑制氣體的發生給蓄電池的特性所帶來的影響,所以是較佳的。
[實施例8]
在本實施例中,對被氧化石墨烯覆蓋、使用還原液的處理給蓄電池的特性帶來的影響進行調查。
首先,製造包含鋰錳複合氧化物的粒子。進行實施例6所示的步驟S11至S14。
(步驟S15)
接著,進行研碎處理。在利用珠磨機對240g的鋰錳複合氧化物以8m/s的圓周速度進行10分鐘的處理之後,以4m/s的圓周速度進行10小時的處理。然後,進行乾燥。將在此得到的粉末稱為樣本A6。
接著,準備對樣本A6進行使用還原液的處理而成的樣本(樣本B6)、使用氧化石墨烯覆蓋樣本A6而成的樣本(樣本C6)、以及對樣本A6進行使用氧化石墨烯的覆蓋以及還原處理而成的樣本(樣本D6)。
(步驟S17)
接著,在樣本A6上形成包含碳的層。首先,混合水和氧化石墨烯,製造氧化石墨烯的水分散液。對0.3g的氧化石墨烯加入的水總量為3mL。接著,對所製造的水分散液加入15g的樣本A6和3mL的水,進行乾稠混煉。接著,對所得到的混合物進行乾燥,然後使用氧化鋁研缽進行研碎,由此得到樣本C6。
(步驟S18、S19)
接著,使用抗壞血酸溶液對樣本C6、樣本A6進行處理。作為溶劑使用醇和水的混合溶劑。在混合溶劑中,醇的濃度為80體積%。加入相對於樣本C6、樣本A6的重量的17wt%左右的抗壞血酸和4wt%左右的氫氧化鋰,由此製造還原液。
將樣本C6放入還原液中,以60℃進行3小時的處理。然後,對溶液進行過濾和乾燥,得到樣本D6。將樣本A6放入還原液中,以60℃進行3小時的處理。然後,對溶液進行過濾和乾燥,得到樣本B6。
〈電極的製造〉
將所得到的樣本A6、樣本B6、樣本C6、樣本D6分別用作活性物質製造電極。作為導電添加劑使用乙炔黑(AB),作為黏結劑使用PVdF。活性物質、AB和PVdF的配合比為90:5:5(weight%),作為溶劑使用NMP製造漿料。
接著,將所製造的漿料塗佈在進行過基底層處理的20μm厚的鋁箔的一個表面上。接著,進行乾燥。接著,進行擠壓。然後,進行加熱處理。在1kPa的壓力下以250℃進行10小時的加熱處理。
將使用樣本A6、樣本B6、樣本C6、樣本D6得到的電極分別稱為電極A6、電極B6、電極C6、電極D6。電極A6、電極B6、電極C6、電極D6的活性物質含量分別為3.2mg/cm2、4.1mg/cm2、3.0mg/cm2及3.7mg/cm2
〈半電池特性〉
接著,使用所得到的電極A6、電極B6、電極C6、電極D6製造半電池。作為電池使用硬幣電池。另外,作為半電池的對電極使用鋰。此外,作為電解液使用如下混合溶液:作為電解質使用LiPF6,以1:1的體積比混合作為非質子有機溶劑的EC和DEC的混合溶液。另外,作為隔離體使用聚丙烯(PP)。
接著,對所製造的半電池的充放電循環進行評價。在上限電壓為4.8V的條件下,以0.1C進行恆流充電,在下限電壓為2V的條件下,以0.1C進行恆流放電。圖45示出橫軸表示充放電循環次數、縱軸表示放電容量的圖。
不被氧化石墨烯覆蓋且不被進行使用抗壞血酸溶液的處理的電極A6的容量從第3次循環有明顯降低,另一方面,進行使用抗壞血酸溶液的處理的電極B6的容量減少得到抑制,第10次循環的容量為初期容量的88%。被氧化石墨烯覆蓋的電極C6的第10次循環的容量為初期容量的90%以上,亦即容量減少進一步得到抑制,在被氧化石墨烯覆蓋之後使用還原液進行還原處理的電極D6的第10次循環的容量最大,為初期容量的98%。
由此可認為:當對本發明的一個實施方式的粒子進行使用抗壞血酸溶液的處理時,例如有可能在粒子的表面的至少一部分中形成比內部穩定的區域。此外,可知,包括氧化石墨或被還原的石墨的覆蓋層比被覆蓋的粒子內的區域穩定,所以蓄電池的充放電的穩定性得到提高。
[實施例9]
在本實施例中,製造本發明的一個實施方式的“包含鋰錳複合氧化物的粒子”,並且對其特性進行評價。參照圖1的流程圖說明製造步驟。
〈合成〉
首先,製造包含鋰錳複合氧化物的粒子。
(步驟S11)
首先,作為起始材料使用Li2CO3、MnCO3、NiO,以它們的比例(莫耳比)為Li2CO3:MnCO3:NiO=0.84:0.8062:0.318的方式進行稱量。
(步驟S12)
接著,對起始材料添加醇,然後利用珠磨機進行混合。珠磨機的處理室的圓周速度為10m/s。
(步驟S13)
接著,對混合原料進行加熱處理。藉由在大氣氛圍下以75℃的加熱溫度進行加熱處理,使包含於所混合的混合原料中的醇蒸發,由此得到混合原料。
(步驟S14)
接著,將混合材料放入熔爐中,進行燒成。在燒成處理中,採用流量為10L/min的乾燥空氣氛圍,燒成溫度為1000℃,燒成時間為10小時,由此合成鋰錳複合氧化物。
(步驟S15)
接著,為了分離一次粒子燒結而成的鋰錳複合氧化物的燒結,進行研碎處理。在研碎處理中,對燒結的鋰錳複合氧化物添加醇,然後使珠磨機的處理室以8m/s的圓周速度旋轉10分鐘,然後使珠磨機的處理室以4m/s的圓周速度旋轉10小時,進行處理,由此得到粉末狀的鋰錳複合氧化物。
(步驟S16)
接著,對研碎處理之後的鋰錳複合氧化物進行加熱處理。藉由在大氣氛圍下以75℃進行加熱處理,使包含於所混合的混合原料中的醇蒸發。接著,將所得到的鋰錳複合氧化物放入熔爐中,進行燒成。在10L/min.的乾燥空氣氛圍下,以700℃進行3小時的燒成。將燒成之後得到的粉末稱為樣本A。樣本A以組成式Li1.68Mn0.8062Ni0.318O3表示,而有時與該組成稍微不同。
〈覆蓋層〉
接著,在所得到的樣本A上形成包含碳的層。首先,對0.1g的氧化石墨烯添加1g的水,使用混煉機進行混煉,製造氧化石墨烯的水分散液。
(步驟S17)
接著,對所製造的水分散液添加樣本A進行混合。對1g的氧化石墨烯的樣本A的量為50g。在鐘罩中對得到的混合物以50℃進行減壓乾燥,然後使用氧化鋁研缽進行研碎,由此得到作為被氧化石墨烯覆蓋的鋰錳複合氧化物的樣本B。
(步驟S18)
接著,使覆蓋鋰錳複合氧化物的表面的氧化石墨烯還原。作為還原劑使用抗壞血酸,作為溶劑使用醇和水的混合溶劑。在混合溶劑中,醇的濃度為80體積%。加入相對於覆蓋氧化石墨烯的鋰錳複合氧化物的重量的16.87wt%的抗壞血酸和3.9wt%的氫氧化鋰,製造還原液。將所得到的粉末放入還原液中,以60℃進行3小時的處理,由此進行還原。
(步驟S19)
接著,藉由吸引過濾將得到的溶液過濾。當進行過濾時,使用顆粒保持能力為1μm的濾紙。然後,進行洗滌,再次進行過濾。
接著,對分離溶劑的樣本加入純水,得到濃度為15g/l的溶液。然後,以60℃對所得到的溶液進行加熱,將其加入噴霧乾燥器中,將溶液加熱為150℃,進行噴霧乾燥處理。
接著,在減壓下,以170℃對藉由進行噴霧乾燥處理得到的粉末進行10小時的乾燥。
使用研缽將所得到的粉末粉碎。然後,以170℃在減壓下進行10小時的乾燥。
藉由上述製程,製造在表面形成有石墨烯的粉末狀的鋰錳複合氧化物(樣本C)。
〈電極的製造〉
下面,使用所得到的樣本C製造電極。作為活性物質使用樣本C,作為導電添加劑使用乙炔黑(AB),作為黏結劑使用PVdF。
首先,使用混煉機對PVdF、AB、作為極性溶劑的NMP(N-甲基-2-吡咯烷酮)進行混煉,得到漿料。電極黏結劑組成物的混合比為樣本C:AB:PVdF=90:5:5(重量比)。
接著,將該電極黏結劑組成物塗佈在作為集電器的鋁箔上。另外,在鋁箔表面預先形成基底層。然後,在循環乾燥爐中,以80℃進行30分鐘的乾燥。將在此得到的電極稱為電極X1。接著,以使塗佈電極之後的厚度減少20%左右的方式調整擠壓的壓力,並使用輥壓機對電極進行擠壓。另外,擠壓溫度為120℃。
然後,對電極X1進行加熱處理。在減壓氛圍(1kPa)下,以250℃進行10小時的加熱處理。藉由上述製程,得到電極X2。
〈半電池特性〉
接著,使用所得到的電極X1、電極X2製造半電池。作為電池使用硬幣電池。另外,作為半電池的對電極使用鋰。此外,作為電解液使用如下混合溶液:作為電解質使用LiPF6,以1:1的體積比混合作為非質子有機溶劑的EC和DEC的混合溶液。另外,作為隔離體使用聚丙烯(PP)。
接著,以25℃測量充放電特性。在上限電壓為4.8V的條件下進行30mA/g的恆流充電,在下限電壓為2V的條件下進行30mA/g的恆流放電。圖52示出所得到的充放電曲線。虛線表示電極X1的充放電曲線,實線表示電極X2的充放電曲線。可知對電極進行加熱處理而成的電極X2可以得到更大的容量。
[實施例10]
在本實施例中,對本發明的一個實施方式的電極的XPS分析結果進行說明。
〈合成〉
首先,按照圖1所示的步驟製造包含鋰錳複合氧化物的粒子。
(步驟S11)
首先,作為起始材料使用Li2CO3、MnCO3、NiO,以它們的比例(莫耳比)為Li2CO3:MnCO3:NiO=0.84:0.8062:0.318的方式進行稱量。
(步驟S12)
接著,對起始材料添加醇,然後利用珠磨機進行混合。珠磨機的處理室的圓周速度為10m/s。
(步驟S13)
接著,進行100℃以下的加熱處理,使醇蒸發,由此得到混合原料。
(步驟S14)
接著,將混合材料放入熔爐中,進行燒成。在流量為10L/min的乾燥空氣氛圍下,以1000℃進行10小時的燒成。
(步驟S15)
接著,對一次粒子燒結而成的鋰錳複合氧化物進行研碎處理。在研碎處理中,對600g的燒結的鋰錳複合氧化物添加醇,然後使珠磨機的處理室 的圓周速度為12m/s,進行10小時的處理。
(步驟S16)
接著,進行100℃以下的加熱處理,使醇蒸發。接著,將所得到的鋰錳複合氧化物放入熔爐中,進行燒成。在10L/min.的乾燥空氣氛圍下,以800℃進行3小時的燒成。將燒成之後得到的粉末稱為樣本A2。樣本A2以組成式Li1.68Mn0.8062Ni0.318O3表示,而有時與該組成稍微不同。
〈覆蓋層〉
接著,在所得到的樣本A2的表面上形成包含碳的層。首先,對1g的氧化石墨烯添加15mL的水,使用混煉機進行混煉,製造氧化石墨烯的水分散液。
(步驟S17)
接著,對所製造的水分散液添加樣本A2,進行混合。在此,對1g的氧化石墨烯添加50g的樣本A2。在鐘罩中對得到的混合物以70℃進行減壓乾燥,然後使用氧化鋁研缽進行研碎,由此得到作為被氧化石墨烯覆蓋的鋰錳複合氧化物的樣本B2。
(步驟S18)
接著,使覆蓋鋰錳複合氧化物的表面的氧化石墨烯還原。作為還原劑使用抗壞血酸,作為溶劑使用醇和水的混合溶劑。在混合溶劑中,醇的濃度為80體積%。加入相對於覆蓋氧化石墨烯的鋰錳複合氧化物的重量的16.87wt%的抗壞血酸和3.9wt%的氫氧化鋰,製造還原液。將所得到的粉末放入還原液中,以60℃進行3小時的處理,由此進行還原。
(步驟S19)
接著,利用離心分離機對所得到的溶液進行處理,分離溶劑和樣本。接著,對分離溶劑的樣本加入純水,得到濃度為24g/l的溶液。以60℃加熱所得到的溶液,然後在噴霧乾燥器的供應口將溶液加熱為200℃,進行噴霧乾燥處理。
接著,在減壓下,以170℃對藉由進行噴霧乾燥處理得到的粉末進行10小時的乾燥。
藉由上述製程,製造在表面形成有石墨烯的粉末狀的鋰錳複合氧化物(樣本C2)。
〈電極的製造〉
下面,使用所得到的樣本C2製造電極。作為活性物質使用樣本C2,作為導電添加劑使用乙炔黑(AB),作為黏結劑使用PVdF。
首先,使用混煉機對PVdF、AB、作為極性溶劑的NMP(N-甲基-2-吡咯烷酮)進行混煉,得到漿料。電極黏結劑組成物的混合比為樣本C:AB:PVdF=90:5:5(重量比)。
接著,將該電極黏結劑組成物塗佈在作為集電器的鋁箔上。另外,在鋁箔表面預先形成基底層。然後,在循環乾燥爐中,以80℃進行30分鐘的乾燥。將在此得到的電極稱為電極X3。接著,以使塗佈電極之後的厚度減少20%左右的方式調整擠壓的壓力,並使用輥壓機對電極X3進行擠壓。另外,擠壓溫度為120℃。
然後,對電極X3進行加熱處理。將在1kPa下以170℃對電極X3進行10小時的加熱處理而成的電極稱為電極X4。另外,將在1kPa下以250℃對電極X3進行10小時的加熱處理而成的電極稱為電極X5。
〈XPS分析〉
對所得到的電極X3、電極X4、電極X5進行XPS分析。圖53A、圖53B、圖54A及圖54B分別示出Li1s、O1s、C1s及F1s的窄譜。表5示出各電極中的Ni、Mn、Li、O、C及F的存在比例。在表5中,以六個元素的存在比例的總和為100atomic%的方式使數值正規化。
Figure 104134864-A0202-12-0104-5
Figure 104134864-A0202-12-0105-6
根據圖53A可知,電極X5的起因於LiF等的峰值強度比電極X3、電極X4增大。根據圖54A可知,與電極X3相比,由於被進行加熱處理而電極X4的CF2鍵和O-CF鍵減少,並且由於被進行更高溫度的加熱處理,電極X5的CF2鍵和O-CF鍵進一步減少。根據圖54B可知,與電極X3相比,由於被進行加熱處理而電極X4的金屬-F鍵增大,並且由於被進行更高溫度的加熱處理,電極X5的金屬-F鍵進一步增大。由此可認為:由於對電極進行加熱處理,並且進行更高的溫度加熱處理,因此PVdF所包含的CF2鍵、O-CF鍵斷開,在樣本C中的Li與因CF2鍵及O-CF鍵切斷而產生的F之間形成Li-F鍵。有可能由於形成Li-F鍵,所以電極的強度得到提高。
[實施例11]
在本實施例中,使用本發明的一個實施方式的電極製造半電池,對其特性進行評價。
〈電極的製造〉
使用藉由實施例2所示的製程得到的樣本C2製造電極。作為活性物質使用樣本C2,作為導電添加劑使用乙炔黑(AB),作為黏結劑使用聚醯亞胺。
首先,使用混煉機對聚醯亞胺(PI)前體、AB、作為極性溶劑的NMP(N-甲基-2-吡咯烷酮)進行混煉,得到漿料。電極黏結劑組成物的混合比為樣本C:AB:PI=90:5:5(重量比)。使用聚醯亞胺前體的NMP溶液。該溶液的濃度為13.7weight%。
接著,將該電極黏結劑組成物塗佈在作為集電器的鋁箔上。另外,在鋁箔表面預先形成基底層。然後,在乾燥爐中,以80℃進行30分鐘的加熱, 使溶劑蒸發。將在此得到的電極稱為電極Z1。對電極進行擠壓。
然後,在1kPa下,以300℃對電極Z1進行10小時的加熱處理。將所得到的電極稱為電極Z2。
〈半電池特性〉
接著,使用電極Z2製造半電池。作為半電池的製造條件等,採用與實施例1相同的條件。
接著,以25℃測量充放電特性。在上限電壓為4.8V的條件下進行30mA/g的恆流充電,在下限電壓為2V的條件下進行30mA/g的恆流放電。圖55示出所得到的充放電曲線。可知對電極進行300℃的高溫度加熱處理而成的電極Z2的放電容量大,亦即281mAh/g。
S11‧‧‧步驟
S12‧‧‧步驟
S13‧‧‧步驟
S14‧‧‧步驟
S15‧‧‧步驟
S16‧‧‧步驟
S17‧‧‧步驟
S18‧‧‧步驟
S19‧‧‧步驟

Claims (17)

  1. 一種包含鋰錳複合氧化物的粒子,包括:第一區域;第二區域;以及第三區域,其中,該第二區域與該第一區域的至少一部分接觸,該第三區域與該第二區域的至少一部分接觸,該第一區域和該第二區域包含鋰和氧,該第一區域和該第二區域中的至少一個包含錳,該第一區域和該第二區域中的至少一個包含以M表示的元素,該以M表示的元素是選自Cr、Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、Zn、Si和P中的一種或多種元素,該第一區域含有具有層狀岩鹽型結構的第一結晶,該第二區域含有具有層狀岩鹽型結構的第二結晶,並且,該第一結晶的{0 0 1}面平行於該第二結晶的{1 0 0}面、{1 3 -1}面和{-1 3 1}面中的至少一個。
  2. 一種包含鋰錳複合氧化物的粒子,包括:第一區域;第二區域;以及第三區域,其中,該第二區域與該第一區域的至少一部分接觸,該第三區域與該第二區域的至少一部分接觸,該第一區域和該第二區域包含鋰和氧,該第一區域和該第二區域中的至少一個包含錳,該第一區域和該第二區域中的至少一個包含以M表示的元素,該以M表示的元素是選自Cr、Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、Zn、Si和P中的一種或多種元素,該第三區域包含碳,該第一區域含有具有層狀岩鹽型結構的第一結晶,該第二區域含有具有層狀岩鹽型結構的第二結晶,並且,該第一結晶的配向與該第二結晶的配向不同。
  3. 根據申請專利範圍第2項之粒子,其中該第一結晶的{0 0 1}面平行於該第二結晶的{1 0 0}面、{1 3 -1}面和{-1 3 1}面中的至少一個。
  4. 一種包含鋰錳複合氧化物的粒子,包括:第一區域;第二區域;以及第三區域,其中,該第二區域與該第一區域的至少一部分接觸,該第三區域與該第二區域的至少一部分接觸,該第一區域和該第二區域包含鋰和氧,該第一區域和該第二區域中的至少一個包含錳,該第一區域和該第二區域中的至少一個包含以M表示的元素,該以M表示的元素是選自Cr、Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、Zn、Si和P中的一種或多種元素,該第一區域含有具有層狀岩鹽型結構的第一結晶,並且,該第二區域含有具有尖晶石型結構的第二結晶。
  5. 一種包含鋰錳複合氧化物的粒子,包括:第一區域;第二區域;以及第三區域,其中,該第二區域與該第一區域的至少一部分接觸,該第三區域與該第二區域的至少一部分接觸,該第一區域和該第二區域包含鋰和氧,該第一區域和該第二區域中的至少一個包含錳,該第一區域和該第二區域中的至少一個包含以M表示的元素,該以M表示的元素是選自Cr、Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、Zn、Si和P中的一種或多種元素,以a1:b1:c1:d1表示該第一區域中的鋰、錳、該元素M及氧的原子數比,以a2:b2:c2:d2表示該第二區域中的鋰、錳、該元素M及氧的原子數比,d1/(b1+c1)是2.2以上,並且,d2/(b2+c2)小於2.2。
  6. 一種包含鋰錳複合氧化物的粒子,包括:第一區域; 第二區域;以及第三區域,其中,該第二區域與該第一區域的至少一部分接觸,該第三區域與該第二區域的至少一部分接觸,該第一區域和該第二區域包含鋰、錳、以M表示的元素以及氧,該以M表示的元素是選自Cr、Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、Zn、Si和P中的一種或多種元素,以a1:b1:c1:d1表示該第一區域中的鋰、錳、該元素M及氧的原子數比,以a2:b2:c2:d2表示該第二區域中的鋰、錳、該元素M及氧的原子數比,d1/(b1+c1)是2.2以上,d2/(b2+c2)小於2.2,該第一區域含有具有層狀岩鹽型結構的第一結晶,該第二區域含有具有層狀岩鹽型結構的第二結晶,並且,該第一結晶的{0 0 1}面平行於該第二結晶的{1 0 0}面、{1 3 -1}面和{-1 3 1}面中的至少一個。
  7. 根據申請專利範圍第1至6項中任一者之粒子,其中該第二區域是包括該第一區域及該第二區域的粒子的表面區域,並且該第三區域覆蓋該第一區域及該第二區域。
  8. 根據申請專利範圍第1至6項中任一者之粒子,其中該第三區域的厚度為0.1nm以上且30nm以下。
  9. 根據申請專利範圍第1至6項中任一者之粒子,其中該第二區域具有其厚度為0.1nm以上且30nm以下的層狀區域。
  10. 一種包括含有申請專利範圍第1至6項中任一者之粒子的正極的二次電池。
  11. 一種包括半導體裝置、顯示裝置以及申請專利範圍第10項之二次電池的電子裝置。
  12. 一種電極層的製造方法,包括如下步驟;準備包括鋰、錳及氧的第一粒子;以氧化石墨烯覆蓋該第一粒子;還原覆蓋該第一粒子的該氧化石墨烯以獲得包括碳層的第二粒子;混合該第二粒子、第一高分子、溶劑以形成混合物;在集電器上形成該混合物以形成混合物層;以及 對該混合物層進行加熱處理以形成包括該第二粒子的電極層,其中該第二粒子包含互相接觸的第一區域及第二區域,該第一區域含有具有層狀岩鹽型結構的第一結晶,該第二區域含有具有層狀岩鹽型結構的第二結晶,該第一結晶的配向與該第二結晶的配向不同,其中,該粒子包含鋰、錳、元素M及氧,該以M表示的元素是選自Cr、Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、Zn、Si和P中的一種或多種元素,並且,該第一高分子與該第二粒子鍵合。
  13. 根據申請專利範圍第12項之電極層的製造方法,其中該電極層進一步包含第二高分子。
  14. 一種集電器上的電極層,包括:包括第一區域、第二區域以及第三區域的粒子;第一高分子;以及溶劑,其中,該第二區域與該第一區域的至少一部分接觸,該第三區域與該第二區域的至少一部分接觸,該粒子包含鋰、錳、元素M及氧,該以M表示的元素是選自Cr、Ni、Ga、Fe、Mo、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、Zn、Si和P中的一種或多種元素,該第一區域和該第二區域包含鋰和氧,該第一區域和該第二區域中的至少一個包含錳,該第三區域包含碳,該第一區域含有具有層狀岩鹽型結構的第一結晶,該第二區域含有具有層狀岩鹽型結構的第二結晶,該第一結晶的配向與該第二結晶的配向不同,並且,該第一高分子與該粒子鍵合。
  15. 根據申請專利範圍第14項之電極層,進一步包括第二高分子。
  16. 一種包括申請專利範圍第14項之電極層的蓄電裝置。
  17. 一種包括半導體裝置、顯示裝置以及申請專利範圍第16項之蓄電裝置的電子裝置。
TW104134864A 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法 TWI683469B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014-218659 2014-10-27
JP2014218659 2014-10-27
JP2014218501 2014-10-27
JP2014-218501 2014-10-27
JP2014-227325 2014-11-07
JP2014227325 2014-11-07
JP2014227729 2014-11-10
JP2014-227729 2014-11-10

Publications (2)

Publication Number Publication Date
TW201626623A TW201626623A (zh) 2016-07-16
TWI683469B true TWI683469B (zh) 2020-01-21

Family

ID=55792704

Family Applications (4)

Application Number Title Priority Date Filing Date
TW104134864A TWI683469B (zh) 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法
TW111146034A TW202333406A (zh) 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法
TW110110674A TWI786575B (zh) 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法
TW108148204A TWI724716B (zh) 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW111146034A TW202333406A (zh) 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法
TW110110674A TWI786575B (zh) 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法
TW108148204A TWI724716B (zh) 2014-10-27 2015-10-23 粒子、電極、蓄電裝置、電子裝置以及電極的製造方法

Country Status (5)

Country Link
US (5) US10084186B2 (zh)
JP (4) JP6685691B2 (zh)
KR (2) KR20230077753A (zh)
TW (4) TWI683469B (zh)
WO (1) WO2016067142A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726167B (zh) * 2016-11-02 2021-05-01 日商東洋鋁股份有限公司 膏狀組成物

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397677A (zh) 2015-01-09 2021-02-23 株式会社半导体能源研究所 蓄电池用电极及其制造方法、蓄电池以及电子设备
JP6908368B2 (ja) * 2016-02-29 2021-07-28 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
KR102323397B1 (ko) 2016-07-05 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
DE202017007622U1 (de) 2016-10-12 2023-09-13 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterialteilchen
KR102255126B1 (ko) * 2016-11-29 2021-05-21 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
CN115995596A (zh) 2017-05-19 2023-04-21 株式会社半导体能源研究所 锂离子二次电池
DE102017111970A1 (de) * 2017-05-31 2018-12-06 Epcos Ag Leiterplatte mit Stromversorgung, elektrisches Bauelement mit Leiterplatte und Verfahren zur Herstellung einer Leiterplatte
KR102529616B1 (ko) 2017-06-26 2023-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지
TWI818019B (zh) * 2018-05-17 2023-10-11 日商日本碍子股份有限公司 硬幣型鋰二次電池及物聯網器件
CN108987684B (zh) * 2018-06-05 2021-07-16 燕山大学 一种可在空气中稳定放置的金属锂的制备方法
US11367873B2 (en) * 2018-09-25 2022-06-21 Microvast Power Systems Co., Ltd. Cathode active material and lithium-ion electrochemical system thereof
CN109273693A (zh) * 2018-09-26 2019-01-25 福建师范大学 一种碳包覆的球状中空二硫化钼的制备方法
JP2023508024A (ja) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド 正極活物質およびこれを含むリチウム二次電池
CN111430689B (zh) * 2020-03-27 2022-10-25 蜂巢能源科技有限公司 正极材料及其制备方法,正极、锂离子电池和车辆
US20230261184A1 (en) * 2020-09-21 2023-08-17 Lg Chem, Ltd. Positive Electrode Active Material by Solid Phase Synthesis and Method for Manufacturing the Same
US11881583B2 (en) * 2021-12-15 2024-01-23 Samsung Electronics Co., Ltd. Positive electrode active material and electrochemical cell comprising the positive electrode active material
CN115893354A (zh) * 2023-02-10 2023-04-04 江苏协鑫锂电科技有限公司 一种磷酸盐正极材料前驱体的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200305299A (en) * 2002-03-01 2003-10-16 Matsushita Electric Ind Co Ltd Positive electrode active material, method for producing the same and nonaqueous electrolyte secondary battery
US20080116418A1 (en) * 2006-11-20 2008-05-22 National Institute Of Advanced Industrial Science And Technology Lithium-manganese-based composite oxide containing titanium and nickel

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146255A (en) 1977-05-27 1978-12-20 Bridgestone Cycle Ind Co Continuous forming work device of chain stay for bicycle flame
JPS571378U (zh) 1980-05-31 1982-01-06
JPH1125983A (ja) 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd リチウム電池用活物質
US6306542B1 (en) * 1998-05-22 2001-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium manganese composite oxide for lithium secondary battery cathode active material, manufacturing method thereof, and lithium secondary battery using the composite oxide as cathode active material
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP4172024B2 (ja) * 2003-03-25 2008-10-29 日立金属株式会社 リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP4919147B2 (ja) 2003-03-25 2012-04-18 日立金属株式会社 非水系リチウム二次電池用正極活物質の製造方法
JP2006318928A (ja) 2003-03-25 2006-11-24 Hitachi Metals Ltd リチウム二次電池用正極活物質及び非水系リチウム二次電池
JP4204407B2 (ja) 2003-07-03 2009-01-07 Tdk株式会社 電極及び電気化学素子並びに電極の製造方法及び電気化学素子の製造方法
JP4150331B2 (ja) 2003-12-25 2008-09-17 Tdk株式会社 電極及び電気化学素子、並びに電極の製造方法及び電気化学素子の製造方法
US7635536B2 (en) 2004-09-03 2009-12-22 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
ES2620809T3 (es) 2004-09-03 2017-06-29 Uchicago Argonne, Llc Electrodos compuestos de óxido de manganeso par baterías de litio
US8080340B2 (en) 2004-09-03 2011-12-20 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
CN101481148B (zh) * 2006-04-12 2011-06-22 松下电器产业株式会社 正极活性材料、其制备方法和非水电解质二次电池
CN102318109A (zh) 2009-02-06 2012-01-11 松下电器产业株式会社 锂离子二次电池及锂离子二次电池的制造方法
KR101428498B1 (ko) * 2010-03-09 2014-08-08 가부시키가이샤 도요다 지도숏키 복합 산화물의 제조 방법, 리튬 이온 2차 전지용 정극 활물질, 리튬 이온 2차 전지 및 차량
JP5646088B1 (ja) 2010-06-29 2014-12-24 ユミコア ソシエテ アノニムUmicore S.A. 二次電池のための高密度および高電圧安定性のカソード材料
US8691441B2 (en) * 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
WO2012046791A1 (en) 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for energy storage device and energy storage device
US20130295463A1 (en) 2011-01-17 2013-11-07 Shoei Chemical Inc. Cathode material for lithium ion secondary batteries and method for producing same
JP2012169217A (ja) * 2011-02-16 2012-09-06 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
JP5717461B2 (ja) * 2011-02-17 2015-05-13 株式会社東芝 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
CN103348508B (zh) 2011-02-18 2016-05-18 3M创新有限公司 复合粒子,其制备方法,以及包括所述复合粒子的物品
JP6026997B2 (ja) 2011-04-07 2016-11-16 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
JPWO2012137535A1 (ja) 2011-04-07 2014-07-28 日本碍子株式会社 正極活物質前駆体粒子、リチウム二次電池の正極活物質粒子、及びリチウム二次電池
JPWO2012137533A1 (ja) 2011-04-07 2014-07-28 日本碍子株式会社 正極活物質前駆体粒子及びその製造方法、並びにリチウム二次電池の正極活物質粒子の製造方法
JP2012226877A (ja) 2011-04-15 2012-11-15 Toyota Motor Corp 電池用粒子の製造方法及び製造装置
KR101316053B1 (ko) 2011-04-26 2013-10-11 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102212898B1 (ko) 2011-08-29 2021-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 전지용 양극 활물질의 제작 방법
JP6077206B2 (ja) 2011-09-22 2017-02-08 住友大阪セメント株式会社 電極材料及びその製造方法並びに電極、リチウムイオン電池
JP5741371B2 (ja) * 2011-10-25 2015-07-01 トヨタ自動車株式会社 リチウム複合酸化物とその製造方法、及びリチウムイオン二次電池
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9225003B2 (en) 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
JP2014112476A (ja) 2012-12-05 2014-06-19 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN105870424A (zh) 2013-01-25 2016-08-17 株式会社丰田自动织机 高电压特性优异的活性物质
KR102240980B1 (ko) 2013-05-10 2021-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 망가니즈 복합 산화물, 이차 전지, 및 이들의 제조 방법
US9865867B2 (en) 2013-10-04 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
KR102406423B1 (ko) 2013-10-04 2022-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 망가니즈 복합 산화물, 이차 전지, 및 전자 기기, 및 층의 형성 방법
CN110299531B (zh) 2014-05-09 2023-09-05 株式会社半导体能源研究所 活性物质的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200305299A (en) * 2002-03-01 2003-10-16 Matsushita Electric Ind Co Ltd Positive electrode active material, method for producing the same and nonaqueous electrolyte secondary battery
US20080116418A1 (en) * 2006-11-20 2008-05-22 National Institute Of Advanced Industrial Science And Technology Lithium-manganese-based composite oxide containing titanium and nickel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726167B (zh) * 2016-11-02 2021-05-01 日商東洋鋁股份有限公司 膏狀組成物

Also Published As

Publication number Publication date
US20180366726A1 (en) 2018-12-20
JP6685691B2 (ja) 2020-04-22
JP7368569B2 (ja) 2023-10-24
KR20170078709A (ko) 2017-07-07
US11394025B2 (en) 2022-07-19
JP2016094332A (ja) 2016-05-26
US11710823B2 (en) 2023-07-25
KR102535985B1 (ko) 2023-05-23
US20220352510A1 (en) 2022-11-03
JP7134195B2 (ja) 2022-09-09
TWI724716B (zh) 2021-04-11
JP2024012321A (ja) 2024-01-30
US10084186B2 (en) 2018-09-25
TW202019005A (zh) 2020-05-16
KR20230077753A (ko) 2023-06-01
US20160118658A1 (en) 2016-04-28
JP2022174138A (ja) 2022-11-22
WO2016067142A1 (en) 2016-05-06
US10749174B2 (en) 2020-08-18
JP2020126846A (ja) 2020-08-20
TW201626623A (zh) 2016-07-16
US20230361290A1 (en) 2023-11-09
TW202333406A (zh) 2023-08-16
US20200350576A1 (en) 2020-11-05
TW202127716A (zh) 2021-07-16
TWI786575B (zh) 2022-12-11

Similar Documents

Publication Publication Date Title
US11394025B2 (en) Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
KR102458150B1 (ko) 리튬 이온 이차 전지 및 전자 장치
CN106486640B (zh) 电极及其制造方法、蓄电池及电子设备
US10978710B2 (en) Electrode, power storage device, electronic device, and manufacturing method of electrode
TW201907608A (zh) 正極活性物質的製造方法及二次電池
US11881578B2 (en) Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
JP2020202191A (ja) 蓄電装置及び電子機器
JP2016196386A (ja) リチウムマンガン複合酸化物、粒子、二次電池、電子機器

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees