TWI624106B - 三維電極結構及其製造方法 - Google Patents

三維電極結構及其製造方法 Download PDF

Info

Publication number
TWI624106B
TWI624106B TW102148347A TW102148347A TWI624106B TW I624106 B TWI624106 B TW I624106B TW 102148347 A TW102148347 A TW 102148347A TW 102148347 A TW102148347 A TW 102148347A TW I624106 B TWI624106 B TW I624106B
Authority
TW
Taiwan
Prior art keywords
layer
electrode structure
interdigitated
depositing
strips
Prior art date
Application number
TW102148347A
Other languages
English (en)
Other versions
TW201432986A (zh
Inventor
可瑞 柯伯
昌中 裴
Original Assignee
帕洛阿爾托研究中心公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帕洛阿爾托研究中心公司 filed Critical 帕洛阿爾托研究中心公司
Publication of TW201432986A publication Critical patent/TW201432986A/zh
Application granted granted Critical
Publication of TWI624106B publication Critical patent/TWI624106B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8864Extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一種三維電極結構,包括:複數交叉指型材料帶之一第一層,其係沿著一第一方向定向;及複數交叉指型材料帶之一第二層,其係沿著一第二方向定向,並存在於該第一層交叉指型材料帶上。

Description

三維電極結構及其製造方法
可攜式電力需求已推動電池技術的發展達到高能量密度及良好的電力性能。一發展領域包括藉由將導電材料共擠製至基板上來製造電極。電池發展的兩個方面包含最佳化材料密度及離子傳輸。高密度意指較高的材料包裝,其導致較高的能量儲存。較不密集的材料導致更多電解質填充容積,在鋰離子電池的情況下,其致能電解質中較快的鋰離子傳輸。
共擠製製程已在若干個美國專利及美國專利申請案中討論過。這些類型之電池電極的範例係在美國專利第7,765,949號、第7,780,812號、第7,922,471號以及美國專利公報第20070279839號、第20120156364號及第20120153211號中討論。美國專利第7,765,949號揭示一用於在基板上擠出及分配材料的裝置,該裝置具有至少兩個用於容納材料的通道以及一用於將材料擠出到基板上的出口埠。美國專利第7,780,812號揭示另一個這類裝置,其具有一經平坦化的邊緣表面。美國專利第7,922,471號揭示另一個這類裝置,其係用於擠出具有 平衡形狀的材料,該形狀在沈積至基板上之後不會沉降。美國專利公報第20070279839號揭示一共擠製技術,其利用蜂巢式結構。美國專利公報第20120156364號及第20120153211號揭示一共擠製頭,其將二個以上材料流在一基板上結合成為一交叉指型結構,其中有多個材料帶。
除了共擠製材料的發展之外,已開始發展三維架構。這些三維架構藉由重新配置當前用於均勻單片電池的電極材料來達成改善的電池性能。已達成如第1圖所示的各種三維結構。一範例10具有交叉指型圓柱形陰極和陽極。另一範例12具有交叉指型陰極和陽極,其具有矩形橫剖面。尚有另一範例14顯示一圓柱形陽極陣列,其係以薄層的離子導電性電解質塗佈,並以陰極材料填充剩餘的自由容積。最後一個範例16顯示的是稱為「非週期性海綿(aperiodic sponge)」架構,其中海綿的固體網絡作為電荷插入陰極,其係以超薄層的離子導電性電解質塗佈,且剩餘的自由容積係以互穿、連續的陽極填充。
這些架構確實具有改善的性能,但難以製成。改善的實現僅可發生在若有人可以具成本效益的方式製成該等結構時。
10‧‧‧範例
12‧‧‧範例
14‧‧‧範例
16‧‧‧範例
20‧‧‧三維電極結構
22‧‧‧層
24‧‧‧層
26‧‧‧電極或活性材料
28‧‧‧犧牲材料
30‧‧‧三維電極結構
40‧‧‧曲線
45‧‧‧印刷頭
50‧‧‧帶
52‧‧‧線框
第1圖顯示若干個三維電池結構的範例。
第2圖顯示由一共擠製裝置形成之一三維電極結構之一實施例。
第3圖顯示由一共擠製裝置形成之一三維電極結構之另一實施例。
第4圖顯示一三維電池電極之電池性能的圖表。
第5圖顯示一共擠製印刷頭之一範例。
第6圖顯示一電池之一實施例,其具有具有對稱帶分布的正交層。
第7圖顯示一電池之一實施例,其具有具有不對稱帶分布的正交層。
第8圖顯示一電池之一實施例,其具有具有對稱分布的三個正交層。
第9圖顯示針對一三維電池半電池之放電性能的圖表。
第2圖顯示電池的三維電極結構20之一實施例。須注意雖然此處所討論之此電極結構係作為電池的一部分,其可為用於除了電池外之任何數目的結構(例如,超級電容或燃料電池)的電極。另外,該電極可為電池的陰極或陽極。
在第2圖的實施例中,該電極結構具有兩層22及24。該等層係由交叉指型的材料帶構成。層22具有沿著一第一方向定向的帶。層24具有沿著一正交該第一方向之第二方向定向的帶。在此實施例中,交叉指型 帶具有電極或活性材料26及犧牲材料26。電極材料可為任何活性導電材料。在二次電池(secondary battery)的情況中,此可為鋰化合物或石墨混合物。在一次電池(primary battery)的情況中,電極可為使用鋅及二氧化錳之鹼性系統的一部分。材料24可為犧牲或逸失材料。
如同將進一步更詳細討論的,犧牲材料可在燒製製程中燒盡。此將在活性材料帶之間留下間隙。當將該等層封裝至電池結構中時,可藉由液體或膠體電解質填充該等間隙。可藉由之後將以電解質填充之高度多孔材料填充該等間隙,以代替液體或膠體電解質。作為另一替代例,除了活性材料之外的材料帶可由高度多孔材料構成,且將不會被移除。因其實際上並非犧牲材料,此材料將稱為中間材料。
第3圖顯示三維電極結構30之一替代實施例。在此實施例中,有六層交叉指型帶。每一帶在此處係稱為正交,意指一層係與直接位於其下面的一層正交。每一層將沿著與從當前的層往下兩層之層(若有一層的話)相同的方向延伸。除了系統設計者的需求之外,層的數目並無限制。
這些結構可藉由上文討論及第5圖所示之共擠製印刷頭的實施例的任何一個來製造。例如45的印刷頭通常在鄰接的交叉指型帶中沈積二個以上材料。交叉指型帶典型將不會在材料之間混合,然而在一些實施例中,可有一些有限的混合。
使用這些類型的印刷頭之一,三維電極之一 第一實驗體現(experimental realization)發生。電極結構由2層構成,在此實施例中,各自為125微米(μm)高,以正交方式堆疊,以產生250um厚的陰極電極。在此特定實驗中,活性材料為鋰鈷氧化物,其為接近270um寬的帶,並具有170um寬的犧牲材料帶。
第4圖顯示上文之電極結構的放電及充電性能。上部的一組曲線40顯示充電性能。標記為「C」的曲線為放電率性能。標記2C、1C、C/2等指示不同的放電率。大多數的電池係分級為1C,意指以1C率放電的1,000mAh電池應當在理想條件下持續提供1,000mA的電流一小時。1C亦已知為一小時放電。C標定放電率而非充電率。2C可指半小時放電,且C/2將為2小時放電。
每一材料層可由具有與其他層中之帶相同的組成物及尺寸的交叉指型材料帶構成,或其可具有不同的尺寸。帶的安排可為對稱。如此處所用之「對稱」及「不對稱」的用詞指的是材料帶分布在容積中的方式。在第6圖中,例如50的帶係均勻地分布。藉由觀看相對線框52之上部層可更容易看出此情形。
上文所討論之先前的實施例在270um寬及163um寬的中間材料帶區域中具有活性材料。第6圖所示的結構在62.5um寬的帶中具有活性及中間兩種材料。第7圖顯示兩層結構的另一實施例,其係不對稱的。如上文所提及,不對稱指的是帶在容積內的分布。在第7圖中,第二層具有緊貼電池組電池壁的最右帶。第8圖顯示三層堆疊。
第9圖顯示結果的性能。第6圖的兩層對稱設計具有最大比容量及較上文之具有較大活性材料帶之實施例佳的總體性能。兩層不對稱設計並未表現得如同對稱設計一樣好,但仍勝過具有較大活性材料帶的實施例。三層堆疊的表現可比使用LCO作為活性材料並具有設定在62.5um之材料帶的兩層堆疊。若可利用不同電極材料的使用或不同的放電率,三層堆疊可以較大差距勝過兩層堆疊的設計。
使用第5圖的印刷頭或一類似者製造這些結構可藉由在基板上沈積這些層來完成。基板可移動通過印刷頭多次或者印刷頭可移動通過基板多次。或者,可使用兩個不同的印刷頭,其中每一印刷頭印刷在交替的材料層上。每一次通過沈積另一層電極。為了正交地沈積該等層,印刷頭或基板的任一者將需要轉向來沈積下一層。
以此方式,所構成的三維電極容許較短的傳輸距離,增加電池的能量及電力密度。由於在正交堆疊時形成編織狀結構之精細的共擠製層幫助進一步縮短傳輸距離,短傳輸距離存在。在鋰化合物的情況下,焦點係著重在最大化鋰離子的傳輸率。三維結構增加暴露至電解質的電極材料量,導致較厚之電池電極典型地發生較低的電阻及歐姆損耗。標準的電池電極典型具有位於50至100um之範圍內的厚度。此處所討論的三維結構可具有超過100um的厚度。這些電極在類似(若非較小)的底面積中致能較習知之稜柱狀及繞線電池組電池更大 的電力及能量密度,同時亦減少稜柱狀或繞線堆疊中之非活性層(例如,隔板、電流收集器)的數目。
由於所呈現的三維結構增加暴露至電解質之電極材料表面面積的量,此在電池組電池內支援更快的擴散行為,且對在其中暴露之電極材料的量對電解質反應而言具關鍵性之超電容及超級電容電極具有優點。
須了解若干個上文所揭示的及其他的特徵及功能或其替代可依需要結合為許多其他的不同系統或應用。同樣地,各種目前無法預見或預料的替代、修改、變化或其中的改善隨後可由那些熟悉此項技藝者製成,該等亦打算由下列的申請專利範圍來加以涵蓋。

Claims (9)

  1. 一種三維電極結構,包括:複數連續、分離的交叉指型材料帶之一第一層,其係由活性擠壓電極膏狀材料及一中間材料組成並且係沿著一第一方向定向;及複數連續、分離的交叉指型材料帶之一第二層,其係由活性氧化鋰擠壓膏狀材料組成並且係沿著一第二方向定向,並存在於該等交叉指型材料帶之該第一層上,其中該第二層係設置以縮短用於該活性氧化鋰擠壓膏狀材料之鋰離子的傳輸距離,並且該中間材料係由液體或膠體電解質其中之一者或是以電解質填充之多孔材料構成。
  2. 如請求項1之三維電極結構,其中該第一及第二層係具有不同的高度。
  3. 如請求項1之三維電極結構,其進一步包括複數交叉指型材料帶之一第三層,其係沿著該第一方向定向。
  4. 如請求項1之三維電極結構,其中該三維電極結構具有超過100微米的厚度。
  5. 一種製造三維電極結構之方法,該方法包含以下步驟:沿著一第一方向在一基板上沈積一活性材料及一中間材料之複數交叉指型帶之一第一層;及沿著一正交該第一方向的第二方向在該第一層上沈積該活性材料及該中間材料之複數交叉指型帶之一第二層,其中,該中間材料係由液體或膠體電解質其中之一者或是以電解質填充之多孔材料構成。
  6. 如請求項5之方法,其進一步包含以下步驟:從該第一及第二層移除該中間材料,留下該活性材料帶,並在該活性材料帶之間具有間隙;及以一電解質填充該活性材料帶之間的該間隙。
  7. 如請求項5之方法,其中沈積該第一及第二層包含使該基板通過一共擠製印刷頭多次。
  8. 如請求項5之方法,其中沈積該第一及第二層包含以一共擠製印刷頭多次通過該基板來沈積該等層。
  9. 如請求項5之方法,其中沈積該第一及第二層包含以一第一印刷頭沈積該第一層,並以一第二印刷頭沈積該第二層。
TW102148347A 2012-12-27 2013-12-26 三維電極結構及其製造方法 TWI624106B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/727,993 US9590232B2 (en) 2012-12-27 2012-12-27 Three dimensional co-extruded battery electrodes
US13/727,993 2012-12-27

Publications (2)

Publication Number Publication Date
TW201432986A TW201432986A (zh) 2014-08-16
TWI624106B true TWI624106B (zh) 2018-05-11

Family

ID=49920023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148347A TWI624106B (zh) 2012-12-27 2013-12-26 三維電極結構及其製造方法

Country Status (6)

Country Link
US (2) US9590232B2 (zh)
EP (1) EP2749395B1 (zh)
JP (1) JP6404562B2 (zh)
KR (1) KR102094662B1 (zh)
CN (1) CN103972468B (zh)
TW (1) TWI624106B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923714B2 (en) 2012-12-27 2021-02-16 Palo Alto Research Center Incorporated Structures for interdigitated finger co-extrusion
US10800086B2 (en) * 2013-08-26 2020-10-13 Palo Alto Research Center Incorporated Co-extrusion of periodically modulated structures
US9855578B2 (en) * 2013-12-12 2018-01-02 Palo Alto Research Center Incorporated Co-extrusion print head with edge bead reduction
US10256503B2 (en) * 2014-07-11 2019-04-09 Palo Alto Research Center Incorporated High performance all solid lithium sulfur battery with fast lithium ion conduction
KR102568787B1 (ko) 2015-09-21 2023-08-21 삼성전자주식회사 3차원 리튬 이차전지용 양극 및 그 제조방법
KR102514595B1 (ko) 2015-10-12 2023-03-27 삼성전자주식회사 3차원 구조의 전극 구조체 및 이를 갖는 전지
CN114039075A (zh) 2015-11-18 2022-02-11 英钒能源(加拿大)公司 电极组件以及电解质分布得到改进的液流电池
CN105609788B (zh) * 2015-12-30 2018-06-29 中国科学院上海高等研究院 基于贵金属空心管阵列的有序化膜电极的构筑方法
KR102314029B1 (ko) * 2017-03-30 2021-10-18 주식회사 엘지에너지솔루션 고로딩 전극의 제조 방법
KR102396108B1 (ko) * 2017-06-22 2022-05-10 삼성전자주식회사 3차원 전극구조체 및 이를 포함하는 이차전지
KR20200059057A (ko) 2018-11-20 2020-05-28 삼성전자주식회사 전극 구조체 및 그 제조방법과, 전극 구조체를 포함하는 이차 전지
US11909083B2 (en) 2018-12-28 2024-02-20 Xerox Corporation Apparatus and method for forming a multilayer extrusion comprising component layers of an electrochemical cell
KR20210015330A (ko) 2019-08-01 2021-02-10 삼성전자주식회사 배터리 및 그 제조방법
KR20210085283A (ko) * 2019-12-30 2021-07-08 삼성전자주식회사 활물질 구조체, 활물질 구조체를 포함하는 전극 구조체, 활물질 구조체를 포함하는 이차 전지, 및 활물질 구조체의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082446A1 (en) * 2000-10-20 2003-05-01 Yet-Ming Chiang Reticulated and controlled porosity battery structures
US7922471B2 (en) * 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US20120031487A1 (en) * 2010-02-24 2012-02-09 Iowa State University Research Foundation, Inc. Nanoscale High-Aspect-Ratio Metallic Structure and Method of Manufacturing Same
US20120153211A1 (en) * 2010-12-17 2012-06-21 Palo Alto Research Center Incorporated Interdigitated electrode device

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195865A (en) 1960-09-09 1965-07-20 Dow Chemical Co Interfacial surface generator
US3382534A (en) 1965-08-19 1968-05-14 Monsanto Co Plate type fluid mixer
US3613173A (en) 1967-12-20 1971-10-19 Kanegafuchi Spinning Co Ltd Mix-spinning apparatus
US3583678A (en) 1969-09-15 1971-06-08 Dow Badische Co Interfacial surface generators
US3860036A (en) 1970-11-02 1975-01-14 Dow Chemical Co Variable geometry feed block for multilayer extrusion
US4686074A (en) 1983-03-03 1987-08-11 Toray Industries, Inc. Alternate high-molecule arrangement production process
US4511528A (en) 1983-04-13 1985-04-16 American Can Company Flow stream channel splitter devices for multi-coinjection nozzle injection molding machines
DE3831836A1 (de) 1988-09-20 1990-03-22 Kautex Maschinenbau Gmbh Verfahren und vorrichtung zum herstellen von hohlkoerpern aus thermoplastischem kunststoff
JPH0383147A (ja) 1989-08-28 1991-04-09 Toshiba Corp 半導体記録装置
US5380479A (en) 1989-12-26 1995-01-10 The Dow Chemical Company Method and apparatus for producing multilayer plastic articles
US5094793A (en) 1990-12-21 1992-03-10 The Dow Chemical Company Methods and apparatus for generating interfacial surfaces
US5667818A (en) 1993-11-05 1997-09-16 Guillemette; A. Roger Extrusion system with balanced flow passage
US5516476A (en) 1994-11-08 1996-05-14 Hills, Inc, Process for making a fiber containing an additive
US5583359A (en) * 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
US5658537A (en) 1995-07-18 1997-08-19 Basf Corporation Plate-type chemical reactor
JPH09183147A (ja) 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd 多層積層体の製造方法
JP2928789B2 (ja) 1996-04-20 1999-08-03 前田建設工業株式会社 層状材料の製造方法
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
US6109006A (en) 1998-07-14 2000-08-29 Advanced Plastics Technologies, Ltd. Process for making extruded pet containers
AU6051099A (en) 1999-09-20 2001-04-24 Goodyear Tire And Rubber Company, The Faster curing rubber articles
US6582807B2 (en) 2000-04-07 2003-06-24 Case Western Reserve University Polymer 1D photonic crystals
AU2001281076A1 (en) 2000-08-07 2002-02-18 Nanostream, Inc. Fluidic mixer in microfluidic system
JP2004516487A (ja) 2000-12-22 2004-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ グリッド構造の製造方法
WO2003012908A2 (en) 2001-07-27 2003-02-13 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US6837698B2 (en) 2001-12-19 2005-01-04 3M Innovative Properties Company Multilayer coextrusion die and method
US7883670B2 (en) 2002-02-14 2011-02-08 Battelle Memorial Institute Methods of making devices by stacking sheets and processes of conducting unit operations using such devices
JP4042096B2 (ja) 2002-04-12 2008-02-06 富士フイルム株式会社 樹脂成形品の製造装置及び方法
JP2004134323A (ja) 2002-10-15 2004-04-30 Nissan Motor Co Ltd 固体酸化物形燃料電池セル
JP2006508509A (ja) 2002-12-02 2006-03-09 アヴェスター リミティッド パートナーシップ リチウムポリマー電池用の薄膜電気化学セルの共押出し製造プロセス、およびそのための装置
US6981552B2 (en) 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US8388331B2 (en) 2004-05-31 2013-03-05 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
JP4824394B2 (ja) * 2004-12-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP4620526B2 (ja) 2005-05-24 2011-01-26 帝人デュポンフィルム株式会社 多層フィルムの製造方法およびその装置
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US7799371B2 (en) * 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
JP2007313417A (ja) * 2006-05-25 2007-12-06 Dainippon Printing Co Ltd ダイヘッド及び塗布方法
US20070279839A1 (en) 2006-05-30 2007-12-06 William James Miller Co-extrusion method of fabricating electrode structures in honeycomb substrates and ultracapacitor formed thereby
US7690908B2 (en) 2006-05-31 2010-04-06 Guill Tool & Engineering Co., Inc. Method and apparatus for forming high strength products
US7780812B2 (en) 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
JP5036284B2 (ja) * 2006-11-22 2012-09-26 日本碍子株式会社 セラミックス構造体の製造方法
US20080121042A1 (en) * 2006-11-27 2008-05-29 Bioscale, Inc. Fluid paths in etchable materials
US8865345B1 (en) * 2007-01-12 2014-10-21 Enovix Corporation Electrodes for three-dimensional lithium batteries and methods of manufacturing thereof
US8206025B2 (en) 2007-08-07 2012-06-26 International Business Machines Corporation Microfluid mixer, methods of use and methods of manufacture thereof
US20090107546A1 (en) 2007-10-29 2009-04-30 Palo Alto Research Center Incorporated Co-extruded compositions for high aspect ratio structures
US8397762B2 (en) * 2008-02-04 2013-03-19 Bioscale, Inc. Fluidic system with improved flow characteristics
US8215940B2 (en) 2009-03-20 2012-07-10 The United States Of America As Represented By The Secretary Of The Army Layer multiplying apparatus
US9004001B2 (en) 2010-12-17 2015-04-14 Palo Alto Research Center Incorporated Interdigitated finger coextrusion device
KR20140014189A (ko) * 2011-02-28 2014-02-05 어플라이드 머티어리얼스, 인코포레이티드 고용량 각형 리튬-이온 합금 애노드들의 제조
JP6059941B2 (ja) * 2011-12-07 2017-01-11 株式会社半導体エネルギー研究所 リチウム二次電池用負極及びリチウム二次電池
JP6050106B2 (ja) * 2011-12-21 2016-12-21 株式会社半導体エネルギー研究所 非水二次電池用シリコン負極の製造方法
CN103187573B (zh) * 2011-12-28 2016-01-20 清华大学 锂离子电池电极

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082446A1 (en) * 2000-10-20 2003-05-01 Yet-Ming Chiang Reticulated and controlled porosity battery structures
US7922471B2 (en) * 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US20120031487A1 (en) * 2010-02-24 2012-02-09 Iowa State University Research Foundation, Inc. Nanoscale High-Aspect-Ratio Metallic Structure and Method of Manufacturing Same
US20120153211A1 (en) * 2010-12-17 2012-06-21 Palo Alto Research Center Incorporated Interdigitated electrode device

Also Published As

Publication number Publication date
TW201432986A (zh) 2014-08-16
EP2749395A1 (en) 2014-07-02
EP2749395B1 (en) 2016-08-10
JP6404562B2 (ja) 2018-10-10
KR20140085323A (ko) 2014-07-07
JP2014130813A (ja) 2014-07-10
CN103972468A (zh) 2014-08-06
KR102094662B1 (ko) 2020-03-30
US9793537B2 (en) 2017-10-17
US9590232B2 (en) 2017-03-07
CN103972468B (zh) 2019-04-02
US20170162858A1 (en) 2017-06-08
US20140186698A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
TWI624106B (zh) 三維電極結構及其製造方法
US11600864B2 (en) Constrained electrode assembly
US20210384545A1 (en) Secondary battery having high rate capability and high energy density and method of manufacturing the same
TWI617065B (zh) 以共擠壓印刷製造的先進且高電力及能量之電池電極
JP6136027B2 (ja) 電極組立体、これを含む電池セル及びデバイス
US9337471B2 (en) Co-extrusion print head for multi-layer battery structures
JP6625059B2 (ja) 高アスペクト比構造を製造するデバイスおよび方法
EP3391442B1 (en) Lithium battery current collector comprising conductive pillared structures on a substrate
US10756336B2 (en) Three-dimensional electrode structure, and secondary battery including the same, and method of manufacturing the three-dimensional structure
JP2015501076A (ja) 全長の長さが同一であり全幅の長さが相違する電極ユニットからなる電極組立体、これを含む電池セル及びデバイス
KR101834035B1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
CN110071294A (zh) 锂离子电池结构
CN113571759A (zh) 电池、电子设备及其制备方法