TWI617065B - 以共擠壓印刷製造的先進且高電力及能量之電池電極 - Google Patents

以共擠壓印刷製造的先進且高電力及能量之電池電極 Download PDF

Info

Publication number
TWI617065B
TWI617065B TW102148345A TW102148345A TWI617065B TW I617065 B TWI617065 B TW I617065B TW 102148345 A TW102148345 A TW 102148345A TW 102148345 A TW102148345 A TW 102148345A TW I617065 B TWI617065 B TW I617065B
Authority
TW
Taiwan
Prior art keywords
battery
anode
cathode
lithium
strip
Prior art date
Application number
TW102148345A
Other languages
English (en)
Other versions
TW201440282A (zh
Inventor
昌中 裴
艾利克J 史雷達
可瑞 柯伯
Original Assignee
帕洛阿爾托研究中心公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帕洛阿爾托研究中心公司 filed Critical 帕洛阿爾托研究中心公司
Publication of TW201440282A publication Critical patent/TW201440282A/zh
Application granted granted Critical
Publication of TWI617065B publication Critical patent/TWI617065B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本發明揭示的電池具有陽極、與該陽極相鄰的分隔板,以及與該分隔板相鄰且與該陽極對立的陰極,該陰極包括指叉型(interdigitated)材料條,該材料之一形成孔洞通道。

Description

以共擠壓印刷製造的先進且高電力及能量之電池電極
電池電極設計通常必須在能量密度與電力密度之間權衡。通常能量密度被認為是儲存在給定系統或每單位質量的空間區域中所儲存的能量含量。電力密度是材料傳導電流的能力之量測。典型地,具有高能量密度(亦即高儲存容量)的裝置不會快速放電,意指他們不會同時具有高電力。
對於在電力供應應用中之增加的體積能量密度鋰離子(Li離子)電池有強烈需求。所述需求發生在一些地方,例如長範圍可驅動電動車(EV)、混合動力EV以及無電線的電力工具。特別是關於EV,Li離子供電EV可使用的距離與體積能量密度直接相關。目前鋰離子電池符合或超過美國先進電池協會(USABC)對於電力要求的目標,但是僅符合他們對於體積能量密度建議目標的60%。為了增加Li離子電池的體積密度,重要的是減少Li離子電池中非活性成分的體積。
第1圖顯示典型的Li離子電池10,其中活性材料是由陰極18的鋰-鈷-氧化物(LiCoO2)以及陽極部 分的石墨20組成。非活性成分是由電解質、黏著劑、碳、分隔板14以及正與負電流收集器12與16組成。第2圖顯示在放電過程中,如何透過第1圖中的液體電解質的部分20從陽極至陰極電極發生Li離子傳輸。液體電解質24中離子的局部耗損可發生於電性傳導且緻密的電極。當電流更增加時,此現象限制在放電容量下降的情況下可能產生的臨界電流密度。在習知的Li離子電池中已經使用具有較短Li離子擴散長度22的較薄電極(約100微米),用以降低此效應。
關於目前的EV應用,藉由堆疊許多層的習知薄電極而產生大電池。這造成這些電池中具有很大部分的非活性成分。減少昂貴分隔板與沉重電流收集器的數量可大幅降低費用與非活性材料存在量。第4圖顯示使用較厚電極(例如36)之Li離子傳輸路徑38提供直接的實用的解決方案,以增加活性材料對非活性材料的比例的方式而增加Li離子電池的體積能量密度。然而,第4圖顯示關於較厚電極(例如36)的問題。由於較長的擴散路徑(例如38),因此電解質耗損因在擴散路徑中複雜微結構中的不良Li離子傳導性而增加。目前生產製程限制對於電極結構可做的改善。
10‧‧‧鋰離子電池
12‧‧‧正電流收集器
14‧‧‧分隔板
16‧‧‧負電流收集器
18‧‧‧陰極
20‧‧‧石墨、液體電解質的部分
22‧‧‧擴散長度
24‧‧‧電解質
36‧‧‧較厚電極
38‧‧‧路徑
50‧‧‧電池
52‧‧‧電流收集器
54‧‧‧分隔板
56‧‧‧電流收集器
58‧‧‧陰極
60‧‧‧陽極
62‧‧‧基質
64‧‧‧孔洞通道
70‧‧‧指叉型結構之部分
80‧‧‧擴散路徑
82‧‧‧擴散路徑
第1圖與第2圖顯示習知鋰離子的習知技藝配置方式。
第3圖與第4圖顯示使用厚電極增加鋰離子電池的體積能量密度的習知技藝配置方式。
第5圖顯示具有厚的、高能量密度的電極與直孔洞通道的電池之實施例。
第6圖更詳細顯示具有提供快速鋰離子路徑之直孔洞通道的電極之實施例。
第7圖與第8圖顯示在充電與放電過程中,具有直孔洞通道的電極之擴散路徑。
第9圖顯示製造電池電極的方法之實施力的流程圖。
第5圖顯示具有不同形式電極的電池之實施例。電池50具有電流收集器52與56、陰極58、鄰接該陰極的分隔板54,以及與該陽極相鄰且與該陰極對立之陽極60。在此實施例中,該陰極54由指叉型(interdigitated)材料條組成。
這些形式的電池電極範例討論於美國專利7,765,949;7,780,812;7,992,471以及美國專利公開案20120156364以及20120153211。美國專利7,765,949揭示用於將材料擠壓與分配在基板上的裝置,該裝置具有用於接收材料的至少兩個通道以及用於擠壓該材料至該基板上的出口埠。美國專利7,780,812揭示具有平面化邊緣表面的另一裝置。美國專利7,922,471揭示用於擠壓材料的裝置,其具有平衡形狀而不會在沉積於基板上之後平穩下來。美國專利公開案20120156364以及 20120153211揭示共擠壓頭,其將兩種或多種材料流結合至基板上的指叉式結構,該處有多個材料條。
第5圖中的電池50具有陰極,該陰極具有指叉式材料條。這些條可由該共擠壓裝置形成,該共擠壓裝置亦可指上述專利與專利公開案所揭示的印刷頭。此結構可由其他形式的裝置形成。此外,可使用本發明揭示的實施例形成其他形式的結構。電池電極係構成所揭示的材料與實施例之用途的僅一個範例。
習知擠壓方法無法藉由進料多種黏性、顆粒填充漿狀物至印刷頭而使不同液體流交互覆蓋而形成傳導接觸與間隔的指叉型條。由於上述微共擠壓印刷頭中的層流,兩種材料通常不會混合。第6圖顯示第5圖的指叉型結構之部分70的分解圖。
指叉型材料條的材料之一形成孔洞通道,其作為該電極結構內的微結構。該些條的形成及造成此結構所使用的材料將更詳細說明如下。該孔洞通道(例如64)主要作用是成為促使Li離子移動的槽或來源。當該Li離子從另一材料62通過該孔洞通道轉移時,這些通道造成較短且較不曲折的路徑。這使得使用較厚電極是可能的。所得到的陰極具有高電力與體積能量密度。
第7圖與第8圖顯示槽與來源處的擴散路徑。第7圖顯示在充電過程中,通過基質62至該孔洞通道64的擴散路徑80。第8圖顯示在放電過程中,從該孔洞通道至該基質62的擴散路徑82。至該基質的路徑與來自該基質的路徑較短,其中該基質為陰極中另一材 料條,以及該孔洞通道允許非常快速的擴散路徑。
直至此處的討論已經解決結構問題,接下來是關於製造這些結構的方法。第9圖顯示製造指叉式電極的實施例之整體流程圖。通常,該製程涉及混合第一活性材料與溶劑以產生第一電極活性材料,此示於90。該溶劑使得材料變薄,使其更容易流經該共擠壓裝置。該第一活性材料與該第二活性材料通常可為相同材料,但為不同濃度。為了討論目的,該第一材料為具有較高濃度的材料。
用相同方式製備該第二材料,此示於92。而後,使用上述或其他形式的共擠壓裝置或印刷頭,將該兩種活性材料一起被擠壓,此示於94。一旦該材料位於該基板上,移除該溶劑,留下該活性材料在該基板上的各別位置中。而後,藉由提供分隔板(示於98)以及陽極(示於100)而完成該電池。
該製程的目標之一是提供有空隙間隔的分散顆粒尺寸,用於在具有較低活性材料濃度的材料條中形成該孔洞通道。此製程可發生於數種不同方式。此討論針對室溫方法與高溫製程。關於室溫實施例,該活性陰極材料可由鋰鈷氧化物(LCO)、鋰鎳鈷錳氧化物(NCM)或二者的混合物所組成。其他材料可包含鋰鎳鈷鋁氧化物(NCA)、鋰錳氧化物(LMO)、磷酸鋰鐵(LFeP)。雖然本發明的許多活性材料為鋰,但是這些技術可被應用於鈉離子電池與鎂離子電池。該陽極材料可為石墨與鈦酸鋰(LTA)。在此特定實施例中,該材料與黏著劑混合,該黏 著劑例如聚氟化亞乙烯(PVDF),以及該溶劑是由N-甲基吡咯啶酮(NMP)組成。亦可加入聚氧乙烯油基醚形式的分散劑,亦已知為Brij 98。可加入碳黑增加電傳導性。
這些材料形成兩個不同泥漿,其中一泥漿具有比另一個較高濃度的活性材料。該共擠出裝置將該泥漿沉積在基板上,而後移除該溶劑。在室溫實施例中,自泥漿的乾燥除去該溶劑,留下該材料於個別位置中。
在高溫實施例中,該活性材料由LCO組成。在此實施例中使用的黏著劑是乙基纖維素樹脂,例如陶氏化學公司(Dow Chemical Company)製造的EthocelTM。在此特定實施例中使用的溶劑是由癸二酸二乙酯與丁基卡必醇(butyl cartibol)的混合物組成。該分散劑可由亞麻酸組成。該混合物被沉積,而後在高溫燒結以移除溶劑並且留下該材料。
在任一情況下,所得到的材料具有在低較低濃度中分布廣的顆粒尺寸。這使得形成該孔洞通道,作為該電極中的微結構。所得到的電極具有高受控的微結構,提供快速鋰離子擴散路徑,解決電解質耗損問題,因而製造高能量與電力的電極。相較於習知的電池電極,這些電極顯示更佳的電化學效能。
相對地,習知的電池電極由於典型係由電流收集器箔上的糊狀物製造而成(其中使用薄帶成形(tape casting)塗敷該糊狀物),因此僅具有簡單的整體微結構。

Claims (5)

  1. 一種電池,包括:陽極;與該陽極相鄰的分隔板;以及與該分隔板相鄰且與該陽極對立的陰極,該陰極包括指叉型(interdigitated)材料條,該材料之一形成孔洞通道;其中該指叉型材料條包括第一材料及第二材料,且該第一材料的鋰濃度低於該第二材料。
  2. 如請求項1之電池,更包括與該陽極及該陰極相鄰且與該分隔板對立的電流收集器。
  3. 如請求項1之電池,其中該陰極包括鋰鈷氧化物或鋰鎳鈷錳氧化物的活性材料。
  4. 如請求項1之電池,其中該陰極包括活性材料,其係以下之一者:鋰鎳鈷鋁氧化物(NCA)、鋰錳氧化物(LMO)或磷酸鋰鐵(LFeP)。
  5. 如請求項1之電池,其中該陽極包括指叉型材料條,所述材料之一形成孔洞通道。
TW102148345A 2012-12-27 2013-12-26 以共擠壓印刷製造的先進且高電力及能量之電池電極 TWI617065B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/727,960 2012-12-27
US13/727,960 US9012090B2 (en) 2012-12-27 2012-12-27 Advanced, high power and energy battery electrode manufactured by co-extrusion printing

Publications (2)

Publication Number Publication Date
TW201440282A TW201440282A (zh) 2014-10-16
TWI617065B true TWI617065B (zh) 2018-03-01

Family

ID=49958180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148345A TWI617065B (zh) 2012-12-27 2013-12-26 以共擠壓印刷製造的先進且高電力及能量之電池電極

Country Status (6)

Country Link
US (1) US9012090B2 (zh)
EP (1) EP2749396B1 (zh)
JP (1) JP6210868B2 (zh)
KR (1) KR102055122B1 (zh)
CN (1) CN103904298B (zh)
TW (1) TWI617065B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923714B2 (en) 2012-12-27 2021-02-16 Palo Alto Research Center Incorporated Structures for interdigitated finger co-extrusion
US20140295293A1 (en) * 2013-03-27 2014-10-02 Honda Motor Co., Ltd. Electrode and manufacturing method thereof
US10256503B2 (en) * 2014-07-11 2019-04-09 Palo Alto Research Center Incorporated High performance all solid lithium sulfur battery with fast lithium ion conduction
US9696782B2 (en) 2015-02-09 2017-07-04 Microsoft Technology Licensing, Llc Battery parameter-based power management for suppressing power spikes
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
US9748765B2 (en) 2015-02-26 2017-08-29 Microsoft Technology Licensing, Llc Load allocation for multi-battery devices
US9939862B2 (en) 2015-11-13 2018-04-10 Microsoft Technology Licensing, Llc Latency-based energy storage device selection
US10061366B2 (en) 2015-11-17 2018-08-28 Microsoft Technology Licensing, Llc Schedule-based energy storage device selection
US9793570B2 (en) 2015-12-04 2017-10-17 Microsoft Technology Licensing, Llc Shared electrode battery
US10622625B2 (en) 2016-07-04 2020-04-14 Lg Chem, Ltd. Positive electrode and secondary battery including the same
WO2018008954A1 (ko) * 2016-07-04 2018-01-11 주식회사 엘지화학 양극 및 상기 양극을 포함하는 이차 전지
US10347901B2 (en) 2016-11-17 2019-07-09 Nissan North America, Inc. Method of preparing lithium ion battery electrode having improved lithium ion transport
CN108172763A (zh) * 2017-12-20 2018-06-15 贵州梅岭电源有限公司 一种高功率电极及其制备方法
JP7341665B2 (ja) * 2018-02-13 2023-09-11 パロ・アルト・リサーチ・センター・インコーポレーテッド 交互嵌合された指状部の共押出成形のための構造
DE102018114804A1 (de) 2018-06-20 2019-12-24 Audi Aktiengesellschaft Batterie
EP3614463A1 (en) 2018-08-20 2020-02-26 BGT Materials Limited Electrode structure of electrochemical energy storage device and manufacturing method thereof
CN112271270B (zh) * 2020-10-22 2022-06-24 天目湖先进储能技术研究院有限公司 锂离子电池电极及其制备方法和锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197535A1 (en) * 2001-06-07 2002-12-26 Dudley William R. Coating edge control
US20100003603A1 (en) * 2000-10-20 2010-01-07 Yet-Ming Chiang Battery structures, self-organizing structures and related methods

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195865A (en) 1960-09-09 1965-07-20 Dow Chemical Co Interfacial surface generator
FR1308573A (fr) 1961-05-30 1962-11-09 Dow Chemical Co Procédé de mélange de masses en circulation par formation d'interfaces dans une masse fluide en circulation
US3382534A (en) 1965-08-19 1968-05-14 Monsanto Co Plate type fluid mixer
US3613173A (en) 1967-12-20 1971-10-19 Kanegafuchi Spinning Co Ltd Mix-spinning apparatus
US3583678A (en) 1969-09-15 1971-06-08 Dow Badische Co Interfacial surface generators
US3860036A (en) 1970-11-02 1975-01-14 Dow Chemical Co Variable geometry feed block for multilayer extrusion
US4686074A (en) 1983-03-03 1987-08-11 Toray Industries, Inc. Alternate high-molecule arrangement production process
US4511528A (en) 1983-04-13 1985-04-16 American Can Company Flow stream channel splitter devices for multi-coinjection nozzle injection molding machines
DE3831836A1 (de) 1988-09-20 1990-03-22 Kautex Maschinenbau Gmbh Verfahren und vorrichtung zum herstellen von hohlkoerpern aus thermoplastischem kunststoff
US5380479A (en) 1989-12-26 1995-01-10 The Dow Chemical Company Method and apparatus for producing multilayer plastic articles
US5094793A (en) 1990-12-21 1992-03-10 The Dow Chemical Company Methods and apparatus for generating interfacial surfaces
US5667818A (en) 1993-11-05 1997-09-16 Guillemette; A. Roger Extrusion system with balanced flow passage
US5516476A (en) 1994-11-08 1996-05-14 Hills, Inc, Process for making a fiber containing an additive
US5658537A (en) 1995-07-18 1997-08-19 Basf Corporation Plate-type chemical reactor
JPH09183147A (ja) 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd 多層積層体の製造方法
JP2928789B2 (ja) 1996-04-20 1999-08-03 前田建設工業株式会社 層状材料の製造方法
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
US6109006A (en) 1998-07-14 2000-08-29 Advanced Plastics Technologies, Ltd. Process for making extruded pet containers
WO2001021688A1 (en) 1999-09-20 2001-03-29 The Goodyear Tire & Rubber Company Faster curing rubber articles
WO2001076871A1 (en) 2000-04-07 2001-10-18 Eric Baer Polymer 1d photonic crystals
AU2001281076A1 (en) 2000-08-07 2002-02-18 Nanostream, Inc. Fluidic mixer in microfluidic system
KR100929452B1 (ko) * 2000-10-20 2009-12-02 매사츄세츠 인스티튜트 오브 테크놀러지 2극 장치
WO2002052579A1 (en) 2000-12-22 2002-07-04 Koninklijke Philips Electronics N.V. A method for producing a grid structure
US6837698B2 (en) 2001-12-19 2005-01-04 3M Innovative Properties Company Multilayer coextrusion die and method
US7883670B2 (en) 2002-02-14 2011-02-08 Battelle Memorial Institute Methods of making devices by stacking sheets and processes of conducting unit operations using such devices
JP4042096B2 (ja) 2002-04-12 2008-02-06 富士フイルム株式会社 樹脂成形品の製造装置及び方法
JP2006508509A (ja) 2002-12-02 2006-03-09 アヴェスター リミティッド パートナーシップ リチウムポリマー電池用の薄膜電気化学セルの共押出し製造プロセス、およびそのための装置
US6981552B2 (en) 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
EP1757429B1 (en) 2004-05-31 2015-11-11 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
JP4620526B2 (ja) 2005-05-24 2011-01-26 帝人デュポンフィルム株式会社 多層フィルムの製造方法およびその装置
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US7799371B2 (en) 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US20070279839A1 (en) 2006-05-30 2007-12-06 William James Miller Co-extrusion method of fabricating electrode structures in honeycomb substrates and ultracapacitor formed thereby
US7690908B2 (en) 2006-05-31 2010-04-06 Guill Tool & Engineering Co., Inc. Method and apparatus for forming high strength products
US7922471B2 (en) 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US7780812B2 (en) 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
US8206025B2 (en) 2007-08-07 2012-06-26 International Business Machines Corporation Microfluid mixer, methods of use and methods of manufacture thereof
US20090107546A1 (en) 2007-10-29 2009-04-30 Palo Alto Research Center Incorporated Co-extruded compositions for high aspect ratio structures
JP5102056B2 (ja) * 2008-01-31 2012-12-19 株式会社オハラ 固体電池およびその電極の製造方法
JP2009252498A (ja) * 2008-04-04 2009-10-29 Nissan Motor Co Ltd 電池用電極
JP5391630B2 (ja) * 2008-10-03 2014-01-15 日産自動車株式会社 電池用電極の製造方法
US8215940B2 (en) 2009-03-20 2012-07-10 The United States Of America As Represented By The Secretary Of The Army Layer multiplying apparatus
JP2011029075A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2012038539A (ja) 2010-08-06 2012-02-23 Toyota Motor Corp 電池
US9589692B2 (en) * 2010-12-17 2017-03-07 Palo Alto Research Center Incorporated Interdigitated electrode device
US9004001B2 (en) 2010-12-17 2015-04-14 Palo Alto Research Center Incorporated Interdigitated finger coextrusion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003603A1 (en) * 2000-10-20 2010-01-07 Yet-Ming Chiang Battery structures, self-organizing structures and related methods
US20020197535A1 (en) * 2001-06-07 2002-12-26 Dudley William R. Coating edge control

Also Published As

Publication number Publication date
KR20140085322A (ko) 2014-07-07
US9012090B2 (en) 2015-04-21
JP6210868B2 (ja) 2017-10-11
TW201440282A (zh) 2014-10-16
CN103904298B (zh) 2016-10-19
US20140186700A1 (en) 2014-07-03
JP2014130812A (ja) 2014-07-10
EP2749396B1 (en) 2016-05-04
KR102055122B1 (ko) 2019-12-12
CN103904298A (zh) 2014-07-02
EP2749396A1 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
TWI617065B (zh) 以共擠壓印刷製造的先進且高電力及能量之電池電極
CN103746089B (zh) 一种具有梯度结构的全固态锂电池及其制备方法
JP5201426B2 (ja) リチウムイオン電池およびその利用
TWI624106B (zh) 三維電極結構及其製造方法
WO2010089898A1 (ja) リチウム二次電池
US10062521B2 (en) Electrode for a combination of supercapacitor and battery and also process for the production thereof
CN112864546B (zh) 非水电解质二次电池
WO2012169030A1 (ja) リチウムイオン二次電池
JP5709010B2 (ja) 非水電解液二次電池
KR101846767B1 (ko) 비수 전해질 2차 전지
KR20210011041A (ko) 이차전지 전극용 집전체
CN112072061B (zh) 非水电解质二次电池
KR20190029457A (ko) 비수전해액 이차 전지
KR101768752B1 (ko) 이차 전지, 이를 포함하는 전지 모듈 및 상기 이차 전지의 제조방법
JP7027540B2 (ja) リチウムイオン二次電池及びその製造方法
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
JP7088969B2 (ja) リチウムイオン(lithium ion)二次電池用セパレータ(separator)及びリチウムイオン二次電池
US20160329594A1 (en) Solid state battery
EP2937920A1 (en) Nonaqueous electrolyte secondary battery
JP5692605B2 (ja) 非水電解液二次電池
KR102496615B1 (ko) 급속 충전 성능이 개선된 이차전지용 전극, 이의 제조방법 및 이를 포함하는 이차전지
US9882200B2 (en) High energy and power Li-ion battery having low stress and long-term cycling capacity
JP7121912B2 (ja) 非水系リチウムイオン二次電池の負極、およびそれを用いた非水系リチウムイオン二次電池
JPWO2020054849A1 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びリチウムイオン二次電池用電極の製造方法