JP6210868B2 - 共押し出し印刷により製造した高性能で高出力、高エネルギーの電池電極 - Google Patents

共押し出し印刷により製造した高性能で高出力、高エネルギーの電池電極 Download PDF

Info

Publication number
JP6210868B2
JP6210868B2 JP2013258383A JP2013258383A JP6210868B2 JP 6210868 B2 JP6210868 B2 JP 6210868B2 JP 2013258383 A JP2013258383 A JP 2013258383A JP 2013258383 A JP2013258383 A JP 2013258383A JP 6210868 B2 JP6210868 B2 JP 6210868B2
Authority
JP
Japan
Prior art keywords
lithium
battery
electrode
negative electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013258383A
Other languages
English (en)
Other versions
JP2014130812A (ja
JP2014130812A5 (ja
Inventor
チャン−ジュン・ベ
エリック・ジェイ・シュレーダー
コリエ・リン・コブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of JP2014130812A publication Critical patent/JP2014130812A/ja
Publication of JP2014130812A5 publication Critical patent/JP2014130812A5/ja
Application granted granted Critical
Publication of JP6210868B2 publication Critical patent/JP6210868B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Description

本開示は、交互嵌合した縞模様の材料により製造されたバッテリ電極に関する。
電池電極の設計では、出力密度とエネルギー密度の間でトレードオフを行う必要がある場合が多い。エネルギー密度は、所与のシステムまたは空間領域の単位質量当たりに蓄えられるエネルギー量と一般に見なされる。出力密度は、材料が電流を導く能力の尺度である。通常、高エネルギー密度、すなわち、高い貯蔵容量を有する装置が素早く放電することはなく、この装置が同時に高出力を有することはないことを意味している。
電源用途では、体積エネルギー密度を増大させたリチウムイオン(Liイオン)電池に対する強い需要が存在している。この需要は、長距離走行可能な電気自動車(EV)、ハイブリッドEV、およびコードレス電動工具など方々で生じている。特に、EVに関しては、Liイオンを動力源とするEVを使用してもよい距離が体積エネルギー密度に直接関連している。現在のLiイオン電池は、米国高性能電池コンソーシアム(USABC)の電源条件の目標を満たしているか、または上回っているが、このコンソーシアムの体積エネルギー密度の推奨目標に関しては、その60%を満たしているに過ぎない。Liイオン電池の体積エネルギー密度を高めるには、Liイオン電池内の不活性な構成要素の体積を低減することが重要である。
図1は典型的なLiイオン電池10を示しており、陰極18の活性材料がリチウムコバルト酸化物(LiCoO)、および陽極部分の活性材料がグラファイト20で構成されている。不活性な構成要素は、電解質、結合剤、炭素、分離体14、ならびに正および負の電流コレクタ12および16で構成されている。図2は、放電中にLiイオン輸送が図1の液体電解質の部分20を通って陽極電極から陰極電極までどのように起こるかを示している。導電性の高密度電極により、液体電解質24内のイオンの局所的減少が発生する可能性がある。この現象は限界電流密度を制限し、この限界電流密度により、電流がさらに増加するとき、結果的に放電容量が減少することになる可能性がある。この効果を軽減するために、従来のLiイオン電池では、より短いLiイオン拡散距離22を有する約100マイクロメートルのより薄い電極を使用している。
現在のEV用途では、従来の薄い電極の多くの層を積み重ねることにより大型電池を生産している。このことは、結果的にこれらの電池内の不活性な構成要素の大部分をもたらすことになる。高価な分離体および重い電流コレクタの量を減らせば、費用と、不活性材料の存在量とを大幅に削減することになる。図4は、36のようなより厚い電極を用いて、不活性材料に対する活性材料の割合を増加させる形でLiイオン電池の体積エネルギー密度を増加させるための直接的で現実的な解決方法を提供するLiイオン輸送経路38を示している。しかしながら、図4は36のようなより厚い電極に関する問題を示している。38のようなより長い拡散経路の結果、拡散経路の複雑な微細構造内のLiイオンの低い伝導性のせいで電解質減少が増大する。現在の産業用製造プロセスのせいで、実行できる改良が電極構造に限定されている。
図1は、従来のLiイオン電池の先行技術の構成を示している。 図2は、従来のLiイオン電池の先行技術の構成を示している。 図3は、厚い電極を用いてLiイオン電池の体積エネルギー密度を増加させる先行技術の構成を示している。 図4は、厚い電極を用いてLiイオン電池の体積エネルギー密度を増加させる先行技術の構成を示している。 図5は、まっすぐなポアチャネルを備えた厚い高エネルギー密度電極を有する電池の実施形態を示している。 図6は、高速Liイオン経路を提供するまっすぐなポアチャネルを備えた電極の実施形態の、より詳細な図を示している。 図7は、充放電プロセス中のまっすぐなポアチャネルを備えた電極の拡散経路を示している。 図8は、充放電プロセス中のまっすぐなポアチャネルを備えた電極の拡散経路を示している。 図9は、電池電極を製造するための方法の実施形態のフローチャートを示している。
図5は、異なる種類の電極を有する電池の実施形態を示している。電池50が、電流コレクタ52および56と、陰極58と、陰極に隣接する分離体54と、分離体に隣接しており陰極の反対側にある陽極60と、を有している。この実施形態の陰極58は、材料の交互嵌合した縞模様で構成されている。
これらの種類の電池電極の実施例については、米国特許第7,765,949号、第7,780,812号、第7,922,471号、ならびに米国特許公報第20120156364号、および第20120153211号で論じている。米国特許第7,765,949号は、基材上に材料を押し出して分配するための装置を開示しており、この装置は材料を受け取るための少なくとも2個の通路と、基材上に材料を押し出すための出口ポートと、を有している。米国特許第7,780,812号は、平坦化したエッジ表面を有する他のこのような装置を開示している。米国特許第7,922,471号は、基材上に堆積した後に沈殿することのない平衡形を有する材料を押し出すための他のこのような装置を開示している。米国特許公報第20120156364号および第20120153211号は、2つ以上の材料の流れを組み合わせて、基材上に、材料の複数の縞模様がある交互嵌合(互いにかみ合った)構造を作る共押し出しヘッドを開示している。
図5の電池50は、材料の交互嵌合した縞模様を有する陰極を有している。これらの縞模様は、上述の特許および特許公報に開示する、印字ヘッドを指していてもよい、共押し出し装置により形成してもよい。この構造は、他の種類の装置を用いて形成してもよい。さらに、本明細書で開示する実施形態を用いて他の種類の構造を形成してもよい。電池電極は、開示する材料および実施形態に対する利用法のほんの一例で構成されている。
従来の押し出し法では、個々の流体の流れが交互に合流できる印字ヘッドに、粒子で満たされ粘性のある複数のペーストを供給することにより、導電性の接点と、間隔をあけながら交互嵌合している縞模様と、を作り出す、ということができない。上述の超小型共押し出し印字ヘッド内の層流のせいで、2つの材料は一般的に混ざらない。図6は、図5の交互嵌合した構造の部分70の分解図を示している。
材料の交互嵌合した縞模様の材料のうちの1つが、電極構造の中の微細構造としてポアチャネルを形成する。この構造をもたらすために使用する縞模様および材料の形成については、より詳細に後述する。64のようなポアチャネルが、Liイオンの動きを促進するための吸い込み(sink)または湧きだし(source)として重要な役割を果たす。ポアチャネルを通って他の材料62からLiイオンを移動させるとき、これらのチャネルは、より短く、ずっと少ない蛇行経路をもたらす。このようにポアチャネルを用いることは、ポアチャネルを用いなかった場合よりも厚い電極の利用を可能にする。結果として得られる陰極が、高出力および高体積エネルギー密度を有している。
図7および図8は、吸い込み場所または湧きだし場所に対する拡散経路を示している。図7は、充電プロセス中に基質62を通ってポアチャネル64に向かう拡散経路80を示している。図8は、放電プロセス中にポアチャネル64から基質62に向かう拡散経路82を示している。陰極内の他の材料の縞模様である基質との間を行き来する経路がより短くなり、ポアチャネルは非常に速く拡散できる経路を可能にする。
ここまでの議論では構造を扱ってきたが、ここからはこれらのような構造の製造方法を扱う。図9は、交互嵌合した電極を製造するための実施形態の全体のフローチャートを示している。一般的に、プロセスは、90で、第1の活性材料を溶媒と混ぜて、第1の電極活性材料を作り出すことを含んでいる。溶媒は、共押し出し装置の中を通って材料がより容易に流れることを可能にするように材料を薄めることができる。第1の活性材料および第2の活性材料は、一般的に同じ材料であるが、しかしながら異なる濃度であってもよい。この議論の目的上、第1の活性材料の方が、より高い濃度を有する材料である。
92で、同じように第2の活性材料を準備する。その後、94で、上述のまたは他の種類の共押し出し装置または印字ヘッドを用いて2つの活性材料をいっしょに押し出す。いったん材料が基材上の所定の位置に配置されると、溶媒を除去して、活性材料を基材上のそれぞれの位置に残す。その後、98で分離体を提供し、および100で陽極を提供することにより電池を完成させる。
プロセスの目標の1つが、低濃度の活性材料を有する材料の縞模様内にポアチャネルを形成するために、分散した粒子の大きさに、すき間間隔(interstitial spacing)を提供することである。このプロセスは、いくつかの異なる方法で行われてもよい。この議論では常温法および高温プロセスを扱う。室温の実施形態では、活性陰極材料が、リチウムコバルト酸化物(LCO)、リチウムニッケルコバルトマンガン酸化物(NCM)、または2つの混合物で構成されていてもよい。他の材料として、リチウムニッケルコバルトアルミニウム酸化物(NCA)、リチウムマンガン酸化物(LMO)、またはリチウム鉄リン酸塩(LFeP)が挙げられる。本明細書の活性材料の多くはリチウムであるが、これらの技術はナトリウムイオン電池およびマグネシウムイオン電池に適用できる。陽極材料が、グラファイトおよびチタン酸リチウム(LTA)であってもよい。この特定の実施形態では、材料をポリフッ化ビニリデン(PVDF)などの結合剤と混ぜて、溶媒がN−メチル−2−ピロリドン(NMP)で構成されている。Brij 98としても知られているポリオキシエチレン・オレイル・エーテルの形の分散剤を加えてもよい。電気伝導率を高めるためにカーボンブラックを加えてもよい。
これらの材料は2つの異なるスラリーに形成され、一方のスラリーは残りのもう一方のスラリーよりも高い濃度の活性材料を有している。共押し出し装置は基材上にスラリーを堆積させて、その後、溶媒が除去される。室温の実施形態では、スラリーから溶媒を乾燥させて、材料をそれぞれの位置に残す。
高温の実施形態では、活性材料がLCOで構成されている。この実施形態で使用する結合剤は、ダウケミカル社製のEthocel(商標)などのエチルセルロース樹脂である。この特定の実施形態で使用する溶媒は、セバシン酸ジエチルおよびブチルカルビトールの混合物で構成されている。分散剤は、リノレン酸で構成されていてもよい。混合物を堆積させて、その後、溶媒を除去して材料を残すために混合物を高温で焼結する。
いずれの場合でも、結果として得られる材料は低濃度において幅広い粒子径分布を有している。このことが、電極内に微細構造としてポアチャネルを形成することを可能にする。結果として得られる電極は、高速Liイオン拡散経路を提供する高度に制御された微細構造を有しており、電解質減少問題を解決して、高エネルギーで高出力の電極を作る。これらの電極は、従来の電池電極よりはるかに優れた電気化学的性能を示す。
対照的に、従来の電池電極は、電流コレクタ箔上にテープキャスティングを用いて薄く塗ったペーストから通常製造するせいで、単純な一体型の微細構造のみを有している。

Claims (3)

  1. 負極と、
    前記負極に隣接する分離体と、
    前記分離体に隣接しており前記負極の反対側にある正極と、
    を含み、
    前記正極は、リチウムコバルト酸化物(LCO)、リチウムニッケルコバルトマンガン酸化物(NCM)、リチウムニッケルコバルトアルミニウム酸化物(NCA)、リチウムマンガン酸化物(LMO)、及びリチウム鉄リン酸塩(LFeP)から選択された活性正極材料である、第1の材料と第2の材料との交互嵌合した縞模様を含み、
    前記第2の材料のリチウム濃度は、前記第1の材料のリチウム濃度より低く、
    前記活性正極材料の粒子間の隙間である隙間空間によって形成されるリチウムイオンの伝達経路であるポアチャネルが前記第1の材料及び第2の材料の何れか一方に形成される、
    電池。
  2. 前記負極と前記正極とに隣接しており前記分離体の反対側にある電流コレクタをさらに含む、請求項1に記載の電池。
  3. 前記ポアチャネルは、前記第1の材料により形成されている、請求項1に記載の電池。
JP2013258383A 2012-12-27 2013-12-13 共押し出し印刷により製造した高性能で高出力、高エネルギーの電池電極 Active JP6210868B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/727,960 US9012090B2 (en) 2012-12-27 2012-12-27 Advanced, high power and energy battery electrode manufactured by co-extrusion printing
US13/727,960 2012-12-27

Publications (3)

Publication Number Publication Date
JP2014130812A JP2014130812A (ja) 2014-07-10
JP2014130812A5 JP2014130812A5 (ja) 2017-01-26
JP6210868B2 true JP6210868B2 (ja) 2017-10-11

Family

ID=49958180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258383A Active JP6210868B2 (ja) 2012-12-27 2013-12-13 共押し出し印刷により製造した高性能で高出力、高エネルギーの電池電極

Country Status (6)

Country Link
US (1) US9012090B2 (ja)
EP (1) EP2749396B1 (ja)
JP (1) JP6210868B2 (ja)
KR (1) KR102055122B1 (ja)
CN (1) CN103904298B (ja)
TW (1) TWI617065B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923714B2 (en) 2012-12-27 2021-02-16 Palo Alto Research Center Incorporated Structures for interdigitated finger co-extrusion
JP6321420B2 (ja) * 2013-03-27 2018-05-09 本田技研工業株式会社 電極およびその製造方法
US10256503B2 (en) * 2014-07-11 2019-04-09 Palo Alto Research Center Incorporated High performance all solid lithium sulfur battery with fast lithium ion conduction
US9696782B2 (en) 2015-02-09 2017-07-04 Microsoft Technology Licensing, Llc Battery parameter-based power management for suppressing power spikes
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
US9748765B2 (en) 2015-02-26 2017-08-29 Microsoft Technology Licensing, Llc Load allocation for multi-battery devices
US9939862B2 (en) 2015-11-13 2018-04-10 Microsoft Technology Licensing, Llc Latency-based energy storage device selection
US10061366B2 (en) 2015-11-17 2018-08-28 Microsoft Technology Licensing, Llc Schedule-based energy storage device selection
US9793570B2 (en) 2015-12-04 2017-10-17 Microsoft Technology Licensing, Llc Shared electrode battery
WO2018008954A1 (ko) * 2016-07-04 2018-01-11 주식회사 엘지화학 양극 및 상기 양극을 포함하는 이차 전지
CN108352506B (zh) * 2016-07-04 2021-08-24 株式会社Lg化学 正极和包含该正极的二次电池
US10347901B2 (en) 2016-11-17 2019-07-09 Nissan North America, Inc. Method of preparing lithium ion battery electrode having improved lithium ion transport
CN108172763A (zh) * 2017-12-20 2018-06-15 贵州梅岭电源有限公司 一种高功率电极及其制备方法
JP7341665B2 (ja) * 2018-02-13 2023-09-11 パロ・アルト・リサーチ・センター・インコーポレーテッド 交互嵌合された指状部の共押出成形のための構造
DE102018114804A1 (de) 2018-06-20 2019-12-24 Audi Aktiengesellschaft Batterie
EP3614463A1 (en) 2018-08-20 2020-02-26 BGT Materials Limited Electrode structure of electrochemical energy storage device and manufacturing method thereof
CN112271270B (zh) * 2020-10-22 2022-06-24 天目湖先进储能技术研究院有限公司 锂离子电池电极及其制备方法和锂离子电池

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195865A (en) 1960-09-09 1965-07-20 Dow Chemical Co Interfacial surface generator
FR1308573A (fr) 1961-05-30 1962-11-09 Dow Chemical Co Procédé de mélange de masses en circulation par formation d'interfaces dans une masse fluide en circulation
US3382534A (en) 1965-08-19 1968-05-14 Monsanto Co Plate type fluid mixer
US3613173A (en) 1967-12-20 1971-10-19 Kanegafuchi Spinning Co Ltd Mix-spinning apparatus
US3583678A (en) 1969-09-15 1971-06-08 Dow Badische Co Interfacial surface generators
US3860036A (en) 1970-11-02 1975-01-14 Dow Chemical Co Variable geometry feed block for multilayer extrusion
WO1984003470A1 (en) 1983-03-03 1984-09-13 Toray Industries Crossed polymer laminate, and process and apparatus for its production
US4511528A (en) 1983-04-13 1985-04-16 American Can Company Flow stream channel splitter devices for multi-coinjection nozzle injection molding machines
DE3831836A1 (de) 1988-09-20 1990-03-22 Kautex Maschinenbau Gmbh Verfahren und vorrichtung zum herstellen von hohlkoerpern aus thermoplastischem kunststoff
US5380479A (en) 1989-12-26 1995-01-10 The Dow Chemical Company Method and apparatus for producing multilayer plastic articles
US5094793A (en) 1990-12-21 1992-03-10 The Dow Chemical Company Methods and apparatus for generating interfacial surfaces
US5667818A (en) 1993-11-05 1997-09-16 Guillemette; A. Roger Extrusion system with balanced flow passage
US5516476A (en) 1994-11-08 1996-05-14 Hills, Inc, Process for making a fiber containing an additive
US5658537A (en) 1995-07-18 1997-08-19 Basf Corporation Plate-type chemical reactor
JPH09183147A (ja) 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd 多層積層体の製造方法
JP2928789B2 (ja) 1996-04-20 1999-08-03 前田建設工業株式会社 層状材料の製造方法
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
US6109006A (en) 1998-07-14 2000-08-29 Advanced Plastics Technologies, Ltd. Process for making extruded pet containers
AU6051099A (en) 1999-09-20 2001-04-24 Goodyear Tire And Rubber Company, The Faster curing rubber articles
US6582807B2 (en) 2000-04-07 2003-06-24 Case Western Reserve University Polymer 1D photonic crystals
AU2001281076A1 (en) 2000-08-07 2002-02-18 Nanostream, Inc. Fluidic mixer in microfluidic system
AU2002241629A1 (en) * 2000-10-20 2002-06-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
JP2004516487A (ja) 2000-12-22 2004-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ グリッド構造の製造方法
US7097673B2 (en) * 2001-06-07 2006-08-29 3M Innovative Properties Company Coating edge control
CA2455819C (en) * 2001-07-27 2013-07-23 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US6837698B2 (en) 2001-12-19 2005-01-04 3M Innovative Properties Company Multilayer coextrusion die and method
US7883670B2 (en) 2002-02-14 2011-02-08 Battelle Memorial Institute Methods of making devices by stacking sheets and processes of conducting unit operations using such devices
JP4042096B2 (ja) 2002-04-12 2008-02-06 富士フイルム株式会社 樹脂成形品の製造装置及び方法
DE60334564D1 (de) 2002-12-02 2010-11-25 Reif Siegfried Coextrusionsverfahren zur herstellung von dünnschicht-elektrochemischen zellen für lithium-polymer-batterien
US6981552B2 (en) 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US8388331B2 (en) 2004-05-31 2013-03-05 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
JP4620526B2 (ja) 2005-05-24 2011-01-26 帝人デュポンフィルム株式会社 多層フィルムの製造方法およびその装置
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US7799371B2 (en) 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US20070279839A1 (en) 2006-05-30 2007-12-06 William James Miller Co-extrusion method of fabricating electrode structures in honeycomb substrates and ultracapacitor formed thereby
US7690908B2 (en) 2006-05-31 2010-04-06 Guill Tool & Engineering Co., Inc. Method and apparatus for forming high strength products
US7780812B2 (en) 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
US7922471B2 (en) 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US8206025B2 (en) 2007-08-07 2012-06-26 International Business Machines Corporation Microfluid mixer, methods of use and methods of manufacture thereof
US20090107546A1 (en) 2007-10-29 2009-04-30 Palo Alto Research Center Incorporated Co-extruded compositions for high aspect ratio structures
JP5102056B2 (ja) * 2008-01-31 2012-12-19 株式会社オハラ 固体電池およびその電極の製造方法
JP2009252498A (ja) * 2008-04-04 2009-10-29 Nissan Motor Co Ltd 電池用電極
JP5391630B2 (ja) * 2008-10-03 2014-01-15 日産自動車株式会社 電池用電極の製造方法
US8215940B2 (en) 2009-03-20 2012-07-10 The United States Of America As Represented By The Secretary Of The Army Layer multiplying apparatus
JP2011029075A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2012038539A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 電池
US9004001B2 (en) 2010-12-17 2015-04-14 Palo Alto Research Center Incorporated Interdigitated finger coextrusion device
US9589692B2 (en) * 2010-12-17 2017-03-07 Palo Alto Research Center Incorporated Interdigitated electrode device

Also Published As

Publication number Publication date
US9012090B2 (en) 2015-04-21
CN103904298A (zh) 2014-07-02
JP2014130812A (ja) 2014-07-10
KR20140085322A (ko) 2014-07-07
TWI617065B (zh) 2018-03-01
TW201440282A (zh) 2014-10-16
EP2749396A1 (en) 2014-07-02
US20140186700A1 (en) 2014-07-03
KR102055122B1 (ko) 2019-12-12
CN103904298B (zh) 2016-10-19
EP2749396B1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6210868B2 (ja) 共押し出し印刷により製造した高性能で高出力、高エネルギーの電池電極
WO2013076847A1 (ja) 非水電解液二次電池の製造方法
CN112864546B (zh) 非水电解质二次电池
EP3127176B1 (en) Nonaqueous electrolyte secondary battery
US20160164079A1 (en) Advanced si-c composite anode electrode for high energy density and longer cycle life
US9806315B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same, and separator for nonaqueous electrolyte secondary battery
KR101768752B1 (ko) 이차 전지, 이를 포함하는 전지 모듈 및 상기 이차 전지의 제조방법
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
KR20160027365A (ko) 이차전지 전극용 집전체
US20170222220A1 (en) Carbon Nanotube-Based Lithium Ion Battery
JP2017220380A (ja) 非水電解質二次電池
JP6008188B2 (ja) 非水電解液二次電池
JP5692605B2 (ja) 非水電解液二次電池
JP7327302B2 (ja) 電池およびその製造方法
US9882200B2 (en) High energy and power Li-ion battery having low stress and long-term cycling capacity
JP6189644B2 (ja) 非水電解液二次電池の製造方法
JP2021082479A (ja) 非水電解液二次電池
KR102283842B1 (ko) 이차전지 전극용 집전체
CN107591516B (zh) 用于制造阴极的方法、阴极和电池组电池
JP6585842B2 (ja) 非水電解質二次電池
JP2023066929A (ja) 二次電池用電極、及び二次電池用電極の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161213

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6210868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250