CN103972468A - 三维共挤出的电池电极 - Google Patents

三维共挤出的电池电极 Download PDF

Info

Publication number
CN103972468A
CN103972468A CN201310706917.9A CN201310706917A CN103972468A CN 103972468 A CN103972468 A CN 103972468A CN 201310706917 A CN201310706917 A CN 201310706917A CN 103972468 A CN103972468 A CN 103972468A
Authority
CN
China
Prior art keywords
layer
ground floor
interdigitated
electrode structure
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310706917.9A
Other languages
English (en)
Other versions
CN103972468B (zh
Inventor
C·L·科布
C-J·贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of CN103972468A publication Critical patent/CN103972468A/zh
Application granted granted Critical
Publication of CN103972468B publication Critical patent/CN103972468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8864Extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种三维电极结构,其具有在第一方向上取向的交指型材料条的第一层和在第二方向上取向的交指型材料条的第二层,所述交指型材料条的第二层位于所述交指型材料条的第一层上。本发明也提供了一种制造三维电极结构的方法,其包括在第一方向上在基材上沉积活性材料和中间材料的交指型条的第一层,和在与所述第一方向正交的第二方向上在所述第一层上沉积活性材料和中间材料的交指型条的第二层。

Description

三维共挤出的电池电极
背景技术
便携式电源需求已驱动了电池技术的发展以获得高能量密度和良好的功率性能。发展的一个领域包括通过将导电材料共挤出至基材上而制造电极。电池发展的两个方面涉及优化材料密度和离子传输。高密度意味着更高的材料堆积,这产生更高的能量储存。在锂离子电池的情况中,致密性较低的材料产生填充体积的更多的电解质,这能够在电解质中更快传输锂离子。
共挤出方法已在数个美国专利和美国专利申请中讨论。这些类型的电池电极的例子在美国专利7,765,949、7,780,812、7,922,471和美国专利公布20070279839、20120156364和20120153211中讨论。美国专利7,765,949公开了一种用于在基材上挤出和分配材料的装置,所述装置具有用于接收材料的至少两个通道和用于将材料挤出至基材上的出口端口。美国专利7,780,812公开了具有平面边缘表面的另一个这种装置。美国专利7,922,471公开了用于挤出材料的另一个这种装置,所述材料具有在沉积于基材上之后不沉淀的平衡形状。美国专利公布20070279839公开了一种使用蜂窝状结构的共挤出技术。美国专利公布20120156364和20120153211公开了一种共挤出头,所述共挤出头将两种或更多种材料的流合并成在基材上的交指型结构,其中存在材料的多个条。
除了共挤出材料的发展之外,三维结构的发展已开始。这些三维结构通过再构造目前在均匀单片电池中使用的电极材料而实现了改进的电池性能。已实现多种三维结构,如图1所示。一个例子10具有交指型圆柱状阴极和阳极。另一个例子12具有交指型阴极和阳极,所述交指型阴极和阳极具有矩形横截面。另一个例子14显示涂布有离子导电电解质的薄层的圆柱形阳极的阵列,剩余的自由体积由阴极材料填充。最后的例子16显示了所谓的‘非周期性海绵(aperiodic sponge)’结构,其中海绵的固体网络充当涂布有离子导电电解质的超薄层的充电插入阴极(charge insertion cathode),且剩余自由体积填充互穿连续阳极。
这些结构的确具有改进的性能,但难以制造。仅在可以以成本有效的方式制造结构时才可发生改进的实现。
附图说明
图1显示了数个三维电池结构的例子。
图2显示了由共挤出装置形成的三维电极结构的一个实施例。
图3显示了由共挤出装置形成的三维电极结构的另一实施例。
图4显示了三维电池电极的电池性能的图。
图5显示了共挤出印刷头的一个例子。
图6显示了具有正交层的电池的一个实施例,所述正交层具有对称条分布。
图7显示了具有正交层的电池的一个实施例,所述正交层具有不对称条分布。
图8显示了具有三个正交层的电池的一个实施例,所述三个正交层具有对称条分布。
图9显示了三维电池半电池的放电性能的图。
具体实施方式
图2显示了电池的三维电极结构20的一个实施例。应注意,尽管该电极结构在本文作为电池的部分讨论,但其可为用于除了电池之外的许多结构(如超电容器或燃料电池)的电极。此外,电极可为电池的阴极或阳极。
在图2的实施例中,电极结构具有两个层22和24。所述层由交指型材料条组成。层22具有在第一方向上取向的条。层24具有在与所述第一方向正交的第二方向上取向的条。在该实施例中,交指型条具有电极或活性材料26和牺牲材料28。电极材料可为任何活性导电材料。在二次电池的情况中,电极材料可为锂化合物或石墨混合物。在一次电池的情况中,电极可为使用锌和二氧化锰的碱性体系的部分。材料26(或28)可为牺牲材料或短效材料。
如进一步更详细地讨论,牺牲材料可在烧制过程中被烧掉。这可在活性材料的条之间留下间隙。当层被包装成电池结构时,所述间隙可由液体或凝胶电解质填充。作为液体或凝胶电解质的替代,所述间隙可由高度多孔的材料填充,所述高度多孔的材料随后由电解质填充。作为另一个选择,除了活性材料之外的材料的条可由高度多孔的材料组成,且不被去除。由于该材料实际上不是牺牲材料,因此其称为中间材料。
图3显示了三维电极结构30的一个可选择的实施例。在该实施例中,存在交指型条的六个层。每个条在本文称为正交的,这意味着所述层与直接在其下方的层正交。每个层在与在当前的层以下两层的层(如果有的话)相同的方向上延伸。对于除了体系设计者的需求之外的层数不存在限制。
这些结构可通过上述且示于图5中的共挤出印刷头的实施例中的任意者而制得。印刷头(如45)通常在相邻交指型条中沉积两种或更多种材料。交指型条通常不在材料之间混合,尽管在一些实施例中可能存在一些有限的混合。
使用这些类型的印刷头中的一者,发生三维电极的第一实验实现。电极结构由2个层(在该实施例中每个层为125微米(μm)高)组成,所述2个层以正交的方式堆叠以产生250μm厚的阴极电极。在该特定实验中,活性材料为大约270μm宽的条的形式的氧化钴锂,其具有170μm宽的牺牲材料条。
图4显示了如上电极结构的放电和充电性能。上方组的曲线40显示了充电性能。标记‘C’的曲线为放电速率性能。符号2C、1C、C/2等表示不同的放电速率。大多数电池评级为1C,这意味着以1C速率放电的1,000mAh电池在理想条件下应提供1,000mA的电流达1小时。1C也称为一小时放电。C表示放电速率而不是充电速率。2C可称为半小时放电,且C/2为2小时放电。
每个材料层可由具有与其他层中的条相同组成和尺寸的交指型材料条组成,或者它们可具有不同的尺寸。条的设置可为对称的。如本文所用,术语‘对称的’和‘不对称的’指材料条在体积中如何分布。在图6中,条(如50)均匀分布。这可通过相对于线框52观察上层而更容易地看出。
如上讨论的之前的实施例在作为中间材料的270μm宽和163μm宽的条的区域中具有活性材料。图6中所示的结构具有呈现62.5μm宽的条的活性材料和中间材料。图7显示了不对称的两层结构的另一实施例。如上所述,不对称是指条在体积内的分布。在图7中,第二层具有靠着电池壁的最右的条。图8显示了三层叠堆。
图9显示了所得性能。相比于具有更大的活性材料条的如上实施例,图6的两层对称设计具有最大的比电容和更好的总体性能。两层不对称设计的表现不像对称设计那样好,但仍然胜过具有更大的活性材料条的实施例。使用LCO作为活性材料且材料条设定为62.5μm,三层叠堆的表现可相比于两层叠堆。可能的是如果使用不同的电极材料或不同的放电速率,三层叠堆可以以较大的优势胜过两层叠堆设计。
使用图5的印刷头或类似的印刷头制造这些结构可通过在基材上沉积这些层而完成。基材可多次移动经过印刷头,或者印刷头可多次移动经过基材。或者,可使用两个不同的印刷头,其中每个印刷头在交替的材料层上印刷。每次沉积电极的另一层。为了正交地沉积层,印刷头或基材需要转动以沉积下一层。
以此方式,结构化的三维电极允许更短的传输距离,从而增加电池的能量和功率密度。由于细小的共挤出层,因此存在短的传输距离,当所述细小的共挤出层正交地堆叠以形成交织状结构时,其有助于进一步降低传输距离。在锂化合物的情况中,焦点在于使锂离子传输速率达到最大。三维结构增加了暴露于电解质的电极材料的量,从而产生更低的电阻和欧姆损失,更厚的电池电极通常经历所述电阻和欧姆损失。标准电池电极通常具有50-100μm范围内的厚度。本文讨论的三维结构可具有超过100μm的厚度。这些电极能够以与常规棱柱状和缠绕电池类似(如果不小于常规棱柱状和缠绕电池)的占用空间(footprint)获得更大的功率和能量密度,并同时也降低棱柱状或缠绕叠堆中的非活性层(如分离器、集电器)的数量。
由于所示三维结构增加了暴露于电解质的电极材料表面积的量,这支持电池内更快的扩散性质,并具有用于超电容器和超电容器电极(其中所暴露的电极材料的量对于电解反应是关键的)的优点。
应了解如上公开的和其他的特征和功能或者它们的替代形式中的数种可有利地结合至许多其他不同的系统或应用中。也应了解本领域技术人员可随后获得其中的各种目前意料之外或未预期的替代形式、修改、变化或改进,其也旨在由如下权利要求书涵盖。

Claims (10)

1.一种三维电极结构,其包括:
在第一方向上取向的交指型材料条的第一层;和
在第二方向上取向的交指型材料条的第二层,所述第二层位于所述交指型材料条的第一层上。
2.根据权利要求1所述的三维电极结构,其中所述交指型条的第一层和第二层包括活性材料的条和中间材料的条。
3.根据权利要求1所述的三维电极结构,其中所述第一层和第二层具有不同的高度。
4.根据权利要求1所述的三维电极结构,其还包括在所述第一方向上取向的交指型材料条的第三层。
5.根据权利要求1所述的三维电极结构,其中所述三维电极结构具有超过100微米的厚度。
6.一种制造三维电极结构的方法,所述方法包括:
在第一方向上在基材上沉积活性材料和中间材料的交指型条的第一层;和
在与所述第一方向正交的第二方向上在所述第一层上沉积所述活性材料和所述中间材料的交指型条的第二层。
7.根据权利要求6所述的方法,其还包括:
从所述第一层和第二层去除所述中间材料,留下所述活性材料的条以及所述活性材料的条之间的间隙;和
用电解质填充所述活性材料的条之间的间隙。
8.根据权利要求6所述的方法,其中沉积所述第一层和第二层包括使所述基材多次经过共挤出印刷头。
9.根据权利要求6所述的方法,其中沉积所述第一层和第二层包括使共挤出印刷头多次经过所述基材而沉积所述层。
10.根据权利要求6所述的方法,其中沉积所述第一层和第二层包括使用第一印刷头沉积所述第一层,并使用第二印刷头沉积所述第二层。
CN201310706917.9A 2012-12-27 2013-12-19 三维共挤出的电池电极 Active CN103972468B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/727993 2012-12-27
US13/727,993 US9590232B2 (en) 2012-12-27 2012-12-27 Three dimensional co-extruded battery electrodes

Publications (2)

Publication Number Publication Date
CN103972468A true CN103972468A (zh) 2014-08-06
CN103972468B CN103972468B (zh) 2019-04-02

Family

ID=49920023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310706917.9A Active CN103972468B (zh) 2012-12-27 2013-12-19 三维共挤出的电池电极

Country Status (6)

Country Link
US (2) US9590232B2 (zh)
EP (1) EP2749395B1 (zh)
JP (1) JP6404562B2 (zh)
KR (1) KR102094662B1 (zh)
CN (1) CN103972468B (zh)
TW (1) TWI624106B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119677A (zh) * 2017-06-22 2019-01-01 三星电子株式会社 三维电极结构、包括其的二次电池及制造三维结构的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923714B2 (en) 2012-12-27 2021-02-16 Palo Alto Research Center Incorporated Structures for interdigitated finger co-extrusion
US10800086B2 (en) * 2013-08-26 2020-10-13 Palo Alto Research Center Incorporated Co-extrusion of periodically modulated structures
US9855578B2 (en) * 2013-12-12 2018-01-02 Palo Alto Research Center Incorporated Co-extrusion print head with edge bead reduction
US10256503B2 (en) * 2014-07-11 2019-04-09 Palo Alto Research Center Incorporated High performance all solid lithium sulfur battery with fast lithium ion conduction
KR102568787B1 (ko) 2015-09-21 2023-08-21 삼성전자주식회사 3차원 리튬 이차전지용 양극 및 그 제조방법
KR102514595B1 (ko) 2015-10-12 2023-03-27 삼성전자주식회사 3차원 구조의 전극 구조체 및 이를 갖는 전지
WO2017087365A1 (en) 2015-11-18 2017-05-26 Avalon Battery (Canada) Corporation Electrode assembly and flow battery with improved electrolyte distribution
CN105609788B (zh) * 2015-12-30 2018-06-29 中国科学院上海高等研究院 基于贵金属空心管阵列的有序化膜电极的构筑方法
KR102314029B1 (ko) * 2017-03-30 2021-10-18 주식회사 엘지에너지솔루션 고로딩 전극의 제조 방법
KR20200059057A (ko) 2018-11-20 2020-05-28 삼성전자주식회사 전극 구조체 및 그 제조방법과, 전극 구조체를 포함하는 이차 전지
US11909083B2 (en) 2018-12-28 2024-02-20 Xerox Corporation Apparatus and method for forming a multilayer extrusion comprising component layers of an electrochemical cell
KR20210015330A (ko) 2019-08-01 2021-02-10 삼성전자주식회사 배터리 및 그 제조방법
KR20210085283A (ko) * 2019-12-30 2021-07-08 삼성전자주식회사 활물질 구조체, 활물질 구조체를 포함하는 전극 구조체, 활물질 구조체를 포함하는 이차 전지, 및 활물질 구조체의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583359A (en) * 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
CN1278441C (zh) * 2000-10-20 2006-10-04 麻省理工学院 孔隙度受控的网状的电池结构
US20070108229A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US20080160324A1 (en) * 2006-11-22 2008-07-03 Ngk Insulators, Ltd. Method of producing ceramic structure and ceramic structure
US20120031487A1 (en) * 2010-02-24 2012-02-09 Iowa State University Research Foundation, Inc. Nanoscale High-Aspect-Ratio Metallic Structure and Method of Manufacturing Same
CN102646834A (zh) * 2010-12-17 2012-08-22 帕洛阿尔托研究中心公司 交指型电极结构及其形成方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195865A (en) 1960-09-09 1965-07-20 Dow Chemical Co Interfacial surface generator
US3382534A (en) 1965-08-19 1968-05-14 Monsanto Co Plate type fluid mixer
US3613173A (en) 1967-12-20 1971-10-19 Kanegafuchi Spinning Co Ltd Mix-spinning apparatus
US3583678A (en) 1969-09-15 1971-06-08 Dow Badische Co Interfacial surface generators
US3860036A (en) 1970-11-02 1975-01-14 Dow Chemical Co Variable geometry feed block for multilayer extrusion
US4686074A (en) 1983-03-03 1987-08-11 Toray Industries, Inc. Alternate high-molecule arrangement production process
US4511528A (en) 1983-04-13 1985-04-16 American Can Company Flow stream channel splitter devices for multi-coinjection nozzle injection molding machines
DE3831836A1 (de) 1988-09-20 1990-03-22 Kautex Maschinenbau Gmbh Verfahren und vorrichtung zum herstellen von hohlkoerpern aus thermoplastischem kunststoff
JPH0383147A (ja) 1989-08-28 1991-04-09 Toshiba Corp 半導体記録装置
US5380479A (en) 1989-12-26 1995-01-10 The Dow Chemical Company Method and apparatus for producing multilayer plastic articles
US5094793A (en) 1990-12-21 1992-03-10 The Dow Chemical Company Methods and apparatus for generating interfacial surfaces
US5667818A (en) 1993-11-05 1997-09-16 Guillemette; A. Roger Extrusion system with balanced flow passage
US5516476A (en) 1994-11-08 1996-05-14 Hills, Inc, Process for making a fiber containing an additive
US5658537A (en) 1995-07-18 1997-08-19 Basf Corporation Plate-type chemical reactor
JPH09183147A (ja) 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd 多層積層体の製造方法
JP2928789B2 (ja) 1996-04-20 1999-08-03 前田建設工業株式会社 層状材料の製造方法
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
US6109006A (en) 1998-07-14 2000-08-29 Advanced Plastics Technologies, Ltd. Process for making extruded pet containers
WO2001021688A1 (en) 1999-09-20 2001-03-29 The Goodyear Tire & Rubber Company Faster curing rubber articles
WO2001076871A1 (en) 2000-04-07 2001-10-18 Eric Baer Polymer 1d photonic crystals
WO2002011888A2 (en) 2000-08-07 2002-02-14 Nanostream, Inc. Fluidic mixer in microfluidic system
JP2004516487A (ja) 2000-12-22 2004-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ グリッド構造の製造方法
CA2455819C (en) 2001-07-27 2013-07-23 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US6837698B2 (en) 2001-12-19 2005-01-04 3M Innovative Properties Company Multilayer coextrusion die and method
US7883670B2 (en) 2002-02-14 2011-02-08 Battelle Memorial Institute Methods of making devices by stacking sheets and processes of conducting unit operations using such devices
JP4042096B2 (ja) 2002-04-12 2008-02-06 富士フイルム株式会社 樹脂成形品の製造装置及び方法
JP2004134323A (ja) * 2002-10-15 2004-04-30 Nissan Motor Co Ltd 固体酸化物形燃料電池セル
CA2508176C (en) 2002-12-02 2012-09-18 Avestor Limited Partnership Co-extrusion manufacturing process of thin film electrochemical cell for lithium polymer batteries and apparatus therefor
US6981552B2 (en) 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
EP1757429B1 (en) 2004-05-31 2015-11-11 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
JP4824394B2 (ja) * 2004-12-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP4620526B2 (ja) 2005-05-24 2011-01-26 帝人デュポンフィルム株式会社 多層フィルムの製造方法およびその装置
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
JP2007313417A (ja) * 2006-05-25 2007-12-06 Dainippon Printing Co Ltd ダイヘッド及び塗布方法
US20070279839A1 (en) 2006-05-30 2007-12-06 William James Miller Co-extrusion method of fabricating electrode structures in honeycomb substrates and ultracapacitor formed thereby
US7690908B2 (en) 2006-05-31 2010-04-06 Guill Tool & Engineering Co., Inc. Method and apparatus for forming high strength products
US7780812B2 (en) 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
US7922471B2 (en) 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US20080121042A1 (en) * 2006-11-27 2008-05-29 Bioscale, Inc. Fluid paths in etchable materials
US8865345B1 (en) * 2007-01-12 2014-10-21 Enovix Corporation Electrodes for three-dimensional lithium batteries and methods of manufacturing thereof
US8206025B2 (en) 2007-08-07 2012-06-26 International Business Machines Corporation Microfluid mixer, methods of use and methods of manufacture thereof
US20090107546A1 (en) 2007-10-29 2009-04-30 Palo Alto Research Center Incorporated Co-extruded compositions for high aspect ratio structures
US8397762B2 (en) * 2008-02-04 2013-03-19 Bioscale, Inc. Fluidic system with improved flow characteristics
US8215940B2 (en) 2009-03-20 2012-07-10 The United States Of America As Represented By The Secretary Of The Army Layer multiplying apparatus
US9004001B2 (en) 2010-12-17 2015-04-14 Palo Alto Research Center Incorporated Interdigitated finger coextrusion device
US9240585B2 (en) * 2011-02-28 2016-01-19 Applied Materials, Inc. Manufacturing of high capacity prismatic lithium-ion alloy anodes
JP6059941B2 (ja) * 2011-12-07 2017-01-11 株式会社半導体エネルギー研究所 リチウム二次電池用負極及びリチウム二次電池
JP6050106B2 (ja) * 2011-12-21 2016-12-21 株式会社半導体エネルギー研究所 非水二次電池用シリコン負極の製造方法
CN103187573B (zh) * 2011-12-28 2016-01-20 清华大学 锂离子电池电极

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583359A (en) * 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
CN1278441C (zh) * 2000-10-20 2006-10-04 麻省理工学院 孔隙度受控的网状的电池结构
US20070108229A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US20080160324A1 (en) * 2006-11-22 2008-07-03 Ngk Insulators, Ltd. Method of producing ceramic structure and ceramic structure
US20120031487A1 (en) * 2010-02-24 2012-02-09 Iowa State University Research Foundation, Inc. Nanoscale High-Aspect-Ratio Metallic Structure and Method of Manufacturing Same
CN102646834A (zh) * 2010-12-17 2012-08-22 帕洛阿尔托研究中心公司 交指型电极结构及其形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119677A (zh) * 2017-06-22 2019-01-01 三星电子株式会社 三维电极结构、包括其的二次电池及制造三维结构的方法
CN109119677B (zh) * 2017-06-22 2023-08-15 三星电子株式会社 三维电极结构、包括其的二次电池及制造三维结构的方法

Also Published As

Publication number Publication date
US9590232B2 (en) 2017-03-07
KR102094662B1 (ko) 2020-03-30
EP2749395B1 (en) 2016-08-10
JP2014130813A (ja) 2014-07-10
TW201432986A (zh) 2014-08-16
US9793537B2 (en) 2017-10-17
TWI624106B (zh) 2018-05-11
US20170162858A1 (en) 2017-06-08
KR20140085323A (ko) 2014-07-07
JP6404562B2 (ja) 2018-10-10
EP2749395A1 (en) 2014-07-02
CN103972468B (zh) 2019-04-02
US20140186698A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US9793537B2 (en) Three dimensional co-extruded battery electrodes
US11600864B2 (en) Constrained electrode assembly
EP2749396B1 (en) Advanced, high power and energy battery electrode manufactured by co-extrusion printing
KR101440973B1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
US20160204464A1 (en) Secondary battery having high rate capability and high energy density and method of manufacturing the same
EP3391442B1 (en) Lithium battery current collector comprising conductive pillared structures on a substrate
US10756336B2 (en) Three-dimensional electrode structure, and secondary battery including the same, and method of manufacturing the three-dimensional structure
CN104081575A (zh) 包括具有相同长度且不同宽度的电极单元的电极组件和包括该电极组件的电池单元和装置
KR101834035B1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
US20160329594A1 (en) Solid state battery
US11515539B2 (en) Volume-expansion accommodable anode-free solid-state battery
EP3525266B1 (en) Battery electrode structure for interdigitated finger co-extrusion
WO2021153790A1 (ja) 二次電池用電極および二次電池
US20210135207A1 (en) Structures for interdigitated finger co-extrusion
EP4352800A2 (en) Volume-expansion accommodable anode-free solid-state battery
WO2018144808A1 (en) High power lithium ion battery and the method to form
KR20160047001A (ko) 단일 쉬트형 전지 및 그에 사용되는 전극 어셈블리

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant