CN103904298A - 通过共挤出印刷而制得的先进高功率和高能量的电池电极 - Google Patents

通过共挤出印刷而制得的先进高功率和高能量的电池电极 Download PDF

Info

Publication number
CN103904298A
CN103904298A CN201310683501.XA CN201310683501A CN103904298A CN 103904298 A CN103904298 A CN 103904298A CN 201310683501 A CN201310683501 A CN 201310683501A CN 103904298 A CN103904298 A CN 103904298A
Authority
CN
China
Prior art keywords
anode
negative electrode
electrode
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310683501.XA
Other languages
English (en)
Other versions
CN103904298B (zh
Inventor
C-J·贝
E·J·施雷德
C·L·科布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of CN103904298A publication Critical patent/CN103904298A/zh
Application granted granted Critical
Publication of CN103904298B publication Critical patent/CN103904298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Abstract

本发明提供了一种电池,其具有阳极、与所述阳极相邻的分离器、和与所述阳极相对的与所述分离器相邻的阴极,所述阴极包括交指型材料条,所述材料中的一种形成孔穴通道。

Description

通过共挤出印刷而制得的先进高功率和高能量的电池电极
背景技术
电池电极设计通常必须在能量密度与功率密度之间获得权衡。能量密度通常被认为是每单位质量在给定系统或空间区域中所储存的能量的量。功率密度为材料传导电流的能力的量度。通常,具有高能量密度(即高储存容量)的装置不快速放电,这意味着它们同时不具有高功率。
在供电应用中强烈需要增加的体积能量密度的锂离子(Li离子)电池。在多处存在所述需要,如用于可远程驾驶的电动车辆(EV)、混合EV和无线电动工具。具体对于EV,可使用Li离子驱动的EV的距离与体积能量密度直接相关。目前的Li离子电池对于功率要求满足或超过美国先进电池联盟(USABC)的目标,但对于体积能量密度仅满足他们推荐目标的60%。为了增加Li离子电池的体积能量密度,重要的是降低Li离子电池中的非活性组分的体积。
图1显示了典型的Li离子电池10,其中活性材料由用于阴极18的氧化钴锂(LiCoO2)和用于阳极部分的石墨20组成。非活性部件由电解质、粘结剂、碳、分离器14和正负集电器12和16组成。图2显示了在放电过程中Li离子如何通过图1中的液体电解质的部分20从阳极传输至阴极电极。使用导电致密电极,可发生液体电解质24中的离子的局部消耗。该现象限制了临界电流密度,在电流进一步增加时这可导致放电容量减小。具有更短的Li离子扩散长度22的大约100微米的更薄的电极可用于常规Li离子电池中以减小该效应。
对于目前的EV应用,通过堆叠许多常规薄电极的层而制得大的电池。这导致在这些电池中大比例的非活性组分。降低昂贵的分离器和沉重的集电器的量将大大降低费用和存在的非活性材料的量。图4显示,使用更厚的电极(如36)的Li离子传输路径38提供了一种直接实际的解决方法,所述解决方法以增加活性材料与非活性材料的比例的方式增加Li离子电池的体积能量密度。然而,图4显示了使用更厚的电极(如36)的问题。由于更长的扩散路径(如38),电解质消耗由于在扩散路径中在复杂微结构中的较差的Li离子电导率而增加。目前的工业制造过程限制了电极构造可获得的改进。
附图说明
图1和2显示了常规锂离子电池的现有技术构造。
图3和4显示了使用厚电极增加锂离子电池的体积能量密度的现有技术构造。
图5显示了具有包括直线孔穴通道的厚的高能量密度电极的电池的一个实施例。
图6显示了具有提供快速锂离子路径的直线孔穴通道的电极的一个实施例的更详细的视图。
图7和8显示了在充电和放电过程中具有直线孔穴通道的电极的扩散路径。
图9显示了制造电池电极的方法的一个实施例的流程图。
具体实施方式
图5显示了具有不同类型的电极的电池的一个实施例。电池50具有集电器52和56、阴极58、与所述阴极相邻的分离器54和与所述阴极相对的与分离器相邻的阳极60。在该实施例中,阴极58由交指型材料条组成。
这些类型的电池电极的例子描述于美国专利7,765,949、7,780,812、7,922,471和美国专利公布20120156364和20120153211中。美国专利7,765,949公开了一种用于在基材上挤出和分配材料的装置,所述装置具有用于接收材料的至少两个通道和用于将材料挤出至基材上的出口端口。美国专利7,780,812公开了具有平面化边缘表面的另一个这种装置。美国专利7,922,471公开了用于挤出材料的另一个这种装置,所述材料具有在沉积于基材上之后不沉淀的平衡形状。美国专利公布20120156364和20120153211公开了一种共挤出头,所述共挤出头将两种或更多种材料的流合并成在基材上的交指型结构,其中存在所述材料的多个条。
图5中的电池50具有阴极,所述阴极具有交指型的材料条。这些条可由公开于如上专利和公布中的共挤出装置(其也可称为印刷头)形成。该结构可由其他类型的装置形成。另外,可使用本文公开的实施例形成其他类型的结构。电池电极由所公开的材料和实施例的用途的仅一个例子组成。
常规挤出方法无法通过将多个粘性的填充粒子的糊剂进料至印刷头而产生导电触点和间隔的交指型条,所述印刷头允许分开的流体流动以交替聚集。由于在如上微共挤出印刷头中的层状流动,因此两种材料通常不混合。图6显示了图5的交指型结构的部分70的分解图。
交指型材料条的材料中的一者形成作为电极结构内的微结构的孔穴通道。用于产生该结构的条和材料的形成将在以下更详细地描述。孔穴通道(如64)起到了用以促进Li离子移动的槽(sink)或源的关键作用。当Li离子通过所述孔穴通道从另一材料62转移时,这些通道产生更短且更少弯曲的路径。这允许使用更厚的电极,这在其他情况中是不可能的。所得阴极具有高功率和体积能量密度。
图7和8显示了用于槽和源位点的扩散路径。图7显示了在充电过程中朝向孔穴通道64通过基体62的扩散路径80。图8显示了在放电过程中从孔穴通道朝向基体62的扩散路径82。朝向基体和来自基体的路径更短,且孔穴通道允许极快的扩散路径,所述基体为阴极中的另一材料的条。
到目前为止,讨论涉及结构,但现在转向制造如这些的结构的方法。图9显示了用以制造交指型电极的一个实施例的总体流程图。通常,方法涉及在90处混合第一活性材料与溶剂,以制得第一电极活性材料。溶剂允许材料变薄以使其更容易地流动通过共挤出装置。所述第一活性材料和第二活性材料可通常为相同的材料,但具有不同的浓度。为了该讨论的目的,第一材料为具有更高浓度的材料。
第二材料在92处以相同的方式制得。然后在94处使用如上讨论的或另一类型的共挤出装置或印刷头将两种活性材料在一起挤出。当材料在基材上的适当位置时,去除溶剂,留下活性材料在基材上的各自位置处。然后通过在98处提供分离器和在100处提供阳极,从而完成电池。
所述方法的目标之一是提供具有间隙间隔的分散的粒度,以用于在具有较低浓度的活性材料的材料条中形成孔穴通道。该方法可以以数种不同的方式进行。本讨论将涉及室温方法和高温方法。对于室温实施例,活性阴极材料可由如下组成:氧化钴锂(LCO)、氧化锰钴镍锂(NCM)、或两者的混合物。其他材料可包括氧化铝钴镍锂(NCA)、氧化锰锂(LMO)、磷酸铁锂(LFeP)。尽管本文的活性材料中的许多为锂,但这些技术可应用于钠离子电池和镁离子电池。阳极材料可为石墨和钛酸锂(LTA)。在该特定实施例中,材料与诸如聚偏氟乙烯(PVDF)的粘结剂混合,且溶剂由n-甲基-2-吡咯烷酮(NMP)组成。也可添加聚氧乙烯油烯基醚(也称为Brij98)形式的分散剂。可添加炭黑以增加电导率。
这些材料形成为两种不同的浆料,其中一种浆料相比于另一种浆料具有更高浓度的活性材料。共挤出装置将浆料沉积于基材上,然后去除溶剂。在室温实施例中,溶剂被干燥出浆料,留下材料在它们各自的位置处。
在高温实施例中,活性材料由LCO组成。用于该实施例中的粘结剂为乙基纤维素树脂,如由陶氏化学公司(Dow Chemical company)制造的EthocelTM。在该特定实施例中所用的溶剂由癸二酸二乙酯和丁基卡必醇的混合物组成。分散剂可由亚麻酸组成。混合物可沉积,然后在高温下烧结以去除溶剂并留下材料。
在任一情况中,所得材料在较低浓度下具有广泛的粒度分布。这允许形成作为电极中的微结构的孔穴通道。所得电极具有高度受控的微结构,所述微结构提供快的锂离子扩散路径,解决电解质消耗问题,从而制得高能高功率电极。相比于常规电池电极,这些电极显示出更好的电化学性能。
相反,由于常规电池电极通常由集电器箔上的糊剂制得,且所述糊剂使用流延成型铺展,因此常规电池电极仅具有简单的单片微结构。

Claims (6)

1.一种电池,其包括:
阳极;
与所述阳极相邻的分离器;和
与所述阳极相对的与所述分离器相邻的阴极,所述阴极包括交指型材料条,所述材料中的一种形成孔穴通道。
2.根据权利要求1所述的电池,其还包括与所述分离器相对的与所述阳极和所述阴极相邻的集电器。
3.根据权利要求1所述的电池,其中所述交指型材料条包括第一材料,所述第一材料具有比第二材料更低的锂浓度。
4.根据权利要求1所述的电池,其中所述阴极包括活性材料,所述活性材料为氧化钴锂或氧化锰钴镍锂。
5.根据权利要求1所述的电池,其中所述阴极包括如下中的一者的活性材料:氧化铝钴镍锂(NCA)、氧化锰锂(LMO)或磷酸铁锂(LFeP)。
6.根据权利要求1所述的电池,其中所述阳极包括交指型材料条,所述材料中的一种形成孔穴通道。
CN201310683501.XA 2012-12-27 2013-12-13 通过共挤出印刷而制得的先进高功率和高能量的电池电极 Active CN103904298B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/727960 2012-12-27
US13/727,960 US9012090B2 (en) 2012-12-27 2012-12-27 Advanced, high power and energy battery electrode manufactured by co-extrusion printing

Publications (2)

Publication Number Publication Date
CN103904298A true CN103904298A (zh) 2014-07-02
CN103904298B CN103904298B (zh) 2016-10-19

Family

ID=49958180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310683501.XA Active CN103904298B (zh) 2012-12-27 2013-12-13 通过共挤出印刷而制得的先进高功率和高能量的电池电极

Country Status (6)

Country Link
US (1) US9012090B2 (zh)
EP (1) EP2749396B1 (zh)
JP (1) JP6210868B2 (zh)
KR (1) KR102055122B1 (zh)
CN (1) CN103904298B (zh)
TW (1) TWI617065B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172763A (zh) * 2017-12-20 2018-06-15 贵州梅岭电源有限公司 一种高功率电极及其制备方法
CN112271270A (zh) * 2020-10-22 2021-01-26 天目湖先进储能技术研究院有限公司 锂离子电池电极及其制备方法和锂离子电池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923714B2 (en) 2012-12-27 2021-02-16 Palo Alto Research Center Incorporated Structures for interdigitated finger co-extrusion
JP6321420B2 (ja) * 2013-03-27 2018-05-09 本田技研工業株式会社 電極およびその製造方法
US10256503B2 (en) * 2014-07-11 2019-04-09 Palo Alto Research Center Incorporated High performance all solid lithium sulfur battery with fast lithium ion conduction
US9696782B2 (en) 2015-02-09 2017-07-04 Microsoft Technology Licensing, Llc Battery parameter-based power management for suppressing power spikes
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
US9748765B2 (en) 2015-02-26 2017-08-29 Microsoft Technology Licensing, Llc Load allocation for multi-battery devices
US9939862B2 (en) 2015-11-13 2018-04-10 Microsoft Technology Licensing, Llc Latency-based energy storage device selection
US10061366B2 (en) 2015-11-17 2018-08-28 Microsoft Technology Licensing, Llc Schedule-based energy storage device selection
US9793570B2 (en) 2015-12-04 2017-10-17 Microsoft Technology Licensing, Llc Shared electrode battery
WO2018008954A1 (ko) * 2016-07-04 2018-01-11 주식회사 엘지화학 양극 및 상기 양극을 포함하는 이차 전지
CN108352506B (zh) * 2016-07-04 2021-08-24 株式会社Lg化学 正极和包含该正极的二次电池
US10347901B2 (en) 2016-11-17 2019-07-09 Nissan North America, Inc. Method of preparing lithium ion battery electrode having improved lithium ion transport
JP7341665B2 (ja) * 2018-02-13 2023-09-11 パロ・アルト・リサーチ・センター・インコーポレーテッド 交互嵌合された指状部の共押出成形のための構造
DE102018114804A1 (de) 2018-06-20 2019-12-24 Audi Aktiengesellschaft Batterie
EP3614463A1 (en) 2018-08-20 2020-02-26 BGT Materials Limited Electrode structure of electrochemical energy storage device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197535A1 (en) * 2001-06-07 2002-12-26 Dudley William R. Coating edge control
CN1470083A (zh) * 2000-10-20 2004-01-21 ��ʡ��ѧԺ 孔隙度受控的网状的电池结构
CN101423682A (zh) * 2007-10-29 2009-05-06 帕洛阿尔托研究中心公司 用于高长宽比结构的共挤出组合物
CN102646834A (zh) * 2010-12-17 2012-08-22 帕洛阿尔托研究中心公司 交指型电极结构及其形成方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195865A (en) 1960-09-09 1965-07-20 Dow Chemical Co Interfacial surface generator
FR1308573A (fr) 1961-05-30 1962-11-09 Dow Chemical Co Procédé de mélange de masses en circulation par formation d'interfaces dans une masse fluide en circulation
US3382534A (en) 1965-08-19 1968-05-14 Monsanto Co Plate type fluid mixer
US3613173A (en) 1967-12-20 1971-10-19 Kanegafuchi Spinning Co Ltd Mix-spinning apparatus
US3583678A (en) 1969-09-15 1971-06-08 Dow Badische Co Interfacial surface generators
US3860036A (en) 1970-11-02 1975-01-14 Dow Chemical Co Variable geometry feed block for multilayer extrusion
WO1984003470A1 (en) 1983-03-03 1984-09-13 Toray Industries Crossed polymer laminate, and process and apparatus for its production
US4511528A (en) 1983-04-13 1985-04-16 American Can Company Flow stream channel splitter devices for multi-coinjection nozzle injection molding machines
DE3831836A1 (de) 1988-09-20 1990-03-22 Kautex Maschinenbau Gmbh Verfahren und vorrichtung zum herstellen von hohlkoerpern aus thermoplastischem kunststoff
US5380479A (en) 1989-12-26 1995-01-10 The Dow Chemical Company Method and apparatus for producing multilayer plastic articles
US5094793A (en) 1990-12-21 1992-03-10 The Dow Chemical Company Methods and apparatus for generating interfacial surfaces
US5667818A (en) 1993-11-05 1997-09-16 Guillemette; A. Roger Extrusion system with balanced flow passage
US5516476A (en) 1994-11-08 1996-05-14 Hills, Inc, Process for making a fiber containing an additive
US5658537A (en) 1995-07-18 1997-08-19 Basf Corporation Plate-type chemical reactor
JPH09183147A (ja) 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd 多層積層体の製造方法
JP2928789B2 (ja) 1996-04-20 1999-08-03 前田建設工業株式会社 層状材料の製造方法
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
US6109006A (en) 1998-07-14 2000-08-29 Advanced Plastics Technologies, Ltd. Process for making extruded pet containers
AU6051099A (en) 1999-09-20 2001-04-24 Goodyear Tire And Rubber Company, The Faster curing rubber articles
US6582807B2 (en) 2000-04-07 2003-06-24 Case Western Reserve University Polymer 1D photonic crystals
AU2001281076A1 (en) 2000-08-07 2002-02-18 Nanostream, Inc. Fluidic mixer in microfluidic system
JP2004516487A (ja) 2000-12-22 2004-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ グリッド構造の製造方法
CA2455819C (en) * 2001-07-27 2013-07-23 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US6837698B2 (en) 2001-12-19 2005-01-04 3M Innovative Properties Company Multilayer coextrusion die and method
US7883670B2 (en) 2002-02-14 2011-02-08 Battelle Memorial Institute Methods of making devices by stacking sheets and processes of conducting unit operations using such devices
JP4042096B2 (ja) 2002-04-12 2008-02-06 富士フイルム株式会社 樹脂成形品の製造装置及び方法
DE60334564D1 (de) 2002-12-02 2010-11-25 Reif Siegfried Coextrusionsverfahren zur herstellung von dünnschicht-elektrochemischen zellen für lithium-polymer-batterien
US6981552B2 (en) 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US8388331B2 (en) 2004-05-31 2013-03-05 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
JP4620526B2 (ja) 2005-05-24 2011-01-26 帝人デュポンフィルム株式会社 多層フィルムの製造方法およびその装置
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US7799371B2 (en) 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US20070279839A1 (en) 2006-05-30 2007-12-06 William James Miller Co-extrusion method of fabricating electrode structures in honeycomb substrates and ultracapacitor formed thereby
US7690908B2 (en) 2006-05-31 2010-04-06 Guill Tool & Engineering Co., Inc. Method and apparatus for forming high strength products
US7780812B2 (en) 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
US7922471B2 (en) 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US8206025B2 (en) 2007-08-07 2012-06-26 International Business Machines Corporation Microfluid mixer, methods of use and methods of manufacture thereof
JP5102056B2 (ja) * 2008-01-31 2012-12-19 株式会社オハラ 固体電池およびその電極の製造方法
JP2009252498A (ja) * 2008-04-04 2009-10-29 Nissan Motor Co Ltd 電池用電極
JP5391630B2 (ja) * 2008-10-03 2014-01-15 日産自動車株式会社 電池用電極の製造方法
US8215940B2 (en) 2009-03-20 2012-07-10 The United States Of America As Represented By The Secretary Of The Army Layer multiplying apparatus
JP2011029075A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2012038539A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 電池
US9004001B2 (en) 2010-12-17 2015-04-14 Palo Alto Research Center Incorporated Interdigitated finger coextrusion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470083A (zh) * 2000-10-20 2004-01-21 ��ʡ��ѧԺ 孔隙度受控的网状的电池结构
US20020197535A1 (en) * 2001-06-07 2002-12-26 Dudley William R. Coating edge control
CN101423682A (zh) * 2007-10-29 2009-05-06 帕洛阿尔托研究中心公司 用于高长宽比结构的共挤出组合物
CN102646834A (zh) * 2010-12-17 2012-08-22 帕洛阿尔托研究中心公司 交指型电极结构及其形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172763A (zh) * 2017-12-20 2018-06-15 贵州梅岭电源有限公司 一种高功率电极及其制备方法
CN112271270A (zh) * 2020-10-22 2021-01-26 天目湖先进储能技术研究院有限公司 锂离子电池电极及其制备方法和锂离子电池

Also Published As

Publication number Publication date
US9012090B2 (en) 2015-04-21
JP2014130812A (ja) 2014-07-10
KR20140085322A (ko) 2014-07-07
TWI617065B (zh) 2018-03-01
JP6210868B2 (ja) 2017-10-11
TW201440282A (zh) 2014-10-16
EP2749396A1 (en) 2014-07-02
US20140186700A1 (en) 2014-07-03
KR102055122B1 (ko) 2019-12-12
CN103904298B (zh) 2016-10-19
EP2749396B1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
CN103904298A (zh) 通过共挤出印刷而制得的先进高功率和高能量的电池电极
CN103746089B (zh) 一种具有梯度结构的全固态锂电池及其制备方法
JP2023011777A (ja) 固体電解質物質を含むイオン伝導性バッテリー
EP2965369B1 (en) Solid-state battery separators and methods of fabrication
US9793537B2 (en) Three dimensional co-extruded battery electrodes
JP2015509269A (ja) 電極および電池
US10115964B2 (en) Advanced Si-C composite anode electrode for high energy density and longer cycle life
US20220278424A1 (en) Electrode with integrated ceramic separator
TWI706586B (zh) 具快速鋰離子傳導之高性能全固體鋰硫電池
CN114597486A (zh) 具有均匀分布的电解质的固态电池组及与之相关的制造方法
US20160329594A1 (en) Solid state battery
US20220166031A1 (en) Solid-state bipolar battery having thick electrodes
JP2011175905A (ja) 全固体型リチウムイオン二次電池
JP5553169B2 (ja) リチウムイオン二次電池
US9882200B2 (en) High energy and power Li-ion battery having low stress and long-term cycling capacity
CN112335088A (zh) 锂离子二次电池及其制造方法
US20180076441A1 (en) Electrode having local porosity differences, method for manufacturing such an electrode and for the use thereof
US20230029742A1 (en) Gradated integrated ceramic separator
KR20210011041A (ko) 이차전지 전극용 집전체
Cobb Modeling Co-Extruded Cathodes for High Energy Lithium-Ion Batteries
KR20160047001A (ko) 단일 쉬트형 전지 및 그에 사용되는 전극 어셈블리

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant