TWI682459B - Plasma activated conformal dielectric film deposition - Google Patents
Plasma activated conformal dielectric film deposition Download PDFInfo
- Publication number
- TWI682459B TWI682459B TW106122777A TW106122777A TWI682459B TW I682459 B TWI682459 B TW I682459B TW 106122777 A TW106122777 A TW 106122777A TW 106122777 A TW106122777 A TW 106122777A TW I682459 B TWI682459 B TW I682459B
- Authority
- TW
- Taiwan
- Prior art keywords
- reactant
- film
- plasma
- reaction chamber
- cfd
- Prior art date
Links
- 230000008021 deposition Effects 0.000 title description 124
- 239000000376 reactant Substances 0.000 claims abstract description 291
- 238000000034 method Methods 0.000 claims abstract description 257
- 239000002019 doping agent Substances 0.000 claims abstract description 210
- 239000000758 substrate Substances 0.000 claims abstract description 162
- 238000000151 deposition Methods 0.000 claims abstract description 154
- 238000006243 chemical reaction Methods 0.000 claims abstract description 140
- 239000010408 film Substances 0.000 claims description 307
- 239000007789 gas Substances 0.000 claims description 100
- 239000010409 thin film Substances 0.000 claims description 97
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 59
- 239000007800 oxidant agent Substances 0.000 claims description 41
- 229910052796 boron Inorganic materials 0.000 claims description 39
- 230000001590 oxidative effect Effects 0.000 claims description 39
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 36
- 229910052710 silicon Inorganic materials 0.000 claims description 36
- 239000010703 silicon Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 32
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 27
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 26
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 17
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 11
- 229910052785 arsenic Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 3
- 239000002002 slurry Substances 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 25
- 230000001404 mediated effect Effects 0.000 abstract description 8
- 210000002381 plasma Anatomy 0.000 description 196
- 230000008569 process Effects 0.000 description 195
- 238000012545 processing Methods 0.000 description 141
- 239000002243 precursor Substances 0.000 description 107
- 239000010410 layer Substances 0.000 description 96
- 239000012071 phase Substances 0.000 description 83
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 55
- 238000005530 etching Methods 0.000 description 44
- 241000894007 species Species 0.000 description 44
- 238000000678 plasma activation Methods 0.000 description 38
- 238000009832 plasma treatment Methods 0.000 description 35
- 238000010926 purge Methods 0.000 description 33
- 238000009792 diffusion process Methods 0.000 description 30
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 29
- 229910052739 hydrogen Inorganic materials 0.000 description 29
- 229910052757 nitrogen Inorganic materials 0.000 description 29
- 229910052760 oxygen Inorganic materials 0.000 description 29
- 239000001301 oxygen Substances 0.000 description 29
- 238000000231 atomic layer deposition Methods 0.000 description 28
- 238000005496 tempering Methods 0.000 description 28
- 239000001257 hydrogen Substances 0.000 description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 26
- 238000005229 chemical vapour deposition Methods 0.000 description 26
- 238000011282 treatment Methods 0.000 description 26
- 239000000203 mixture Substances 0.000 description 25
- 235000012431 wafers Nutrition 0.000 description 25
- 239000000377 silicon dioxide Substances 0.000 description 23
- 235000012239 silicon dioxide Nutrition 0.000 description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 21
- 239000004065 semiconductor Substances 0.000 description 21
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 20
- VYIRVGYSUZPNLF-UHFFFAOYSA-N n-(tert-butylamino)silyl-2-methylpropan-2-amine Chemical group CC(C)(C)N[SiH2]NC(C)(C)C VYIRVGYSUZPNLF-UHFFFAOYSA-N 0.000 description 20
- 229920002120 photoresistant polymer Polymers 0.000 description 20
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 20
- -1 alkylamino silanes Chemical class 0.000 description 19
- 238000011065 in-situ storage Methods 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 238000001994 activation Methods 0.000 description 17
- 230000004913 activation Effects 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 17
- 239000011261 inert gas Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 17
- 229910052786 argon Inorganic materials 0.000 description 16
- 238000005137 deposition process Methods 0.000 description 16
- 239000005368 silicate glass Substances 0.000 description 16
- 229910021529 ammonia Inorganic materials 0.000 description 15
- 230000012010 growth Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000005755 formation reaction Methods 0.000 description 13
- 229910052734 helium Inorganic materials 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 238000006557 surface reaction Methods 0.000 description 13
- 238000000427 thin-film deposition Methods 0.000 description 13
- 230000007704 transition Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000000670 limiting effect Effects 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 239000001307 helium Substances 0.000 description 10
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000001272 nitrous oxide Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 9
- 230000008016 vaporization Effects 0.000 description 9
- 239000006227 byproduct Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 239000011162 core material Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 238000011049 filling Methods 0.000 description 7
- 238000004377 microelectronic Methods 0.000 description 7
- 238000000059 patterning Methods 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000010574 gas phase reaction Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 150000003973 alkyl amines Chemical class 0.000 description 5
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 238000010849 ion bombardment Methods 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000007725 thermal activation Methods 0.000 description 4
- 239000005046 Chlorosilane Substances 0.000 description 3
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 3
- 230000003667 anti-reflective effect Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000002000 scavenging effect Effects 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- WXRGABKACDFXMG-UHFFFAOYSA-N trimethylborane Chemical compound CB(C)C WXRGABKACDFXMG-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 235000008429 bread Nutrition 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000012705 liquid precursor Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 150000002829 nitrogen Chemical class 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910004469 SiHx Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000724291 Tobacco streak virus Species 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- HICCMIMHFYBSJX-UHFFFAOYSA-N [SiH4].[Cl] Chemical compound [SiH4].[Cl] HICCMIMHFYBSJX-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000006309 butyl amino group Chemical group 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- KSFBTBXTZDJOHO-UHFFFAOYSA-N diaminosilicon Chemical compound N[Si]N KSFBTBXTZDJOHO-UHFFFAOYSA-N 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- BHRZNVHARXXAHW-UHFFFAOYSA-N sec-butylamine Chemical compound CCC(C)N BHRZNVHARXXAHW-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-O tert-butylammonium Chemical compound CC(C)(C)[NH3+] YBRBMKDOPFTVDT-UHFFFAOYSA-O 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/02129—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
- C23C16/4554—Plasma being used non-continuously in between ALD reactions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02312—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
- H01L21/02315—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
- H01L21/0234—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
- H01L21/02348—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76825—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76826—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76837—Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
本發明有關於保形介電薄膜沉積,且尤其關於電漿活化之保形介電薄膜沉積。 The present invention relates to conformal dielectric thin film deposition, and in particular to plasma activated conformal dielectric thin film deposition.
各種用於半導體之薄膜層可用原子層沉積(ALD)製程來沉積。然而,現有的ALD製程可能不合適用來沉積高度保形之介電薄膜。 Various thin film layers used in semiconductors can be deposited by an atomic layer deposition (ALD) process. However, the existing ALD process may not be suitable for the deposition of highly conformal dielectric films.
於本文中揭露之各種實施態樣涉及在基板表面上沉積薄膜的方法及設備。在一些實施例中,該方法包含藉由薄膜在反應物吸附及反應之一或更多循環期間生長之表面介導反應來沉積薄膜。在一實施態樣中,該方法具有在吸附及反應的循環之間間歇遞送摻雜物種至薄膜之特徵。在一些情況下,可驅使摻雜物物種橫越基板表面至基板的摻雜區域。 The various implementation aspects disclosed herein relate to methods and apparatuses for depositing thin films on the substrate surface. In some embodiments, the method includes depositing a thin film by a surface-mediated reaction of the thin film growing during one or more cycles of reactant adsorption and reaction. In one embodiment, the method has the feature of intermittent delivery of doped species to the film between cycles of adsorption and reaction. In some cases, the dopant species can be driven across the surface of the substrate to the doped region of the substrate.
在一實施態樣中,所揭露之方法在反應腔室中於基板表面上沉積薄膜。該方法可具有以下操作之特徵:(a)在允許第一反應物吸附至基板表面上的條件下,將第一反應物導入反應腔室中;(b)在第一反應物吸附在基板表面上時,將第二反應物導入反應腔室中;(c)使基板表面曝露至電漿以驅動基板表面上第一及第二反應物之間的反應,從而形成薄膜的一部份;(d)重複(a)-(c)至少一 次;(e)在允許含摻雜物材料接觸薄膜之曝露表面的條件下,將未在(a)-(d)期間導入之含摻雜物材料導入反應腔室中;以及(f)自含摻雜物材料將摻雜物導入薄膜中。將摻雜物導入薄膜中可涉及使含摻雜物材料曝露至電漿。 In one embodiment, the disclosed method deposits a thin film on the substrate surface in the reaction chamber. The method may have the following operational characteristics: (a) the first reactant is introduced into the reaction chamber under conditions that allow the first reactant to be adsorbed on the substrate surface; (b) the first reactant is adsorbed on the substrate surface When it is on, introduce the second reactant into the reaction chamber; (c) expose the substrate surface to the plasma to drive the reaction between the first and second reactants on the substrate surface, thereby forming a part of the film; ( d) Repeat at least one of (a)-(c) (E) Introduce dopant-containing materials not introduced during (a)-(d) into the reaction chamber under conditions that allow dopant-containing materials to contact the exposed surface of the film; and (f) The dopant-containing material introduces the dopant into the thin film. Introducing the dopant into the film may involve exposing the dopant-containing material to the plasma.
在各種實施例中,該方法額外包含自薄膜將摻雜物驅入其上存留薄膜之基板表面的特徵部中。可藉由回火該薄膜來完成自薄膜驅入摻雜物。在一些應用中,薄膜存留在基板表面之三維特徵部上並從而自該薄膜驅入摻雜物提供摻雜物進入該特徵部之保形擴散。在一特定的應用中,特徵部具有不大於約40奈米的寬度。 In various embodiments, the method additionally includes driving dopants from the thin film into features on the surface of the substrate on which the thin film remains. The doping of the dopant from the thin film can be accomplished by tempering the thin film. In some applications, the thin film remains on the three-dimensional features on the surface of the substrate and thereby drives the dopant from the thin film to provide conformal diffusion of the dopant into the feature. In a particular application, the features have a width no greater than about 40 nanometers.
在一些實施例中,該薄膜係介電薄膜。在一些情況下,總薄膜厚度介於約10-100埃(Angstroms)之間。在各種實施例中,薄膜中摻雜物的濃度介於約0.01及10重量百分率之間。 In some embodiments, the film is a dielectric film. In some cases, the total film thickness is between about 10-100 Angstroms. In various embodiments, the concentration of dopants in the thin film is between about 0.01 and 10 weight percent.
在一些實施例中,此實施態樣之方法額外包含在(e)或(f)之後重複(a)-(c)。在一些實施例中,此實施態樣之方法額外包含在重複(a)-(e)。在一些實施例中,於(a)-(c)期間所沉積之薄膜數量介於約0.5至1埃之間。 In some embodiments, the method of this embodiment additionally includes repeating (a)-(c) after (e) or (f). In some embodiments, the method of this implementation aspect additionally includes repeating (a)-(e). In some embodiments, the number of thin films deposited during (a)-(c) is between about 0.5 and 1 angstrom.
在一些實施例中,該方法額外包含在使基板表面曝露至電漿之前自反應腔室清除第二反應物。可藉由使包含氧化劑之氣體流入反應腔室中來完成該清除。在一些實施例中,第一及第二反應物以氣相共存於反應腔室中,並且第一及第二反應物在反應腔室中不明顯互相反應直到在(c)之中曝露至電漿為止。 In some embodiments, the method additionally includes purging the second reactant from the reaction chamber before exposing the substrate surface to the plasma. This removal can be accomplished by flowing a gas containing oxidant into the reaction chamber. In some embodiments, the first and second reactants coexist in the gas phase in the reaction chamber, and the first and second reactants do not significantly react with each other in the reaction chamber until exposed to electricity in (c) Pulp.
在一些實施例中,第一反應物係例如一氧化二氮之氧化劑。在一些實施例中,第二反應物係介電質前驅物,例如(i)烷胺基矽烷(alkylamino silanes)(SiHx(NR2)4-x),其中x=1-3,並且R包含烷基;或(ii)鹵素矽烷(halosilanes)(SiHxY4-x),其中x=1-3,並且Y包含Cl、Br、以及I。在一具體實施例中,第二反應物係BTBAS。在一些實施例中,含摻雜物材料係磷化氫、砷化 氫、烷基硼、烷基鎵、烷基磷、磷鹵化物、砷鹵化物、鎵鹵化物、硼鹵化物、烷基硼、或乙硼烷。 In some embodiments, the first reactant is an oxidant such as nitrous oxide. In some embodiments, the second reactant is a dielectric precursor, such as (i) alkylamino silanes (SiHx(NR2)4-x), where x=1-3 and R comprises an alkyl Group; or (ii) halosilanes (SiHxY4-x), where x=1-3, and Y contains Cl, Br, and I. In a specific embodiment, the second reactant is BTBAS. In some embodiments, the dopant-containing material is phosphine, arsenide Hydrogen, alkyl boron, alkyl gallium, alkyl phosphorus, phosphorus halide, arsenic halide, gallium halide, boron halide, alkyl boron, or diborane.
在另一實施態樣中,所揭露之方法在反應腔室中於基板表面上沉積介電薄膜。此方法可具有以下操作之特徵:(a)在允許第一反應物吸附至基板表面上的條件下,使氧化劑流入反應腔室中;(b)在氧化劑持續流入反應腔室時,將介電質前驅物導入反應腔室中;(c)使基板表面曝露至電漿以驅動基板表面上介電質前驅物及氧化劑之間的反應,從而形成薄膜的一部份;(d)在允許含摻雜物材料接觸薄膜之曝露表面的條件下,將未在(a)-(c)期間導入之含摻雜物材料導入反應腔室中;以及(e)使摻雜物自含摻雜物材料結合至介電薄膜中。在一實施例中,介電質前驅物係BTBAS或如先前實施態樣中所確認之另一前驅物。 In another embodiment, the disclosed method deposits a dielectric film on the substrate surface in the reaction chamber. This method may have the following operational characteristics: (a) Under the conditions that allow the first reactant to be adsorbed onto the substrate surface, the oxidant flows into the reaction chamber; (b) As the oxidant continues to flow into the reaction chamber, the dielectric The precursor is introduced into the reaction chamber; (c) The substrate surface is exposed to the plasma to drive the reaction between the dielectric precursor and the oxidant on the substrate surface to form a part of the film; (d) Introducing the dopant-containing material not introduced during (a)-(c) into the reaction chamber under the condition that the dopant material contacts the exposed surface of the film; and (e) allowing the dopant to contain the dopant The material is incorporated into the dielectric film. In one embodiment, the dielectric precursor is BTBAS or another precursor as identified in the previous implementation.
此外,該方法可能需要重複操作(a)-(c)一或更多次。在一具體範例中,當(a)最先執行時,氧化劑包含氧對氮之第一比率;然而當(a)隨後才執行時,氧化劑包含氧對氮之第二比率。第二比率小於第一比率。舉例而言,當(a)最先執行時,氧化劑可包含元素氧;然而當(a)重複時,氧化劑包含一氧化二氮。在一些實施例中,當(c)最先執行時,基板處於第一溫度下;而且當(c)重複時,基板處於第二溫度下,其高於第一溫度。 In addition, the method may need to repeat operations (a)-(c) one or more times. In a specific example, when (a) is executed first, the oxidant contains the first ratio of oxygen to nitrogen; however, when (a) is executed later, the oxidizer contains the second ratio of oxygen to nitrogen. The second ratio is smaller than the first ratio. For example, when (a) is performed first, the oxidizing agent may contain elemental oxygen; however, when (a) is repeated, the oxidizing agent includes nitrous oxide. In some embodiments, when (c) is performed first, the substrate is at the first temperature; and when (c) is repeated, the substrate is at the second temperature, which is higher than the first temperature.
在一些情況下,該方法更包含將摻雜物自介電薄膜驅入基板中。在一些實施例中,該方法更包含在(a)之前使基板表面與含摻雜物材料接觸。 In some cases, the method further includes driving the dopant from the dielectric film into the substrate. In some embodiments, the method further includes contacting the substrate surface with the dopant-containing material before (a).
在另一實施態樣中,所揭露之方法根據以下操作在反應腔室中於基板表面上沉積薄膜:(a)在允許前驅物吸附至基板表面上的條件下,將介電質前驅物導入反應腔室中;(b)之後在前驅物保持吸附在基板表面上時,自反應腔室清除介電質前驅物;(c)使基板表面曝露至電漿以驅動基板表面上介電質前驅物的反應,從而形成介電薄膜的一部份;以及(d)在允許摻雜物前驅物接觸部份介電薄膜的條件下,將未在(a)-(c)期間導入之摻雜物前驅物導入反應腔室中。在 一些實施例中,該方法額外涉及在(a)-(c)之前及期間使氧化劑流入反應腔室中。在一些情況下,該方法額外涉及使摻雜物前驅物反應以將摻雜物併入至薄膜中。 In another embodiment, the disclosed method deposits a thin film on the substrate surface in the reaction chamber according to the following operations: (a) The dielectric precursor is introduced under conditions that allow the precursor to be adsorbed on the substrate surface In the reaction chamber; (b) after the precursor remains adsorbed on the substrate surface, remove the dielectric precursor from the reaction chamber; (c) expose the substrate surface to the plasma to drive the dielectric precursor on the substrate surface Reaction to form a part of the dielectric film; and (d) under the condition that the dopant precursor is allowed to contact part of the dielectric film, the dopant not introduced during (a)-(c) The precursor is introduced into the reaction chamber. in In some embodiments, the method additionally involves flowing the oxidant into the reaction chamber before and during (a)-(c). In some cases, the method additionally involves reacting the dopant precursor to incorporate the dopant into the thin film.
又另一實施態樣涉及用以在基板表面上沉積薄膜之設備。該設備可具有以下特徵部之特徵:一反應腔室包含摻雜介電薄膜的沉積期間用以夾持基板之裝置;耦接至反應腔室之一或更多處理氣體進氣口;以及一控制器。該控制器係設計或配置以造成該設備執行以下操作:(a)在允許第一反應物吸附至基板表面上的條件下,將第一反應物導入反應腔室中;(b)在第一反應物吸附在基板表面上時,將第二反應物導入反應腔室中;(c)使基板表面曝露至電漿以驅動基板表面上第一及第二反應物之間的反應,從而形成薄膜的一部份;(d)重複(a)-(c)至少一次;(e)在允許含摻雜物材料接觸薄膜之曝露表面的條件下,將未在(a)-(d)期間導入之含摻雜物材料導入反應腔室中;以及(f)將摻雜物自含摻雜物材料導入薄膜中。控制器可設計或配置以指示例如那些依據其他實施態樣所討論的其他方法之實行。 Yet another embodiment aspect relates to an apparatus for depositing a thin film on the surface of a substrate. The apparatus may have the following characteristics: a reaction chamber includes a device for holding the substrate during the deposition of the doped dielectric film; one or more process gas inlets coupled to the reaction chamber; and a Controller. The controller is designed or configured to cause the device to perform the following operations: (a) introduce the first reactant into the reaction chamber under conditions that allow the first reactant to be adsorbed onto the substrate surface; (b) at the first When the reactant is adsorbed on the substrate surface, the second reactant is introduced into the reaction chamber; (c) The substrate surface is exposed to the plasma to drive the reaction between the first and second reactants on the substrate surface, thereby forming a thin film (D) Repeat (a)-(c) at least once; (e) Under the conditions that allow the dopant-containing material to contact the exposed surface of the film, it will not be introduced during (a)-(d) Introducing the dopant-containing material into the reaction chamber; and (f) introducing the dopant from the dopant-containing material into the thin film. The controller may be designed or configured to indicate implementation of other methods such as those discussed in accordance with other implementation aspects.
在一些實施例中,控制器更設計或配置以造成該設備在(a)-(d)之前及期間使氧化劑流入反應腔室中。在一些實施例中,該控制器更設計或配置以造成在(e)或(f)之後重複(a)-(c)。在一些實施例中,該控制器更設計或配置以造成將摻雜物自薄膜驅入其上存留薄膜之基板表面的特徵部中。可藉由回火該薄膜來完成自薄膜驅入摻雜物。在一些實施例中,該控制器更設計或配置以造成在(a)-(d)之一或更多重複之間的間隔執行(e),且其中該間隔在沉積薄膜的過程中改變。 In some embodiments, the controller is more designed or configured to cause the device to flow the oxidant into the reaction chamber before and during (a)-(d). In some embodiments, the controller is more designed or configured to cause (a)-(c) to be repeated after (e) or (f). In some embodiments, the controller is more designed or configured to cause dopants to be driven from the thin film into features on the surface of the substrate on which the thin film remains. The doping of the dopant from the thin film can be accomplished by tempering the thin film. In some embodiments, the controller is more designed or configured to cause the interval between one or more repetitions of (a)-(d) to execute (e), and wherein the interval changes during the deposition of the thin film.
在各種實施例中,該控制器更設計或配置以造成在使基板表面曝露至電漿之前自反應腔室清除第二反應物。在一範例中,藉由在控制器的指示下使包含氧化劑之氣體流入反應腔室中來完成清除。 In various embodiments, the controller is more designed or configured to cause the second reactant to be purged from the reaction chamber before the substrate surface is exposed to the plasma. In one example, purging is accomplished by flowing a gas containing oxidant into the reaction chamber under the direction of the controller.
以下將參考相關的圖式更詳細地敘述這些及其他特徵。 These and other features will be described in more detail below with reference to related drawings.
100‧‧‧時序圖 100‧‧‧Timing chart
110A、110B‧‧‧沉積循環 110A, 110B‧‧‧deposition cycle
120A、120B‧‧‧A曝露階段 120A, 120B‧‧‧A exposure stage
130‧‧‧反應物A後飽和曝露時間 130‧‧‧saturated exposure time after reactant A
140A、140B‧‧‧B曝露階段 140A, 140B‧‧‧B exposure stage
150‧‧‧反應物B後飽和曝露時間 150‧‧‧saturated exposure time after reactant B
160A‧‧‧清除階段 160A‧‧‧Clear stage
160B‧‧‧清除階段 160B‧‧‧Clear stage
180A、180B‧‧‧電漿活化階段 180A, 180B ‧‧‧ plasma activation stage
190‧‧‧電漿後飽和曝露時間 190‧‧‧saturated exposure time after plasma
200‧‧‧時序圖 200‧‧‧Timing chart
210‧‧‧沉積循環 210‧‧‧Deposition cycle
240A、240B‧‧‧B曝露階段 240A, 240B‧‧‧B exposure stage
260A‧‧‧清除階段 260A‧‧‧Clear stage
300‧‧‧時序圖 300‧‧‧Timing chart
310‧‧‧沉積階段 310‧‧‧Deposition
380‧‧‧電漿活化階段 380‧‧‧Plasma activation stage
390‧‧‧電漿處理循環 390‧‧‧Plasma treatment cycle
390A‧‧‧電漿處理清除階段 390A‧‧‧Plasma treatment and removal phase
390B‧‧‧電漿處理活化階段 390B‧‧‧Plasma treatment activation stage
400‧‧‧時序圖 400‧‧‧Timing chart
500‧‧‧比較 500‧‧‧Comparison
502、504‧‧‧製程 502,504‧‧‧Process
600‧‧‧相關性 600‧‧‧Correlation
700‧‧‧相關性 700‧‧‧Correlation
702、704‧‧‧CFD二氧化矽薄膜 702、704‧‧‧CFD silicon dioxide film
800‧‧‧非平面基板 800‧‧‧non-planar substrate
802、802A、802B、802C‧‧‧間隙 802, 802A, 802B, 802C
804‧‧‧保形薄膜 804‧‧‧Conformal film
900‧‧‧時序圖 900‧‧‧Timing chart
902‧‧‧CFD製程階段 902‧‧‧CFD process stage
904‧‧‧過渡階段 904‧‧‧Transitional stage
904A‧‧‧B曝露階段 904A‧‧‧B exposure stage
904B‧‧‧電漿活化階段 904B‧‧‧Plasma activation stage
906‧‧‧PECVD製程階段 906‧‧‧PECVD process stage
1000‧‧‧結構 1000‧‧‧Structure
1002‧‧‧基板 1002‧‧‧ substrate
1006‧‧‧較厚之薄膜 1006‧‧‧thick film
1008‧‧‧孔洞 1008‧‧‧hole
1100‧‧‧時序圖 1100‧‧‧Timing chart
1102‧‧‧沉積階段 1102‧‧‧Deposition
1104‧‧‧蝕刻階段 1104‧‧‧Etching stage
1106‧‧‧沉積階段 1106‧‧‧Deposition
1200‧‧‧非平面基板 1200‧‧‧non-planar substrate
1202‧‧‧間隙 1202‧‧‧Gap
1204‧‧‧薄膜 1204‧‧‧film
1204A‧‧‧上部區域 1204A‧‧‧Upper area
1204B‧‧‧下部區域 1204B‧‧‧Lower area
1206‧‧‧凹入部 1206‧‧‧recessed part
1300‧‧‧處理站 1300‧‧‧ processing station
1301‧‧‧反應物遞送系統 1301‧‧‧Reagent Delivery System
1302‧‧‧處理腔室本體 1302‧‧‧Process chamber body
1303‧‧‧汽化點 1303‧‧‧Evaporation point
1304‧‧‧混合容器 1304‧‧‧Mixed container
1306‧‧‧噴淋頭 1306‧‧‧Sprinkler
1308‧‧‧基座 1308‧‧‧Dock
1310‧‧‧加熱器 1310‧‧‧ Heater
1314‧‧‧RF電力供應 1314‧‧‧RF power supply
1316‧‧‧匹配網路 1316‧‧‧ matching network
1318‧‧‧蝶形閥 1318‧‧‧Butterfly valve
1320‧‧‧混合容器進氣閥 1320‧‧‧Inlet valve of mixed container
2400‧‧‧處理工具 2400‧‧‧Processing tool
2402‧‧‧入站裝載鎖 2402‧‧‧Inbound loading lock
2404‧‧‧出站裝載鎖 2404‧‧‧Outbound loading lock
2406‧‧‧機械臂 2406‧‧‧Robot
2408‧‧‧箱體 2408‧‧‧Box
2410‧‧‧大氣口 2410‧‧‧Atmosphere
2412‧‧‧基座 2412‧‧‧Dock
2414‧‧‧處理腔室 2414‧‧‧Process chamber
2416‧‧‧腔室運送口 2416‧‧‧Chamber delivery port
2418‧‧‧加熱基座 2418‧‧‧Heating base
2450‧‧‧系統控制器 2450‧‧‧ system controller
2452‧‧‧處理器 2452‧‧‧ processor
2454‧‧‧大量儲存裝置 2454‧‧‧ Mass storage device
2456‧‧‧記憶體裝置 2456‧‧‧Memory device
2458‧‧‧系統控制軟體 2458‧‧‧System control software
2490‧‧‧晶圓搬運系統 2490‧‧‧ Wafer handling system
2502‧‧‧介電隔離層 2502‧‧‧Dielectric isolation layer
圖1示意地顯示根據本發明之實施例之範例性保形薄膜沉積(CFD)製程的時序圖。 FIG. 1 schematically shows a timing diagram of an exemplary conformal thin film deposition (CFD) process according to an embodiment of the invention.
圖2示意地顯示根據本發明之實施例之另一範例性CFD製程的時序圖。 FIG. 2 schematically shows a timing diagram of another exemplary CFD process according to an embodiment of the invention.
圖3示意地顯示根據本發明之實施例之另一範例性CFD製程的時序圖。 FIG. 3 schematically shows a timing diagram of another exemplary CFD process according to an embodiment of the invention.
圖4示意地顯示根據本發明之實施例之包含電漿處理循環之範例性CFD製程的時序圖。 FIG. 4 schematically shows a timing diagram of an exemplary CFD process including a plasma processing cycle according to an embodiment of the present invention.
圖5顯示根據本發明之實施例所沉積薄膜的濕蝕刻速率比率與沉積溫度之間的範例相關性。 FIG. 5 shows an exemplary correlation between the wet etch rate ratio of the deposited film and the deposition temperature according to an embodiment of the present invention.
圖6顯示根據本發明之實施例所沉積薄膜的濕蝕刻速率比率與薄膜應力之間的範例相關性。 FIG. 6 shows an example correlation between the wet etch rate ratio of the deposited film and the film stress according to an embodiment of the present invention.
圖7顯示根據本發明之實施例所沉積薄膜的薄膜污染物濃度與沉積溫度之間的範例相關性。 FIG. 7 shows an exemplary correlation between the film contaminant concentration of the deposited film and the deposition temperature according to an embodiment of the present invention.
圖8示意地顯示包含複數間隙之非平面基板的範例橫剖面。 FIG. 8 schematically shows an example cross-section of a non-planar substrate including a plurality of gaps.
圖9示意地顯示根據本發明之實施例之包含過渡至PECVD製程的範例性CFD製程的時序圖。 FIG. 9 schematically shows a timing diagram of an exemplary CFD process including a transition to a PECVD process according to an embodiment of the present invention.
圖10示意地顯示包含鎖眼孔洞之間隙填充的範例橫剖面。 FIG. 10 schematically shows an example cross-section of gap filling including keyhole holes.
圖11示意地顯示根據本發明之實施例之包含原位蝕刻的範例性CFD製程的時序圖。 FIG. 11 schematically shows a timing diagram of an exemplary CFD process including in-situ etching according to an embodiment of the present invention.
圖12A示意地顯示凹入間隙填充輪廓之範例橫剖面。 FIG. 12A schematically shows an example cross section of a concave gap filling profile.
圖12B示意地顯示根據本發明之實施例於原位蝕刻製程期間圖12A的凹入間隙填充輪廓的範例橫剖面。 FIG. 12B schematically shows an example cross-section of the concave gap filling profile of FIG. 12A during an in-situ etching process according to an embodiment of the invention.
圖12C示意地顯示根據本發明之實施例在原位蝕刻之後的沉積製程期間圖12B的間隙填充輪廓的範例橫剖面。 12C schematically shows an example cross-section of the gap-fill profile of FIG. 12B during the deposition process after in-situ etching according to an embodiment of the invention.
圖13示意地顯示根據本發明之實施例的範例處理站。 FIG. 13 schematically shows an example processing station according to an embodiment of the present invention.
圖14示意地顯示根據本發明之實施例之包含複數處理站及一控制器的範例處理工具。 FIG. 14 schematically shows an example processing tool including a plurality of processing stations and a controller according to an embodiment of the present invention.
圖15示意地顯示根據本發明之實施例於包含原位蝕刻的CFD製程期間直通矽穿孔的範例橫剖面圖。 FIG. 15 schematically shows an exemplary cross-sectional view of through silicon via during a CFD process including in-situ etching according to an embodiment of the present invention.
圖16圖例說明具有三維閘極結構之電晶體,其中源極和汲極係形成為難以藉由習知離子植入技術來摻雜之細薄垂直結構。 FIG. 16 illustrates a transistor having a three-dimensional gate structure in which the source and drain are formed as thin vertical structures that are difficult to dope by conventional ion implantation techniques.
圖17以沿著x軸前進時間由左至右呈現基線CFD操作的順序。 Figure 17 presents the sequence of baseline CFD operations from left to right along the x-axis advancing time.
圖18及19繪示其中將摻雜物沉積在與下方基板的界面處、後接以摻雜物遞送散置其中之CFD循環、並且選擇性地用可為CFD氧化物薄膜之未摻雜保護「覆蓋」層完成之實施例。 Figures 18 and 19 illustrate a CFD cycle in which dopants are deposited at the interface with the underlying substrate, followed by dopant delivery interspersed therein, and optionally protected with undoped CFD oxide films An example of completion of the "overlay" layer.
圖20顯示用以合成CFD BSG/PSG薄膜之典型沉積組塊。 Figure 20 shows typical deposition blocks used to synthesize CFD BSG/PSG thin films.
圖21顯示在密集和分離的結構上之CFD薄膜的階梯覆蓋估計為~100%。 Figure 21 shows that the step coverage of the CFD film on dense and separated structures is estimated to be ~100%.
圖22呈現之SIMS資料顯示CFD薄膜中的平均硼濃度可調整在約0.5-3.5wt%硼的範圍中。 The SIMS data presented in FIG. 22 shows that the average boron concentration in the CFD film can be adjusted in the range of about 0.5-3.5 wt% boron.
半導體裝置的製造通常涉及:在一整合製程中,於非平面基板上沉積一或更多薄膜。在一些整合製程的實施態樣中,沉積與基板表面狀態一致 之薄膜是有幫助的。例如,可在提高之閘極堆疊的頂部上沉積氮化矽薄膜作為用以保護少量摻雜源極和汲極區域免於受到後續之離子植入製程影響的間隔層。 The manufacture of semiconductor devices usually involves depositing one or more thin films on a non-planar substrate in an integrated process. In some implementation aspects of the integrated process, the deposition is consistent with the substrate surface state The film is helpful. For example, a silicon nitride film can be deposited on top of the raised gate stack as a spacer layer to protect a small amount of doped source and drain regions from subsequent ion implantation processes.
在間隔層沉積製程中,化學氣相沉積(CVD)製程可用以在非平面基板上形成氮化矽薄膜,接著將該氮化矽薄膜加以非等向蝕刻以形成間隔層。然而,隨著閘極堆疊之間的距離減小,CVD氣相反應的質量傳輸限制可能導致「麵包條」(“bread-loafing”)沉積效應。如此效應通常展現在閘極堆疊的頂面處之較厚沉積、以及在閘極堆疊的底角處之較薄沉積。此外,因為一些晶粒可具有不同裝置密度的區域,所以晶圓表面範圍之質量傳輸效應可導致晶粒內和晶圓內的薄膜厚度差異。這些厚度差異可導致一些區域的過蝕刻及其他區域的蝕刻不足。這可能降低裝置表現及/或晶粒良率。 In the spacer layer deposition process, a chemical vapor deposition (CVD) process can be used to form a silicon nitride film on a non-planar substrate, and then the silicon nitride film is anisotropically etched to form a spacer layer. However, as the distance between the gate stacks decreases, the mass transfer limitation of the CVD gas phase reaction may result in "bread-loafing" deposition effects. Such an effect usually exhibits a thicker deposit at the top surface of the gate stack and a thinner deposit at the bottom corner of the gate stack. In addition, because some dies can have regions with different device densities, the mass transfer effect on the wafer surface area can cause differences in film thickness within the die and within the wafer. These thickness differences can lead to over-etching in some areas and under-etching in other areas. This may reduce device performance and/or die yield.
對應這些問題的一些方法涉及原子層沉積(ALD)。與其中使用熱活化氣相反應以沉積薄膜之CVD製程相比,ALD製程使用表面介導沉積反應在逐層基礎上沉積薄膜。在一ALD製程的範例中,使包含表面活性部位之群體的基板表面曝露至第一薄膜前驅物(P1)之氣相分佈。一些P1的分子可在包含P1的化學吸附物種及物理吸附分子之基板表面的頂上形成凝相。然後排空反應器以移除氣相及物理吸附P1使得僅化學吸附物種存留。然後將第二薄膜前驅物(P2)導入反應器以使一些P2的分子吸附至基板表面。可再次將反應器排空,此次係用以移除未結合的P2。隨後,提供至基板之熱能使吸附之P1和P2的分子之間的表面反應活化,從而形成薄膜層。最後,將反應器排空以移除反應副產物以及可能未反應的P1和P2,而結束ALD循環。可包含額外ALD循環以增長薄膜厚度。 Some methods corresponding to these problems involve atomic layer deposition (ALD). In contrast to CVD processes in which thermally activated gas phase reactions are used to deposit thin films, ALD processes use surface-mediated deposition reactions to deposit thin films on a layer-by-layer basis. In an example of an ALD process, the substrate surface including the group of surface active sites is exposed to the gas phase distribution of the first thin film precursor (P1). Some molecules of P1 can form a condensed phase on top of the substrate surface containing chemically adsorbed species and physically adsorbed molecules of P1. The reactor is then evacuated to remove the gas phase and physically adsorb P1 so that only chemisorbed species remain. The second thin film precursor (P2) is then introduced into the reactor to allow some P2 molecules to adsorb to the substrate surface. The reactor can be emptied again, this time to remove unbound P2. Subsequently, the thermal energy supplied to the substrate activates the surface reaction between the adsorbed molecules of P1 and P2, thereby forming a thin film layer. Finally, the reactor is evacuated to remove reaction by-products and possibly unreacted P1 and P2, and the ALD cycle is ended. Additional ALD cycles can be included to increase the film thickness.
依據前驅物施用步驟的曝露時間及前驅物的黏附係數,在一實例中每一ALD循環可沉積介於二分之一埃及三埃厚之薄膜層。因此,當沉積大於 數奈米(nanometers)厚的薄膜時,ALD製程會很耗時。又,一些前驅物可具有長曝露時間以沉積保形薄膜,而其亦可減低晶圓吞吐量時間。 Depending on the exposure time of the precursor application step and the adhesion coefficient of the precursor, in one example each ALD cycle can deposit a thin film layer between one-half and three Angstroms thick. Therefore, when the deposition is greater than For nanometers thick films, the ALD process can be time-consuming. Also, some precursors can have long exposure times to deposit conformal thin films, and they can also reduce wafer throughput time.
亦可將保形薄膜沉積在平面基板上。例如,可由包含交替薄膜類型之平面堆疊形成用於微影圖案化應用之抗反射層。如此之抗反射層可為大約100至1000埃厚,因而使得ALD製程比CVD製程較不具吸引力。然而,如此之抗反射層亦可具有比許多CVD製程可提供較為低的晶圓內厚度差異之允差。例如,600埃厚的抗反射層可容許小於3埃的厚度範圍。 The conformal thin film can also be deposited on the flat substrate. For example, an anti-reflective layer for lithographic patterning applications can be formed from a planar stack containing alternating film types. Such an anti-reflection layer can be about 100 to 1000 Angstroms thick, which makes the ALD process less attractive than the CVD process. However, such an anti-reflective layer can also have a lower tolerance for the thickness difference within the wafer than many CVD processes. For example, a 600 Angstrom thick antireflection layer can tolerate a thickness range of less than 3 Angstroms.
因此,在本文中提供之各種實施例提供用於在非平面及平面基板上之電漿活化保形薄膜沉積(CFD)的製程及設備。這些實施例包含部份但非全部CFD製程中所採用的各種特徵。這些特徵之中為:(1)排除或減少自反應腔室「清除」反應物一者或二者所需的時間;(2)提供至少一反應物的連續流量,同時使一不同反應物間歇地流入反應腔室中;(3)在反應物其中一者存在於氣相中時,而不是當自反應腔室清除所有反應物時激發電漿;(4)用電漿處理所沉積之CFD薄膜以修改薄膜特性;(5)在藉由CFD沉積薄膜的第一部份之後,通常在相同的反應腔室中藉由PECVD來沉積薄膜的一部份;(6)在CFD階段之間蝕刻部份沉積之薄膜;以及(7)在僅薄膜沉積循環的情況下,藉由散佈摻雜物遞送循環來摻雜CFD薄膜。當然,此列表並非詳盡無遺。當考量到說明書的剩餘部份,則各種其他CFD特徵將顯而易見。 Therefore, the various embodiments provided herein provide processes and equipment for plasma activated conformal thin film deposition (CFD) on non-planar and planar substrates. These embodiments include some, but not all, features used in the CFD process. Among these features are: (1) eliminating or reducing the time required to "clear" one or both of the reactants from the reaction chamber; (2) providing continuous flow of at least one reactant while intermitting a different reactant Flow into the reaction chamber; (3) when one of the reactants is present in the gas phase, instead of exciting the plasma when all the reactants are removed from the reaction chamber; (4) the deposited CFD is treated with plasma Thin film to modify thin film properties; (5) After depositing the first part of the thin film by CFD, usually a part of the thin film is deposited by PECVD in the same reaction chamber; (6) Etching between CFD stages Partially deposited film; and (7) In the case of only the film deposition cycle, the CFD film is doped by spreading the dopant delivery cycle. Of course, this list is not exhaustive. When considering the rest of the specification, various other CFD features will be apparent.
CFD「循環」的概念與本文中各種實施例的討論有關。通常一循環係執行一次表面沉積反應所需之最小一組操作。一循環的結果係在基板表面上產生至少一部份薄膜層。通常,CFD循環將僅包含那些遞送及吸附每一反應物至基板表面、且隨後使那些吸附之反應物發生反應以形成部份薄膜層之必要步驟。當然,該循環可包含一些輔助步驟,例如清除反應物或副產物之一者及/或處理所沉積之部份薄膜。一般而言,一循環僅包含唯一的操作序列之實例。 作為一範例,一循環可包含以下操作:(i)反應物A之遞送/吸附;(ii)反應物B之遞送/吸附;(iii)將B清除至反應腔室外;以及(iv)施加電漿以驅動A和B之表面反應,從而在該表面上形成部份薄膜層。 The concept of CFD "loop" is relevant to the discussion of various embodiments herein. Usually a cycle is the smallest set of operations required to perform a surface deposition reaction. The result of one cycle is to produce at least a portion of the thin film layer on the substrate surface. Generally, the CFD cycle will include only those steps necessary to deliver and adsorb each reactant to the substrate surface, and then react those adsorbed reactants to form a portion of the thin film layer. Of course, the cycle may include some auxiliary steps, such as removing one of the reactants or by-products and/or processing part of the deposited film. Generally speaking, a cycle contains only instances of a unique sequence of operations. As an example, a cycle may include the following operations: (i) delivery/adsorption of reactant A; (ii) delivery/adsorption of reactant B; (iii) purging B outside the reaction chamber; and (iv) applying electricity The slurry drives the surface reactions of A and B to form a part of the thin film layer on the surface.
此刻將進一步討論以上提及之七項特徵。在以下敘述中,考量其中使一或更多反應物吸附至基板表面、並隨後藉由與電漿相互作用而反應以便在該表面上形成薄膜之CFD反應。 The seven features mentioned above will be discussed further at this moment. In the following description, consider the CFD reaction in which one or more reactants are adsorbed to the substrate surface and then react by interacting with the plasma to form a thin film on the surface.
特徵1(反應物之連續流量)-使反應物A在CFD循環之一或更多部份期間持續流入反應腔室,然而反應物通常不會流入習知ALD中。在習知ALD中,只為了使反應物吸附至基板表面上的目的而流入反應物A。在ALD循環的其他階段,不流入反應物A。然而依照本文中所述之一些CFD實施例,反應物A不僅在與其吸附相關聯之階段期間流入,也在CFD循環之執行其他非吸附A的操作之階段期間流入。例如在許多實施例中,在該設備正在施用第二反應物(本文中的反應物B)時,使反應物A流入反應器中。因此,於至少一部份之CFD循環期間,反應物A和B共存於氣相中。此外,當施加電漿以驅動在基板表面處之反應時,可流入反應物A。注意到連續流入之反應物可連同例如氬之氣體載體遞送至反應腔室。 Feature 1 (continuous flow of reactants)-allows reactant A to continuously flow into the reaction chamber during one or more parts of the CFD cycle, however, the reactants usually do not flow into conventional ALD. In the conventional ALD, the reactant A flows in only for the purpose of adsorbing the reactant on the substrate surface. In other phases of the ALD cycle, no reactant A flows. However, according to some CFD embodiments described herein, reactant A flows in not only during the phase associated with its adsorption, but also during the phase of the CFD cycle where other non-adsorption A operations are performed. For example, in many embodiments, while the device is applying a second reactant (reactant B herein), reactant A is flowed into the reactor. Therefore, during at least a portion of the CFD cycle, reactants A and B coexist in the gas phase. In addition, when the plasma is applied to drive the reaction at the substrate surface, the reactant A may flow. Note that the continuously flowing reactants can be delivered to the reaction chamber together with a gas carrier such as argon.
連續流量實施例之優點為所建立之流量避免由與流量開啟和關閉相關聯之流量的暫態初始化及穩定化所引起之延遲及流量差異。 The advantage of the continuous flow embodiment is that the established flow avoids delays and flow differences caused by the transient initialization and stabilization of the flow associated with flow opening and closing.
作為一具體範例,可藉由使用主要反應物(有時稱為「固體成分」前驅物,或於此範例中簡稱「反應物B」)的保形薄膜沉積製程來沉積氧化物薄膜。二(第三丁基胺基)矽烷(BTBAS,bis(tert-butylamino)silane)係一如此主要反應物。在此範例中,氧化物沉積製程涉及如氧或一氧化二氮之氧化劑的遞送,該氧化劑在不同的曝露階段於主要反應物的遞送期間初始並持續流入。氧化劑亦於不同的電漿曝露階段期間持續流入。參見例如描述於圖1之序列。為了比 較,在習知ALD製程中,當固體成分前驅物遞送至反應器時,氧化劑的流量將停止。舉例而言,當遞送反應物B時,則反應物A的流量將停止。 As a specific example, the oxide thin film may be deposited by a conformal thin film deposition process using a main reactant (sometimes referred to as a "solid component" precursor, or simply "reactant B" in this example). Bis(tert-butylamino)silane (BTBAS) is one such main reactant. In this example, the oxide deposition process involves the delivery of an oxidizing agent such as oxygen or nitrous oxide, which initially and continuously flows during the delivery of the main reactants at different stages of exposure. The oxidant also continued to flow in during the different plasma exposure stages. See, for example, the sequence described in FIG. 1. For comparison In contrast, in the conventional ALD process, when the solid component precursor is delivered to the reactor, the flow rate of the oxidant will stop. For example, when reactant B is delivered, then the flow of reactant A will stop.
在一些具體範例中,持續流入之反應物係「輔助」反應物。如同本文中所使用,「輔助」反應物係不為主要反應物以外之任何反應物。如以上建議,主要反應物包含在室溫下為固態之元素,該元素對藉由CFD形成之薄膜有幫助。如此元素的例子為金屬(例如鋁和鈦)、半導體(例如矽和鍺)、以及非金屬或準金屬(例如硼)。輔助反應物的例子包括氧、臭氧、氫、一氧化碳、一氧化二氮、氨、烷基胺、及其類似者。 In some specific examples, the continuously flowing reactants are "auxiliary" reactants. As used herein, the "auxiliary" reactant is not any reactant other than the main reactant. As suggested above, the main reactants contain elements that are solid at room temperature, which is helpful for thin films formed by CFD. Examples of such elements are metals (such as aluminum and titanium), semiconductors (such as silicon and germanium), and nonmetals or metalloids (such as boron). Examples of auxiliary reactants include oxygen, ozone, hydrogen, carbon monoxide, nitrous oxide, ammonia, alkylamines, and the like.
持續流入之反應物能以固定流速、或以變動但受控之流速來提供。在後者情況下,作為一範例,於曝露階段期間當主要反應物遞送時,可降低輔助反應物之流速。舉例而言,在氧化物沉積中,於整個沉積序列期間氧化劑(例如氧或一氧化二氮)可持續流入,但當主要反應物(例如BTBAS)遞送時,可降低其流速。此增大BTBAS於其施用期間之分壓,從而減少使基板表面飽和所需之曝露時間。就在激發電漿前,可增大氧化劑的流量以降低於電漿曝露階段期間BTBAS存在的可能性。再一些實施例中,持續流入之反應物在二或更多沉積循環的過程中以變動之流速流動。舉例而言,反應物可於第一CFD循環期間以第一流速流動,並且於第二CFD循環期間以第二流速流動。 The continuously flowing reactants can be provided at a fixed flow rate, or at a variable but controlled flow rate. In the latter case, as an example, when the main reactant is delivered during the exposure phase, the flow rate of the auxiliary reactant may be reduced. For example, in oxide deposition, an oxidant (such as oxygen or nitrous oxide) can continuously flow in during the entire deposition sequence, but when the main reactant (such as BTBAS) is delivered, its flow rate can be reduced. This increases the partial pressure of BTBAS during its application, thereby reducing the exposure time required to saturate the substrate surface. Just before the plasma is excited, the flow rate of the oxidant can be increased to reduce the possibility of the presence of BTBAS during the plasma exposure phase. In still other embodiments, the continuously flowing reactants flow at varying flow rates during two or more deposition cycles. For example, the reactants may flow at a first flow rate during the first CFD cycle and at a second flow rate during the second CFD cycle.
當採用多數反應物且其中一者之流量為連續時,於部份CFD循環期間其至少二者將共存於氣相中。同樣地,在遞送第一反應物之後而沒有執行清除步驟時,二反應物將共存。因此,採用在不施加活化能的氣相中不明顯互相反應之反應物可能很重要。通常,反應物應不反應直到存在於基板表面上、且曝露至電漿或另一適當的非熱活化條件為止。選取如此之反應物涉及至少(1)所期望反應之熱力學合適性(thermodynamic favorability)(Gibb之自由能<0)、以 及(2)該反應的活化能(其應足夠大以致於在所期望之沉積溫度下的反應可以忽略)之考量。 When most reactants are used and the flow rate of one of them is continuous, at least two of them will coexist in the gas phase during part of the CFD cycle. Likewise, after delivery of the first reactant without performing a purge step, the two reactants will coexist. Therefore, it may be important to use reactants that do not significantly react with each other in the gas phase where no activation energy is applied. In general, the reactants should not react until they are present on the surface of the substrate and exposed to plasma or another suitable non-thermal activation condition. Selecting such a reactant involves at least (1) the thermodynamic suitability of the desired reaction (Gibb's free energy <0), to And (2) the activation energy of the reaction (which should be large enough so that the reaction at the desired deposition temperature is negligible).
特徵2(減少或排除清除步驟)-在一些實施例中,該製程免除或減少與通常會在習知ALD中執行之清除步驟相關聯的時間。習知ALD中,在每一反應物遞送及吸附至基板表面上之後執行各別的清除步驟。在習知ALD清除步驟中,極少或沒有吸附或反應發生。在CFD循環中,在遞送反應物至少一者之後減少或排除清除步驟。圖1呈現其中移除清除步驟之製程序列的範例。不執行自反應腔室清除反應物A之清除步驟。在一些情況下,在CFD循環中遞送第一反應物之後不執行清除步驟,但是在遞送第二或最後遞送的反應物之後選擇性地執行清除步驟。 Feature 2 (reduction or elimination of removal steps)-In some embodiments, the process eliminates or reduces the time associated with the removal steps that would normally be performed in conventional ALD. In conventional ALD, each cleaning step is performed after each reactant is delivered and adsorbed onto the substrate surface. In the conventional ALD removal step, little or no adsorption or reaction occurs. In the CFD cycle, the clearance step is reduced or eliminated after at least one of the reactants is delivered. FIG. 1 presents an example of the manufacturing process in which the removal step is removed. The step of removing reactant A from the reaction chamber is not performed. In some cases, the purge step is not performed after the first reactant is delivered in the CFD cycle, but the purge step is selectively performed after the second or last delivered reactant is delivered.
CFD「清除」步驟或階段的概念出現在本文中所討論的各種實施例中。一般而言,清除階段自反應腔室移除或清除氣相反應物之一者,並且通常只在如此反應物之遞送完成之後發生。換言之,反應物於清除階段期間不再遞送至反應腔室。然而,反應物於清除階段期間仍然吸附在基板表面上。通常,該清除用以在反應物吸附在基板表面上達到所期望之程度後移除腔室中任何殘留的氣相反應物。清除階段亦可自基板表面移除微弱吸附之物種(例如一些前驅物配子或反應副產物)。在ALD中,清除階段已被視為對於防止二反應物之氣相交互作用,或一反應物與用於表面反應的熱、電漿、或其他驅動力之交互作用是必要的。一般而言,並且除非於本文中另外指明,否則清除階段可藉由(i)排空反應腔室,及/或(ii)使不包含欲清除物種之氣體流入通過反應腔室來實現。在(ii)的情況下,如此氣體可例如為惰性氣體或輔助反應物(如持續流入之輔助反應物)。 The concept of CFD "clear" steps or stages appears in the various embodiments discussed herein. In general, the purge phase removes or purges one of the gas-phase reactants from the reaction chamber, and usually only occurs after the delivery of such reactants is complete. In other words, the reactants are no longer delivered to the reaction chamber during the purge phase. However, the reactants are still adsorbed on the substrate surface during the cleaning phase. Generally, the scavenging is used to remove any remaining gas-phase reactants in the chamber after the reactants are adsorbed on the substrate surface to a desired degree. The cleaning stage can also remove weakly adsorbed species (such as some precursor gametes or reaction byproducts) from the substrate surface. In ALD, the removal phase has been considered necessary to prevent the gas phase interaction of two reactants, or the interaction of a reactant with heat, plasma, or other driving forces for surface reactions. In general, and unless otherwise indicated herein, the purge phase can be achieved by (i) evacuating the reaction chamber, and/or (ii) flowing gas that does not contain the species to be purged through the reaction chamber. In the case of (ii), such a gas may be, for example, an inert gas or an auxiliary reactant (such as a continuously flowing auxiliary reactant).
清除階段之排除可在具有或不具有其他反應物之連續流量的情況下來實現。在圖1繪示之實施例中,並非將反應物A清除出去,而是在其吸附至基板表面上完成之後持續流入(由圖中之參考數字130圖示說明)。
The elimination in the purge phase can be achieved with or without continuous flow of other reactants. In the embodiment shown in FIG. 1, instead of removing the reactant A, it continues to flow in after it is adsorbed onto the substrate surface (illustrated by
在其中採用二或更多反應物之各種實施例中,使其清除步驟被排除或減少之反應物係輔助反應物。作為一範例,輔助反應物為氧化劑或氮源,並且主要反應物為含有矽、硼、或鍺之前驅物。當然,主要反應物之清除也可減少或排除。在一些範例中,在遞送輔助反應物之後不執行清除步驟,但在遞送主要反應物之後選擇性地執行清除步驟。 In various embodiments in which two or more reactants are used, the reactants whose removal steps are eliminated or reduced are auxiliary reactants. As an example, the auxiliary reactant is an oxidant or a nitrogen source, and the main reactant is a precursor containing silicon, boron, or germanium. Of course, the removal of the main reactants can also be reduced or eliminated. In some examples, the purge step is not performed after delivery of the auxiliary reactant, but the purge step is selectively performed after delivery of the primary reactant.
如所提及,清除階段不必完全排除,而是與習知ALD製程中的清除階段相比僅為減少持續時間。舉例而言,於CFD循環期間反應物(如輔助反應物)之清除階段可執行持續約0.2秒或更短,例如持續約0.001至0.1秒。 As mentioned, the clean-up phase does not have to be completely eliminated, but only reduces the duration compared to the clean-up phase in the conventional ALD process. For example, the purge phase of reactants (such as auxiliary reactants) during the CFD cycle may be performed for about 0.2 seconds or less, for example, for about 0.001 to 0.1 seconds.
特徵3(在反應物之一者存在於氣相中時激發電漿)-有此特徵的情況下,在已將所有反應物自反應腔室清除之前激發電漿。此與其中僅在氣相反應物不再存在於反應腔室中之後提供電漿活化或其他反應驅動操作之習知ALD相反。注意到當反應物A在如圖1所示之CFD循環的電漿部份期間持續流入時,此特徵將必然存在。然而,所揭露之實施例不受限於此方式。一或更多反應物可於CFD循環的電漿部份期間流入而不必在CFD循環期間持續流入。此外,於電漿活化期間呈氣相存在之反應物可為主要反應物或輔助反應物(當CFD循環中採用二個以上反應物時)。 Feature 3 (excitation of the plasma when one of the reactants is present in the gas phase)-with this feature, the plasma is excited before all reactants have been purged from the reaction chamber. This is in contrast to conventional ALD, where plasma activation or other reaction-driven operations are provided only after gas-phase reactants no longer exist in the reaction chamber. Note that when reactant A continues to flow during the plasma portion of the CFD cycle shown in Figure 1, this feature will necessarily exist. However, the disclosed embodiments are not limited to this approach. One or more reactants can flow in during the plasma portion of the CFD cycle without having to continue to flow in during the CFD cycle. In addition, the reactants present in the gas phase during plasma activation may be the main reactants or auxiliary reactants (when more than two reactants are used in the CFD cycle).
舉例而言,一序列可為(i)導入反應物A、(ii)清除A、(iii)導入反應物B同時在B流動時撞擊電漿、以及(iv)清除。在如此之實施例中,該製程採用來自氣相之電漿活化反應物物種。此為其中CFD不限制在連續步驟之序列的一般範例。 For example, a sequence may be (i) introducing reactant A, (ii) purging A, (iii) introducing reactant B while impacting the plasma while B flows, and (iv) purging. In such an embodiment, the process uses plasma-activated reactant species from the gas phase. This is a general example where CFD is not limited to a sequence of consecutive steps.
若在將固體成分前驅物(主要反應物)提供至反應器時的期間提供活化電漿,則階梯覆蓋可能變得較不保形,但沉積速率通常將增加。然而,若電漿活化僅於遞送一輔助反應物期間發生,則情況未必如此。電漿可活化氣相輔助成分以使其更易反應,並從而增加其在保形薄膜沉積反應中之反應性。在一些實施例中,在沉積如氧化物、氮化物、或碳化物之含矽薄膜時採用此特徵。 If the activation plasma is supplied during the time when the solid component precursor (main reactant) is supplied to the reactor, the step coverage may become less conformal, but the deposition rate will generally increase. However, if plasma activation occurs only during the delivery of an auxiliary reactant, this may not be the case. Plasma can activate gas-phase auxiliary components to make them more reactive, and thereby increase their reactivity in conformal thin film deposition reactions. In some embodiments, this feature is used when depositing silicon-containing films such as oxides, nitrides, or carbides.
特徵4(沉積CFD薄膜之電漿處理)-在這些實施例中,電漿在保形薄膜沉積製程中可作為二或更多作用。其作用之一為在每一CFD循環期間活化或驅動薄膜形成反應。其另一作用為在一或更多CFD循環過後CFD薄膜已部份或完全沉積之後處理該薄膜。電漿處理欲修改一或更多薄膜特性。通常(儘管非必然)電漿處理階段係在不同於那些用以活化薄膜形成反應(即驅動薄膜形成反應)之條件下實施。作為一範例,電漿處理可在還原或氧化環境之存在下(例如氫或氧之存在下)執行,然而在CFD循環的活化部份期間情況未必如此。 Feature 4 (Plasma treatment for depositing CFD film)-In these embodiments, the plasma can serve two or more roles in the conformal film deposition process. One of its functions is to activate or drive the film formation reaction during each CFD cycle. Another function is to process the CFD film after one or more CFD cycles have been partially or completely deposited. Plasma processing is intended to modify one or more film properties. Usually (though not necessarily) the plasma treatment stage is carried out under conditions different from those used to activate the film formation reaction (ie drive the film formation reaction). As an example, the plasma treatment may be performed in the presence of a reducing or oxidizing environment (eg, in the presence of hydrogen or oxygen), but this may not be the case during the active part of the CFD cycle.
電漿處理操作可在CFD製程的每一循環期間、在每隔一循環期間、或一些較不頻繁的基礎上執行。該處理可配合固定數目之CFD循環在規律間隔上執行,或其可變動地(例如以變動之CFD循環間隔)或甚至隨機地執行。在典型的範例中,執行數個CFD循環之薄膜沉積以達到適當的薄膜厚度,並隨後採用電漿處理。之後,於再次執行該處理之前,在沒有電漿處理的情況下再次執行數個CFD循環之薄膜沉積。後接電漿處理(薄膜修改)的此x數目個CFD循環之超級序列可重複直到藉由CFD完全形成薄膜為止。 Plasma processing operations can be performed during each cycle of the CFD process, during every other cycle, or on some less frequent basis. This process can be performed at regular intervals in conjunction with a fixed number of CFD cycles, or it can be performed variably (eg, at varying CFD cycle intervals) or even randomly. In a typical example, several CFD cycles of film deposition are performed to achieve an appropriate film thickness, and then plasma treatment is used. After that, before performing the process again, several CFD cycles of thin film deposition are performed again without plasma treatment. This super sequence of x number of CFD cycles followed by plasma treatment (film modification) can be repeated until the film is completely formed by CFD.
在一些實施例中,可在CFD循環的初始化之前執行電漿處理以修改CFD薄膜沉積於其上之表面的一或更多特性。在各種實施例中,該表面係由矽(摻雜或未摻雜)或含矽材料製成。修改過的表面更能夠產生與隨後沉積之CFD薄膜的高品質介面。該介面可經由例如減少缺陷等等而提供例如良好附著性、可靠電特性。 In some embodiments, plasma processing may be performed prior to initialization of the CFD cycle to modify one or more characteristics of the surface on which the CFD film is deposited. In various embodiments, the surface is made of silicon (doped or undoped) or silicon-containing material. The modified surface is more capable of producing a high-quality interface with the CFD film deposited subsequently. The interface can provide good adhesion, reliable electrical characteristics, for example, by reducing defects and the like.
在CFD前的基板之預處理不限制在任何特定的電漿處理。在一些實施例中,預處理涉及在氦、氫、氬、氮、氫/氮形成氣體、及/或氨的存在下曝露至氫電漿、氮電漿、氮/氫電漿、氨電漿、氬電漿、氦電漿、氦回火、氫回火、氨回火、以及UV硬化。電漿處理可用包含(然而不限於)微波、ICP遠端、直接、以及其他本領域中具有通常技術者熟知的各種電漿產生器來實現。 The pretreatment of the substrate before CFD is not limited to any specific plasma treatment. In some embodiments, the pretreatment involves exposure to hydrogen plasma, nitrogen plasma, nitrogen/hydrogen plasma, ammonia plasma in the presence of helium, hydrogen, argon, nitrogen, hydrogen/nitrogen forming gas, and/or ammonia , Argon plasma, helium plasma, helium tempering, hydrogen tempering, ammonia tempering, and UV hardening. Plasma processing can be achieved by including (but not limited to) microwave, ICP remote, direct, and other plasma generators known in the art to those skilled in the art.
總體而言,該處理可出現在CFD循環之前、期間、以及之後。當出現在CFD循環期間時,可對於適當的沉積條件選取該處理之頻率。通常,該處理將不比每循環一次更頻繁地出現。 Overall, this process can occur before, during, and after the CFD cycle. When occurring during the CFD cycle, the frequency of the treatment can be selected for the appropriate deposition conditions. Generally, this process will not occur more frequently than once per cycle.
作為一範例,考量用以從具有一些碳存在之前驅物形成氮化矽的製程。如此前驅物的例子包含BTBAS。碳出現在前驅物中的結果為如此沉積之氮化物薄膜包含一些碳雜質,其可降低氮化物的電特性。為了抵消此問題,在含碳前驅物的情況下於數個CFD循環後,在電漿存在下使部份沉積之薄膜曝露至氫以減少並最終移除碳雜質。 As an example, consider the process used to form silicon nitride from a precursor with some carbon present. Examples of such precursors include BTBAS. The result of the presence of carbon in the precursor is that the nitride film so deposited contains some carbon impurities, which can reduce the electrical properties of the nitride. To counteract this problem, after several CFD cycles in the case of a carbon-containing precursor, some deposited films are exposed to hydrogen in the presence of plasma to reduce and eventually remove carbon impurities.
可選取用以修改薄膜表面之電漿條件以達到所期望之薄膜特性及/或成分的改變。在用於所期望之修改的可選擇及/或修改的電漿條件之中為氧化條件、還原條件、蝕刻條件、用於產生電漿之功率、用於產生電漿之頻率、使用二或更多頻率來產生電漿、電漿密度、電漿和基板之間的距離等等。可藉由電漿處理加以修改之CFD薄膜特性的例子包括內部薄膜應力、抗蝕刻性、密度、硬度、光學特性(折射率、反射性、光密度等等)、介電常數、碳含量、電特性(Vfb散佈等等)、及其類似者。 The plasma conditions used to modify the film surface can be selected to achieve the desired changes in film characteristics and/or composition. Among the selectable and/or modified plasma conditions for the desired modification are oxidation conditions, reduction conditions, etching conditions, power for generating plasma, frequency for generating plasma, use of two or more Multi-frequency to generate plasma, plasma density, distance between plasma and substrate, etc. Examples of CFD film properties that can be modified by plasma treatment include internal film stress, etch resistance, density, hardness, optical properties (refractive index, reflectivity, optical density, etc.), dielectric constant, carbon content, electrical Characteristics (Vfb spread, etc.), and the like.
在一些實施例中,採用除了電漿處理以外的處理來修改所沉積薄膜之特性。如此之處理包括電磁輻射處理、熱處理(例如回火或高溫脈衝)、及其類似者。這些處理之任一者可單獨或結合另一處理(包括電漿處理)來執行。如此處理之任一者可作為任一上述之電漿處理的替代。在一些具體實施例中,該處 理涉及使薄膜曝露至紫外線輻射。如以下所述,在一具體實施例中,該方法涉及原位(即於薄膜的形成期間)施加UV輻射至氧化物CFD薄膜或氧化物之後沉積。如此之處理用以減少或消除缺陷結構,並提供改善之電性效能。 In some embodiments, treatments other than plasma treatment are used to modify the characteristics of the deposited film. Such treatments include electromagnetic radiation treatment, heat treatment (such as tempering or high-temperature pulse), and the like. Any of these processes can be performed alone or in combination with another process (including plasma processing). Any of these treatments can be used as an alternative to any of the plasma treatments described above. In some specific embodiments, the place Management involves exposing the film to ultraviolet radiation. As described below, in a specific embodiment, the method involves depositing UV radiation to the oxide CFD film or oxide in situ (ie, during the formation of the film). Such processing is used to reduce or eliminate defective structures and provide improved electrical performance.
在一些具體實施例中,可將UV處理與電漿處理結合。此二操作可同時或相繼執行。在相繼的選項中,UV操作選擇性地首先發生。在同時的選項中,該二處理可由各自的源(例如用於電漿之RF電源與用於UV之燈)、或由單一源(如產生作為UV輻射之副產物的氦電漿)提供。 In some embodiments, UV treatment can be combined with plasma treatment. These two operations can be performed simultaneously or sequentially. In successive options, UV operation occurs selectively first. In the simultaneous option, the two treatments can be provided by separate sources (for example, RF power for plasma and lamps for UV), or by a single source (for example, helium plasma generated as a by-product of UV radiation).
特徵5(藉由CFD沉積並隨後過渡至PECVD)-在如此之實施例中,所完成之薄膜係部份藉由CFD且部份藉由如PECVD之CVD製程而產生。通常,雖然並非必要,但若先執行沉積製程的CFD部份,則其次執行PECVD部份。混合之CFD/CVD製程可改善關於在單獨CVD的情況下所見之階梯覆蓋,並且額外改善關於在單獨CFD的情況下所見之沉積速率。在一些情況下,在一CFD反應物流入時施加電漿或其他活化作用以產生寄生CVD操作,並從而達到更高的沉積速率、不同等級的薄膜等等。 Feature 5 (deposited by CFD and then transitioned to PECVD)-In such an embodiment, the completed film is produced partly by CFD and partly by a CVD process such as PECVD. Usually, although not necessary, if the CFD part of the deposition process is performed first, then the PECVD part is performed second. The mixed CFD/CVD process can improve the step coverage seen with CVD alone, and additionally improve the deposition rate seen with CFD alone. In some cases, plasma or other activation is applied when a CFD reactant flows in to produce a parasitic CVD operation, and thereby achieve higher deposition rates, different grades of thin films, and so on.
在一些實施例中,可採用二或更多CFD階段及/或可採用二或更多CVD階段。舉例而言,可藉由CFD沉積薄膜的初始部份、接著藉由CVD沉積薄膜中間部份、並且藉由CFD沉積薄膜的最後部份。在如此實施例中,在藉由CFD沉積薄膜的稍後部份之前,可能需要如藉由電漿處理或蝕刻來修改薄膜的CVD部份。 In some embodiments, two or more CFD stages may be employed and/or two or more CVD stages may be employed. For example, the initial part of the film can be deposited by CFD, then the middle part of the film by CVD, and the last part of the film by CFD. In such an embodiment, before depositing a later portion of the film by CFD, it may be necessary to modify the CVD portion of the film, such as by plasma processing or etching.
可在CFD和CVD階段之間採用過渡階段。在如此之過渡階段所採用的條件不同於那些在CFD或CVD階段所採用的條件。通常(儘管非必然)該條件允許同時的CFD表面反應與CVD型氣相反應。過渡階段通常涉及曝露至例如可為脈衝式之電漿。又,過渡階段可涉及以低流速(即明顯低於該製程之對應CFD階段中所採用速率之速率)遞送一或更多反應物。 A transition phase can be used between the CFD and CVD phases. The conditions used in such a transition phase are different from those used in the CFD or CVD phase. Usually (though not necessarily) this condition allows simultaneous CFD surface reactions with CVD-type gas phase reactions. The transition phase usually involves exposure to plasma, which may be pulsed, for example. Also, the transition phase may involve delivery of one or more reactants at a low flow rate (ie, a rate significantly lower than the rate used in the corresponding CFD stage of the process).
特徵6(藉由CFD沉積、蝕刻、並隨後更藉由CFD沉積)-在如此之實施例中,執行CFD沉積持續一或更多循環(通常為數次循環),並隨後蝕刻所產生之薄膜以移除例如一些位於或接近凹部入口(尖端)之過量薄膜,後接更多CFD沉積的循環。在沉積之薄膜中的結構特徵之其他範例可用類似方式加以蝕刻。為此製程選取之蝕刻劑將取決於欲蝕刻之材料。在一些情況下,可用含氟蝕刻劑(例如NF3)或氫來執行蝕刻操作。 Feature 6 (by CFD deposition, etching, and then by CFD deposition)-In such an embodiment, CFD deposition is performed for one or more cycles (usually several cycles), and then the resulting film is etched to Remove, for example, some excess film located at or near the entrance (tip) of the recess, followed by more cycles of CFD deposition. Other examples of structural features in the deposited film can be etched in a similar manner. The etchant selected for this process will depend on the material to be etched. In some cases, the etching operation may be performed with a fluorine-containing etchant (for example, NF3) or hydrogen.
在一些實施例中,採用遠端電漿以產生蝕刻劑。一般而言,遠端電漿以比直接電漿更等向的方式蝕刻。遠端電漿通常提供相對高的自由基分率至基板。這些自由基的反應性可隨凹部內的垂直位置而變化。在特徵部的頂部,自由基較集中且因此將以較高的速率蝕刻,而更往凹部下方且在底部處,一些自由基將喪失且因而其將以較低的速率蝕刻。這當然係用以應對過多沉積物出現在凹部開口的問題所期望之反應性曲線。於蝕刻中使用遠端電漿的額外益處為電漿相對和緩且因此不太會損壞基板層。這在下方基板層易受氧化或其他損壞影響時特別有利。 In some embodiments, remote plasma is used to generate the etchant. In general, the distal plasma is etched in a more isotropic manner than the direct plasma. The distal plasma usually provides a relatively high free radical fraction to the substrate. The reactivity of these free radicals can vary with the vertical position within the recess. At the top of the feature, free radicals are more concentrated and will therefore etch at a higher rate, while further down the recess and at the bottom, some free radicals will be lost and thus they will etch at a lower rate. This is, of course, the desired reactivity curve to deal with the problem of excessive deposits appearing in the recess opening. An additional benefit of using the remote plasma in etching is that the plasma is relatively gentle and therefore less likely to damage the substrate layer. This is particularly advantageous when the underlying substrate layer is susceptible to oxidation or other damage.
特徵7(以額外反應物修改薄膜成分)-本文中所提出的許多範例涉及採用一或二反應物之CFD製程。此外,許多範例在每一CFD循環採用相同的反應物。然而,情況未必如此。首先,許多CFD製程可採用三或更多反應物。例子包括(i)使用乙硼烷、六氟化鎢、和氫作為反應物之鎢CFD,以及(ii)使用乙硼烷、BTBAS、和氧作為反應物之氧化矽CFD。可將乙硼烷從生長中的薄膜移除、或若適當的話可使其結合至該薄膜中。 Feature 7 (modification of film composition with additional reactants)-Many of the examples presented here involve CFD processes using one or two reactants. In addition, many examples use the same reactants for each CFD cycle. However, this is not necessarily the case. First, many CFD processes can use three or more reactants. Examples include (i) tungsten CFD using diborane, tungsten hexafluoride, and hydrogen as reactants, and (ii) silicon oxide CFD using diborane, BTBAS, and oxygen as reactants. Diborane can be removed from the growing film, or it can be incorporated into the film if appropriate.
此外,一些範例可在僅一些CFD循環中採用額外反應物。在如此之範例中,基本CFD製程循環僅採用該反應物來產生基礎薄膜成分(例如氧化矽或碳化矽)。此基本製程在所有或幾乎所有CFD循環中執行。然而,CFD循環的部份執行作為變體循環,且其偏離正常沉積循環的條件。例如,其可採用一或 更多額外反應物。這些變體循環也可採用基本CFD製程中所採用之相同反應物,雖然情況未必如此。 In addition, some examples may employ additional reactants in only some CFD cycles. In such an example, the basic CFD process cycle uses only the reactants to generate the basic thin film components (such as silicon oxide or silicon carbide). This basic process is performed in all or almost all CFD cycles. However, part of the CFD cycle is performed as a variant cycle, and it deviates from the conditions of the normal deposition cycle. For example, it can take one or More extra reactants. These variant cycles can also use the same reactants used in the basic CFD process, although this is not necessarily the case.
如此之CFD製程特別有利於準備作為CFD薄膜之摻雜氧化物或其他摻雜材料。在一些實施例中,僅在CFD循環的一小部份中包含摻雜物前驅物作為「額外」反應物。添加摻雜物的頻率取決於所期望之摻雜物濃度。舉例而言,摻雜物前驅物可包含在基礎材料沉積的每第10個循環中。 Such a CFD process is particularly useful for preparing doped oxides or other doped materials as CFD thin films. In some embodiments, dopant precursors are included as "extra" reactants in only a small portion of the CFD cycle. The frequency of dopant addition depends on the desired dopant concentration. For example, a dopant precursor may be included in every 10th cycle of base material deposition.
不同於許多其他沉積製程(特別是那些需要熱活化的沉積製程),CFD製程可在相對低溫下實施。一般而言,CFD溫度將介於約20及400℃之間。可選取如此之溫度以允許在溫度敏感製程(如光阻芯(photoresist core)上之沉積)的情況下之沉積。在一具體實施例中,使用介於約20及100℃之間的溫度於雙圖案化應用(使用例如光阻芯)。在另一實施例中,採用介於約200及350℃之間的溫度於記憶體製作製程。 Unlike many other deposition processes (especially those that require thermal activation), CFD processes can be implemented at relatively low temperatures. In general, the CFD temperature will be between about 20 and 400°C. Such a temperature may be selected to allow deposition in the case of temperature-sensitive processes such as deposition on photoresist cores. In a specific embodiment, a temperature between about 20 and 100°C is used for double patterning applications (using, for example, photoresist cores). In another embodiment, a temperature between about 200 and 350°C is used in the memory manufacturing process.
如以上所建議,CFD相當合適於先進技術節點中沉積薄膜。因此,例如可將CFD處理整合在32nm節點、22nm節點、16nm節點、11nm節點、以及其中任一者更往後的製程之中。這些節點敘述在國際半導體技術藍圖(ITRS)中,其為多年來於微電子技術需求上之業界共識。通常其參考記憶體單元間距的二分之一。在一具體範例中,CFD處理應用於「2X」裝置(具有20-29nm範圍中之裝置特徵)以及其以上之裝置。 As suggested above, CFD is quite suitable for depositing thin films in advanced technology nodes. Therefore, for example, CFD processing can be integrated into the 32nm node, 22nm node, 16nm node, 11nm node, and any of the processes in the future. These nodes are described in the International Semiconductor Technology Blueprint (ITRS), which has been the industry consensus on the needs of microelectronics technology for many years. Usually it refers to half of the pitch of the memory cell. In a specific example, CFD processing is applied to "2X" devices (with device features in the 20-29 nm range) and above.
雖然本文中所提出之CFD薄膜的大多數範例涉及矽基微電子裝置,但該薄膜亦可在其他領域中找到應用。使用非矽半導體(如GaAs及其他III-V族半導體,以及如HgCdTe之II-VI族材料)之微電子工程或光電工程可從使用揭露於本文中之CFD製程而獲益。至於保形介電薄膜在太陽能領域(如光伏裝置)、電致變色領域、及其他領域中的應用係可行的。 Although most of the examples of CFD films proposed in this article involve silicon-based microelectronic devices, the films can also find applications in other fields. Microelectronic engineering or optoelectronic engineering using non-silicon semiconductors (such as GaAs and other III-V semiconductors, and II-VI materials such as HgCdTe) can benefit from using the CFD process disclosed in this article. As for the application of conformal dielectric films in the field of solar energy (such as photovoltaic devices), electrochromism, and other fields, it is feasible.
圖1示意地顯示電漿活化CFD製程之示範實施例的時序圖100。圖中繪示二個完全的CFD循環。如所示般,每一循環包含曝露至反應物A階段120A或120B、立刻後接曝露至反應物B階段140A或140B、反應物B清除階段160A或160B、以及最後電漿活化階段180A或180B。於電漿活化階段180A及180B期間所提供之電漿能量使表面吸附反應物種A及B之間的反應活化。在所描述之實施例中,在遞送一反應物(反應物A)之後不執行清除階段。事實上,此反應物於薄膜沉積製程期間持續流入。因此,在反應物A於該氣相中時激發電漿。以上特徵1-3體現於圖1的範例中。
FIG. 1 schematically shows a timing diagram 100 of an exemplary embodiment of a plasma activated CFD process. The figure shows two complete CFD cycles. As shown, each cycle includes exposure to reactant A stage 120A or 120B, immediately followed by exposure to
所描述之實施例中,反應物氣體A和B可共存於氣相中而不互相反應。因此,在此示範CFD製程中可將ALD製程中所述之製程步驟的一或多者縮短或排除。例如,可排除在A曝露階段120A及120B之後的清除步驟。 In the described embodiment, the reactant gases A and B can coexist in the gas phase without reacting with each other. Therefore, in this exemplary CFD process, one or more of the process steps described in the ALD process can be shortened or eliminated. For example, the cleaning step after the A exposure stages 120A and 120B can be excluded.
CFD製程可用以沉積一些不同類型的薄膜之任一者。雖然本文中所提出之大多數範例涉及介電材料,但所揭露之CFD製程亦可用來形成導電或半導體材料之薄膜。氮化物及氧化物係主要的介電材料,但亦可形成碳化物、氧氮化物、碳摻雜氧化物、硼化物等等。氧化物包含範圍廣泛的材料,包括未摻雜矽酸鹽玻璃(USG)、摻雜矽酸鹽玻璃。摻雜玻璃的例子包含硼摻雜矽酸鹽玻璃(BSG)、磷摻雜矽酸鹽玻璃(PSG)、以及硼磷摻雜矽酸鹽玻璃(BPSG)。 The CFD process can be used to deposit any of several different types of thin films. Although most of the examples presented in this article involve dielectric materials, the disclosed CFD process can also be used to form thin films of conductive or semiconductor materials. Nitride and oxide are the main dielectric materials, but they can also form carbides, oxynitrides, carbon-doped oxides, borides, etc. Oxide contains a wide range of materials, including undoped silicate glass (USG) and doped silicate glass. Examples of doped glass include boron-doped silicate glass (BSG), phosphorus-doped silicate glass (PSG), and boron-phosphorus-doped silicate glass (BPSG).
在一些實施例中,氮化矽薄膜可由含矽反應物與一或更多之含氮反應物及/或含氮反應物混合物之反應而形成。範例性含矽反應物包含(但不限於)二(第三丁基胺基)矽烷(SiH2(NHC(CH3)3)2或BTBAS)、二氯矽烷(SiH2Cl2)、及氯矽烷(SiH3Cl)。範例性含氮反應物包含(但不限於)氨、氮、及第三丁基胺(tert-butyl amine)((CH3)3CNH2或三級丁基胺(t-butyl amine))。範例性含氮反應物混合物包含(但不限於)氮及氫的混合物。 In some embodiments, the silicon nitride film may be formed by the reaction of the silicon-containing reactant with one or more nitrogen-containing reactants and/or nitrogen-containing reactant mixture. Exemplary silicon-containing reactants include (but are not limited to) di(third butylamino) silane (SiH 2 (NHC(CH 3 ) 3 ) 2 or BTBAS), dichlorosilane (SiH 2 Cl 2 ), and chlorine Silane (SiH 3 Cl). Exemplary nitrogen-containing reactants include, but are not limited to, ammonia, nitrogen, and tert-butyl amine ((CH 3 ) 3 CNH 2 or t-butyl amine). Exemplary nitrogen-containing reactant mixtures include, but are not limited to, a mixture of nitrogen and hydrogen.
一或更多反應物之選擇可受各種薄膜及/或硬體考量所推動。舉例而言,在一些實施例中,氮化矽薄膜可由二氯矽烷和電漿活化氮的反應來形成。二氯矽烷化學吸附至氮化矽表面可產生矽氫末端表面(terminated surface),從而釋放氯化氫(HCl)。此化學吸附反應之範例係示意性地描述在反應1中。
The choice of one or more reactants can be driven by various film and/or hardware considerations. For example, in some embodiments, the silicon nitride film may be formed by the reaction of dichlorosilane and plasma activated nitrogen. The chemical adsorption of dichlorosilane onto the surface of silicon nitride can produce a terminated surface of silicon hydrogen, thereby releasing hydrogen chloride (HCl). An example of this chemisorption reaction is described schematically in
反應1所示之環狀中間體隨後可經由與電漿活化氮之反應轉化成矽胺末端表面。
The cyclic intermediate shown in
然而,二氯矽烷的一些分子可藉由替代機制而化學吸附。例如,表面形態可妨礙反應1所述之環狀中間體的形成。另一化學吸附機制的範例係示意性地顯示於反應2。
However, some molecules of dichlorosilane can be chemisorbed by alternative mechanisms. For example, the surface morphology can prevent the formation of the cyclic intermediate described in
在後續的氮之電漿活化期間,反應2所示之中間體物種的剩餘氯原子可被釋放並可藉由電漿變得活化。此可造成氮化矽表面的蝕刻,而潛在性造成氮化矽薄膜變得粗糙或模糊。此外,殘留的氯原子可重新吸附(物理性及/或化學性),而潛在性地污染所沉積的薄膜。此污染可改變氮化矽薄膜的物理及/
或電特性。再者,活化之氯原子可造成處理站硬體之部份的蝕刻損壞,而潛在性減短處理站之部份的使用壽命。
During the subsequent plasma activation of nitrogen, the remaining chlorine atoms of the intermediate species shown in
因此,在一些實施例中,氯矽烷可替代二氯矽烷。此可減少薄膜污染、薄膜損壞、及/或處理站損壞。氯矽烷之化學吸附的範例係示意性地顯示於反應3。
Therefore, in some embodiments, chlorosilane can replace dichlorosilane. This can reduce film contamination, film damage, and/or processing station damage. An example of chemical adsorption of chlorosilane is shown schematically in
雖然反應3所述之範例使用氯矽烷作為含矽反應物,但應瞭解到可使用任何合適的單替代鹵素矽烷。
Although the example described in
如以上說明般,所描述之中間體結構可與氮源反應以形成氮化矽之矽胺末端表面。例如,可藉由電漿活化氨,從而形成各種氨自由基物種。該自由基物種與中間體反應,從而形成矽胺末端表面。 As explained above, the described intermediate structure can react with a nitrogen source to form the silicon nitride terminal surface of silicon nitride. For example, ammonia can be activated by plasma to form various ammonia radical species. This free radical species reacts with the intermediate to form the terminal surface of the silamine.
然而,氨可強烈地物理吸附至反應物遞送管線、處理站、以及排氣管之表面,其可導致延長之清除及排空時間。此外,氨可具有與一些氣相含矽反應物之高反應性。例如二氯矽烷(SiH2Cl2)和氨的氣相混合物可產生如二胺基矽烷(SiH2(NH2)2)之不穩定物種。如此物種可在氣相中分解,從而使小粒子成核。若氨與在鹵素矽烷之化學吸附期間所產生的氯化氫反應,則亦可形成小粒子。如此之粒子可累積在處理站中,在處理站中其可污染基板表面,而潛在導致整合裝置缺陷,並且在處理站中其可污染處理站硬體,而潛在導致工具停機時間 及清理。小粒子亦可累積在排氣管中,而可堵塞泵及鼓風機,並且可產生對特殊環境排氣洗滌器及/或冷凝捕集器之需求。 However, ammonia can be strongly physically adsorbed to the surface of the reactant delivery line, processing station, and exhaust pipe, which can result in extended purging and emptying time. In addition, ammonia can have high reactivity with some gas-phase silicon-containing reactants. For example, a gas-phase mixture of dichlorosilane (SiH 2 Cl 2 ) and ammonia can generate unstable species such as diaminosilane (SiH 2 (NH 2 ) 2 ). Such species can decompose in the gas phase, thereby nucleating small particles. If ammonia reacts with the hydrogen chloride generated during the chemical adsorption of halogen silane, small particles can also be formed. Such particles can accumulate in the processing station, where they can contaminate the substrate surface, potentially causing defects in integrated devices, and in the processing station, they can contaminate the processing station hardware, potentially causing tool downtime and cleaning. Small particles can also accumulate in the exhaust pipe, which can block pumps and blowers, and can create a demand for exhaust scrubbers and/or condensation traps in special environments.
因此,在一些實施例中,可使用替代胺作為含氮反應物。例如,可將由烷基替代胺(如三級丁基胺)之電漿活化形成的各種自由基供應至處理站。替代胺(如三級丁基胺)可具有較氨為低之製程硬體上的黏附係數,其可導致相對較低之物理吸附率以及相對較低之製程清除時間。 Therefore, in some embodiments, alternative amines may be used as nitrogen-containing reactants. For example, various free radicals formed by plasma activation of alkyl-substituted amines (such as tertiary butylamine) can be supplied to the processing station. Alternative amines (such as tertiary butylamine) can have a lower adhesion coefficient on process hardware than ammonia, which can result in a relatively low physical adsorption rate and a relatively low process removal time.
此外,如此之含氮反應物可形成相對於氯化銨更易揮發之鹵化鹽。舉例而言,三級丁基氯化銨可比氯化氨更易揮發。此可減短工具停機時間、裝置缺陷產生、以及環境紓減費用。 In addition, such nitrogen-containing reactants can form halide salts that are more volatile than ammonium chloride. For example, tertiary butyl ammonium chloride can be more volatile than ammonia chloride. This can reduce tool downtime, device defects, and environmental relief costs.
再者,如此之含氮反應物可經由各種副產物反應形成其他胺前驅物。舉例而言,三級丁基胺與二氯矽烷之反應可形成BTBAS。因此,副產物可提供形成氮化矽的替代途徑,從而潛在地增加薄膜良率。在另一範例中,替代胺可提供氮化矽薄膜之低溫熱活化途徑。例如三級丁基胺在高於300℃的溫度下熱分解從而形成異丁烯及氨。 Furthermore, such nitrogen-containing reactants can form other amine precursors through various by-product reactions. For example, the reaction of tertiary butylamine with dichlorosilane can form BTBAS. Therefore, by-products can provide an alternative way to form silicon nitride, potentially increasing film yield. In another example, alternative amines can provide a low-temperature thermal activation pathway for silicon nitride films. For example, tertiary butylamine thermally decomposes at temperatures above 300°C to form isobutylene and ammonia.
雖然以上所提供之說明性範例敘述使用三級丁基胺之氮化矽薄膜形成,但應瞭解在本發明之範圍內可採用任何合適的替代胺。在一些實施例中,合適的替代胺可基於反應物之熱力特性及/或反應性特性加以選擇。例如,可考量由反應物形成之鹵化鹽的相對揮發性,如同可考量在相關溫度下各種熱分解途徑的存在及選擇性。 Although the illustrative examples provided above describe the formation of silicon nitride films using tertiary butylamine, it should be understood that any suitable alternative amine can be used within the scope of the present invention. In some embodiments, suitable alternative amines may be selected based on the thermal and/or reactive characteristics of the reactants. For example, the relative volatility of the halide salt formed by the reactants can be considered, as can the existence and selectivity of various thermal decomposition pathways at relevant temperatures.
此外,雖然以上所提供之範例敘述氮化矽薄膜之沉積,但應瞭解以上討論之原理通常適用於其他薄膜的沉積。例如,一些實施例可使用合適的鹵素矽烷結合合適的含氧反應物物種(如氧電漿)來沉積氧化矽。 In addition, although the examples provided above describe the deposition of silicon nitride films, it should be understood that the principles discussed above are generally applicable to the deposition of other films. For example, some embodiments may use suitable halogen silanes in combination with suitable oxygen-containing reactant species (such as oxygen plasma) to deposit silicon oxide.
表1提供反應物、產物薄膜、以及薄膜和製程特性範圍之非限制性列表。 Table 1 provides a non-limiting list of reactants, product films, and the range of film and process characteristics.
圖1亦顯示各種CFD製程參數之範例性CFD製程階段的時間進行之實施例。圖1繪示二範例性沉積循環110A和110B,然而應瞭解到任何合適數目的沉積循環可包含在CFD製程中以沉積所期望之薄膜厚度。範例性CFD製程參數包含(但不限於)惰性及反應物物種之流速、電漿功率及頻率、基板溫度、以及處理站壓力。表2提供使用BTBAS及氧之範例性二氧化矽沉積循環的非限制性參數範圍。 FIG. 1 also shows an example of the timing of the exemplary CFD process stages of various CFD process parameters. FIG. 1 illustrates two exemplary deposition cycles 110A and 110B, however, it should be understood that any suitable number of deposition cycles may be included in the CFD process to deposit the desired film thickness. Exemplary CFD process parameters include, but are not limited to, flow rates of inert and reactant species, plasma power and frequency, substrate temperature, and processing station pressure. Table 2 provides non-limiting parameter ranges for exemplary silicon dioxide deposition cycles using BTBAS and oxygen.
CFD循環通常包含蝕刻反應物之曝露階段。於此「曝露階段」期間,將反應物遞送至處理腔室以致使反應物吸附在基板表面上。通常,在曝露 階段的開始時,基板表面沒有任何所吸附反應物之明顯數量。圖1中,在反應物A曝露階段120A和120B,以受控之流速將反應物A供應至處理站以使曝露之基板的表面飽和。反應物A可為任何合適的沉積反應物,例如主要反應物或輔助反應物。在其中CFD產生二氧化矽薄膜的範例中,反應物A可為氧。在圖1所示之實施例中,反應物A在沉積循環110A和110B自始至終持續流入。不同於其中分隔薄膜前驅物曝露以防止氣相反應之典型ALD製程,在CFD製程的一些實施例之氣相中允許反應物A和B混合。如以上所示,在一些實施例中選取反應物A和B以使其在施加電漿能量或活化表面反應之前於反應器中遭遇的條件下,可共存於氣相中而不明顯互相反應。在一些情況下,選取反應物以使(1)其間之反應適用於熱力學(即Gibb之自由能<0),以及(2)該反應具有足夠高的活化能使得在所期望之沉積溫度下有可以忽略的反應。滿足這些準則之各種反應物組合將於本揭露內容中的其他位置確認。許多如此之組合包括提供在室溫下為固態之元素的主要反應物,以及不提供在室溫下為固態之元素的輔助反應物。在一些組合中使用之輔助反應物的例子包括氧、氮、烷基胺、以及氫。 The CFD cycle usually includes the exposure phase of the etching reactants. During this "exposure phase", the reactants are delivered to the processing chamber so that the reactants are adsorbed on the substrate surface. Usually, after exposure At the beginning of the phase, the substrate surface does not have any significant amount of adsorbed reactants. In FIG. 1, during the exposure stages 120A and 120B of the reactant A, the reactant A is supplied to the processing station at a controlled flow rate to saturate the surface of the exposed substrate. Reactant A may be any suitable deposition reactant, such as a primary reactant or an auxiliary reactant. In the example where CFD produces a silicon dioxide film, reactant A may be oxygen. In the embodiment shown in FIG. 1, the reactant A continuously flows in throughout the deposition cycles 110A and 110B. Unlike typical ALD processes where the separation film precursor is exposed to prevent gas phase reactions, some embodiments of the CFD process allow reactants A and B to be mixed in the gas phase. As shown above, in some embodiments, reactants A and B are selected so that they can coexist in the gas phase without significantly reacting with each other under the conditions encountered in the reactor before applying plasma energy or activating the surface reaction. In some cases, the reactants are selected so that (1) the reaction between them is suitable for thermodynamics (ie, Gibb's free energy <0), and (2) the reaction has a sufficiently high activation energy so that at the desired deposition temperature The reaction can be ignored. Various reactant combinations that meet these criteria will be confirmed elsewhere in this disclosure. Many such combinations include primary reactants that provide elements that are solid at room temperature, and auxiliary reactants that do not provide elements that are solid at room temperature. Examples of auxiliary reactants used in some combinations include oxygen, nitrogen, alkylamines, and hydrogen.
相較於其中先將反應物A開啟、隨後穩定並曝露至基板、然後關閉、以及最後自反應器移除之ALD製程,持續供應反應物A至處理站可減短或排除反應物A流速開啟及穩定時間。雖然圖1所示之實施例繪示反應物A曝露階段120A及120B為具有固定流速,但應瞭解到在本發明的範圍內可採用任何合適的反應物A流量(包括變動流量)。此外,雖然圖1顯示在整個CFD循環(沉積循環110A)期間反應物A具有固定流速,但情況未必如此。舉例而言,在B曝露階段140A和140B期間可減低反應物A的流速。這可增加B的分壓,並從而增加反應物B吸附在基板表面上的驅動力。 Compared with the ALD process in which reactant A is first turned on, then stabilized and exposed to the substrate, then turned off, and finally removed from the reactor, continuous supply of reactant A to the processing station can reduce or exclude the flow rate of reactant A And settling time. Although the embodiment shown in FIG. 1 shows that the reactant A exposure stages 120A and 120B have a fixed flow rate, it should be understood that any suitable reactant A flow rate (including variable flow rate) can be used within the scope of the present invention. Furthermore, although FIG. 1 shows that reactant A has a fixed flow rate during the entire CFD cycle (deposition cycle 110A), this is not necessarily the case. For example, the flow rate of reactant A during the B exposure stages 140A and 140B can be reduced. This may increase the partial pressure of B, and thereby increase the driving force of the reactant B to be adsorbed on the substrate surface.
在一些實施例中,反應物A曝露階段120A可具有超過反應物A的基板表面飽和時間之持續時間。例如,圖1之實施例包含反應物A曝露階段120A
中之反應物A後飽和曝露時間130。選擇性地,反應物A曝露階段120A包含惰性氣體的受控流速。惰性氣體範例包含(但不限於)氮、氬、及氦。可提供惰性氣體以助於處理站的壓力及/或溫度控制、液態前驅物的蒸發、更多前驅物的快速遞送及/或作為用以自處理站及/或處理站管路移除處理氣體之清除氣體。
In some embodiments, the reactant A exposure stage 120A may have a duration that exceeds the substrate surface saturation time of the reactant A. For example, the embodiment of FIG. 1 includes the exposure stage 120A of reactant A
Saturated
在圖1所示之實施例的反應物B曝露階段140A,將反應物B以受控之流速供應至處理站以使曝露之基板表面飽和。在一示範性二氧化矽薄膜中,反應物B可為BTBAS。雖然圖1之實施例繪示反應物B曝露階段140A為具有固定流速,但應瞭解到在本發明的範圍內可採用任何合適的反應物B流量(包括變動流量)。此外,應瞭解到反應物B曝露階段140A可具有任何合適的持續時間。在一些實施例中,反應物B曝露階段140A可具有超過反應物B的基板表面飽和時間之持續時間。例如,圖1所示之實施例繪示反應物B後飽和曝露時間150包含在反應物B曝露階段140A之中。選擇性地,反應物B曝露階段140A可包含合適的惰性氣體之受控流量,其如以上所述可助於處理站的壓力及/或溫度控制、液態前驅物的蒸發、更多前驅物的快速遞送,並且可防止處理站氣體的逆擴散。在圖1所示之實施例中,惰性氣體於反應物B曝露階段140A自始至終持續供應至處理站。
In the reactant
在一些實施例中,沉積反應之電漿活化可導致較熱活化反應更低之沉積溫度,從而潛在地減少整合製程的可用熱預算之消耗。例如,在一些實施例中,電漿活化CFD製程可在室溫下發生。 In some embodiments, the plasma activation of the deposition reaction may result in a lower deposition temperature than the thermal activation reaction, thereby potentially reducing the consumption of the available thermal budget of the integrated process. For example, in some embodiments, the plasma activated CFD process can occur at room temperature.
雖然圖1所述之CFD製程實施例為電漿活化,但應瞭解到在本發明的範圍內可使用其他非熱能源。非熱能源的非限制性範例包含(但不限於)紫外線燈、下游或遠端電漿源、感應耦合電漿、以及微波表面波電漿。 Although the embodiment of the CFD process shown in FIG. 1 is plasma activation, it should be understood that other non-thermal energy sources can be used within the scope of the present invention. Non-limiting examples of non-thermal energy sources include, but are not limited to, ultraviolet lamps, downstream or remote plasma sources, inductively coupled plasma, and microwave surface wave plasma.
此外,雖然於本文中所討論的許多範例包含二反應物(A和B),但應瞭解到在本發明的範圍內可採用任何合適數目的反應物。在一些實施例中,可使用單個反應物以及用以供應該反應物之表面分解反應的電漿能量之惰性氣 體。或者,如以上所討論之特徵7的背景中,一些實施例可使用三或更多反應物來沉積薄膜。 Furthermore, although many of the examples discussed herein include two reactants (A and B), it should be understood that any suitable number of reactants may be employed within the scope of the present invention. In some embodiments, a single reactant and an inert gas used to supply the plasma energy of the surface decomposition reaction of the reactant body. Alternatively, as in the context of feature 7 discussed above, some embodiments may use three or more reactants to deposit the thin film.
在一些情形中,表面吸附之B物種可如不連續島狀存在於基板表面上,而使其難以達到反應物B的表面飽和。各種表面條件可延遲反應物B於基板表面上的成核及飽和。舉例而言,在反應物A及/或B吸附時所釋放之配位子可阻斷一些表面活性部位,而防止進一步吸附反應物B。因此,在一些實施例中,反應物B之連續吸附層可在反應物B曝露階段140A期間藉由調變反應物B的流量及/或離散地以脈衝輸送反應物B進入處理站來提供。此可為表面吸附及脫附過程提供額外時間,同時與固定流量情形相比更為節省反應物B。
In some cases, the B species adsorbed on the surface may exist on the surface of the substrate as discontinuous islands, making it difficult to reach the surface saturation of the reactant B. Various surface conditions can delay the nucleation and saturation of reactant B on the substrate surface. For example, the ligands released during the adsorption of reactants A and/or B can block some surface active sites and prevent the further adsorption of reactant B. Therefore, in some embodiments, a continuous adsorbent layer of reactant B may be provided by modulating the flow rate of reactant B and/or discretely pulsed reactant B into the processing station during reactant
此外或選擇性地,在一些實施例中,可於反應物B的連續曝露之間包含一或更多清除階段。例如,圖2的實施例示意地顯示沉積循環210之範例性CFD製程時序圖200。在反應物B曝露階段240A,使反應物B曝露至基板表面。隨後,在清除階段260A,關閉反應物B,並且自處理站移除反應物B之氣相物種。在一情形中,氣相反應物B可被反應物A及/或惰性氣體之連續流量移開。在另一情形中,可藉由排空處理站來移除氣相反應物B。氣相反應物B之移除可改變吸附/脫附過程平衡,從而脫附配位子、促使所吸附B的表面重新排列以合併所吸附B之不連續島狀。在反應物B曝露階段240B,使反應物B再次曝露至基板表面。雖然圖2所示之實施例包含一反應物B清除及曝露循環的例子,但應瞭解到在本揭露內容的範圍內可採用交替清除及曝露循環的任何合適數目之重複。
Additionally or alternatively, in some embodiments, one or more cleaning stages may be included between successive exposures of reactant B. For example, the embodiment of FIG. 2 schematically shows an exemplary CFD process timing diagram 200 of the deposition cycle 210. In the
回到圖1的實施例,在180A藉由電漿活化之前,在一些實施例中可於清除階段160A自處理站移除氣相反應物B。除了上述之曝露階段之外,CFD循環可包含一或更多清除階段。清除處理站可避免氣相反應,其中反應物B易受電漿活化影響。又,清除處理站可移除表面吸附之配位子,否則其可能餘留並污染薄膜。範例清除氣體包含(但不限於)氬、氦、以及氮。在圖1所示之實施例 中,用於清除階段160A之清除氣體係由惰性氣體流所供應。在一些實施例中,清除階段160A可包含一或更多用以排空處理站之排空次階段。或者,應瞭解到在一些實施例中可省略清除階段160A。 Returning to the embodiment of FIG. 1, before the 180A is activated by plasma, in some embodiments, the gas phase reactant B may be removed from the processing station at the purge stage 160A. In addition to the above-mentioned exposure phases, the CFD cycle may include one or more cleaning phases. Clearing the treatment station can avoid gas phase reactions, where reactant B is susceptible to plasma activation. In addition, the removal treatment station can remove the ligands adsorbed on the surface, otherwise it may remain and contaminate the film. Example purge gases include (but are not limited to) argon, helium, and nitrogen. In the embodiment shown in Figure 1 In, the purge gas system used in purge stage 160A is supplied by an inert gas stream. In some embodiments, the purge stage 160A may include one or more evacuation sub-stages to evacuate the processing station. Alternatively, it should be appreciated that in some embodiments the clear phase 160A may be omitted.
清除階段160A可具有任何合適的持續時間。在一些實施例中,增加一或更多清除氣體的流速可減短清除階段160A的持續時間。例如,可根據各種反應物熱力特性、及/或處理站的幾何特性、及/或處理站管路來調整清除氣體流速從而修改清除階段160A的持續時間。在一非限制性範例中,可藉由調整清除氣體流速而使清除階段的持續時間最佳化。此可減短沉積循環時間,從而可增進基板吞吐量。 The clearing phase 160A may have any suitable duration. In some embodiments, increasing the flow rate of one or more purge gases may reduce the duration of purge phase 160A. For example, the purge gas flow rate can be adjusted to modify the duration of the purge phase 160A according to various reactant thermal characteristics, and/or processing station geometry, and/or processing station piping. In a non-limiting example, the duration of the purge phase can be optimized by adjusting the purge gas flow rate. This can reduce the deposition cycle time, thereby improving substrate throughput.
CFD循環除了上述之曝露及選擇性的清除階段之外,通常還包含「活化階段」。活化階段用以驅動吸附在基板表面上之一或更多反應物的反應。在圖1所示之實施例的電漿活化階段180A,提供電漿能量以活化表面吸附反應物A和B之間的表面反應。例如,電漿可直接地或間接地活化反應物A的氣相分子以形成反應物A自由基。這些自由基隨後可與表面吸附反應物B交互作用,從而導致薄膜形成表面反應。沉積循環110A結束於電漿活化階段180A,在圖1之實施例中沉積循環110A後接以反應物A曝露階段120B為開始之沉積循環110B。 The CFD cycle usually includes an "activation stage" in addition to the above-mentioned exposure and selective removal stages. The activation phase is used to drive the reaction of one or more reactants adsorbed on the substrate surface. In the plasma activation stage 180A of the embodiment shown in FIG. 1, plasma energy is provided to activate the surface reaction between the surface adsorption reactants A and B. For example, the plasma may directly or indirectly activate gas phase molecules of reactant A to form reactant A radicals. These free radicals can then interact with the surface-adsorbed reactant B, leading to a surface reaction of film formation. The deposition cycle 110A ends at the plasma activation stage 180A. In the embodiment of FIG. 1, the deposition cycle 110A is followed by the deposition cycle 110B starting with the reactant A exposure stage 120B.
在一些實施例中,於電漿活化階段180A中激發之電漿可直接在基板表面上方形成。此可提供更大的電漿密度以及反應物A和B之間的增加表面反應率。例如,可使用二電容式耦合板藉由施加射頻(RF)場至低壓氣體來產生用於CFD製程之電漿。在替代實施例中,可在主反應腔室之外產生遠端生成電漿。 In some embodiments, the plasma excited in the plasma activation stage 180A may be formed directly above the substrate surface. This can provide greater plasma density and increased surface reaction rate between reactants A and B. For example, two capacitive coupling plates can be used to generate plasma for the CFD process by applying a radio frequency (RF) field to a low-pressure gas. In an alternative embodiment, the distal generation plasma may be generated outside the main reaction chamber.
可使用任何合適的氣體來形成電漿。在第一範例中,可使用如氬或氦之惰性氣體來形成電漿。在第二範例中,可使用如氧或氨之反應物氣體來形成電漿。在第三範例中,可使用如氮之清除氣體來形成電漿。當然,亦可採用這些種類之氣體的組合。藉由RF場使平板之間的氣體離子化來激發電漿,從 而在電漿放電區域產生自由電子。這些電子受到RF場加速,並且可與氣相反應物分子碰撞。這些電子與反應物分子的碰撞可形成參與沉積製程之自由基物種。應瞭解到RF場可經由任何合適的電極耦合。電極的非限制性例子包含處理氣體分佈噴淋頭及基板支撐基座。應瞭解到除了電容式耦合RF場至氣體之外還可藉由一或更多合適的方法來形成用於CFD製程之電漿。 Any suitable gas can be used to form the plasma. In the first example, an inert gas such as argon or helium can be used to form the plasma. In the second example, a reactant gas such as oxygen or ammonia may be used to form the plasma. In the third example, a purge gas such as nitrogen can be used to form the plasma. Of course, combinations of these kinds of gases can also be used. The RF field ionizes the gas between the plates to excite the plasma, from In the plasma discharge area, free electrons are generated. These electrons are accelerated by the RF field and can collide with gaseous reactant molecules. The collision of these electrons and reactant molecules can form free radical species that participate in the deposition process. It should be appreciated that the RF field can be coupled via any suitable electrode. Non-limiting examples of electrodes include process gas distribution showerheads and substrate support pedestals. It should be understood that in addition to capacitively coupling the RF field to the gas, one or more suitable methods may be used to form the plasma for the CFD process.
電漿活化階段180A可具有任何合適的持續時間。在一些實施例中,電漿活化階段180A可具有超過電漿活化自由基與所有曝露之基板表面及被吸附物交互作用、從而在基板表面頂上形成連續薄膜之時間的持續時間。例如,圖1所示之實施例在電漿活化階段180A中包含電漿後飽和曝露時間190。
The plasma activation phase 180A may have any suitable duration. In some embodiments, the plasma activation stage 180A may have a duration that exceeds the time that the plasma activated radical interacts with all exposed substrate surfaces and adsorbates, thereby forming a continuous thin film on top of the substrate surface. For example, the embodiment shown in FIG. 1 includes the post-plasma
如以下更完整地說明、且如以上特徵4之討論中所建議般,延長電漿曝露時間及/或提供複數電漿曝露階段可提供所沉積薄膜之主體及/或近表面部份的後反應處理。在一情形中,藉由電漿處理減少表面污染可使表面準備好對反應物A的吸附。例如,由含矽反應物與含氮反應物之反應形成的氮化矽薄膜可具有抵抗後續反應物之吸附的表面。以電漿處理氮化矽表面可產生用以促進後續吸附及反應事件之氫鍵。
As explained more fully below, and as suggested in the discussion of
在一些實施例中,如薄膜應力、介電常數、折射率、及蝕刻速率之薄膜特性可藉由改變將於以下更詳細討論之電漿參數加以調整。表3提供關於三個在攝氏400度下沉積之範例CFD二氧化矽薄膜的各種薄膜特性之範例性列表。為了參考性目的,表3亦包含關於在攝氏400度下沉積之範例PECVD二氧化矽薄膜之薄膜資訊。 In some embodiments, film properties such as film stress, dielectric constant, refractive index, and etch rate can be adjusted by changing plasma parameters that will be discussed in more detail below. Table 3 provides an exemplary list of various film characteristics of three example CFD silicon dioxide films deposited at 400 degrees Celsius. For reference purposes, Table 3 also contains film information about the example PECVD silicon dioxide film deposited at 400 degrees Celsius.
舉例而言,圖3示意地顯示CFD製程時序圖300之實施例,其包含沉積階段310後接電漿處理階段390。應瞭解到在電漿處理階段期間可使用任何合適的電漿。在第一情形中,在沉積循環中之活化期間可使用第一電漿氣體,並且在電漿處理階段期間可使用第二、不同的電漿氣體。在第二情形中,於電漿處理階段期間第二、不同的電漿氣體可補充第一電漿氣體。表4提供關於一範例性原位電漿處理循環之非限制性參數範圍。 For example, FIG. 3 schematically shows an embodiment of a CFD process timing diagram 300, which includes a deposition stage 310 followed by a plasma processing stage 390. It should be understood that any suitable plasma may be used during the plasma processing phase. In the first case, a first plasma gas may be used during activation in the deposition cycle, and a second, different plasma gas may be used during the plasma processing stage. In the second case, a second, different plasma gas may supplement the first plasma gas during the plasma processing stage. Table 4 provides non-limiting parameter ranges for an exemplary in-situ plasma treatment cycle.
在圖3所示之電漿活化階段380,使基板表面曝露至電漿以活化薄膜沉積反應。如圖3所示之實施例中所繪示般,在電漿處理清除階段390A將處理站提供以反應物A(其可為例如輔助反應物(如氧))以及惰性氣體之連續流量。清除處理站可自處理站移除揮發性污染物。雖然圖3顯示一清除氣體,但應瞭解到在本發明的範圍內可使用任何合適的反應物移除方法。在電漿處理活化階段390B,激發電漿以處理新沉積之薄膜的主體及/或近表面區域。
In the plasma activation stage 380 shown in FIG. 3, the substrate surface is exposed to the plasma to activate the thin film deposition reaction. As shown in the embodiment shown in FIG. 3, in the plasma treatment removal stage 390A, the processing station is provided with a continuous flow of reactant A (which may be, for example, an auxiliary reactant (such as oxygen)) and an inert gas. The removal treatment station can remove volatile pollutants from the treatment station. Although FIG. 3 shows a purge gas, it should be understood that any suitable reactant removal method can be used within the scope of the present invention. In the plasma
雖然圖3之實施例包含一包括一電漿處理階段之CFD循環的例子,但應瞭解到在本發明的範圍內可採用任何合適數目之重複。此外,應瞭解到可在正常沉積循環之間的間隔(規則或以其他方式)插入一或更多電漿處理循環。舉例而言,圖4顯示CFD製程時序圖400之實施例,其包含插入於二沉積循環之間的電漿處理階段。雖然圖4之實施例包含插入於二沉積循環之間的電漿處理循環,但應瞭解到任何合適數目之沉積循環可位於一或更多電漿處理循環之前或之後。例如,在電漿處理係用以改變薄膜密度的情形中,可在每第十個沉積循環之後插入電漿處理循環。在電漿處理係用以準備用於吸附及反應事件之 表面的情形中,可將電漿處理循環合併在每一個CFD循環中(例如在每一個CFD沉積階段之後)。 Although the embodiment of FIG. 3 includes an example of a CFD cycle including a plasma processing stage, it should be understood that any suitable number of repetitions can be used within the scope of the present invention. In addition, it should be understood that one or more plasma treatment cycles may be inserted at intervals (regularly or otherwise) between normal deposition cycles. For example, FIG. 4 shows an embodiment of a CFD process timing diagram 400, which includes a plasma processing stage interposed between two deposition cycles. Although the embodiment of FIG. 4 includes plasma processing cycles interposed between two deposition cycles, it should be understood that any suitable number of deposition cycles may be located before or after one or more plasma processing cycles. For example, in the case where the plasma treatment is used to change the film density, a plasma treatment cycle may be inserted after every tenth deposition cycle. Used in plasma processing to prepare for adsorption and reaction events In the case of the surface, the plasma treatment cycle may be incorporated in each CFD cycle (eg after each CFD deposition stage).
沉積薄膜之電漿處理可改變薄膜的一或更多物理特性。在一情形中,電漿處理可使新沉積薄膜緻密化。緻密化薄膜可比非緻密化薄膜較為抗蝕刻。例如,圖5顯示關於範例性CFD處理之二氧化矽薄膜相對於熱生長之二氧化矽薄膜之蝕刻速率的比較500之實施例。圖5之範例性薄膜實施例係藉由CFD製程502及504在從攝氏50度到400度的溫度範圍下沉積。作為參考,圖5顯示藉由電漿輔助CVD製程所沉積之未摻雜矽酸鹽玻璃(USG)與二氧化矽間隔層的相對蝕刻速率。由製程502(其每一沉積循環中包含1秒高頻氧電漿活化階段)產生之薄膜對於稀釋氫氟酸濕蝕刻(100:1 H2O:HF)之抵抗性為製程504(其每一沉積循環中包含10秒高頻氧電漿活化階段)產生之薄膜的大約一半。因此,應瞭解到改變電漿活化階段之一或更多實施態樣及/或包含一或更多電漿處理循環可改變沉積薄膜的蝕刻速率。
The plasma treatment of the deposited film can change one or more physical properties of the film. In one case, the plasma treatment can densify the newly deposited film. Densified films can be more resistant to etching than non-densified films. For example, FIG. 5 shows an embodiment of a
在另一情形中,薄膜的電漿處理可改變薄膜的應力特性。例如,圖6顯示關於範例性CFD二氧化矽薄膜之濕蝕刻速率比率與薄膜應力之間相關性600之實施例。在圖6所示之實施例中,藉由例如延長電漿曝露時間而減小濕蝕刻速率比率可增大壓縮薄膜應力。
In another case, the plasma treatment of the film can change the stress characteristics of the film. For example, FIG. 6 shows an example of a
在另一情形中,沉積薄膜的電漿處理可提供相對於其他薄膜成分(例如在範例二氧化矽薄膜中的矽及/或氧)之微量薄膜污染物(例如在範例二氧化矽薄膜中的氫、氮、及/或碳)的瞬間差別移除。例如圖7顯示沉積溫度、電漿曝露時間、以及薄膜污染物濃度之間相關性700之實施例。在圖7所示之實施例中,在攝氏50度下沉積且具有10秒氧電漿活化階段之CFD二氧化矽薄膜704展現低於在相同溫度下沉積但具有1秒氧電漿活化階段之CFD二氧化矽薄膜702之氫及碳濃度。改變薄膜中污染物濃度可改變薄膜的電性及/或物理特性。舉例而言,
調變碳及/或氫含量可調變薄膜介電常數及/或薄膜蝕刻速率。因此,應瞭解到改變電漿活化階段之一或更多實施態樣及/或包含一或更多電漿處理循環可提供用於改變薄膜成分的方法。
In another case, the plasma treatment of the deposited film can provide trace film contaminants (eg, in the example silicon dioxide film) relative to other film components (eg, silicon and/or oxygen in the example silicon dioxide film) Hydrogen, nitrogen, and/or carbon) are removed instantaneously. For example, FIG. 7 shows an example of the
雖然以上所討論的電漿處理與氧電漿處理有關,但應瞭解到在不離開本實施例的範圍之情況下可採用任何合適的電漿處理。例如,在一些實施例中,在合適的CFD製程中可採用替代胺取代NH3作為含氮反應物。雖然以替代胺(例如類似三級丁基胺之烷基胺)取代NH3對於保形SiN沉積可提供一些益處,但在一些情況下,所沉積之薄膜可包含源自烷基胺反應物之殘留碳(例如來自包含在每一三級丁基胺分子(NH2-(CH3)3)的三個甲基群之殘留碳)。此膜內碳可導致漏電,且可使得薄膜無法用在一些介電阻障層應用。 Although the plasma treatment discussed above is related to oxygen plasma treatment, it should be understood that any suitable plasma treatment may be used without departing from the scope of this embodiment. For example, in some embodiments, alternative amines can be used in place of NH 3 as nitrogen-containing reactants in a suitable CFD process. Although replacing NH 3 with a replacement amine (such as an alkyl amine like tertiary butyl amine) may provide some benefits for conformal SiN deposition, in some cases, the deposited film may include Residual carbon (for example, residual carbon from the three methyl groups contained in each tertiary butylamine molecule (NH 2 -(CH 3 ) 3 )). The carbon in the film can cause leakage, and can make the film unusable in some dielectric barrier applications.
因此,在一些實施例中,在SiN薄膜沉積期間激發氫電漿可減少在SiN薄膜中的殘留碳,其可相對改善薄膜的絕緣特性。在一些範例中,殘留碳之減少可容易地在FTIR光譜中觀察到。例如,SiN:C-H位準可從大約10原子%減少至大約1原子%。 Therefore, in some embodiments, exciting the hydrogen plasma during the deposition of the SiN film can reduce the residual carbon in the SiN film, which can relatively improve the insulating properties of the film. In some examples, the reduction of residual carbon can be easily observed in the FTIR spectrum. For example, the SiN:C-H level can be reduced from about 10 atomic% to about 1 atomic %.
因此,在一些實施例中,可使用烷基胺或包含在含氮反應物及氫電漿處理的一或更多實例中之烷基胺混合物以CFD製程來沉積氮化矽薄膜。應瞭解到在不離開本發明的範圍之情況下可採用任何合適的氫電漿。因此,在一些實施例中,H2與例如He或Ar之氣體的混合物、或其他含H氣體、或由遠端電漿源產生之活化H原子可用以處理沉積薄膜。此外,在一些實施例中,可藉由改變一或更多數目之處理脈衝及其持續時間、處理電漿的強度、基板溫度、以及處理氣體成分來調整薄膜的碳含量至任何合適的濃度。 Therefore, in some embodiments, a silicon nitride film may be deposited in a CFD process using an alkylamine or an alkylamine mixture included in one or more examples of nitrogen-containing reactant and hydrogen plasma treatment. It should be understood that any suitable hydrogen plasma can be used without departing from the scope of the present invention. Therefore, in some embodiments, a mixture of H 2 and a gas such as He or Ar, or other H-containing gas, or activated H atoms generated from a remote plasma source can be used to process the deposited film. In addition, in some embodiments, the carbon content of the film can be adjusted to any suitable concentration by changing one or more number of processing pulses and their duration, processing plasma strength, substrate temperature, and processing gas composition.
雖然以上所討論的氫電漿處理與氮化矽薄膜有關,但應瞭解到合適的氫電漿處理之應用可用以調整其他包括(但不限於)SiOx、GeOx、及SiOxNy之CFD沉積薄膜的碳含量。 Although the hydrogen plasma treatment discussed above is related to silicon nitride films, it should be understood that suitable hydrogen plasma treatment applications can be used to adjust other including (but not limited to) SiO x , GeO x , and SiO x N y The carbon content of CFD deposited films.
一些於本文中揭露之實施例涉及氧化物CFD薄膜的紫外線處理(具有或不具有電漿處理)。該處理可減輕氧化物中的缺陷並改善如閘極介電層的CV特性之電性特性。採用可從如此處理受益之CFD氧化物的裝置及封裝應用包括:直通矽穿孔、採用閘極氧化物之邏輯技術、淺渠溝隔離(STI)、於STI光阻剝除之後形成細薄熱氧化物、於P井植入之前的犧牲氧化物(例如~60A)、後「井」熱氧化物生長、閘極/通道氧化物、DRAM PMD PECVD氧化物。 Some of the embodiments disclosed herein relate to the ultraviolet treatment of oxide CFD films (with or without plasma treatment). This treatment can reduce defects in the oxide and improve electrical characteristics such as the CV characteristics of the gate dielectric layer. Devices and packaging applications that use CFD oxides that can benefit from such processing include: through-silicon vias, logic technology using gate oxides, shallow trench isolation (STI), and thin thermal oxidation after STI photoresist stripping Materials, sacrificial oxide before implantation in well P (eg ~60A), thermal oxide growth after "well", gate/channel oxide, DRAM PMD PECVD oxide.
在一些情況下,已觀察到未經處理之CFD氧化物薄膜具有相對差的電性效能,據信是由於在如沉積薄膜中的固定電荷。例如,已發現一些薄膜具有明顯的晶圓內Vfb差異。如此問題已藉由在氫的存在下使用具有UV輻射及/或熱回火之後沉積處理而解決。據信此製程鈍化及/或減輕與位於(1)氧化物至矽介面、或(2)沉積之介電薄膜內、或(3)在空氣至氧化物表面(表面電荷)之固定電荷有關之缺陷。使用如此之處理,在UV硬化之後所沉積之氧化物的Vfb散布已從8.3V緊縮至約1.5V。 In some cases, untreated CFD oxide films have been observed to have relatively poor electrical performance, believed to be due to fixed charges in eg deposited films. For example, some films have been found to have significant intra-wafer Vfb differences. Such problems have been solved by using deposition treatment with UV radiation and/or thermal tempering in the presence of hydrogen. It is believed that the passivation and/or mitigation of this process is related to the fixed charge located in (1) oxide to silicon interface, or (2) deposited dielectric film, or (3) air to oxide surface (surface charge) defect. With such treatment, the Vfb dispersion of the oxide deposited after UV curing has been tightened from 8.3V to about 1.5V.
雖然這些實施例主要涉及改善氧化物薄膜,但所揭露之方法可廣泛地應用在介電層、金屬、金屬至介電層介面工程的生長。具體的介電層材料包含例如氧化矽(包括摻雜氧化矽)、碳化矽、氧碳化矽、氮化矽、氧氮化矽、以及可灰化硬遮罩材料。 Although these embodiments are mainly concerned with improving oxide films, the disclosed method can be widely applied to the growth of dielectric layers, metals, and metal-to-dielectric layer interface engineering. Specific dielectric layer materials include, for example, silicon oxide (including doped silicon oxide), silicon carbide, silicon oxycarbide, silicon nitride, silicon oxynitride, and ashable hard mask materials.
可用以增進介電特性之處理的範例包括如下: Examples of processes that can be used to improve dielectric properties include the following:
(A)藉由以UV硬化且隨後氫回火之CFD而合成之介電薄膜的後沉積處理。在最簡單的實施例中,可單獨使用UV處理以減少固定電荷。 (A) Post-deposition treatment of dielectric thin films synthesized by CFD hardened with UV and then hydrogen tempered. In the simplest embodiment, UV treatment can be used alone to reduce the fixed charge.
(B)在CFD介電薄膜沉積之前的利用包含下列者之處理的基板預處理:在He、H2、Ar、N2、H2/N2形成氣體、NH3存在下之H2電漿、N2電漿、N2/H2電漿、NH3電漿、AR電漿、He電漿、He回火、H2回火、NH3回火、以及UV硬化。 電漿處理可用包含(但不限於)微波、ICP遠端、直接、及其類似者之各種電漿產生器來實現。 (B) Before CFD dielectric film deposition, substrate pretreatment using the following treatments: H 2 plasma in the presence of He, H 2 , Ar, N 2 , H 2 /N 2 forming gas, NH 3 , N 2 plasma, N2/H2 plasma, NH 3 plasma, AR plasma, He plasma, He tempering, H 2 tempering, NH 3 tempering, and UV hardening. Plasma processing can be achieved by various plasma generators including (but not limited to) microwave, ICP remote, direct, and the like.
(C)與包含以下處理之同時處理(沉積期間硬化):在He、H2、Ar、N2、H2/N2形成氣體、NH3存在下之H2電漿、N2電漿、N2/H2電漿、NH3電漿、AR電漿、He電漿、He回火、H2回火、NH3回火、以及UV硬化。電漿處理可用包含(但不限於)微波、ICP遠端、直接、及其他本領域中具有通常技術者熟知之各種電漿產生器來實現。可應用之等向性及方向性處理包含(但不限於)遠端電漿、UV曝露、直接電漿、及微波電漿。一範例性方法包含在CFD循環的群組之間的薄膜間歇處理。CFD循環的一群組可從約1變化至10000個循環。典型的情形包含:(1)5個CFD氧化物生長循環、後接(2)用任何以上所述之方法(例如He電漿、UV處理)之一或更多薄膜處理、後接(3)5個CFD氧化物生長循環。此方法可用以生長任何期望之厚度的薄膜。
(C) simultaneously with the process comprising the following process (cured during deposition): in He, H 2, Ar, N 2,
(D)由以上所列之任何電漿所賦予為副產物之UV處理(例如氦電漿放射UV輻射)。 (D) UV treatment imparted as a by-product by any of the plasmas listed above (eg helium plasma emits UV radiation).
在CFD循環期間用於原位「硬化」程序之一範例涉及以下操作: An example of an in-situ "hardening" procedure used during the CFD cycle involves the following operations:
(1)經由He電漿之UV處理 (1) UV treatment by He plasma
(2)BTBAS施用 (2) BTBAS administration
(3)清除 (3) Clear
(4)O2/Ar-RF電漿活化 (4) O 2 /Ar-RF plasma activation
(5)清除 (5) Clear
(6)重複步驟(1)-(5)以產生期望之厚度的薄膜。 (6) Repeat steps (1)-(5) to produce a film with the desired thickness.
UV硬化條件的範圍可用在任何所列出之上下文中。一般而言,於硬化期間基座溫度將維持在約250及500℃之間。對於許多裝置製作應用,上限溫度將限制在450℃或甚至400℃。硬化期間所採用之環境可為惰性或反應 性。可於硬化期間存在之氣體的例子包含氦、氬、氮、形成氣體、以及氨。如此氣體之流速可為約2至20000sccm,較佳地約4000至18000sccm。UV燈的功率可例如為約2-10kW,且較佳地介於約3.5及7kW之間。曝露至來自此源之UV的適當持續時間為介於約20及200秒之間(例如約90秒)。最後,可將壓力保持在介於0Torr及約40Torr之間的位準。 The range of UV hardening conditions can be used in any listed context. Generally, the pedestal temperature will be maintained between about 250 and 500°C during hardening. For many device manufacturing applications, the upper limit temperature will be limited to 450°C or even 400°C. The environment used during hardening can be inert or reactive Sex. Examples of gases that can be present during hardening include helium, argon, nitrogen, forming gases, and ammonia. The flow rate of such gas may be about 2 to 20000 sccm, preferably about 4000 to 18000 sccm. The power of the UV lamp may be, for example, about 2-10 kW, and preferably between about 3.5 and 7 kW. A suitable duration of exposure to UV from this source is between about 20 and 200 seconds (eg, about 90 seconds). Finally, the pressure can be maintained at a level between 0 Torr and about 40 Torr.
在一具體實施例中,使用以下條件來獲得CFD氧化物的有效處理:基座溫度=400℃ In a specific embodiment, the following conditions are used to obtain an effective treatment of CFD oxides: pedestal temperature = 400°C
環境=He Environment=He
壓力=40Torr He Pressure = 40 Torr He
流速=10000sccm Flow rate=10000sccm
在一些實施例中,於UV硬化操作之後執行氧化物之熱回火。在一範例中,於該回火中使用以下條件:基座溫度=400℃ In some embodiments, thermal tempering of the oxide is performed after the UV hardening operation. In an example, the following conditions are used in the tempering: base temperature = 400°C
環境=H2+N2 Environment = H 2 + N 2
壓力=2.5Torr Pressure=2.5Torr
流速=750sccm H2;3000sccm N2 Flow rate=750sccm H 2 ; 3000sccm N 2
沉積薄膜的物理及電性特性亦可藉由調整其他如沉積溫度之製程參數加以改變。例如,圖7所繪示之實施例之相關性700亦顯示CFD薄膜沉積溫度與薄膜污染物濃度之間的範例性關係。當薄膜沉積溫度增高時,則薄膜污染物的併入減少。在另一範例中,圖5所示之實施例圖例說明範例性二氧化矽CFD薄膜之濕蝕刻速率比率隨著沉積溫度增高而減低,如同以上所述般。其他可調整以調諧薄膜特性之沉積參數包含RF功率、RF頻率、壓力、以及流速。此外,在一些實施例中,可藉由改變反應物選擇來改變薄膜特性。例如,可藉由
使用四異氫酸酯矽烷(TICS)作為含矽反應物以及使用氧及/或一氧化二氮作為含氧反應物來減少二氧化矽薄膜的氫含量。
The physical and electrical properties of the deposited film can also be changed by adjusting other process parameters such as deposition temperature. For example, the
應瞭解到如以上所討論的那些物理及/或電性薄膜特性之變化可提供調整裝置效能和良率的機會、以及修改裝置製造製程整合之實施態樣的機會。作為一非限制性範例,調諧CFD二氧化矽薄膜之蝕刻速率特性的能力可使得薄膜成為蝕刻停止層、硬遮罩、及其他製程整合應用的候選者。因此,在本文中提供用於整合半導體裝置製造程序所有方面應用之CFD產生之薄膜的各種實施例。 It should be understood that changes in physical and/or electrical thin film characteristics as discussed above may provide opportunities to adjust device performance and yield, as well as opportunities to modify the implementation aspects of device manufacturing process integration. As a non-limiting example, the ability to tune the etch rate characteristics of CFD silicon dioxide films can make the films candidates for etch stop layers, hard masks, and other process integration applications. Therefore, various embodiments of CFD-generated thin films for integration of all aspects of semiconductor device manufacturing processes are provided herein.
在一情形中,CFD製程可在非平面基板上沉積保形二氧化矽薄膜。舉例而言,CFD二氧化矽薄膜可用於結構之間隙填充,如淺渠溝隔離(STI)結構之渠溝填充。雖然以下敘述之各種實施例與間隙填充應用有關,但應瞭解到這僅為非限制性、示例性應用,並且利用其他合適薄膜材料之其他合適應用皆可在本發明的範圍內。CFD二氧化矽薄膜的其他應用包含(但不限於)層間介電(ILD)應用、金屬間介電(IMD)應用、前金屬介電(PMD)應用、用於直通矽穿孔(TSV)之介電襯墊應用、電阻式RAM(ReRAM)應用、及/或DRAM中堆疊式電容製作應用。 In one case, the CFD process can deposit a conformal silicon dioxide film on a non-planar substrate. For example, CFD silicon dioxide films can be used for gap filling of structures, such as trench filling for shallow trench isolation (STI) structures. Although the various embodiments described below are related to gap-filling applications, it should be understood that this is only a non-limiting, exemplary application, and that other suitable applications using other suitable thin-film materials are within the scope of the present invention. Other applications of CFD silicon dioxide films include (but are not limited to) interlayer dielectric (ILD) applications, intermetallic dielectric (IMD) applications, pre-metal dielectric (PMD) applications, and through-silicon via (TSV) dielectrics Electrical pad applications, resistive RAM (ReRAM) applications, and/or stacked capacitor fabrication applications in DRAM.
可使用摻雜氧化矽作為硼、磷、或甚至砷摻雜物的擴散源。例如,可使用硼摻雜矽酸鹽玻璃(BSG)、磷摻雜矽酸鹽玻璃(PSG)、或甚至硼磷摻雜矽酸鹽玻璃(BPSG)。可採用摻雜之CFD層來提供例如三維電晶體結構(如多閘極鰭狀場效電晶體(FinFET)及三維之記憶體裝置)中的保形摻雜。習知的離子植入機無法容易地摻雜側壁,尤其是在高的高寬比結構中。CFD摻雜氧化物作為擴散源具有各種優點。首先,其在低溫下提供高保形性。相較之下,低壓CVD產生之摻雜TEOS(四乙基正矽酸鹽)為人熟知但需要在高溫下沉積,而且次大氣壓CVD及PECVD摻雜氧化物薄膜可在低溫下實行但不具充分的保形性。摻雜的保 形性係重要的,而薄膜本身的保形性亦然,因為薄膜通常為犧牲應用且隨後將必須移除。非保形薄膜通常在移除時面臨更多挑戰,即一些區域會被過度蝕刻。此外,CFD提供控制極佳之摻雜濃度。如所提及般,CFD製程可從幾層未摻雜氧化物後接單層摻雜來提供。可藉由用以沉積摻雜層之頻率以及摻雜循環的條件嚴格地控制摻雜的程度。在一些實施例中,摻雜循環係藉由例如使用具有明顯空間位阻(steric hindrance)之摻雜物源來控制。除了習知矽基微電子學外,CFD摻雜的其他應用包括基於III-V族半導體(如GaAs)和II-VI族半導體(如HgCdTe)之微電子學及光電子學、光伏電池、平面顯示器、以及電致變色技術。 Doped silicon oxide can be used as a diffusion source for boron, phosphorous, or even arsenic dopants. For example, boron-doped silicate glass (BSG), phosphorus-doped silicate glass (PSG), or even boron-phosphorus-doped silicate glass (BPSG) can be used. The doped CFD layer can be used to provide conformal doping in, for example, three-dimensional transistor structures (such as multi-gate fin field effect transistors (FinFET) and three-dimensional memory devices). Conventional ion implanters cannot easily dope the sidewalls, especially in high aspect ratio structures. CFD doped oxides have various advantages as diffusion sources. First, it provides high shape retention at low temperatures. In contrast, doped TEOS (tetraethyl orthosilicate) produced by low-pressure CVD is well known but needs to be deposited at high temperatures, and sub-atmospheric CVD and PECVD doped oxide films can be implemented at low temperatures but are not sufficient Shape retention. Doped Shape is important, as is the shape retention of the film itself, because the film is usually a sacrificial application and will subsequently have to be removed. Non-conformal films usually face more challenges when they are removed, that is, some areas will be over-etched. In addition, CFD provides excellent control of the doping concentration. As mentioned, the CFD process can be provided by several layers of undoped oxide followed by a single layer of doping. The degree of doping can be strictly controlled by the frequency used to deposit the doped layer and the conditions of the doping cycle. In some embodiments, the doping cycle is controlled by, for example, using a dopant source with significant steric hindrance. In addition to conventional silicon-based microelectronics, other applications of CFD doping include microelectronics and optoelectronics based on III-V semiconductors (such as GaAs) and II-VI semiconductors (such as HgCdTe), photovoltaic cells, and flat panel displays , And electrochromic technology.
一些間隙填充製程涉及在不同沉積工具上執行之二薄膜沉積步驟,於沉積步驟之間需要真空破壞及空氣曝露。圖8示意地顯示包含複數間隙802之範例性非平面基板800。如圖8所示,間隙802可具有不同的高寬比,其可定義為每一間隙802之間隙深度(H)與間隙寬度(W)的比率。舉例而言,整合半導體裝置的邏輯區域可具有對應於不同邏輯裝置結構之不同的間隙高寬比。
Some gap-filling processes involve two thin film deposition steps performed on different deposition tools, requiring vacuum breakage and air exposure between the deposition steps. FIG. 8 schematically shows an exemplary
如圖8所示,非平面基板800係由細薄、保形薄膜804所覆蓋。雖然保形薄膜804已完全填充間隙802A,但間隙802B及802C仍留著開口。以保形薄膜封閉間隙802B及802C可導致製程時間的延長。因此,在一些方法中,可藉由如CVD及/或PECVD方法之更高沉積速率製程來異位沉積更厚的薄膜。然而,間隙填充薄膜之異位沉積可降低在生產線中的晶圓吞吐量。例如,在沉積工具之間的基板搬運及運送時間可於生產期間減少一些基板處理活動。此可減少生產線吞吐量,並且可能需要在生產線中安裝及維護額外處理工具。
As shown in FIG. 8, the
此外,雖然間隙802C可具有適合於氣相沉積製程的高寬比,但802B可具有由較高沉積速率製程可能導致之不完全填充並且可能形成鎖眼孔洞(keyhole void)之高寬比。例如,圖10顯示形成在基板1002中之範例性高高寬比結構1000。如圖10所示,於沉積較厚之薄膜1006期間的麵包條效應已產生鎖眼孔
洞1008。鎖眼孔洞可在後續的製程中被重新打開並以導電薄膜填充,其可導致裝置短路。
In addition, although the
應對如間隙802B之高高寬比間隙的一些方法包含提供避免產生如此間隙之裝置設計規則。然而,如此之設計規則可能需要額外的遮罩步驟、可使得裝置設計變困難、及/或可導致整合半導體裝置面積的增加,其可增加製造成本。因此,在一些實施例中,CFD製程可包含從CFD製程至CVD及/或PECVD製程之原位過渡。例如,圖9顯示已分為三階段之CFD製程時序圖900的實施例。CFD製程階段902描述一範例性CFD製程循環。為了清楚起見,儘管圖9所示之實施例僅顯示單一CFD製程循環,但應瞭解到CFD製程階段902中可包含任何合適數目之CFD製程循環及電漿處理循環。過渡階段904接在CFD製程階段902之後。如圖9之實施例所示,過渡階段904包含CFD製程及PECVD製程二者之實施態樣。具體而言,反應物B係在反應物B曝露階段904A結束後提供至處理站,使得在電漿活化階段904B期間反應物A和B皆存在於氣相之中。此可同時提供PECVD式氣相反應與CFD式表面反應。雖然過渡階段904僅包含反應物B曝露階段904A及電漿活化階段904B之一重複,但應瞭解到在過渡階段內可包含任何合適數目之重複。
Some methods for dealing with gaps of high aspect ratio such as gap 802B include providing device design rules to avoid such gaps. However, such design rules may require additional masking steps, may make device design difficult, and/or may lead to an increase in the area of integrated semiconductor devices, which may increase manufacturing costs. Therefore, in some embodiments, the CFD process may include an in-situ transition from the CFD process to the CVD and/or PECVD process. For example, FIG. 9 shows an embodiment of a CFD process timing diagram 900 that has been divided into three stages. The CFD process stage 902 describes an exemplary CFD process cycle. For clarity, although the embodiment shown in FIG. 9 only shows a single CFD process cycle, it should be understood that any suitable number of CFD process cycles and plasma processing cycles may be included in the CFD process stage 902. The transition stage 904 follows the CFD process stage 902. As shown in the embodiment of FIG. 9, the transition stage 904 includes implementation aspects of both the CFD process and the PECVD process. Specifically, the reactant B is provided to the processing station after the end of the reactant
在一些實施例中,可控制電漿產生器以於電漿活化階段904B期間提供電漿能量之間歇脈衝。例如,可在包含(但不限於)介於10Hz及150Hz之間的頻率使電漿產生脈衝。與連續電漿相比,此可藉由減低離子轟擊的方向性來增進階梯覆蓋。又,此可減低離子轟擊對基板的損壞。例如,於連續電漿期間光阻基板會被離子轟擊侵蝕。使電漿能量產生脈衝可減低光阻侵蝕。
In some embodiments, the plasma generator may be controlled to provide intermittent pulses of plasma energy during the
在圖9所示之實施例中,電漿活化階段904B期間反應物B的流速低於反應物B曝露階段904A期間反應物B的流速。因此,於電漿活化階段904B期間反應物B可「細流」入處理站中。這可提供氣相PECVD反應從而增補CFD式表面
反應。然而,應瞭解到在一些實施例中,於單一電漿活化階段期間或在過渡階段之過程中可改變反應物B的流速。例如,在包含反應物B曝露及電漿活化的二個重複之過渡階段中,第一電漿活化階段期間反應物B的流速可低於第二電漿活化階段期間反應物B的流速。改變電漿活化階段904B期間反應物B的流速可提供從CFD製程階段902之階梯覆蓋特性到PECVD製程階段906之沉積速率特性的平穩過渡。
In the embodiment shown in FIG. 9, the flow rate of the reactant B during the
在一些實施例中,CFD製程可包含用於選擇性移除沉積薄膜之凹入部分的原位蝕刻。表5提供包含用於間隙填充CFD製程之原位蝕刻的範例性二氧化矽沉積製程之非限制性參數範圍。 In some embodiments, the CFD process may include in-situ etching for selectively removing the recessed portion of the deposited film. Table 5 provides non-limiting parameter ranges including an exemplary silicon dioxide deposition process for in-situ etching of the gap-fill CFD process.
圖11顯示包含沉積階段1102、蝕刻階段1104、及後續沉積階段1106之CFD製程時序圖1100之實施例。在圖11所示之實施例的沉積階段1102,使薄膜沉積至基板之曝露表面上。例如,沉積階段1102可包含一或更多CFD製程沉積循環。
FIG. 11 shows an embodiment of a CFD process timing diagram 1100 including a
在圖11之實施例的蝕刻階段1104,將反應物A和B關閉並且導入蝕刻氣體至處理站。蝕刻氣體的一非限制性範例為三氟化氮(NF3)。在圖11所示之實施例中,蝕刻氣體係由蝕刻階段1104期間所激發之電漿活化。如處理站壓力、基板溫度、蝕刻氣體流速之各種製程參數可於蝕刻階段1104期間加以調整,以便在非平面基板上選擇性移除沉積薄膜的凹入部分。在本發明的範圍內可採用任何合適的蝕刻製程。其它範例性蝕刻製程包含(但不限於)反應性離子蝕刻、非電漿氣相蝕刻、固相昇華、以及蝕刻物種之吸附與方向性活化(例如藉由離子轟擊)。
In the
在一些實施例中,可在蝕刻薄膜之前和之後自處理站移除不相容氣相物種。例如,圖11之實施例於蝕刻階段1104期間在反應物A和B已關閉之後以及在蝕刻氣體已關閉之後包含惰性氣體的連續流量。
In some embodiments, incompatible gas phase species may be removed from the processing station before and after etching the thin film. For example, the embodiment of FIG. 11 includes a continuous flow of inert gas after the reactants A and B have been turned off during the
在蝕刻階段1104結束時,沉積階段1106開始,從而進一步填充非平面基板上的間隙。沉積階段1106可為任何合適的沉積製程。例如,沉積階段1106可包含一或更多的CFD製程、CVD製程、PECVD製程等等。雖然圖11之實施例顯示單一蝕刻階段1104,但應瞭解到於間隙填充製程期間可在多個任何合適形式的沉積階段之中間隔地插入複數原位蝕刻製程。
At the end of the
圖12A-C繪示非平面基板在以上所述之原位沉積及蝕刻製程之實施例的各個階段之範例性橫剖面圖。圖12A顯示包含間隙1202之範例性非平面基板1200的橫剖面圖。間隙1202係覆蓋以薄膜1204。薄膜1204幾乎與間隙1202保形,但薄膜1204包含間隙1202的頂部附近之凹入部1206。
12A-C illustrate exemplary cross-sectional views of non-planar substrates at various stages of the in-situ deposition and etching process embodiments described above. 12A shows a cross-sectional view of an exemplary
在圖12B所示之實施例中,薄膜1204的凹入部1206已被選擇性移除,並且薄膜1204的上部區域1204A較下部區域1204B更細薄。可藉由在活性蝕刻物種加上質量轉移限制及/或壽命限制來達成凹入部之選擇性移除及/或側壁角度調整。在一些實施例中,在間隙1202的頂部進行選擇性蝕刻亦可調整間隙1202的側壁角度,使得間隙1202在頂部處較在底部處為寬。這可更降低後續沉積階段中的麵包條效應。在圖12C所示之實施例中,在後續沉積階段之後間隙1202幾乎被填滿且並未展現孔洞。
In the embodiment shown in FIG. 12B, the
圖15顯示原位蝕刻製程之另一實施例,其繪示用於銅電極之直通矽穿孔(TSV)。一些範例性TSV具有大約105微米的深度和大約6微米的直徑,因而產生大約17.5:1高寬比,且可具有大約攝氏200度之熱預算上限。如圖15之實施例所示,直通矽穿孔係由介電隔離層2502覆蓋以使矽基板與金屬填充穿孔電性隔離。範例性介電隔離層材料包含(但不限於)氧化矽、氮化矽、低k介電材料。在一些實施例中,上述之範例性蝕刻製程可使用合適的濺鍍氣體(如氬)以物理濺鍍來對凹入部加以增補。
FIG. 15 shows another embodiment of the in-situ etching process, which illustrates a through-silicon via (TSV) for copper electrodes. Some exemplary TSVs have a depth of about 105 microns and a diameter of about 6 microns, resulting in an aspect ratio of about 17.5:1, and may have a thermal budget upper limit of about 200 degrees Celsius. As shown in the embodiment of FIG. 15, the through silicon vias are covered by a
關於CFD薄膜的其他範例性應用包含(但不限於)用於後端製程(back-end-of-line)互連隔離應用之保形低k薄膜(例如在一些非限制性範例中k大約為3.0或更低)、用於蝕刻停止層與間隔層應用之保形氮化矽薄膜、保形抗反射層、以及銅黏附與阻障層。可使用CFD來製作用於BEOL處理之低k介電層的許多不同合成物。範例包含氧化矽、氧摻雜碳化物、碳摻雜氧化物、氧氮化物、及其類似者。 Other exemplary applications for CFD films include (but are not limited to) conformal low-k films for back-end-of-line interconnect isolation applications (e.g. in some non-limiting examples, k is approximately 3.0 or lower), conformal silicon nitride film, conformal anti-reflection layer, and copper adhesion and barrier layers for etch stop and spacer applications. CFD can be used to make many different compositions of low-k dielectric layers for BEOL processing. Examples include silicon oxide, oxygen-doped carbide, carbon-doped oxide, oxynitride, and the like.
在另一範例中,在一整合製程情形中,可在光阻「芯」上方沉積二氧化矽間隔層。使用光阻芯而非替代芯材料(如碳化矽層)可排除整合製程中的圖案化步驟。該製程可涉及使用正常微影技術使光阻圖案化並隨後直接在該芯上方沉積細薄的CFD氧化物層。可隨後使用方向性乾蝕刻製程來移除在圖案化 光阻頂部及底部之CFD氧化物薄膜,而僅留下沿著圖案化光阻之側壁(視為渠溝)的材料。在此階段,可使用簡單的灰化來移除CFD氧化物留下之曝露芯。曾經有過單一光阻線的地方,此時便有二CFD氧化物線。該製程以此方式使圖案密度加倍;因此其有時稱為「雙重」圖案化。可惜光阻芯的使用可限制間隔層沉積溫度低於攝氏70度,其可低於習知CVD、PECVD、及/或ALD製程之沉積溫度。因此在一些實施例中,可在低於攝氏70度之溫度下沉積低溫CFD二氧化矽薄膜。應瞭解到在本發明的範圍內存在有用於合適的CFD產生薄膜之其他潛在整合製程應用。此外,在各種實施例中,如上述所沉積氮化矽之氮化物可在半導體裝置製造的各個階段中用作保形擴散阻障層及/或蝕刻停止層。 In another example, in an integrated process scenario, a silicon dioxide spacer layer can be deposited over the photoresist "core". The use of photoresist cores instead of alternative core materials (such as silicon carbide layers) can eliminate the patterning step in the integration process. This process may involve patterning the photoresist using normal lithography techniques and then depositing a thin CFD oxide layer directly over the core. The directional dry etching process can then be used to remove the patterning The CFD oxide film on the top and bottom of the photoresist, leaving only the material along the side walls of the patterned photoresist (considered as trenches). At this stage, simple ashing can be used to remove the exposed core left by the CFD oxide. Where there was a single photoresist line, there were two CFD oxide lines. This process doubles the pattern density in this way; therefore it is sometimes referred to as "double" patterning. Unfortunately, the use of a photoresist core can limit the deposition temperature of the spacer layer to below 70 degrees Celsius, which can be lower than the deposition temperature of conventional CVD, PECVD, and/or ALD processes. Therefore, in some embodiments, a low-temperature CFD silicon dioxide film may be deposited at a temperature below 70 degrees Celsius. It should be understood that within the scope of the present invention there are other potentially integrated process applications for suitable CFD-generated films. In addition, in various embodiments, the silicon nitride nitride deposited as described above may be used as a conformal diffusion barrier layer and/or an etch stop layer in various stages of semiconductor device manufacturing.
雖然已在沉積、處理、及/或蝕刻單一薄膜形式上指出以上所述之各種CFD沉積製程,但應瞭解到在本發明的範圍內一些CFD製程可包含複數薄膜形式之原位沉積。例如,可原位沉積薄膜形式之替代層。在第一情形中,可藉由原位沉積氮化矽/氧化矽間隔層堆疊來製作用於閘極裝置之雙重間隔層。此可減短循環時間及增加處理站吞吐量,並且可避免由潛在薄膜層不相容性所形成之層間缺陷。在第二情形中,可沉積用於微影圖案化應用之抗反射層作為具有可調光學特性之SiON或非晶矽與SiOC的堆疊。 Although the various CFD deposition processes described above have been indicated in terms of deposition, processing, and/or etching of a single thin film, it should be understood that some CFD processes may include in-situ deposition in the form of multiple thin films within the scope of the present invention. For example, an alternative layer in the form of a thin film can be deposited in situ. In the first case, the double spacer layer for the gate device can be fabricated by in-situ deposition of the silicon nitride/silicon oxide spacer layer stack. This can reduce the cycle time and increase the throughput of the processing station, and can avoid the interlayer defects formed by the latent film layer incompatibility. In the second case, an anti-reflective layer for lithography patterning applications can be deposited as a stack of SiON or amorphous silicon with tunable optical properties and SiOC.
在一些實施例中,藉由保形薄膜沉積製程來形成含摻雜物源層。該層稱為「源」層係因為其提供摻雜物物種(例如硼、磷、鎵、及/或砷之摻雜物原子)的來源。摻雜CFD層作為用於摻雜裝置中的下方(或上方)結構之摻雜物源。在源層形成後(或其形成期間),將摻雜物物種驅入或用其他方式併入製作中裝置的相鄰結構中。在一些實施例中,於形成保形摻雜物源薄膜期間或之後藉由回火操作將摻雜物物種驅入。CFD的高保形本質允許摻雜非習知裝置結構,包括需要以三維方式摻雜之結構。CFD摻雜物源層通常藉由本文中所述之一或 更多製程形成,但包括併入摻雜物物種之額外製程操作。在一些實施例中,介電層作為摻雜物物種併入其中之基底源層。 In some embodiments, the dopant-containing source layer is formed by a conformal thin film deposition process. This layer is called the "source" layer because it provides a source of dopant species (such as dopant atoms of boron, phosphorous, gallium, and/or arsenic). The doped CFD layer serves as a dopant source for the lower (or upper) structure in the doping device. After the source layer is formed (or during its formation), the dopant species are driven or otherwise incorporated into the adjacent structure of the device under fabrication. In some embodiments, the dopant species are driven in by tempering during or after forming the conformal dopant source film. The high conformal nature of CFD allows doping of non-conventional device structures, including structures that need to be doped in three dimensions. The CFD dopant source layer is usually More processes are formed, but include additional process operations that incorporate dopant species. In some embodiments, the dielectric layer is the base source layer into which the dopant species is incorporated.
例如,可使用摻雜氧化矽作為硼、磷、砷等等之擴散源。例如,可使用硼摻雜矽酸鹽玻璃(BSG)、磷摻雜矽酸鹽玻璃(PSG)、或硼磷摻雜矽酸鹽玻璃(BPSG)。 For example, doped silicon oxide can be used as a diffusion source for boron, phosphorous, arsenic, etc. For example, boron doped silicate glass (BSG), phosphorus doped silicate glass (PSG), or boron phosphorus doped silicate glass (BPSG) can be used.
摻雜CFD層可用以在例如多閘極鰭狀電晶體(FinFET)及三維記憶體裝置之三維電晶體結構中提供保形摻雜。一些三維結構的例子可見於J.Kavalieros等人於Symp.VLSI Tech Pg 50,2006所提出之「Tri-gate(Intel)」以及Yamashita等人(IBM Alliance)於VLSI 2011所提出之「FinFET」,其皆於此全部併入作為參考。習知的離子植入機無法容易地摻雜側壁,尤其在高的高寬比結構中。此外,在i3D結構的密集陣列中,可能在植入機中存在方向性離子束之陰影效應,從而引起傾斜植入角度之嚴重的劑量殘留問題。除了習知矽基微電子學外,CFD摻雜的其他應用還包括基於如GaAS之III-V族半導體以及如HgCdTe之II-VI族半導體的微電子學與光電子學、光伏電池、平面顯示器、以及電致變色技術。
The doped CFD layer can be used to provide conformal doping in three-dimensional transistor structures such as multi-gate fin transistors (FinFETs) and three-dimensional memory devices. Some examples of three-dimensional structures can be found in the "Tri-gate (Intel)" proposed by J. Kavalieros et al. in Symp.
圖16顯示具有三維閘極結構之電晶體,其中源極和汲極形成為難以藉由習知離子植入技術來摻雜之細薄垂直結構。然而,當n或p型摻雜CFD氧化物之薄層形成於垂直結構上方時,則完成保形摻雜。已觀察到保形摻雜在三維裝置中由於串聯電阻的降低而增加10-25%之電流密度。見Yamashita等人於VLSI 2011提出之文獻。 FIG. 16 shows a transistor with a three-dimensional gate structure, in which the source and drain are formed as thin vertical structures that are difficult to dope by conventional ion implantation techniques. However, when a thin layer of n or p-type doped CFD oxide is formed over the vertical structure, conformal doping is completed. It has been observed that conformal doping in three-dimensional devices increases the current density by 10-25% due to the reduction in series resistance. See the literature proposed by Yamashita et al. at VLSI 2011.
CFD摻雜氧化物作為擴散源具有各種優點。首先,其於低溫下提供高保形性。因為摻雜薄膜可能為犧牲層,故非保形薄膜通常在移除時面臨更多挑戰,即一些區域會被過度蝕刻。如所說明般,CFD提供高保形薄膜。此外,CFD提供控制極佳的摻雜濃度。CFD製程可提供一或更多未摻雜氧化物層後接如 所需之單一摻雜層。可藉由用以沉積摻雜層之頻率以及摻雜循環的條件來嚴格地控制摻雜的程度。在一些實施例中,摻雜循環係藉由例如使用具有明顯空間位阻之摻雜物源來控制。 CFD doped oxides have various advantages as diffusion sources. First, it provides high shape retention at low temperatures. Because the doped film may be a sacrificial layer, the non-conformal film usually faces more challenges when it is removed, that is, some areas will be over-etched. As explained, CFD provides highly conformal films. In addition, CFD provides excellent control of the doping concentration. The CFD process can provide one or more undoped oxide layers followed by Single doped layer required. The degree of doping can be strictly controlled by the frequency used to deposit the doped layer and the conditions of the doping cycle. In some embodiments, the doping cycle is controlled by, for example, using a dopant source with significant steric hindrance.
圖17以沿著x軸前進時間由左至右呈現基線CFD操作的順序。許多變化受到支持,並且此圖示僅為說明之目的而提出。在順序之初始(於操作A期間),將氣相氧化劑導入反應腔室中,該腔室包含待沉積CFD薄膜於其上之基板。合適的氧化劑之範例包括元素氧(例如O2或O3)、一氧化二氮(N2O)、水、如異丙醇之烷基醇、一氧化碳、以及二氧化碳。氧化劑通常與例如氬或氮之惰性氣體一起提供。 Figure 17 presents the sequence of baseline CFD operations from left to right along the x-axis advancing time. Many changes are supported, and this illustration is presented for illustrative purposes only. At the beginning of the sequence (during operation A), the gas-phase oxidant is introduced into the reaction chamber, which contains the substrate on which the CFD film is to be deposited. Examples of suitable oxidants include elemental oxygen (eg O 2 or O 3 ), nitrous oxide (N 2 O), water, alkyl alcohols such as isopropanol, carbon monoxide, and carbon dioxide. The oxidant is usually supplied with an inert gas such as argon or nitrogen.
接著,在操作B中,將介電質前驅物暫時導入反應腔室中。選取操作B的持續時間以允許足夠支持薄膜生長的一個循環之前驅物數量吸附至基板表面上。在一些實施例中,前驅物使基板表面飽和。將依其產生所期望成分之介電質的能力來選取前驅物。介電質成分的例子包含氧化矽(包括矽酸鹽玻璃)、氮化矽、氧氮化矽、以及氧碳化矽。合適前驅物的例子包含烷胺基矽烷(alkylamino silanes)(SiHx(NR2)4-x)(其中x=1-3,並且R包含如甲基、乙基、丙基、以及丁基各種同分異構配置之烷基)、以及鹵素矽烷(halosilanes)(SiHxY4-x)(其中x=1-3,並且Y包含Cl、Br、以及I)。更具體範例包含二烷胺基矽烷以及空間位阻烷基矽烷。在一具體範例中,BTBAS係用以產生氧化矽之前驅物。 Next, in operation B, the dielectric precursor is temporarily introduced into the reaction chamber. The duration of operation B is chosen to allow the amount of driver to be adsorbed onto the substrate surface before one cycle sufficient to support film growth. In some embodiments, the precursor saturates the substrate surface. The precursor will be selected based on its ability to produce the dielectric of the desired composition. Examples of dielectric components include silicon oxide (including silicate glass), silicon nitride, silicon oxynitride, and silicon oxycarbide. Examples of suitable precursors include alkylamino silanes (SiH x (NR 2 ) 4-x ) (where x=1-3, and R includes various groups such as methyl, ethyl, propyl, and butyl Isomerically configured alkyl groups), and halosilanes (SiH x Y 4-x ) (where x=1-3, and Y contains Cl, Br, and I). More specific examples include dialkylaminosilanes and sterically hindered alkylsilanes. In a specific example, BTBAS is used to generate silicon oxide precursors.
於操作B期間,使階段A期間導入腔室中之氧化劑持續流入。在一些實施例中,其以如操作A期間之相同速率及相同濃度持續流入。在操作B結束時,使進入腔室之介電質前驅物的流量停止,並且操作C如所述般開始。於操作C期間,使氧化劑和惰性氣體如操作A及B期間持續流入以清除在反應腔室中的剩餘介電質前驅物。 During operation B, the oxidant introduced into the chamber during stage A is continuously inflowed. In some embodiments, it continuously flows in at the same rate and the same concentration as during operation A. At the end of operation B, the flow of dielectric precursor into the chamber is stopped, and operation C begins as described. During operation C, the oxidant and inert gas such as during operations A and B are continuously flowed in to clear the remaining dielectric precursors in the reaction chamber.
於操作C期間清除完成之後,前驅物在基板表面上反應而形成介電薄膜的一部份(見操作D)。在各種實施例中,施加電漿以驅動吸附介電質前驅物之反應。在一些範例中,此反應為氧化反應。一些先前流入反應腔室中的氧化劑可與介電質前驅物一起吸附至表面上,從而提供用於電漿介導表面反應之立即可用的氧化劑。 After the cleaning is completed during operation C, the precursor reacts on the substrate surface to form part of the dielectric film (see operation D). In various embodiments, plasma is applied to drive the reaction of adsorbing the dielectric precursor. In some examples, this reaction is an oxidation reaction. Some of the oxidant that previously flowed into the reaction chamber can be adsorbed onto the surface together with the dielectric precursor, thereby providing a ready-to-use oxidant for plasma-mediated surface reactions.
操作A至D共同提供介電薄膜沉積製程之單一循環。應瞭解到於本文中所述之其他CFD實施例可用以代替此處所述之基本循環。在所描述之實施例中,在不導入任何摻雜物物種的情況下執行沉積循環(A至D)。在各種實施例中,由操作A至D所代表的循環在導入摻雜物物種之前連續地重複一或更多次。這在圖17的階段E中圖例說明。在一些範例中,在導入摻雜物之前重複操作A-D至少一次、或至少二次、或至少五次。 Operations A to D together provide a single cycle of the dielectric film deposition process. It should be appreciated that other CFD embodiments described herein may be used instead of the basic cycle described herein. In the described embodiment, the deposition cycle (A to D) is performed without introducing any dopant species. In various embodiments, the cycle represented by operations A through D is continuously repeated one or more times before introducing the dopant species. This is illustrated in stage E of FIG. 17. In some examples, the operations A-D are repeated at least once, or at least twice, or at least five times before introducing the dopant.
作為一範例,介電層以約0.5至1埃/循環的速率沉積。在一或更多循環(A-D的重複)之每一者自始至終使氧化劑持續流入反應腔室中。 As an example, the dielectric layer is deposited at a rate of about 0.5 to 1 Angstrom/cycle. Each of the one or more cycles (repeats of A-D) allows the oxidant to flow continuously into the reaction chamber throughout.
在製程中的一些時間點,介電層沉積循環被摻雜物前驅物物種(例如乙硼烷)之導入所中斷。此圖例說明如圖式中的操作F。可提供於介電源薄膜中之摻雜物的範例包含如硼、鎵、磷、砷、以及其他摻雜物之III及IV價元素。除了乙硼烷之外,摻雜物前驅物之範例還包括磷化氫及其他氫化物源。亦可使用如烷基前驅物(例如三甲基鎵)、鹵素前驅物(例如氯化鎵)之非氫化物摻雜物。 At some point in the process, the dielectric layer deposition cycle is interrupted by the introduction of dopant precursor species (eg diborane). This legend illustrates the operation F in the figure. Examples of dopants that can be provided in the dielectric film include III and IV valence elements such as boron, gallium, phosphorus, arsenic, and other dopants. In addition to diborane, examples of dopant precursors include phosphine and other hydride sources. Non-hydride dopants such as alkyl precursors (such as trimethylgallium) and halogen precursors (such as gallium chloride) can also be used.
在一些變化形式中,將摻雜物沉積在與下方基板的界面處,後接以摻雜物脈衝散置在每x數目循環的CFD循環(如所述般),並且選擇性地蓋上可為CFD氧化物薄膜之未摻雜保護「覆蓋」層。見圖18中所產生堆疊之範例。 In some variations, the dopant is deposited at the interface with the underlying substrate, followed by a pulse of dopant interspersed in CFD cycles per x number of cycles (as described), and optionally covered with It is an undoped protective "cover" layer of CFD oxide film. See the example of the resulting stack in Figure 18.
在一具體實施例中,將摻雜物前驅物物種與如惰性氣體(例如氬)之載體氣體以混合物的形式(但不與氧化劑或其他反應物混合)提供至反應腔室。因此,在此基線範例中,於操作F期間停止氧化劑的流量。在其他實施例中, 將前驅物與還原劑或氧化劑一起導入。在一些實施例中,摻雜物對載體氣體的濃度介於約1:5及1:20之間。在一些實施例中,摻雜物沉積溫度介於約300及400℃之間。摻雜物曝露步驟的持續時間根據目標摻雜物濃度而變化。在一些實施例中,曝露步驟介於約2.5秒及7.5秒之間。在一具體實施例中,在3Torr的壓力及約400℃下於10000sccm的氬中流入1000sccm的乙硼烷。 In a specific embodiment, the dopant precursor species and the carrier gas such as an inert gas (eg, argon) are provided to the reaction chamber in the form of a mixture (but not mixed with an oxidant or other reactants). Therefore, in this baseline example, the flow of oxidant is stopped during operation F. In other embodiments, The precursor is introduced together with the reducing agent or oxidizing agent. In some embodiments, the concentration of dopant to carrier gas is between about 1:5 and 1:20. In some embodiments, the dopant deposition temperature is between about 300 and 400°C. The duration of the dopant exposure step varies according to the target dopant concentration. In some embodiments, the exposure step is between about 2.5 seconds and 7.5 seconds. In a specific embodiment, 1000 sccm of diborane is flowed into 10000 sccm of argon at a pressure of 3 Torr and about 400°C.
在一些實施例中,藉由非表面限制機制使摻雜物前驅物聚集在基板表面上。舉例而言,前驅物可藉由CVD式製程沉積而非ALD(表面吸附限制)製程。 In some embodiments, dopant precursors are collected on the substrate surface by a non-surface confinement mechanism. For example, the precursor can be deposited by a CVD process rather than an ALD (surface adsorption limitation) process.
在進一步處理介電薄膜之前,摻雜物前驅物選擇性地自反應腔室被清除。此外,如圖17所繪示,摻雜物前驅物之遞送後接可由電漿、升高之溫度等等中介之選擇性活化操作G。在乙硼烷作為摻雜物前驅物的範例中,活化操作轉換乙硼烷成元素硼。在操作G完成後,該製程以選擇性清除(未顯示)來接續。 Prior to further processing of the dielectric film, the dopant precursor is selectively removed from the reaction chamber. In addition, as shown in FIG. 17, the delivery of the dopant precursor is followed by the selective activation operation G mediated by plasma, elevated temperature, and the like. In the example of diborane as a dopant precursor, the activation operation converts diborane to elemental boron. After operation G is completed, the process is continued with selective clearing (not shown).
在涉及CVD乙硼烷摻雜物的範例中,活化操作僅為溫度基礎分解以產生硼。此為易受溫度影響的製程。在較高溫度下,以每單位厚度相同的硼濃度為目標下可採用相對短的曝露時間。或者,在一些製程中(例如那些採用三甲基甲硼烷(TMB)的製程),活化可涉及電漿或熱氧化步驟。至於一些其他前驅物,可適當採用「釘扎」(“pinning”)步驟以保留自由硼或其他摻雜物在適當的地方。此可使用「釘扎」電漿來完成。 In the example involving CVD diborane dopants, the activation operation is only a temperature-based decomposition to produce boron. This is a process susceptible to temperature. At higher temperatures, a relatively short exposure time can be used with the same boron concentration per unit thickness as the target. Alternatively, in some processes (such as those using trimethylborane (TMB)), activation may involve plasma or thermal oxidation steps. As for some other precursors, a "pinning" step can be used as appropriate to keep free boron or other dopants in place. This can be done using "pinned" plasma.
在一些實施例中,電漿活化涉及適合於使碳併入薄膜中之任何頻率的RF功率。在一些實施例中,RF電源供應可配置成彼此獨立地控制高頻及低頻RF電源。範例性低頻RF功率可包含(但不限於)介於約200kHz及1000kHz之間的頻率。範例性高頻RF功率可包含(但不限於)介於約10MHz及80MHz之間的頻率(例如13.56MHz)。同樣地,RF電源供應與匹配網路可在任何合適的功率下操作以形成電漿。合適的功率之範例包含(但不限於)對於高頻電漿介於約100W及 3000W之間的功率、以及對於低頻電漿介於約100W及10000W之間的功率(在每一晶圓基礎上)。RF電源供應可在任何合適的工作週期下操作。合適的工作週期之範例包含(但不限於)介於約5%及90%之間的工作週期。可接受的製程壓力通常介於約0.5-5Torr之間,且較佳地約2-4Torr之間。至於在曝露至摻雜物之前的一些(下方基板之)電漿處理,已發現在高達約10Torr(或高達約9Torr)之壓力下運作良好。 In some embodiments, plasma activation involves RF power at any frequency suitable for incorporating carbon into the film. In some embodiments, the RF power supply may be configured to control high frequency and low frequency RF power independently of each other. Exemplary low-frequency RF power may include, but is not limited to, frequencies between about 200 kHz and 1000 kHz. Exemplary high-frequency RF power may include, but is not limited to, frequencies between about 10 MHz and 80 MHz (eg, 13.56 MHz). Likewise, the RF power supply and matching network can operate at any suitable power to form a plasma. Examples of suitable power include (but are not limited to) about 100W for high frequency plasma and Power between 3000W, and power between about 100W and 10000W for low frequency plasma (on a per wafer basis). The RF power supply can be operated in any suitable duty cycle. Examples of suitable duty cycles include, but are not limited to, duty cycles between about 5% and 90%. The acceptable process pressure is generally between about 0.5-5 Torr, and preferably between about 2-4 Torr. As for some plasma treatments (of the lower substrate) before exposure to dopants, it has been found to work well at pressures up to about 10 Torr (or up to about 9 Torr).
下表總結可用於各種BSG製程之電漿參數的範圍:
在所描述之基線製程中,介電層沉積及間歇性摻雜物遞送之循環(操作A至G)可如圖式之階段H中所示執行多次。製程順序重複次數的實際數目取決於所期望之薄膜的總厚度、以及每一循環所沉積之介電層的厚度、以及摻雜物併入薄膜中的數量。在一些實施例中,操作A-G至少重複二次、或至少三次、或至少五次、或至少約十次。 In the described baseline process, the cycle of dielectric layer deposition and intermittent dopant delivery (operations A to G) can be performed multiple times as shown in stage H of the equation. The actual number of process sequence repetitions depends on the desired total thickness of the film, the thickness of the dielectric layer deposited per cycle, and the amount of dopant incorporated into the film. In some embodiments, operations A-G are repeated at least twice, or at least three times, or at least five times, or at least about ten times.
在介電薄膜完全沉積之後,其可用作附近半導體結構之摻雜物物種源。此可藉由如圖17之操作I所示將摻雜物自沉積薄膜驅入裝置結構中來完成。在各種實施例中,驅入係藉由如回火之熱介導擴散製程來完成。在一些情況下,尤其是那些採用極淺接面的情況下,可採用雷射尖峰回火。 After the dielectric film is completely deposited, it can be used as a source of dopant species for nearby semiconductor structures. This can be accomplished by driving the dopant self-deposited thin film into the device structure as shown in operation I of FIG. 17. In various embodiments, drive-in is accomplished by a heat-mediated diffusion process such as tempering. In some cases, especially those with very shallow junctions, laser spike tempering may be used.
可實現在此基線製程上的許多變化。這些變化的其中一些以增加可用於擴散進入鄰近半導體結構中之摻雜物的數量作為其目標。其他變化係設 計以控制藉以自源薄膜將摻雜物遞送入附近半導體結構中之速率。另外其他變化控制摻雜物物種擴散的方向。通常,理想上傾向摻雜物之擴散朝向裝置結構且遠離薄膜的反側。 Many changes in this baseline process can be achieved. Some of these changes aim to increase the amount of dopants that can be used to diffuse into adjacent semiconductor structures. Other changes This is to control the rate at which the dopant is delivered into the nearby semiconductor structure from the source film. In addition, other changes control the direction of dopant species diffusion. Generally, it is ideal to tend the diffusion of the dopant towards the device structure and away from the opposite side of the film.
在一些實施例中,摻雜物藉以導入生長中介電薄膜之頻率係受到控制。更頻繁的摻雜物前驅物遞送循環導致在最後的介電薄膜中摻雜物之整體較大濃度。其亦導致遍及薄膜之摻雜物的相對均勻分佈。當插入較少摻雜物前驅物遞送循環在沉積製程中時,則薄膜中高摻雜物濃度的區域比摻雜物遞送循環較頻繁時的情況分隔得更開。 In some embodiments, the frequency at which the dopant is introduced into the growing dielectric film is controlled. More frequent dopant precursor delivery cycles result in an overall greater concentration of dopant in the final dielectric film. It also results in a relatively uniform distribution of dopants throughout the film. When fewer dopant precursor delivery cycles are inserted during the deposition process, the regions of high dopant concentration in the film are more separated than when the dopant delivery cycles are more frequent.
在一實施例中,於介電層沉積的每一循環遞送摻雜物前驅物至生長中介電薄膜一次。在另一實施例中,於介電層沉積的每隔一循環期間遞送摻雜物前驅物一次。在其他實施例中,更低頻率之摻雜物前驅物遞送循環包含在製程中。舉例而言,可於介電層沉積的每第三、第四、或第五循環期間遞送摻雜物前驅物一次。在一些情況下,以每5-20個介電層沉積循環期間大約一次的頻率來遞送摻雜物前驅物。 In one embodiment, the dopant precursor is delivered to the growing dielectric film once per cycle of dielectric layer deposition. In another embodiment, the dopant precursor is delivered once every other cycle of dielectric layer deposition. In other embodiments, a lower frequency dopant precursor delivery cycle is included in the process. For example, the dopant precursor can be delivered once every third, fourth, or fifth cycle of dielectric layer deposition. In some cases, the dopant precursor is delivered at a frequency of approximately once every 5-20 dielectric layer deposition cycles.
應瞭解到摻雜物前驅物導入生長中薄膜的頻率在介電薄膜沉積的過程中不必一致。考慮到這點,所產生之介電薄膜可具有分等級的摻雜物成分使得在沉積介電薄膜之厚度中摻雜物的平均濃度不均勻。在一實施例中,在鄰接待摻雜半導體裝置結構之介電薄膜的一側上摻雜物的濃度較大。當然,介電薄膜中摻雜物濃度梯度可藉由在整個介電層沉積製程的過程中謹慎地改變摻雜物遞送循環的頻率而修改成所期望者。 It should be understood that the frequency of introducing dopant precursors into the growing thin film need not be consistent during the deposition of the dielectric thin film. With this in mind, the resulting dielectric film may have graded dopant composition such that the average concentration of the dopant in the thickness of the deposited dielectric film is not uniform. In one embodiment, the concentration of dopant is greater on the side adjacent to the dielectric film of the doped semiconductor device structure. Of course, the dopant concentration gradient in the dielectric thin film can be modified to the desired by carefully changing the frequency of the dopant delivery cycle throughout the dielectric layer deposition process.
基線製程上的另一變化涉及在任何摻雜物前驅物遞送循環期間調整所遞送之摻雜物前驅物的數量。於任何特定的摻雜物遞送循環期間所遞送之摻雜物前驅物的數量將由遞送至反應腔室之摻雜物前驅物的濃度以及基板曝露至所遞送之摻雜物前驅物的持續時間來決定。 Another change in the baseline process involves adjusting the amount of dopant precursor delivered during any dopant precursor delivery cycle. The amount of dopant precursor delivered during any particular dopant delivery cycle will be determined by the concentration of the dopant precursor delivered to the reaction chamber and the duration of exposure of the substrate to the delivered dopant precursor Decide.
如以上所示,可經由類似CVD製程提供一些摻雜物前驅物至生長中薄膜上。在如此情況下,在任何特定循環中遞送至生長中薄膜之摻雜物前驅物的數量不受限於吸附或其他表面介導現象。因此,在任一摻雜物遞送循環所提供之摻雜物前驅物的數量可相對大且可控制。在任何摻雜物遞送循環期間遞送之摻雜物前驅物達到更大量的程度,則介電薄膜中摻雜物的整體濃度增加。此可補償在整個製程中具有相對不頻繁摻雜物前驅物遞送循環的效應。然而,必須瞭解到增加任何特定的摻雜物前驅物遞送循環期間所遞送摻雜物的數量可能導致薄膜中相對高之摻雜物的局部濃度。當然,如此之摻雜物濃度尖峰可藉由回火或其他在介電薄膜中摻雜物藉以擴散以使其濃度變得更均勻的操作使之柔和。 As shown above, some dopant precursors can be provided to the growing film through a similar CVD process. In this case, the amount of dopant precursor delivered to the growing thin film in any particular cycle is not limited to adsorption or other surface-mediated phenomena. Therefore, the number of dopant precursors provided in any dopant delivery cycle can be relatively large and controllable. As the dopant precursor delivered during any dopant delivery cycle reaches a greater amount, the overall concentration of dopant in the dielectric film increases. This can compensate for the effect of having relatively infrequent dopant precursor delivery cycles throughout the process. However, it must be understood that increasing the amount of dopant delivered during any particular dopant precursor delivery cycle may result in a relatively high local concentration of dopant in the film. Of course, such spikes in dopant concentration can be softened by tempering or other operations in which the dopant diffuses in the dielectric film to make its concentration more uniform.
在硼作為摻雜物的情況下,典型的硼前驅物遞送循環期間所遞送之硼通量依據目標薄膜濃度可從約7.5ML(百萬朗繆爾,Mega-Langmuirs)變化至30ML(ML為通量/曝露之單位)。 In the case of boron as a dopant, the boron flux delivered during a typical boron precursor delivery cycle can vary from about 7.5ML (Mega-Langmuirs) to 30ML (ML is Unit of flux/exposure).
在一些實施例中,在每一前驅物遞送循環中所遞送之摻雜物前驅物的數量在全部介電薄膜的生長並非自始至終固定。因此,可修改每一循環所遞送之摻雜物前驅物的數量以便在介電薄膜中產生期望之摻雜物濃度梯度。例如,理想上可在那些發生在介電薄膜中相對靠近待摻雜半導體裝置特徵部的位置之摻雜物前驅物遞送循環中提供更大量的摻雜物前驅物。所產生之濃度梯度在鄰接待摻雜裝置結構之薄膜區域中具有較大的摻雜物濃度。 In some embodiments, the number of dopant precursors delivered in each precursor delivery cycle is not fixed throughout the growth of the dielectric film. Therefore, the number of dopant precursors delivered per cycle can be modified to produce the desired dopant concentration gradient in the dielectric film. For example, it may be desirable to provide a larger amount of dopant precursor in those dopant precursor delivery cycles that occur in the dielectric film relatively close to the features of the semiconductor device to be doped. The resulting concentration gradient has a larger dopant concentration in the thin film area adjacent to the doping device structure.
在一些實施例中,摻雜物前驅物係以吸附限制方式併入到基板表面上。在如此前驅物的情況下,經由類似ALD製程(相對於如以上所述類似CVD方式)進行摻雜物導入至薄膜中。藉由吸收介導過程而黏附至基板表面之摻雜物前驅物的範例包含三甲基硼烷、以及其他如三甲基鎵之烷基前驅物。藉由類似 CVD製程而累積在基板表面上之摻雜物前驅物的範例包含乙硼烷、磷化氫、以及砷化氫。 In some embodiments, the dopant precursor system is incorporated onto the substrate surface in an adsorption-restricted manner. In the case of such a precursor, the dopant is introduced into the thin film through a similar ALD process (relative to the similar CVD method as described above). Examples of dopant precursors that adhere to the substrate surface through absorption-mediated processes include trimethylborane and other alkyl precursors such as trimethylgallium. With similar Examples of dopant precursors accumulated on the substrate surface by the CVD process include diborane, phosphine, and arsine.
一般而言,介電薄膜中摻雜物的可濃度分佈可修改為適當者。在一實施例中,摻雜物濃度在鄰接待摻雜結構之薄膜的邊緣處突升至高位準。在一些實施例中,該濃度在整個薄膜厚度間歇地上升及下降。在一範例中,僅於下方基板與CFD介電層之間的界面處提供摻雜物(例如硼)。此摻雜物層有時稱為「尖峰層」(“spike layer”)。在一些情況下,使摻雜物曝露產生脈衝(使用例如CVD曝露至摻雜物前驅物)而非採用單一步驟,從而增加摻雜物併入之晶圓內一致性。在另一範例中,將CFD氧化物或其他介電質與摻雜物一起散佈(例如在摻雜BSG中的硼)。見圖18及19。散佈之摻雜介電質可在具有或不具有尖峰層的情況下提供。又另一範例中,未摻雜CFD氧化物或其他介電罩作為保護層。再次見圖18及19。 Generally speaking, the concentration distribution of the dopant in the dielectric film can be modified as appropriate. In one embodiment, the dopant concentration rises to a high level at the edge of the thin film adjacent to the doped structure. In some embodiments, the concentration increases and decreases intermittently throughout the film thickness. In one example, dopants (such as boron) are provided only at the interface between the underlying substrate and the CFD dielectric layer. This dopant layer is sometimes referred to as a "spike layer". In some cases, exposure of the dopant is pulsed (using, for example, CVD exposure to the dopant precursor) instead of using a single step, thereby increasing the consistency of the wafer into which the dopant is incorporated. In another example, CFD oxides or other dielectrics are dispersed with the dopants (eg, boron in doped BSG). See Figures 18 and 19. The dispersed doped dielectric can be provided with or without a peak layer. In yet another example, undoped CFD oxide or other dielectric mask is used as the protective layer. See Figures 18 and 19 again.
摻雜物物種存留於其中之介電薄膜可自我修改以影響摻雜物物種的擴散通過薄膜本身。例如,可控制薄膜密度及/或化學成份以便在摻雜物物種擴散上產生期望之影響。在一些方法中,整個介電層厚度具有相同密度或成份使得修改之摻雜物擴散特性在整個薄膜厚度始終不變。在其他方法中,修改薄膜特性以使摻雜物擴散在薄膜厚度範圍內變化。例如,發明人已發現可改變電漿氧化參數以使CFD氧化物較不密集,從而允許於回火期間較多摻雜物擴散橫越CFD氧化物。 The dielectric film in which the dopant species reside can modify itself to affect the diffusion of the dopant species through the film itself. For example, the film density and/or chemical composition can be controlled to produce the desired effect on the diffusion of dopant species. In some methods, the entire thickness of the dielectric layer has the same density or composition so that the modified dopant diffusion characteristics remain constant throughout the film thickness. In other methods, the film properties are modified so that the dopant diffusion varies across the film thickness. For example, the inventors have found that plasma oxidation parameters can be changed to make the CFD oxide less dense, allowing more dopant to diffuse across the CFD oxide during tempering.
在一些實施例中,修改介電薄膜的成分(或用以形成薄膜之處理氣體)來影響其中摻雜物擴散。已發現到例如於介電薄膜沉積循環期間在遞送至反應腔室之氧化劑處理氣體中的氮對氧比率影響摻雜物物種擴散通過介電薄膜的能力。舉例而言,較大量的氮存在於介電薄膜形成期間所使用之氧化劑氣體中導致介電薄膜具有對摻雜物擴散明顯的阻抗性。相較之下,相對較大量的氧存 在該氣體中導致該薄膜具有對摻雜物擴散較小許多的阻抗性。可藉由含氮化合物(例如N2O)或元素氮(N2)的方式來提供存在於處理氣體的氮。在各種實施例中,於介電薄膜沉積循環期間持續流入之氧化劑包含一氧化二氮。 In some embodiments, the composition of the dielectric film (or the process gas used to form the film) is modified to affect the diffusion of dopants therein. It has been found, for example, that the nitrogen to oxygen ratio in the oxidant treatment gas delivered to the reaction chamber during the dielectric film deposition cycle affects the ability of the dopant species to diffuse through the dielectric film. For example, the presence of larger amounts of nitrogen in the oxidant gas used during the formation of the dielectric film results in the dielectric film having a significant resistance to the diffusion of dopants. In contrast, a relatively large amount of oxygen In the gas, the film has a much smaller resistance to diffusion of dopants. The nitrogen present in the processing gas can be provided by means of a nitrogen-containing compound (eg, N2O) or elemental nitrogen (N2). In various embodiments, the oxidant continuously flowing during the dielectric film deposition cycle includes nitrous oxide.
在一些實施例中,藉由在介電薄膜的初始生長階段期間最初使用高氧含量及相對低氮含量之氧化劑氣體來製作介電薄膜。稍後,在待摻雜之基板結構上形成部份薄膜之後,改變氧化劑氣體的成分使得其相對富含較多氮。舉例而言,於初始沉積循環期間,用於介電薄膜之氧化劑氣體可完全包含分子氧。在稍後的介電層沉積循環中,改變氧化劑氣體使得至少一部份的氧由一氧化二氮取代。假設目標為提高朝薄膜的底部方向擴散並阻止朝薄膜的頂部方向擴散(假設待摻雜之裝置結構位於介電薄膜下方)。發明人已發現若氮濃度位準大於約1E20 atoms/cc(由例如SIMS量測),則對於硼擴散阻止作用顯著。相較之下,在約1E19 atoms/cc或更低的氮濃度位準時,實際上可忽略阻止作用。 In some embodiments, the dielectric film is made by initially using an oxidant gas with a high oxygen content and a relatively low nitrogen content during the initial growth phase of the dielectric film. Later, after forming part of the thin film on the substrate structure to be doped, the composition of the oxidant gas is changed so that it is relatively rich in nitrogen. For example, during the initial deposition cycle, the oxidant gas used for the dielectric film may completely contain molecular oxygen. In a later dielectric layer deposition cycle, the oxidant gas is changed so that at least a portion of the oxygen is replaced by nitrous oxide. The goal is to increase diffusion towards the bottom of the film and prevent diffusion towards the top of the film (assuming that the device structure to be doped is below the dielectric film). The inventors have found that if the nitrogen concentration level is greater than about 1E20 atoms/cc (measured by, for example, SIMS), the effect of preventing boron diffusion is significant. In contrast, at a nitrogen concentration level of about 1E19 atoms/cc or lower, the blocking effect can actually be ignored.
從薄膜成分本身的觀點而言,薄膜中的氮含量可從接近待摻雜基板結構的薄膜部份中相對低位準變化至位於待摻雜結構對面的部份中相對較高位準。 From the viewpoint of the film composition itself, the nitrogen content in the film can vary from a relatively low level in the portion of the film close to the substrate structure to be doped to a relatively high level in the portion opposite the structure to be doped.
於介電薄膜形成期間採用之沉積溫度亦影響摻雜物原子在薄膜內部擴散的能力。一般而言,已發現到藉由CFD處理在相對低溫下沉積之介電層通常允許相對高摻雜物擴散速率。與相對高摻雜物擴散速率相關聯之相對低溫的範例為約300至400℃範圍中的溫度,或更具體地介於約350至400℃之間。當然,這些溫度範圍取決於介電質前驅物的選取以及其他沉積參數。雖然其可與一些前驅物一起採用,但其特別適合於使用BTBAS作為介電質前驅物。 The deposition temperature used during the formation of the dielectric film also affects the ability of the dopant atoms to diffuse inside the film. In general, it has been found that dielectric layers deposited by CFD processing at relatively low temperatures generally allow relatively high dopant diffusion rates. An example of a relatively low temperature associated with a relatively high dopant diffusion rate is a temperature in the range of about 300 to 400°C, or more specifically between about 350 to 400°C. Of course, these temperature ranges depend on the choice of dielectric precursors and other deposition parameters. Although it can be used with some precursors, it is particularly suitable for using BTBAS as a dielectric precursor.
相較之下,在相對較高溫下沉積之介電層傾向於阻抗摻雜物物種的擴散。在使用BTBAS作為介電質前驅物的情況下,與相對低摻雜物擴散速率相關聯之相對高溫為約350至400℃的範圍中,或更具體地介於約300至380℃之 間。當然,這些溫度可應用至其他前驅物。此外,雖然事實為更高溫度通常產生阻抗摻雜物擴散之更緻密薄膜,但亦可經由其他如電漿氧化期間之RF曝露時間及功率來控制擴散性及/或密度。可於CFD氧化物生長期間採用之基線參數的範例包括(1)在約200-2500 Watts之高頻電漿(對於300mm晶圓),通常無低頻電漿、以及(2)在約0.2至1.5秒範圍中之電漿曝露時間。 In contrast, dielectric layers deposited at relatively high temperatures tend to resist the diffusion of dopant species. In the case of using BTBAS as a dielectric precursor, the relative high temperature associated with the relatively low dopant diffusion rate is in the range of about 350 to 400°C, or more specifically between about 300 to 380°C between. Of course, these temperatures can be applied to other precursors. In addition, although the fact is that higher temperatures generally produce denser films that resist the diffusion of dopants, the diffusivity and/or density can also be controlled by other RF exposure times and power during plasma oxidation, for example. Examples of baseline parameters that can be used during CFD oxide growth include (1) high frequency plasma at about 200-2500 Watts (for 300mm wafers), usually without low frequency plasma, and (2) at about 0.2 to 1.5 Plasma exposure time in the second range.
在一些實施例中,採用相對低溫來沉積鄰接待摻雜之裝置結構的介電薄膜,並且採用較高溫度來沉積更遠離該裝置的介電薄膜部份。在一些實施例中,在全部介電薄膜的沉積期間採用之溫度係變動的,且同樣地,在沉積製程期間氧化劑氣體中氮對氧比率係變動的。以此方式,所產生之介電薄膜的摻雜物擴散特性可在薄膜厚度範圍內變化至一擴大程度。 In some embodiments, a relatively low temperature is used to deposit the dielectric film adjacent to the doped device structure, and a higher temperature is used to deposit the portion of the dielectric film further away from the device. In some embodiments, the temperature employed during the deposition of all dielectric thin films varies, and likewise, the ratio of nitrogen to oxygen in the oxidant gas during the deposition process varies. In this way, the dopant diffusion characteristics of the resulting dielectric film can be varied to an extent within the thickness of the film.
在各種實施例中,沉積溫度係由加熱及/或冷卻於CFD期間夾持基板之基座或夾盤加以控制。適當基座之範例係敘述在申請於2009年5月5日之美國專利申請案第12/435890號(公開申請案第US-2009-0277472號)以及申請於2011年4月13日之美國專利申請案第13/086010號之中,其二者皆整體併入於此作為參考。 In various embodiments, the deposition temperature is controlled by heating and/or cooling the pedestal or chuck that holds the substrate during CFD. Examples of suitable pedestals are described in U.S. Patent Application No. 12/435890 filed on May 5, 2009 (Public Application No. US-2009-0277472) and U.S. Patent filed on April 13, 2011 Application No. 13/086010, both of which are incorporated herein by reference in their entirety.
在一些實施例中,在介電薄膜或摻雜物前驅物沉積之前對待摻雜之基板表面上的裝置結構做預處理。在一範例中,預處理涉及曝露至電漿,如還原電漿。當例如待摻雜之基板特徵部包含矽時,如此之處理會是適當的。通常矽包含可對後續摻雜物擴散作為阻障之少量的原生氧化物。在一具體實施例中,以例如含氫電漿之還原電漿對基板表面做預處理,並接著在介電薄膜沉積的第一循環之前使該表面與呈氣相之摻雜物前驅物接觸。可在電漿預處理完成之後立即將該前驅物遞送至反應腔室。在一些範例中,摻雜物前驅物係乙硼烷。一般而言,可修改圖17所繪示之程序使得在第一介電層沉積循環之前將摻雜物或摻雜物前驅物遞送至基板表面。 In some embodiments, the device structure on the surface of the substrate to be doped is pre-treated before the deposition of the dielectric film or dopant precursor. In one example, pretreatment involves exposure to plasma, such as reduced plasma. When, for example, the substrate features to be doped include silicon, such processing may be appropriate. Silicon usually contains a small amount of native oxide that can act as a barrier to subsequent dopant diffusion. In a specific embodiment, the substrate surface is pretreated with a reducing plasma such as a hydrogen-containing plasma, and then the surface is brought into contact with the dopant precursor in the gas phase before the first cycle of dielectric thin film deposition . The precursor can be delivered to the reaction chamber immediately after the plasma pretreatment is completed. In some examples, the dopant precursor is diborane. In general, the procedure depicted in FIG. 17 can be modified so that the dopant or dopant precursor is delivered to the substrate surface before the first dielectric layer deposition cycle.
在各種實施例中,於曝露至摻雜物前驅物前以電漿或其他活化處理對部份形成之介電薄膜本身做預處理。此藉由以下敘述用以提高晶圓內一致性:(a)在摻雜物前驅物曝露之前提供熱一致性、(b)活化介電層表面(例如藉由化學及/或物理粗糙化)以增加黏附至介電層表面之摻雜物前驅物。 In various embodiments, the partially formed dielectric film itself is pre-treated with plasma or other activation treatment before being exposed to the dopant precursor. This is used to improve intra-wafer consistency by (a) providing thermal consistency before the dopant precursor is exposed, (b) activating the surface of the dielectric layer (eg by chemical and/or physical roughening) In order to increase the dopant precursor adhered to the surface of the dielectric layer.
在一些其他實施例中,於薄膜沉積製程之摻雜物前驅物遞送及/或活化階段期間摻雜物物種的化學條件係受到控制。在一些實施例中,以將摻雜物「固定」在介電薄膜中並從而限制摻雜物擴散直到隨後由回火或其他如此操作活化為止的方式來處理摻雜物前驅物。在一範例中,於介電薄膜沉積製程之摻雜物遞送階段期間藉由使其或其前驅物氧化而將一些摻雜物固定。在一具體範例中,將乙硼烷遞送至處於氧化環境之反應腔室以使所產生之含硼材料有效地固定在介電薄膜中。或者,藉由將前驅物遞送至處於惰性或還原環境之反應腔室而使摻雜物固定,並且之後在位於介電薄膜上時曝露至氧化環境。相較之下,在沒有後續氧化的情況下,以還原劑處理一些摻雜物前驅物可在介電薄膜中產生更易移動的摻雜物。 In some other embodiments, the chemical conditions of the dopant species during the dopant precursor delivery and/or activation phase of the thin film deposition process are controlled. In some embodiments, the dopant precursor is processed in a manner that "fixes" the dopant in the dielectric film and thereby limits the diffusion of the dopant until subsequently activated by tempering or other such operations. In one example, some dopants are fixed by oxidizing them or their precursors during the dopant delivery stage of the dielectric film deposition process. In a specific example, diborane is delivered to the reaction chamber in an oxidizing environment so that the resulting boron-containing material is effectively fixed in the dielectric film. Alternatively, the dopant is fixed by delivering the precursor to the reaction chamber in an inert or reducing environment, and then exposed to an oxidizing environment while on the dielectric film. In contrast, in the absence of subsequent oxidation, treating some dopant precursors with a reducing agent can produce more mobile dopants in the dielectric film.
在源層形成之後(或於其形成期間),將摻雜物物種驅入或用其他方式併入製作中裝置的相鄰結構中。在一些實施例中,於形成保形摻雜物源薄膜期間或之後藉由回火將摻雜物物種驅入。除了習知的熱回火之外,還可使用例如急驟回火及雷射尖峰回火。回火的時間和溫度取決於各種參數,包含:源層中摻雜物的濃度、數量、及種類;源層基材(例如氧化物玻璃)的成分與形態;摻雜物物種必須移動進入鄰接裝置結構中的距離;裝置結構中所期望之摻雜物的濃度;以及裝置結構的成分與形態。一些實施例中,在介於約900及1100℃之間的溫度下執行回火持續約2至30秒。 After the source layer is formed (or during its formation), the dopant species are driven or otherwise incorporated into the adjacent structure of the device being fabricated. In some embodiments, the dopant species are driven in by tempering during or after the formation of the conformal dopant source film. In addition to the conventional thermal tempering, flash tempering and laser spike tempering can be used, for example. The tempering time and temperature depend on various parameters, including: the concentration, amount, and type of dopant in the source layer; the composition and morphology of the source layer substrate (such as oxide glass); the dopant species must move into the adjacent The distance in the device structure; the desired dopant concentration in the device structure; and the composition and morphology of the device structure. In some embodiments, the tempering is performed at a temperature between about 900 and 1100°C for about 2 to 30 seconds.
可設計各種設備來沉積如此處所述之摻雜介電薄膜。一般而言,該設備將包含於摻雜薄膜之沉積期間用以夾持基板之處理腔室。該處理腔室將 包含允許處理氣體進入之一或更多進氣口,該處理氣體包含介電質前驅物、氧化劑、載體氣體或惰性氣體、摻雜物物種、及其類似者。在各種實施例中,該設備將額外包含用於產生電漿的特徵,該電漿具有適合於產生介電層;使摻雜物併入介電層中;處理介電層以修改該層之電性、光學、機械、及/或化學特性;以及自薄膜將摻雜物驅入基板中之特性。通常,該設備將包含真空泵或用以連結至此泵之供應。再者,該設備將具有配置或設計成控制該設備以完成此處所述之摻雜介電層沉積操作的順序之一或複數控制器。該控制器可包含用以控制該設備之各種特徵的指令,該特徵包括用以遞送處理氣體及控制壓力的閥、用以產生電漿的電源供應、以及真空源。該指令可控制各種操作的時間及順序。在各種實施例中,該設備可具有如供應自加州聖荷西Novellus Systems之VectorTM系列沉積工具中所提供之特徵。用於沉積摻雜介電薄膜之合適設備的其他特徵將於本文中其他地方加以敘述。 Various equipment can be designed to deposit the doped dielectric film as described herein. Generally, the apparatus will include a processing chamber used to hold the substrate during the deposition of the doped film. The processing chamber will Contains one or more gas inlets that allow process gas to enter, the process gas including a dielectric precursor, an oxidant, a carrier gas or an inert gas, a dopant species, and the like. In various embodiments, the device will additionally include features for generating a plasma having a dielectric layer suitable for producing; incorporating dopants into the dielectric layer; processing the dielectric layer to modify the layer Electrical, optical, mechanical, and/or chemical properties; and the property of driving dopants into the substrate from the thin film. Typically, the equipment will include a vacuum pump or a supply to connect to this pump. Furthermore, the device will have one or more controllers configured or designed to control the device to complete the sequence of the doped dielectric layer deposition operations described herein. The controller may contain instructions to control various features of the equipment, including valves to deliver process gas and control pressure, power supplies to generate plasma, and vacuum sources. This instruction can control the time and sequence of various operations. In various embodiments, the apparatus may have features as provided in the VectorTM series of deposition tools available from Novellus Systems, San Jose, California. Other features of suitable equipment for depositing doped dielectric films will be described elsewhere in this article.
摻雜CFD薄膜特性 Characteristics of doped CFD thin film
作為摻雜物物種源之介電薄膜將具有各種特徵。在各種實施例中,薄膜厚度介於約20及200埃之間。在一些情況下,如用於三維電晶體結構之源極-汲極延伸區域的前端摻雜,則薄膜厚度介於約50及100埃之間。介電薄膜中摻雜物原子(或其他摻雜物物種)的平均濃度取決於各種因素,包括薄膜之每單位表面積摻雜物的總數量、及薄膜中摻雜物原子的擴散性、以及摻雜應用。在一些實施例中,薄膜中摻雜物的濃度介於約0.01及10重量百分率之間。在另外的實施例中,薄膜中摻雜物的濃度介於約0.1至1重量百分率之間。在更另外的實施例中,薄膜中摻雜物的濃度介於約0.5至4重量百分率之間。於此所述之技術允許在寬廣的範圍(例如介於約0.01及10重量百分率之間)中調整摻雜物濃度。例如,已教示在CFD介電薄膜中可將硼濃度輕易地調整在介於約0.1及4.3重量百分率之 間。在一些實施例中,在硼介於約0.1及0.5wt%的情況下生長5、7、10、以及12nm CFD薄膜。 The dielectric thin film as a source of dopant species will have various characteristics. In various embodiments, the film thickness is between about 20 and 200 angstroms. In some cases, such as for doping the front end of the source-drain extension of the three-dimensional transistor structure, the film thickness is between about 50 and 100 angstroms. The average concentration of dopant atoms (or other dopant species) in the dielectric film depends on various factors, including the total amount of dopant per unit surface area of the film, the diffusivity of the dopant atoms in the film, and the doping Miscellaneous applications. In some embodiments, the concentration of dopants in the film is between about 0.01 and 10 weight percent. In other embodiments, the concentration of dopants in the film is between about 0.1 and 1 weight percent. In still other embodiments, the concentration of dopants in the film is between about 0.5 to 4 weight percent. The techniques described herein allow the dopant concentration to be adjusted in a wide range (eg, between about 0.01 and 10 weight percent). For example, it has been taught that in a CFD dielectric film, the boron concentration can be easily adjusted between about 0.1 and 4.3 weight percent between. In some embodiments, 5, 7, 10, and 12 nm CFD thin films are grown with boron between about 0.1 and 0.5 wt%.
可以其他特性作為CFD摻雜介電薄膜之特徵。例如,CFD沉積薄膜的片電阻(Rs)可從約100變化至50000ohms/方形。在一些情況下,在部份或全部摻雜物已從摻雜CFD層驅入後而獲得這些值。另外藉由從CFD薄膜驅入摻雜物所產生之接面深度(例如藉由SIMS量測)可適當調整至高達約1000埃的程度。當然,許多前端裝置而是需要較淺的接面深度(例如約5-50埃的範圍中),其亦可使用CFD薄膜而獲得。可藉由許多因素來控制實際接面深度,例如界面摻雜物(例如硼)濃度、摻雜物從主體及界面進入基板(例如矽)的遷移率、以及用以驅入摻雜物之回火的溫度與持續時間。 Other characteristics can be used as the characteristics of CFD doped dielectric films. For example, the sheet resistance (Rs) of CFD deposited films can vary from about 100 to 50,000 ohms/square. In some cases, these values are obtained after some or all of the dopants have been driven from the doped CFD layer. In addition, the junction depth generated by driving the dopant from the CFD film (for example, as measured by SIMS) can be appropriately adjusted to a level of up to about 1000 angstroms. Of course, many front-end devices require a shallow junction depth (for example, in the range of about 5-50 angstroms), which can also be obtained using CFD films. The actual junction depth can be controlled by many factors, such as the concentration of interface dopants (such as boron), the mobility of dopants from the body and the interface into the substrate (such as silicon), and the back to drive the dopants The temperature and duration of the fire.
CFD摻雜應用 CFD doping applications
其上形成介電源層之基板表面可能需要高保形沉積。在一些範例中,介電源薄膜一致地覆蓋具有介於約1:0.5及1:12之間(更具體地介於約1:1及1:8之間)的高寬比之特徵部,並且具有不大於約60nm(更具體地不大於約30nm)的特徵部寬度。使用本文中所述介電源層類型之摻雜將在根據45nm技術節點及更往後技術(包括22nm技術節點、16nm技術節點等等)所形成的裝置中找到特定應用。 The surface of the substrate on which the dielectric power layer is formed may require high conformal deposition. In some examples, the dielectric film uniformly covers features with an aspect ratio between about 1:0.5 and 1:12 (more specifically between about 1:1 and 1:8), and Have a feature width no greater than about 60 nm (more specifically no greater than about 30 nm). Doping using the dielectric layer type described herein will find specific applications in devices formed according to 45nm technology nodes and beyond (including 22nm technology nodes, 16nm technology nodes, etc.).
在可使用CFD源層摻雜的裝置結構之中為例如CMOS源極與汲極、源極-汲極延伸區域、記憶體裝置中的電容電極、閘極結構等等之習知摻雜結構。其他可以此方式摻雜之結構為例如在閘極結構中於源極/汲極延伸區域處之接面(如同那些以22奈米技術節點製作的一些裝置中所採用的一些三維閘極結構中之接面)的非平面或三維結構。一些三維結構可見於先前併入作為參考之J.Kavalieros等人於Symp.VLSI Tech Pg 50,2006所提出之「Tri-gate(Intel)」、以
及Yamashita等人(IBM Alliance)於VLSI 2011所提出之「FinFET」、以及其中參考文獻。
Among the device structures that can be doped with the CFD source layer are conventional doped structures such as CMOS source and drain, source-drain extensions, capacitor electrodes in memory devices, gate structures, and so on. Other structures that can be doped in this way are, for example, the junction at the source/drain extension area in the gate structure (as in some 3D gate structures used in some devices fabricated with 22nm technology nodes Non-planar or three-dimensional structure). Some three-dimensional structures can be found in the "Tri-gate (Intel)" proposed by J. Kavalieros et al. in Symp.
摻雜CFD薄膜具有各種其他應用,例如提供使用在積體電路製作中各個階段之可蝕刻層。在一些實施例中,可蝕刻層為具有可調式濕蝕刻速率之玻璃層,其中該蝕刻速率可由摻雜的程度加以調整。換言之,選取摻雜的程度以提供預定之蝕刻速率。在具體實施例中,可蝕刻層為包含如磷、硼、或其組合之摻雜物的矽酸鹽玻璃層。 Doped CFD films have various other applications, such as providing etchable layers used in various stages of integrated circuit fabrication. In some embodiments, the etchable layer is a glass layer with an adjustable wet etch rate, where the etch rate can be adjusted by the degree of doping. In other words, the degree of doping is selected to provide a predetermined etch rate. In a specific embodiment, the etchable layer is a silicate glass layer containing dopants such as phosphorus, boron, or a combination thereof.
CFD摻雜範例CFD doping example
CFD硼摻雜矽酸鹽玻璃(BSG)薄膜準備好並且在複雜的三維閘極結構上達到幾乎100%階梯覆蓋。預期磷摻雜矽酸鹽玻璃(PSG)有類似結果。在摻雜物之擴散下提供保形/同質的後續回火步驟期間可將硼或磷從如此薄膜驅入源極和汲極接面之橫向及垂直區域中。圖20顯示用以合成CFD BSG/PSG薄膜之典型沉積組塊。CFD氧化物生長循環包含(a)SiO2前驅物(BTBAS)的飽和劑量、(b)惰性清除以沖出殘餘前驅物物種、(c)氧化電漿步驟、以及(d)惰性氣體清除以移除反應副產物。此機制確保反應為自我限制並且促進在這些薄膜觀察到優越的保形性。若必要時,於CFD氧化物生長期間週期性插入硼或磷曝露步驟,後接泵抽和清除序列,以及選擇性RF釘扎/硬化步驟(例如曝露至電漿)。此沉積組塊依目標BSG/PSG厚度需要重複多次。見圖20。 The CFD boron-doped silicate glass (BSG) film is ready and achieves almost 100% step coverage on a complex three-dimensional gate structure. Phosphorus-doped silicate glass (PSG) is expected to have similar results. Boron or phosphorous can be driven from such a thin film into the lateral and vertical regions of the source and drain junctions during the subsequent tempering step that provides conformal/homogeneous diffusion under the dopant. Figure 20 shows typical deposition blocks used to synthesize CFD BSG/PSG thin films. The CFD oxide growth cycle contains (a) a saturating dose of SiO 2 precursor (BTBAS), (b) inert scavenging to flush out residual precursor species, (c) oxidation plasma step, and (d) inert gas scavenging to shift In addition to the reaction by-products. This mechanism ensures that the reaction is self-limiting and promotes the superior shape retention observed in these films. If necessary, a boron or phosphorous exposure step is periodically inserted during the growth of the CFD oxide, followed by a pumping and cleaning sequence, and a selective RF pinning/hardening step (eg exposure to plasma). This deposition block needs to be repeated multiple times depending on the target BSG/PSG thickness. See Figure 20.
插入硼或磷曝露的頻率調整在一特定溫度下摻雜物擴散距離,而曝露的期間長度控制總摻雜物劑量。這兩個強力的控制參數提供用以精準調整界面摻雜物濃度之多方面合成方案。 The frequency of intervening boron or phosphorous exposure adjusts the dopant diffusion distance at a specific temperature, and the length of the exposure period controls the total dopant dose. These two powerful control parameters provide a multi-faceted synthesis scheme for precisely adjusting the interface dopant concentration.
在實驗中,CFD已證明在BSG薄膜中優越的生長特徵。該CFDBSG製程使用BTBAS作為矽源、N2O電漿用於氧化、以及氬之中5%乙硼烷(B2H6)用於硼摻雜。氬和N2O的混合物用作清除氣體。獲得與未摻雜CFD氧化物上結果 一致之~1埃/循環的生長速率,因而顯示包含硼曝露步驟不會對CFD生長造成不利影響。如藉由SEM照片所示般,250埃厚之CFD BSG薄膜在不同測試結構上展現近乎完美的保形性。這些薄膜的階梯覆蓋在密集和分離的結構(圖21)上估計為~100%。階梯覆蓋定義為特徵部之側壁上的薄膜厚度除以該相同特徵部之頂部上的薄膜厚度之商數。表6顯示來自初步研究的不同分歧,用以區分出硼曝露時間、硼插入頻率、及生長溫度對薄膜中最後平均硼濃度的影響。25X CFD Ox表示每一硼插入階段有25個CFD未摻雜氧化物循環。此樣本大約生長至500埃,因此整個序列重複約20次(假設CFD氧化物的生長速率為1埃/循環)。這些分歧的SIMS資料(如圖22所示)顯示平均硼濃度可調整在約0.5-3.5wt%硼的範圍中,而使訂製摻雜選擇成為可能。 In experiments, CFD has demonstrated superior growth characteristics in BSG films. The CFDBSG process uses BTBAS as the silicon source, N 2 O plasma for oxidation, and 5% diborane (B 2 H 6 ) in argon for boron doping. A mixture of argon and N 2 O is used as purge gas. A growth rate of ~1 Angstrom/cycle consistent with the results on the undoped CFD oxide was obtained, thus showing that the inclusion of the boron exposure step did not adversely affect CFD growth. As shown by the SEM photos, the 250 Angstrom thick CFD BSG film exhibits nearly perfect shape retention on different test structures. The step coverage of these films is estimated to be ~100% on dense and separated structures (Figure 21). Step coverage is defined as the quotient of the film thickness on the sidewall of the feature divided by the film thickness on the top of the same feature. Table 6 shows the different differences from the preliminary study to distinguish the effect of boron exposure time, boron insertion frequency, and growth temperature on the final average boron concentration in the film. 25X CFD Ox means that there are 25 CFD undoped oxide cycles per boron insertion stage. This sample grows to approximately 500 angstroms, so the entire sequence is repeated about 20 times (assuming the growth rate of CFD oxide is 1 angstrom/cycle). These divergent SIMS data (shown in Figure 22) show that the average boron concentration can be adjusted in the range of about 0.5-3.5wt% boron, making custom doping options possible.
設備equipment
應瞭解到在以上所述之一或更多實施例的情況下可採用任何合適的處理站。例如,圖13示意地顯示CFD處理站1300之實施例。為簡單起見,CFD處理站1300繪示為具有用以維持低壓環境之處理腔室本體1302之獨立處理站。然而,應瞭解到在共同的低壓處理工具環境中可包含複數CFD處理站1300。雖然圖13所示之實施例顯示一處理站,但應瞭解到在一些實施例中複數處理站
可包含在一處理工具中。例如,圖14繪示一多站處理工具2400之實施例。此外,應瞭解到在一些實施例中可藉由一或更多電腦控制器程式性地調整CFD處理站1300之一或更多硬體參數,包含以下詳述之參數。
It should be appreciated that any suitable processing station may be employed in the case of one or more of the embodiments described above. For example, FIG. 13 schematically shows an embodiment of a
CFD處理站1300與用於遞送處理氣體至分佈噴淋頭1306之反應物遞送系統1301流體連通。反應物遞送系統1301包含用以混和及/或調節遞送至噴淋頭1306之處理氣體的混合容器1304。一或更多混合容器進氣閥1320可控制處理氣體至混合容器1304之導入。
The
如BTBAS的一些反應物可在於處理站汽化並隨後遞送至處理站之前以液體形式儲存。例如,圖13之實施例包含用於汽化欲供應至混合容器1304之液態反應物的汽化點1303。在一些實施例中,汽化點1303可為加熱之汽化器。從如此汽化器產生的飽和反應物蒸汽可在下游遞送管道中凝結。使不相容氣體曝露至凝結的反應物可產生小顆粒。這些小顆粒可阻塞管道、妨礙閥操作、污染基板等等。應對這些問題的一些方法涉及清除及/或排空遞送管道以移除殘留反應物。然而,清除遞送管道可增加處理站循環時間,從而降低處理站吞吐量。因此,在一些實施例中可對汽化點1303下游之遞送管道進行熱追蹤。在一些範例中,亦可對混合容器1304進行熱追蹤。在一非限制性範例中,汽化點1303下游之管道具有在混合容器1304處從大約攝氏100度延伸至大約攝氏150度之遞增溫度曲線。
Some reactants such as BTBAS may be stored in liquid form before being vaporized at the processing station and then delivered to the processing station. For example, the embodiment of FIG. 13 includes a
在一些實施例中,可在液體注入器使反應物液體汽化。例如,液體注入器可將液體反應物之脈衝注入在混合容器上游之載體氣體流中。在一個情形中,液體注入器可藉由將該液體從較高壓力急驟汽化至較低壓力來使反應物汽化。在另一情形中,液體注入器可使該液體霧化成隨後在加熱遞送管道中汽化之分散微滴。應瞭解到較小液滴可比較大液滴更快汽化,從而減小液體注入和完全汽化之間的延遲。更快的汽化可減短自汽化點1303下游管道的長度。
在一個情形中,液體注入器可直接安裝至混合容器1304。在另一情形中,液體注入器可直接安裝至噴淋頭1306。
In some embodiments, the reactant liquid may be vaporized at the liquid injector. For example, the liquid injector may inject a pulse of liquid reactant into the carrier gas stream upstream of the mixing vessel. In one case, the liquid injector may vaporize the reactants by abruptly vaporizing the liquid from a higher pressure to a lower pressure. In another case, the liquid injector can atomize the liquid into dispersed droplets that subsequently vaporize in the heated delivery tube. It should be understood that smaller droplets can vaporize faster than larger droplets, thereby reducing the delay between liquid injection and complete vaporization. Faster vaporization can reduce the length of the pipeline downstream from the
將噴淋頭1306及基座1308與RF電力供應1314及匹配網路1316電性連通以對電漿供電。在一些實施例中,可藉由控制處理站壓力、氣體濃度、RF源功率、RF源頻率、以及電漿功率脈衝計時之一者或多者來控制電漿能量。例如,RF電力供應1314及匹配網路1316可在任何合適功率下操作以形成具有期望之自由基物種成分的電漿。合適功率之範例包含(但不限於)對於300mm晶圓介於100W及5000W之間的功率。同樣地,RF電力供應1314可提供任何合適頻率的RF功率。在一些實施例中,RF電力供應1314可配置成高頻與低頻RF電源彼此獨立控制。範例性低頻RF頻率可包含(但不限於)介於50kHz及500kHz之間的頻率。範例性高頻RF頻率可包含(但不限於)介於1.8MHz及2.45GHz之間的頻率。應瞭解到可離散地或連續地調變任何合適的參數以提供用於表面反應之電漿能量。在一非限制性範例中,可使電漿功率間歇地產生脈衝以減輕相對於連續供電電漿對基板表面之離子轟擊。
The
在一些實施例中,可藉由一或更多電漿監測器來原位監測電漿。在一情形中,可藉由一或更多電壓、電流感測器(例如VI探針)來監測電漿功率。在另一情形中,可藉由一或更多光學放射光譜感測器(OES)來量測電漿密度及/或處理氣體濃度。在一些實施例中,可基於從如此原位電漿監測器之量測來程式化地調整一或更多電漿參數。例如,可在回饋迴路中使用OES感測器以提供電漿功率之程式化控制。應瞭解到在一些實施例中,可使用其他監測器來監測電漿及其他製程特性。如此之監測器可包含(但不限於)遠紅外線(IR)監測器、聲學監測器、以及壓力轉換器。 In some embodiments, the plasma may be monitored in situ by one or more plasma monitors. In one case, the plasma power can be monitored by one or more voltage and current sensors (such as VI probes). In another case, the plasma density and/or process gas concentration can be measured by one or more optical emission spectrum sensors (OES). In some embodiments, one or more plasma parameters may be adjusted programmatically based on measurements from such an in-situ plasma monitor. For example, OES sensors can be used in the feedback loop to provide programmable control of plasma power. It should be appreciated that in some embodiments, other monitors may be used to monitor plasma and other process characteristics. Such monitors may include, but are not limited to, far infrared (IR) monitors, acoustic monitors, and pressure transducers.
在一些實施例中,可經由加熱器1310對基座1308進行溫度控制。此外,在一些實施例中,可藉由蝶形閥1318提供對CFD處理站1300之壓力控制。
如圖13之實施例所示,蝶形閥1318調節由下游真空泵(未顯示)所提供之真空。然而,在一些實施例中,亦可藉由改變一或更多導入至CFD處理站1300之氣體的流速來調整處理站1300之壓力控制。
In some embodiments, the
如以上所述,一多站處理工具中可包含一或更多處理站。圖14顯示具有入站裝載鎖2402及出站裝載鎖2404(其任一者或二者可包含遠端電漿源)之多站處理工具2400之實施例的示意圖。一處於大氣壓力下之機械臂2406係配置以將來自經由箱體2408載入之卡匣的晶圓經由大氣口2410移動至入站裝載鎖2402中。藉由機械臂2406將晶圓置放在入站裝載鎖2402中的基座2412上、關閉大氣口2410、並且將裝載鎖抽空。在導入處理腔室2414之前可使晶圓曝露至裝載鎖中的遠端電漿處理,其中入站裝載鎖2402包含遠端電漿源。此外,亦可在入站裝載鎖2402中對晶圓加熱,同樣地例如移除水分及吸附氣體。接著,開啟通至處理腔室2414之腔室運送口2416,並且另一機械臂(未顯示)將晶圓置放入反應器中之該反應器所示第一站的基座上以供處理。雖然圖14所示之實施例包含裝載鎖,但應瞭解到在一些實施例中可提供晶圓至處理站之直接進入。
As described above, one or more processing stations may be included in a multi-station processing tool. 14 shows a schematic diagram of an embodiment of a
所繪示之處理腔室2414包含四個處理站,在圖14所示之實施例中編號從1到4。每一站具有加熱基座(顯示在站1之2418處)、以及氣體管線入口。應瞭解到在一些實施例中,每一處理站可具有不同或多個目的。例如,在一些實施例中,處理站可於CFD及PECVD製程模式之間切換。此外或選擇性地,在一些實施例中,處理腔室2414可包含一或更多CFD及PECVD處理站之匹配對。雖然繪示之處理腔室2414包含四個站,但應瞭解到根據本發明之處理腔室可具有任何合適數目的站。例如,在一些實施例中處理腔室可具有五或更多站,而在其他實施例中處理腔室可具有三或更少站。
The illustrated
圖14亦繪示用於在處理腔室2414內運送晶圓之晶圓搬運系統2490的實施例。在一些實施例中,晶圓搬運系統2490可在各個處理站之間及/或
處理站與裝載鎖之間運送晶圓。應瞭解到可採用任何合適的晶圓搬運系統。非限制性的範例包含晶圓傳送帶及晶圓搬運機械臂。圖14亦繪示用以控制處理工具2400之製程條件及硬體狀態之系統控制器2450的實施例。系統控制器2450可包含一或更多記憶體裝置2456、一或更多大量儲存裝置2454、以及一或更多處理器2452。處理器2452可包含CPU或電腦、類比及/或數位輸入/輸出連接、步進馬達控制器板等等。
FIG. 14 also illustrates an embodiment of a
在一些實施例中,系統控制器2450控制處理工具2400的所有活動。系統控制器2450執行儲存在大量儲存裝置2454中、載入至記憶體裝置2456、並於處理器2452上執行之系統控制軟體2458。系統控制軟體2458可包含用以控制由處理工具2400執行之特定製程的計時、氣體混合、腔室及/或站壓力、腔室及/或站溫度、晶圓溫度、目標功率位準、RF功率位準、基板基座、夾盤及/或晶座位置、以及其他參數之指令。系統控制軟體2458可以任何合適的方式來配置。例如,可寫入各種處理工具元件子程式或控制目標程式以控制實行各種處理工具製程必要之處理工具元件的操作。系統控制軟體2458可用任何合適的電腦可讀程式化語言予以編碼。
In some embodiments, the
在一些實施例中,系統控制軟體2458可包含用以控制以上所述之各種參數的輸入/輸出控制(IOC)定序指令。例如,CFD製程的每一階段可包含供系統控制器2450執行之一或更多指令。用以設定CFD製程階段之製程條件的指令可包含在對應的CFD配方階段中。在一些實施例中,可依序安排CFD製程階段使得關於CFD製程的所有指令皆與該製程階段同時執行。
In some embodiments, the
在一些實施例中,可採用儲存在與系統控制器2450相關聯之大量儲存裝置2454及/或記憶體裝置2456上的其他電腦軟體及/或程式。用於此目的之程式或程式片段的範例包含基板定位程式、處理氣體控制程式、壓力控制程式、加熱器控制程式、以及電漿控制程式。
In some embodiments, other computer software and/or programs stored on
基板定位程式可包含用於裝載基板至基座2418上以及控制基板與處理工具2400其他部份之間的間隔之處理工具元件的程式碼。
The substrate positioning program may include code for processing tool elements for loading the substrate onto the
處理氣體控制程式可包含用於控制氣體成分和流速、以及選擇性地用於在沉積之前使氣體流入一或更多處理站以使處理站中的壓力穩定之碼。壓力控制程式可包含藉由調節例如處理站之排氣系統中的節流閥、進入處理站之氣體流量等等以控制處理站中之壓力的編碼。 The process gas control program may include code for controlling gas composition and flow rate, and optionally for flowing gas into one or more processing stations prior to deposition to stabilize the pressure in the processing station. The pressure control program may include a code to control the pressure in the processing station by adjusting, for example, a throttle valve in the exhaust system of the processing station, the gas flow into the processing station, and so on.
加熱器控制程式可包含用於控制通到用以加熱基板之加熱單元之電流的編碼。或者,加熱器控制程式可控制熱傳送氣體(如氦)至基板之遞送。 The heater control program may include codes for controlling the current to the heating unit for heating the substrate. Alternatively, the heater control program can control the delivery of heat transfer gas (such as helium) to the substrate.
電漿控制程式可包含用於設定施加至一或更多處理站中之處理電極之RF功率位準的編碼。 The plasma control program may include codes for setting the RF power level applied to the processing electrodes in one or more processing stations.
在一些實施例中,可存在與系統控制器2450相關聯之使用者介面。使用者介面可包含顯示螢幕、設備及/或製程條件之圖形軟體顯示器、以及如指標裝置、鍵盤、觸控螢幕、麥克風等等之使用者輸入裝置。
In some embodiments, there may be a user interface associated with the
在一些實施例中,由系統控制器2450調整之參數可與製程條件有關。非限制性範例包含處理氣體成分及流速、溫度、壓力、電漿條件(如RF偏壓功率位準)、壓力、溫度等等。這些參數可以其可利用使用者介面輸入之配方的形式提供給使用者。
In some embodiments, the parameters adjusted by the
用來監測製程之信號可從各個處理工具感測器藉由系統控制器2450之類比及/或數位輸入連接來提供。用來控制製程之信號可輸出到處理工具2400之類比及數位輸出連接上。可受監測之處理工具感測器的非限制性範例包含質量流量控制器、壓力感測器(如壓力計)、熱電偶等等。適當程式化回饋及控制演算法可與來自這些感測器的資料一起使用以維持製程條件。
The signals used to monitor the process can be provided from various processing tool sensors through the analog and/or digital input connections of the
系統控制器2450可提供用以實施以上所述之沉積製程的程式指令。程式指令可控制如DC功率位準、RF偏壓功率位準、壓力、溫度等等之各種
製程參數。該指令可控制該參數以操作根據本文中所述之各種實施例之薄膜堆疊的原位沉積。
The
於上文中敘述之設備/製程可與例如用於製作或製造半導體裝置、顯示器、LED、光伏板、及其類似者之微影圖案化工具或製程結合使用。通常(儘管非必然)如此之工具/製程將在共同的製作設施中一起使用或實施。薄膜之微影圖案化通常包含以下操作(用一些合適的工具來實現每一操作)的部份或全部:(1)使用旋塗或噴塗工具在工作件(即基板)上塗佈光阻;(2)使用熱板或加熱爐或UV硬化工具使光阻硬化;(3)用例如晶圓步進機之工具使光阻曝露至可見或UV或x射線光;(4)使用如濕式工作檯之工具使光阻顯影以選擇性地移除光阻並從而將其圖案化;(5)藉由使用乾式或電漿輔助蝕刻工具將光阻圖案轉移至下方的薄膜或工作件中;以及(6)使用如RF或微波電漿光阻剝除器之工具來移除光阻。 The equipment/processes described above can be used in conjunction with lithography patterning tools or processes for making or manufacturing semiconductor devices, displays, LEDs, photovoltaic panels, and the like, for example. Usually (though not necessarily) such tools/processes will be used or implemented together in a common production facility. The lithographic patterning of the film usually includes part or all of the following operations (using some suitable tools to achieve each operation): (1) Using a spin coating or spraying tool to coat the photoresist on the work piece (ie, substrate); (2) Use a hot plate or heating furnace or UV hardening tool to harden the photoresist; (3) Use a tool such as a wafer stepper to expose the photoresist to visible or UV or x-ray light; (4) Use a wet type The tool of the workbench develops the photoresist to selectively remove the photoresist and thereby pattern it; (5) transfer the photoresist pattern to the film or work piece below by using a dry or plasma assisted etching tool; And (6) Use tools such as RF or microwave plasma photoresist strippers to remove the photoresist.
應瞭解到於本文中敘述之配置及/或方法實質上為示範性的,而且這些具體實施例或範例不應視為限制性意義,因為許多變化均有可能。於本文中敘述之具體例行程序或方法可表示一或更多之任何數目的處理對策。因此,圖例說明之各種動作可按所示之順序、其他順序、並行、或一些省略的情況來執行。同樣地,可改變以上所述製程之順序。 It should be understood that the configurations and/or methods described herein are exemplary in nature, and that these specific embodiments or examples should not be considered limiting, as many variations are possible. The specific routines or methods described in this article can represent one or more of any number of countermeasures. Therefore, the various actions illustrated in the legend can be performed in the order shown, in other order, in parallel, or in some cases omitted. Similarly, the order of the processes described above can be changed.
本發明之標的包含各種製程、系統與配置、以及於此揭露之其他特徵、功能、動作、及/或特性、以及與其相關之任何及所有均等者之所有新穎及非顯而易見之組合及次組合。 The subject matter of the present invention includes all novel and non-obvious combinations and sub-combinations of various processes, systems and configurations, and other features, functions, actions, and/or characteristics disclosed herein, as well as any and all equivalents related thereto.
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/242,084 | 2011-09-23 | ||
US13/242,084 US8637411B2 (en) | 2010-04-15 | 2011-09-23 | Plasma activated conformal dielectric film deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201735162A TW201735162A (en) | 2017-10-01 |
TWI682459B true TWI682459B (en) | 2020-01-11 |
Family
ID=47914754
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105101797A TWI602245B (en) | 2011-09-23 | 2012-09-21 | Plasma-activated conformal dielectric thin film deposition |
TW106122777A TWI682459B (en) | 2011-09-23 | 2012-09-21 | Plasma activated conformal dielectric film deposition |
TW101134692A TWI531001B (en) | 2011-09-23 | 2012-09-21 | Plasma-activated conformal dielectric thin film deposition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105101797A TWI602245B (en) | 2011-09-23 | 2012-09-21 | Plasma-activated conformal dielectric thin film deposition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101134692A TWI531001B (en) | 2011-09-23 | 2012-09-21 | Plasma-activated conformal dielectric thin film deposition |
Country Status (6)
Country | Link |
---|---|
JP (2) | JP6199292B2 (en) |
KR (2) | KR102084901B1 (en) |
CN (2) | CN103890910B (en) |
SG (2) | SG11201400633RA (en) |
TW (3) | TWI602245B (en) |
WO (1) | WO2013043330A1 (en) |
Families Citing this family (361)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9076646B2 (en) | 2010-04-15 | 2015-07-07 | Lam Research Corporation | Plasma enhanced atomic layer deposition with pulsed plasma exposure |
US8956983B2 (en) | 2010-04-15 | 2015-02-17 | Novellus Systems, Inc. | Conformal doping via plasma activated atomic layer deposition and conformal film deposition |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9287113B2 (en) | 2012-11-08 | 2016-03-15 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US20110256734A1 (en) | 2010-04-15 | 2011-10-20 | Hausmann Dennis M | Silicon nitride films and methods |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US8592328B2 (en) | 2012-01-20 | 2013-11-26 | Novellus Systems, Inc. | Method for depositing a chlorine-free conformal sin film |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
TWI595112B (en) | 2012-10-23 | 2017-08-11 | 蘭姆研究公司 | Sub-saturated atomic layer deposition and conformal film deposition |
SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
EP2935646A4 (en) * | 2012-12-21 | 2016-10-12 | Prasad Narhar Gadgil | Methods of low temperature deposition of ceramic thin films |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9620502B2 (en) * | 2013-04-10 | 2017-04-11 | Samsung Electronics Co., Ltd. | Semiconductor device including an extended impurity region |
JP5998101B2 (en) | 2013-05-24 | 2016-09-28 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, and program |
US9606519B2 (en) | 2013-10-14 | 2017-03-28 | Applied Materials, Inc. | Matching process controllers for improved matching of process |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US9685325B2 (en) * | 2014-07-19 | 2017-06-20 | Applied Materials, Inc. | Carbon and/or nitrogen incorporation in silicon based films using silicon precursors with organic co-reactants by PE-ALD |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9478438B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9214333B1 (en) * | 2014-09-24 | 2015-12-15 | Lam Research Corporation | Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US10242848B2 (en) * | 2014-12-12 | 2019-03-26 | Lam Research Corporation | Carrier ring structure and chamber systems including the same |
US10100407B2 (en) * | 2014-12-19 | 2018-10-16 | Lam Research Corporation | Hardware and process for film uniformity improvement |
FI126970B (en) * | 2014-12-22 | 2017-08-31 | Picosun Oy | Atomic deposit where the first and second starting species are present at the same time |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9828672B2 (en) | 2015-03-26 | 2017-11-28 | Lam Research Corporation | Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
KR102317440B1 (en) * | 2015-05-27 | 2021-10-26 | 주성엔지니어링(주) | Method for manufacturing of semiconductor device |
US9406544B1 (en) * | 2015-06-12 | 2016-08-02 | Lam Research Corporation | Systems and methods for eliminating seams in atomic layer deposition of silicon dioxide film in gap fill applications |
CN118007094A (en) * | 2015-06-16 | 2024-05-10 | 弗萨姆材料美国有限责任公司 | Halosilane compounds and compositions and methods for depositing silicon-containing films using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
US9721887B2 (en) * | 2015-08-19 | 2017-08-01 | Taiwan Semiconductor Manufacturing Company, Ltd | Method of forming metal interconnection |
US9601693B1 (en) | 2015-09-24 | 2017-03-21 | Lam Research Corporation | Method for encapsulating a chalcogenide material |
US9909214B2 (en) * | 2015-10-15 | 2018-03-06 | Asm Ip Holding B.V. | Method for depositing dielectric film in trenches by PEALD |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
JP6509095B2 (en) * | 2015-11-04 | 2019-05-08 | 東京エレクトロン株式会社 | Method of forming nitride film |
US9786491B2 (en) | 2015-11-12 | 2017-10-10 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
US9786492B2 (en) * | 2015-11-12 | 2017-10-10 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
US9997351B2 (en) * | 2015-12-08 | 2018-06-12 | Varian Semiconductor Equipment Associates, Inc. | Apparatus and techniques for filling a cavity using angled ion beam |
US9627221B1 (en) * | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10319583B2 (en) * | 2016-03-13 | 2019-06-11 | Applied Materials, Inc. | Selective deposition of silicon nitride films for spacer applications |
JP6540571B2 (en) * | 2016-03-24 | 2019-07-10 | 豊田合成株式会社 | Semiconductor device manufacturing method and semiconductor device |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
KR102378021B1 (en) | 2016-05-06 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Formation of SiOC thin films |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US9773643B1 (en) * | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US10629435B2 (en) * | 2016-07-29 | 2020-04-21 | Lam Research Corporation | Doped ALD films for semiconductor patterning applications |
US9725302B1 (en) * | 2016-08-25 | 2017-08-08 | Applied Materials, Inc. | Wafer processing equipment having exposable sensing layers |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US10074543B2 (en) | 2016-08-31 | 2018-09-11 | Lam Research Corporation | High dry etch rate materials for semiconductor patterning applications |
US9865455B1 (en) | 2016-09-07 | 2018-01-09 | Lam Research Corporation | Nitride film formed by plasma-enhanced and thermal atomic layer deposition process |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US9768034B1 (en) * | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10832908B2 (en) | 2016-11-11 | 2020-11-10 | Lam Research Corporation | Self-aligned multi-patterning process flow with ALD gapfill spacer mask |
US10454029B2 (en) | 2016-11-11 | 2019-10-22 | Lam Research Corporation | Method for reducing the wet etch rate of a sin film without damaging the underlying substrate |
US10134579B2 (en) | 2016-11-14 | 2018-11-20 | Lam Research Corporation | Method for high modulus ALD SiO2 spacer |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
KR102241937B1 (en) * | 2016-11-25 | 2021-04-20 | 주식회사 원익아이피에스 | Method for filling gap of the semiconductor device |
TWI655312B (en) | 2016-12-14 | 2019-04-01 | 荷蘭商Asm知識產權私人控股有限公司 | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
JP6857522B2 (en) | 2017-03-17 | 2021-04-14 | 株式会社日本製鋼所 | Film formation method, manufacturing method of electronic equipment, and mask holder |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10847529B2 (en) | 2017-04-13 | 2020-11-24 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by the same |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
WO2018204709A1 (en) | 2017-05-05 | 2018-11-08 | Asm Ip Holding B.V. | Plasma enhanced deposition processes for controlled formation of oxygen containing thin films |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US10516100B2 (en) | 2017-06-12 | 2019-12-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicon oxynitride based encapsulation layer for magnetic tunnel junctions |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
JP6869141B2 (en) | 2017-08-09 | 2021-05-12 | 東京エレクトロン株式会社 | Silicon nitride film deposition method and film deposition equipment |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269559B2 (en) * | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
KR102470206B1 (en) * | 2017-10-13 | 2022-11-23 | 삼성디스플레이 주식회사 | Manufacturing method for metal oxide and display device comprising the metal oxide |
US20190119815A1 (en) * | 2017-10-24 | 2019-04-25 | Applied Materials, Inc. | Systems and processes for plasma filtering |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
CN111344522B (en) | 2017-11-27 | 2022-04-12 | 阿斯莫Ip控股公司 | Including clean mini-environment device |
JP7214724B2 (en) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | Storage device for storing wafer cassettes used in batch furnaces |
US11761079B2 (en) | 2017-12-07 | 2023-09-19 | Lam Research Corporation | Oxidation resistant protective layer in chamber conditioning |
US10760158B2 (en) | 2017-12-15 | 2020-09-01 | Lam Research Corporation | Ex situ coating of chamber components for semiconductor processing |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
KR102695659B1 (en) | 2018-01-19 | 2024-08-14 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a gap filling layer by plasma assisted deposition |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
WO2019158960A1 (en) | 2018-02-14 | 2019-08-22 | Asm Ip Holding B.V. | A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10975470B2 (en) * | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11404275B2 (en) | 2018-03-02 | 2022-08-02 | Lam Research Corporation | Selective deposition using hydrolysis |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
TWI811348B (en) | 2018-05-08 | 2023-08-11 | 荷蘭商Asm 智慧財產控股公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI816783B (en) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
JP7515411B2 (en) | 2018-06-27 | 2024-07-12 | エーエスエム・アイピー・ホールディング・ベー・フェー | Cyclic deposition methods for forming metal-containing materials and films and structures including metal-containing materials - Patents.com |
KR20210024462A (en) | 2018-06-27 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Periodic deposition method for forming metal-containing material and films and structures comprising metal-containing material |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US20200003937A1 (en) * | 2018-06-29 | 2020-01-02 | Applied Materials, Inc. | Using flowable cvd to gap fill micro/nano structures for optical components |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
KR102619401B1 (en) * | 2018-08-02 | 2023-12-29 | 젤리스트 인코퍼레이티드 | Thin film deposition method through controlled formation of vapor phase transition species |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
KR20240134048A (en) * | 2018-10-03 | 2024-09-05 | 버슘머트리얼즈 유에스, 엘엘씨 | Methods for making silicon and nitrogen containing films |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
TWI848976B (en) | 2018-10-04 | 2024-07-21 | 日商Adeka股份有限公司 | Thin film forming raw material for atomic layer deposition method, thin film forming raw material, method for producing thin film and compound |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (en) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI819180B (en) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR102727227B1 (en) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
KR102638425B1 (en) | 2019-02-20 | 2024-02-21 | 에이에스엠 아이피 홀딩 비.브이. | Method and apparatus for filling a recess formed within a substrate surface |
KR20200102357A (en) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for plug fill deposition in 3-d nand applications |
JP7509548B2 (en) | 2019-02-20 | 2024-07-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | Cyclic deposition method and apparatus for filling recesses formed in a substrate surface - Patents.com |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20210130247A (en) * | 2019-03-20 | 2021-10-29 | 어플라이드 머티어리얼스, 인코포레이티드 | Method of Growing Thick Oxide Films at Low Temperature Thermal Oxide Quality |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR102726216B1 (en) | 2019-05-01 | 2024-11-04 | 램 리써치 코포레이션 | Modulated atomic layer deposition |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP7598201B2 (en) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
JP7612342B2 (en) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141002A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of using a gas-phase reactor system including analyzing exhausted gas |
CN113939896A (en) * | 2019-06-08 | 2022-01-14 | 应用材料公司 | Low-K Dielectrics with Self-Shaping Barriers |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210015655A (en) | 2019-07-30 | 2021-02-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN112323048B (en) | 2019-08-05 | 2024-02-09 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
KR20220042442A (en) | 2019-08-06 | 2022-04-05 | 램 리써치 코포레이션 | Thermal atomic layer deposition of silicon-containing films |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
JP7259649B2 (en) * | 2019-08-30 | 2023-04-18 | 東京エレクトロン株式会社 | Film forming apparatus and film forming method |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR102733104B1 (en) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
JP7257930B2 (en) * | 2019-10-08 | 2023-04-14 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing apparatus |
TWI846966B (en) | 2019-10-10 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
KR20210080214A (en) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate and related semiconductor structures |
KR20210089077A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply assembly, components thereof, and reactor system including same |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
US12142479B2 (en) | 2020-01-17 | 2024-11-12 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
CN113284789A (en) | 2020-02-03 | 2021-08-20 | Asm Ip私人控股有限公司 | Method of forming a structure comprising a vanadium or indium layer |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
KR20210103956A (en) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
CN113394086A (en) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | Method for producing a layer structure having a target topological profile |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (en) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR20210132576A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming vanadium nitride-containing layer and structure comprising the same |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
TW202147383A (en) | 2020-05-19 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR102707957B1 (en) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
KR20220012474A (en) * | 2020-07-22 | 2022-02-04 | 주식회사 원익아이피에스 | Method of Depositing Thin Film and Method of Manufacturing Semiconductor device Using The Same |
KR20220021863A (en) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (en) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for cleaning a substrate, method for selectively depositing, and reaction system |
US20240038529A1 (en) * | 2020-08-26 | 2024-02-01 | Semiconductor Energy Laboratory Co., Ltd. | Deposition method of metal oxide and manufacturing method of memory device |
TW202212623A (en) | 2020-08-26 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming metal silicon oxide layer and metal silicon oxynitride layer, semiconductor structure, and system |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
TW202217045A (en) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing gap filing fluids and related systems and devices |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (en) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
TW202218049A (en) | 2020-09-25 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220050048A (en) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat |
KR20220053482A (en) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202229620A (en) | 2020-11-12 | 2022-08-01 | 特文特大學 | Deposition system, method for controlling reaction condition, method for depositing |
TW202229795A (en) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | A substrate processing apparatus with an injector |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
KR20220076343A (en) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | an injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
TW202233884A (en) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures for threshold voltage control |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
JP2023132258A (en) * | 2022-03-10 | 2023-09-22 | 東京エレクトロン株式会社 | Embedding method and substrate processing device |
JP7460676B2 (en) * | 2022-03-24 | 2024-04-02 | 株式会社Kokusai Electric | Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200721306A (en) * | 2005-07-06 | 2007-06-01 | Tokyo Electron Ltd | Method and apparatus for forming silicon oxynitride film |
US20090065896A1 (en) * | 2007-09-07 | 2009-03-12 | Seoul National University Industry Foundation | CAPACITOR HAVING Ru ELECTRODE AND TiO2 DIELECTRIC LAYER FOR SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4843472B1 (en) * | 1968-05-09 | 1973-12-19 | ||
JPH0293071A (en) * | 1988-09-29 | 1990-04-03 | Toshiba Corp | Thin film formation |
JPH06177120A (en) * | 1992-10-27 | 1994-06-24 | Sony Corp | Deposition of interlayer dielectric film |
US6156149A (en) * | 1997-05-07 | 2000-12-05 | Applied Materials, Inc. | In situ deposition of a dielectric oxide layer and anti-reflective coating |
US5994209A (en) * | 1996-11-13 | 1999-11-30 | Applied Materials, Inc. | Methods and apparatus for forming ultra-shallow doped regions using doped silicon oxide films |
JP3437832B2 (en) * | 2000-03-22 | 2003-08-18 | 東京エレクトロン株式会社 | Film forming method and film forming apparatus |
KR100721503B1 (en) * | 2000-06-08 | 2007-05-23 | 에이에스엠지니텍코리아 주식회사 | Thin film formation method |
JP2002134497A (en) * | 2000-10-23 | 2002-05-10 | Sony Corp | Manufacturing method for semiconductor device |
JP3437830B2 (en) * | 2000-11-28 | 2003-08-18 | 東京エレクトロン株式会社 | Film formation method |
US7713592B2 (en) * | 2003-02-04 | 2010-05-11 | Tegal Corporation | Nanolayer deposition process |
US7125815B2 (en) * | 2003-07-07 | 2006-10-24 | Micron Technology, Inc. | Methods of forming a phosphorous doped silicon dioxide comprising layer |
US8119210B2 (en) * | 2004-05-21 | 2012-02-21 | Applied Materials, Inc. | Formation of a silicon oxynitride layer on a high-k dielectric material |
US7482247B1 (en) * | 2004-12-30 | 2009-01-27 | Novellus Systems, Inc. | Conformal nanolaminate dielectric deposition and etch bag gap fill process |
KR100622609B1 (en) * | 2005-02-16 | 2006-09-19 | 주식회사 하이닉스반도체 | Thin Film Formation Method |
WO2006088062A1 (en) * | 2005-02-17 | 2006-08-24 | Hitachi Kokusai Electric Inc. | Production method for semiconductor device and substrate processing device |
US7629267B2 (en) * | 2005-03-07 | 2009-12-08 | Asm International N.V. | High stress nitride film and method for formation thereof |
CN100554506C (en) * | 2005-03-09 | 2009-10-28 | 东京毅力科创株式会社 | Film that semiconductor processes is used and device |
US8034727B2 (en) * | 2005-10-14 | 2011-10-11 | Nec Corporation | Method and apparatus for manufacturing semiconductor devices |
US7897217B2 (en) * | 2005-11-18 | 2011-03-01 | Tokyo Electron Limited | Method and system for performing plasma enhanced atomic layer deposition |
JP2007180362A (en) | 2005-12-28 | 2007-07-12 | Toshiba Corp | Semiconductor device |
JP4434149B2 (en) * | 2006-01-16 | 2010-03-17 | 東京エレクトロン株式会社 | Film forming method, film forming apparatus, and storage medium |
US7601651B2 (en) * | 2006-03-31 | 2009-10-13 | Applied Materials, Inc. | Method to improve the step coverage and pattern loading for dielectric films |
TWI424498B (en) * | 2006-03-31 | 2014-01-21 | Applied Materials Inc | Method to improve the step coverage and pattern loading for dielectric films |
JP2007287890A (en) * | 2006-04-14 | 2007-11-01 | Kochi Univ Of Technology | Insulating film forming method, semiconductor device manufacturing method, plasma CVD apparatus |
JP2007287889A (en) * | 2006-04-14 | 2007-11-01 | Kochi Univ Of Technology | Insulating film forming method, semiconductor device manufacturing method |
US7498273B2 (en) * | 2006-05-30 | 2009-03-03 | Applied Materials, Inc. | Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes |
WO2007145513A1 (en) * | 2006-06-16 | 2007-12-21 | Fujifilm Manufacturing Europe B.V. | Method and apparatus for atomic layer deposition using an atmospheric pressure glow discharge plasma |
JP4929932B2 (en) * | 2006-09-01 | 2012-05-09 | 東京エレクトロン株式会社 | Film forming method, film forming apparatus, and storage medium |
JP5258229B2 (en) * | 2006-09-28 | 2013-08-07 | 東京エレクトロン株式会社 | Film forming method and film forming apparatus |
JP2008294260A (en) | 2007-05-25 | 2008-12-04 | Sony Corp | Semiconductor device and manufacturing method therefor, and laminate insulating film and forming method therefor |
TWI489547B (en) * | 2007-09-18 | 2015-06-21 | Air Liquide | Method of forming a ruthenium containing film |
JP4959733B2 (en) * | 2008-02-01 | 2012-06-27 | 東京エレクトロン株式会社 | Thin film forming method, thin film forming apparatus, and program |
US20090203197A1 (en) | 2008-02-08 | 2009-08-13 | Hiroji Hanawa | Novel method for conformal plasma immersed ion implantation assisted by atomic layer deposition |
US8197915B2 (en) | 2009-04-01 | 2012-06-12 | Asm Japan K.K. | Method of depositing silicon oxide film by plasma enhanced atomic layer deposition at low temperature |
JP2010251654A (en) * | 2009-04-20 | 2010-11-04 | Elpida Memory Inc | Deposition method and manufacturing method of semiconductor device |
JP2011023576A (en) * | 2009-07-16 | 2011-02-03 | Hitachi Kokusai Electric Inc | Method of manufacturing semiconductor device, and device for treating substrate |
KR101732187B1 (en) * | 2009-09-03 | 2017-05-02 | 에이에스엠 저펜 가부시기가이샤 | METHOD OF FORMING CONFORMAL DIELECTRIC FILM HAVING Si-N BONDS BY PECVD |
US9611544B2 (en) * | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
-
2012
- 2012-08-29 JP JP2014531838A patent/JP6199292B2/en active Active
- 2012-08-29 CN CN201280046487.6A patent/CN103890910B/en active Active
- 2012-08-29 WO PCT/US2012/052769 patent/WO2013043330A1/en active Application Filing
- 2012-08-29 SG SG11201400633RA patent/SG11201400633RA/en unknown
- 2012-08-29 KR KR1020197012231A patent/KR102084901B1/en active IP Right Grant
- 2012-08-29 KR KR1020147010949A patent/KR101975071B1/en active IP Right Grant
- 2012-08-29 SG SG10201607194PA patent/SG10201607194PA/en unknown
- 2012-08-29 CN CN201710347032.2A patent/CN107342216B/en active Active
- 2012-09-21 TW TW105101797A patent/TWI602245B/en active
- 2012-09-21 TW TW106122777A patent/TWI682459B/en active
- 2012-09-21 TW TW101134692A patent/TWI531001B/en active
-
2017
- 2017-08-23 JP JP2017159931A patent/JP2018011067A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200721306A (en) * | 2005-07-06 | 2007-06-01 | Tokyo Electron Ltd | Method and apparatus for forming silicon oxynitride film |
US20090065896A1 (en) * | 2007-09-07 | 2009-03-12 | Seoul National University Industry Foundation | CAPACITOR HAVING Ru ELECTRODE AND TiO2 DIELECTRIC LAYER FOR SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME |
Also Published As
Publication number | Publication date |
---|---|
CN103890910B (en) | 2017-05-17 |
KR102084901B1 (en) | 2020-03-05 |
JP2014532304A (en) | 2014-12-04 |
KR20190049906A (en) | 2019-05-09 |
CN103890910A (en) | 2014-06-25 |
SG10201607194PA (en) | 2016-10-28 |
CN107342216B (en) | 2022-05-31 |
JP6199292B2 (en) | 2017-09-20 |
WO2013043330A1 (en) | 2013-03-28 |
TWI531001B (en) | 2016-04-21 |
CN107342216A (en) | 2017-11-10 |
SG11201400633RA (en) | 2014-08-28 |
TW201616576A (en) | 2016-05-01 |
JP2018011067A (en) | 2018-01-18 |
TWI602245B (en) | 2017-10-11 |
KR20140079431A (en) | 2014-06-26 |
TW201330096A (en) | 2013-07-16 |
KR101975071B1 (en) | 2019-05-03 |
TW201735162A (en) | 2017-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI682459B (en) | Plasma activated conformal dielectric film deposition | |
KR102145694B1 (en) | Precursors for plasma activated conformal film deposition | |
US10043655B2 (en) | Plasma activated conformal dielectric film deposition | |
TWI612581B (en) | Method, apparatus, and system of depositing a nitrogen and/or carbon doped dielectric film stack on a substrate surface | |
US9230800B2 (en) | Plasma activated conformal film deposition |