TWI403611B - An apparatus for manufacturing a carbon film using plasma CVD, a method for manufacturing the same, and a carbon film - Google Patents

An apparatus for manufacturing a carbon film using plasma CVD, a method for manufacturing the same, and a carbon film Download PDF

Info

Publication number
TWI403611B
TWI403611B TW094138909K TW94138909K TWI403611B TW I403611 B TWI403611 B TW I403611B TW 094138909 K TW094138909 K TW 094138909K TW 94138909 K TW94138909 K TW 94138909K TW I403611 B TWI403611 B TW I403611B
Authority
TW
Taiwan
Prior art keywords
coil
film
carbon
voltage
carbon film
Prior art date
Application number
TW094138909K
Other languages
English (en)
Inventor
羽場方紀
Original Assignee
日本普瑞倫有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005000803A external-priority patent/JP4676764B2/ja
Priority claimed from JP2005000800A external-priority patent/JP2006188382A/ja
Priority claimed from JP2005088813A external-priority patent/JP2005307352A/ja
Priority claimed from JP2005115558A external-priority patent/JP4917758B2/ja
Priority claimed from JP2005115560A external-priority patent/JP4925600B2/ja
Application filed by 日本普瑞倫有限責任公司 filed Critical 日本普瑞倫有限責任公司
Application granted granted Critical
Publication of TWI403611B publication Critical patent/TWI403611B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

使用電漿CVD來製造碳膜之裝置、其製造方法以及碳膜
本發明係關於使用電漿CVD來製造碳膜之裝置、其製造方法以及碳膜構造。
使用電漿CVD(Chemical Vapor Deposition)法能在基板上形成碳膜。電漿CVD法,通常是在控制氣壓下導入原料氣體。並在相對向之一對平板電極上施加直流電力而產生電漿,且將基板加熱。藉由控制朝基板方向的離子能量,而在基板上形成碳膜(參照專利文獻1)。
專利文獻1:日本特開平11-50259號公報
這種電漿CVD法,係形成高氣壓。且用來產生電之電壓為高電壓。其成膜時間長,為了在大面積的基板上成膜,必須使用大面積的平板電極。為了在長形線材上形成碳膜,必須具有長形電極面。因此裝置變得大型化,而必須採用高成本的裝置。特別是,相較於線材的成膜面積,其電極面積增大的程度大很多,將產生許多電力的浪費。再者,面對截面圓形的線材時,將無法在其全周形成均一的碳膜。
本發明之技術,係經由以下步驟,即在真空室內配置局部具有開孔的筒狀體之步驟,在筒狀體的內部配置基材之步驟,在真空室導入碳膜成膜用氣體之步驟,對筒狀體施加電漿產生用的電壓之步驟;來在該筒狀體內部產生電漿,並利用該電漿來在基材表面形成碳膜。
較佳為上述電壓係高頻電壓。
較佳為上述電壓係負的直流電壓。
較佳為,上述電壓係在負的直流電壓上重疊高頻電壓而成之電壓。
上述電壓中之直流電壓,其施加形態沒有特別的限定,例如包含連續施加的情形及脈衝狀施加的情形。
在筒狀體的局部具有開孔,係包含在筒狀體之任一部分設置開孔。例如包含筒狀體一端側或兩端側之開口、或周壁之開孔。
關於上述筒狀體周壁上之開孔,係包含螺旋狀、網狀、狹縫狀者。筒狀體的截面包含矩形、圓形等各種形狀。
筒狀體並不受其名稱「筒」的限定,箱狀物也包含於其中。
基材只要是能形成碳膜者即可,其形狀沒有任何的限定,包含線狀、板狀、筒狀等各種形狀。
碳膜係包含碳奈米壁、碳奈米管、碳奈米纖維、碳金屬奈米樹(tree)等。
本發明中,筒狀體內部空間所產生之電漿具有高電子密度。就算不在高氣體壓力下仍可具有適當的濃度及活性度。因此,能以低氣體壓力來形成碳膜。又筒狀體內產生之電漿為高密度,因此以低電力即能高效率地形成碳膜。
基材係配置於筒狀體之內部空間,當基材為長形線材的情形,筒狀體係沿線材的長方向延伸,而在線材表面形成碳膜。因此,可抑制電力之浪費,且能高效率地成膜。藉由將基材配置於筒狀體的內部空間,可在基材整個周面形成均一膜厚的碳膜。
依據本發明,能以低成本、低消耗電力來形成均一膜厚的碳膜。
以下,參照圖式詳細說明本發明之較佳實施形態。
圖1係概略顯示本發明實施形態之碳膜製造裝置。圖1中,係在虛線所示的真空室10內設置線圈11。線圈11係周壁呈螺旋狀的筒狀體。線圈11也能稱作局部設有開孔的筒狀體。線圈11的材質包含銅、鎳、不銹鋼、碳等等。線圈11的捲繞直徑、長度等,可依碳膜成膜對象之基材大小等做適當的選擇。基材的例子包含導線性的線材。線圈11的內部空間呈縱長之大致圓筒狀。
線圈11的兩端連接於高頻電源12。高頻電源12的電力頻率例如為13.56MHz、4MHz、27.12MHz、40.68MHz等等。在線圈11的內部空間,沿線圈11的縱長方向配置線材13。線材13配置於線圈11內部空間之大致中央,俾在其整個周圍以均一的膜厚形成碳膜。
線材13的材質包含鎳、不銹鋼、鐵等等。線材13的直徑沒有特別的限定。例如為數mm,可為1~5mm。加熱用電源14係連接於線材13的兩端間。電源14通電所造成之線材13的加熱溫度在700~1000℃的範圍,較佳為800~1000℃。加熱溫度在800℃以上時可縮短成膜時間並提昇膜品質,故較佳。在將線材13加熱至800℃以上的狀態,將烯烴氣體等的原料氣體在控制流量下以既定氣體壓力供應至真空室10內。原料氣體包含CH4 /H2 、CH4 /Ar、CH4 /O2 等等。將處理後的氣體排出至真空室10外。
CH4 /H2 氣體中CH4 的濃度例如為90%;CH4 /Ar氣體中CH4 的濃度例如為20~60%;CH4 /O2 氣體中CH4 的濃度例如為95%。也能使用C2 H2 等其他的烯烴氣體。
真空室10內的氣壓為0.1~50Torr。較佳為0.1~10Torr,更佳為0.5~50Torr。
高頻電源12將100W左右的高頻電力供應至線圈11,藉此使線圈11內產生電漿15。電漿15之產生區域,依本發明人的實驗例為直徑50mm、長100mm的圓柱狀。這時的氣體壓力為0.75Torr左右,線材13的加熱溫度為800℃左右。如此可在線材13周圍形成碳膜,成膜所需時間為約30分。
依以上的實驗,電漿15具備相當高的電子密度,故能以低氣體壓來進行碳膜的成膜。以100W左右的低電力將上述電漿維持於高密度。藉由增大供應電力能提高碳膜的成膜速度。導入真空室10內的原料氣體較佳為CH4 。CH4 能高效率地產生電漿而形成高密度的碳膜形成區。藉此能達成短時間的成膜。
藉由在線圈11內插設線材13,可容易地在線材13全面(整個周面)形成碳膜。
要在長形線材13表面成膜時,可配合線材13的長度將線圈11加長。當線材13長度大於線圈11高度時,藉由使線材13相對於線圈11上下移動,或相反地使線圈11相對於線材13上下移動,即可在線材13上形成碳膜。
如圖2所示,當線材13長度大於線圈11上下方向的高度時,可將複數個線圈11串接成線材13可插入各線圈中,藉此,各線圈11產生的電漿15彼此會相重疊,而能在整個線材13上形成碳膜。當然也能將線圈11橫向配置。
如圖3所示,線材13包含:平板狀線材16,由複數根線材所捆成、或絞合成之線材17,線圈狀的線材18等等。
其次說明特性評價。特性評價係包含電子放射、SEM(掃描型電子顯微鏡)像、拉曼散射分光法等等。
如圖4所示,電子放射係在真空中以隔著1mm空間S的方式配置靶(陽極)及形成有碳膜之線材13,以線材13為陰極,在靶19與線材13間施加直流電壓來測量其電流。
圖5中,縱軸代表電壓,橫軸代表電流。依圖4的構成,其臨限值電流為10A乃至8A,電壓為970V。通常的放射特性為4V/μ m(=4KV/mm),因此可知本實施形態之970V/mm乃相當的優異。
觀察線材13的SEM像時,可知其成長出放射特性優異的結晶。當奈米壁之結晶未充分成長時,其放射特性變差。結晶大小較佳為1~10 μ m,小於1 μ m時其放射特性變差。
拉曼散射分光法之測試下,通常R=I1 5 8 0 /I1 3 5 0 =4~8即合格,本實施形態之R=5~8故獲得相當好的結果。I1 5 8 0 :在1580cm 1 之峰值(G頻帶)I1 3 5 0 :在1350cm 1 之峰值(D頻帶)
G頻帶係石墨之E2g振動模式,D頻帶,係sp2 微晶結或失序sp2 成分所產生者。因此,R值越大,結晶性越佳。
若依此方式來製造碳膜,將能以0.1~50Torr之低氣體壓力、300W之低電力、30分之短時間來在線材13上形成碳膜。
藉由將線材13插通於線圈11內,將容易在線材13的全周面以大致均一的膜厚形成高品質的碳膜。
線圈11之施加電力300W、成膜時間30分鐘僅為一例。關於電力、成膜時間,雖會依線圈的材質而改變,但相較於習知技術,實施形態之施加電力更低、成膜時間更短。
成膜於線材13上之碳膜,係包含碳奈米壁、碳奈米管、碳奈米纖維等等。
在線材13上形成碳奈米壁之前,例如先在CH4 /Ar氣體中以1000℃加熱線材13,藉此在線材13表面形成碳化物後,再依上述方法來形成碳奈米壁。
藉由如此般先形成碳化物,可製作出更強固的碳奈米壁。
在上述製造裝置中,能用Cu製線圈11並依下述條件來在線材13上形成碳膜。高頻電力:200W線材之加熱溫度:650℃氣體流量CH4 :2ccm H2 :18ccm氣體壓力:100Pa成膜時間:30分鐘
依以上成膜條件來形成碳膜之線材13,由於電場電子放出特性良好,故適用於薄型照明器具、顯示器、或液晶顯示裝置的背光單元等的線狀光源。
以下,參照圖6及圖7來說明使用形成有碳膜的線材13之線狀光源一例。
圖6係例如適用於背光單元等的線狀光源之立體圖,圖7係其截面圖。
該線狀光源20具備筒狀的真空密封管21。在真空密封管21內配置陽極部22。在陽極部22正上方,呈對向配置有陰極部(形成有碳膜之線材23)。在真空密封管21的內部,例如維持10 6 Torr左右的真空度。
陽極部22係具備:玻璃基板22a,形成於玻璃基板22a上之Ito等所構成的陽極22b,以及形成於陽極22b上之螢光體22c。
陽極部22,在其長方向之兩端部,係突設有絕緣性的支持板28和其形成一體。連接於透明電極22b之導線24與連接於線材23之導線25,係藉由穿過支持板28而受其支撐。在線狀光源20之陽極部22與線材23之間,當電源26施加直流電壓時,線材23之電子會放出至真空中。該電子受陽極22b吸引而撞擊螢光體22c,藉此激發螢光體22c而產生發光。
(其他實施形態)
碳奈米管等的碳膜,係在顯示器、燈具、微元件、電子鎗等各種用途方面相當受矚目的材料。碳膜之成膜法包含氣相成長法。在氣相成長法中,為了進行碳奈米管之成長,必須先在基材上形成觸媒。
相對於此,在本實施形態,不須先對基材賦予觸媒金屬即可形成碳膜。
圖8顯示本實施形態之製造裝置之概略構成。在真空室31內設有線圈32。線圈32例如由Cu、Ni、不鏽鋼、碳等所構成。線圈32連接於高頻電源33。在線圈32內配置基材(待形成碳奈米管等的碳膜)。線材34直徑例如為1mm左右。線材34較佳為含有金屬(當作碳膜形成觸媒)。該金屬包含不鏽鋼、Fe、Ni等等。
線材34連接於加熱用電源35。藉由該電源35將線材34加熱至700~800℃左右。線材34的形狀不拘直線狀,也能是線圈狀或波狀,也能是複數根線材燃合而成者。
在真空室31內設有氣體導入部36及氣體排氣部37。碳系之原料氣體,及載體氣體、例如CH4 /H2 、CH4 /Ar、CH4 /O2 ,係由氣體導入部36導入。處理後的氣體係由氣體排氣部37排出。
氣體壓力(全壓)較佳為10~1000Pa左右。線材34連接於直流電源38。將負的直流電壓施加於線材34。
本實施形態,不需要在線材34(待形成碳膜)上先形成觸媒金屬之步驟。將線材34插通於真空室31內之線圈32內。
接著,對線材34進行通電加熱。另一方面,將窅的直流電壓施加於線材34。並對線圈32供應高頻電力。在控制原料氣體等的流量下將其從氣體導入部36導入,藉此在線圈32內產生電漿39。利用該電漿39來激發原料氣體,而在線材34外表面形成碳膜。
茲說明不需在線材34上先形成觸媒金屬的理由。
線材34上施加有負的直流電壓。
因此,線材34的表面會被濺蝕。
被濺蝕之線材34所含的觸媒金屬之微粒子,由於氣體壓力較高,故被拉向線材34側而附著於線材34表面。
將該附著的微粒子當作觸媒,即可進行碳奈米管等碳膜的成長。
其次,將成膜條件、特別是直流偏壓電壓做改變,評價其成膜狀態及電子放出特性。
關於電子放出特性,如圖9所示,在真空中,以與陽極40間隔著1mm間隙的方式配置形成有碳奈米管之線材34。以線材34為陰極施加直流電壓。測量5V/μ m下的放出電流。
表1顯示成膜條件、電子放出特性、依SEM像之膜狀態等的評價結果。
在表1中,輸入係代表供應線圈32之高頻電力,電壓及電流代表線材34之通電加熱用的電壓及電流,時間代表成膜時間,溫度代表線材溫度,壓力代表CH4 及H2 的全壓,電子放出特性代表上述般測定出的放出電流。
圖10A、10B~17A、17B分別顯示各條件所對應的SEM像。
條件No.1,係未施加負直流電壓的條件,可發現小幅的碳奈米壁(CNW)成長。5V/μ m下的電子放出電流未發生。
條件No.2~5,係負直流電壓的絕對值變大的條件,隨著負直流電壓之絕對值增大,碳奈米壁(CNW)之成長增大。進一步會形成石墨。可看出5V/μ m下之電子放出電流的增加。
條件No.6~8,其直流電壓為-160V,可看出碳奈米壁(CNW)之成長。
條件No.7、8,可看出5V/μ m下之電子放出電流。負直流電壓之絕對值以不超過100為佳。
如此般,藉由在對線材34施加負直流電壓下進行電漿CVD,就算在未先形成觸媒之線材34上也能形成碳奈米管。
值得注意的是圖17A、17B。圖17C係顯示碳奈米管之碳膜的概念。碳奈米管之單體具有大的高寬比,因其頂端之搖動及消耗等會有發光不均的情形,而容易發生亮度變化。當碳奈米管形成多數密集時,會形成電場不易集中、或電場無法集中的狀態。於是,將多數個碳奈米管分組,而將複數碳奈米管所聚集成之碳纖維束當作一組。
然而,習知之碳纖維束,在一束內之碳奈米管,由於從基端到頂端均形成密集,就算碳纖維束本身容易產生電場集中,但比起單體的情形其電場還是不易集中。
圖17C所示之碳纖維束,雖然在基端形成密集,但頂端則像花瓣般展開而不呈密集狀。因此,像單體碳奈米管般極容易產生電場集中,但另一方面又不像單體,因其為整束,故因頂端之搖動及消耗等造成之發光不均情形、或亮度變化等皆不易發生。圖17C之碳膜製造條件為CH4 :2ccm,H2 :18ccm,基板溫度650℃,壓力100Pa,交流電力200W,偏壓100V,成膜時間30分鐘。
當待形成碳奈米管之線材34較長而超出線圈32的電漿產生區域時,可使線材34相對於線圈32做移動,如此即可在整個線材34長度形成碳奈米管。
如圖18所示,當線材34比線圈32長時,沿線材34的長方向並設複數個線圈32。藉此,能使各線圈32產生之電漿彼此重疊,而在線材34全體進行成膜。
如圖19所示,將線圈32長方向的中央部分32a之捲繞直徑加大、將兩端部分32b之捲繞直徑縮小,可將電漿高效率地封閉於中央部分,如此可提高成膜速度。
(其他實施形態)
如圖20所示,將負直流電壓施加於線材41(適用於圖20所示之電容耦合型或圖21所示的感應耦合型之電漿CVD裝置)。線材41能用加熱器42等進行間接加熱。也能僅在碳奈米管成膜之初期階段進行直流電壓之施加。
(其他實施形態)
習知使用電漿之製造裝置,係在真空室外周捲繞線圈。藉由使來自高頻電源之電流流過該線圈,以在真空室內產生電漿。該製造裝置,來自高頻電源之高頻電力必須透過阻抗匹配電路來供給至線圈。
因此,為了使用電漿產生裝置來在長形線材表面成膜,必須設置多數個阻抗匹配電路來使線圈延伸而形成長形的電漿。因此,其成本極高。
本實施形態係提供一製造裝置,其不須設置阻抗匹配電路即可使線圈延伸而形成長形的電漿。
本實施形態之製造裝置,係在經減壓之電漿產生用氣體環境氣氛下之真空室內,配置導電性的筒狀體(在周壁之至少局部穿設開孔)。並對該筒狀體的一端側施加直流的負電壓。具有開孔之筒狀體係包含:周壁呈螺旋狀之線圈,周壁呈網狀或狹縫狀之筒狀體。筒狀體之形狀不拘,只要其內部空間能封住電漿即可。
在本實施形態,係在筒狀體的一端側施加直流的負電壓。在筒狀體的另一端側未連接直流電源。線圈之另一端側例如形成浮接狀態。依據該構成,能在線圈的內部空間產生電漿並將其封住。
這種製造裝置,就算將線圈延伸,也不須在線圈的延伸線上設置阻抗匹配電路。因此,線圈之延伸很簡便,能簡單且低成本地獲得製造裝置。此外,能穩定且長期地產生長形的電漿。
當該製造裝置適用於在長形成膜對象表面形成碳膜的情形,只要配置成膜對象的長度來延伸線圈即可。因此,其成膜費用低。用該製造裝置在線材表面形成電子放出用的碳膜來當作電子放出用陰極,藉由在該陰極與陽極之間施加電壓來放出電子。當該電子撞擊螢光體即可激發該螢光體而使其發光。
該製造裝置可作為電漿產生裝置,而適用於電漿CVD裝置、電漿蝕刻裝置、電漿沉積裝置等利用電漿來進行處理的裝置。
以下,參照所附圖式來說明本實施形態。
參照圖22,製造裝置50係具備不鏽鋼等金屬製的圓筒形真空室52。真空室52本身可為金屬製。真空室52之外周壁面,基於安全性的觀點能用絕緣材料被覆,其內周壁面可為金屬製。真空室52之金屬材料沒有特別的限定。
真空室52呈接地。在真空室52設有氣體導入口54及氣體排出口56。電漿產生氣體係包含活性氣體與非活性氣體。活性氣體包含氫,非活性氣體包含氬氣。真空室內壓力可為10Pa~10000Pa範圍的壓力。
在真空室52內部配置金屬製圈58。線圈58材料沒有特別的限定,線圈58材料包含不鏽鋼。
線圈58一端連接於直流電源60的負極而施加負的直流電壓。直流電源60的電極接地。藉此,真空室52內的電位與直流電源60之正電位相同。
線圈58的另一端呈浮接。線圈58的另一端不一定要呈浮接。線圈58的另一端也能連接於其一端。線圈58的線徑沒有特別的限定,例如2mm~25mm。線圈58的線間間隔沒有特別的限定,例如2mm~20mm。線徑、線間間隔能依實驗等來做適當的決定。
直流電源60較佳為電壓可變型。直流電源60的電壓在100V~200V的電壓範圍。直流電源60的電壓能依實驗等來做適當的決定。
具備以上構成之製造裝置50,係將真空室52內減壓。由氣體導入口54導入電漿產生用氣體之氫氣。將直流電源60之負直流電壓施加至線圈58。藉此在線圈58的內部空間產生電漿64。
圖23A、23B係本發明人製造之配置於實驗室內的本實施形態對應製造裝置50在線圈58內部空間產生電漿64的樣子之照片。照片內雖未標示出符號,但可以很清楚地看到線圈58、線材62及電漿64。
茲說明使用該製造裝置50來形成碳膜的方法。
在線圈58內部配置導電性的線材62。將交流電源63連接於線材62兩端來進行線材62之加熱。由氣體導入口54導入H2 氣體與CH4 氣體。將真空室內減壓,將直流電源20的負電位施加於線圈58。藉由該電位之施加使線圈58的內部空間產生電漿64。藉此,CH4 氣體會分解,而在線材62表面形成碳膜。
圖23C之SEM(掃描型電子顯微鏡)像中,係顯示圖22的製造裝置製造出之碳膜狀態。製造條件採CH4 :5ccm,H2 :300ccm,基板溫度750℃,壓力2000Pa,直流電力3000W,偏壓-120V,成膜時間15分鐘。
圖23C之照片1,係陽極與陰極間之施加電壓3.0Kv、倍率×1000倍之電子影微鏡照片。照片2係照片1放大4300倍者。圖23d概念顯示該照片所示的碳膜構造。圖23E概念顯示圖23D之針狀碳膜。如圖23C~23E所示,第1膜F1為網狀之碳奈米壁。第2膜F2被第1膜包圍。第2膜F2係呈其前端為電子放出點之針狀。第2膜F2之前端高於第1膜F1。第3膜F3是以纏繞於第2膜F2下部的方式來成膜。
第1膜F1係連續形成於基板S上,從俯視方向視時,其整體大致呈網狀。第1膜F1高度(H)為約10nm以下,寬(W)為4~8nm左右。第2膜F2具有比第1膜F1高之高度(h),例如高60 μ m左右。第3膜F3,由側面視大致呈逐漸展開狀,例如是呈圓錐狀。但不是指幾何學上完全的圓錐形,僅是為便於理解而以其為代表,實際上包含橫向展開狀態、螺旋狀態等的各種形狀。總之,第3膜F3以其寬廣的底面積和基板S接觸,藉此能將第2膜F2強固地支撐於基板S,且能確何對基板S之電氣接觸。
在第2膜F2前端會產生電場的強集中。在第1膜F1則不產生電場集中。藉由第1膜F1的隔離,使第2膜F2彼此隔著適當間隔(D)、例如100 μ m左右,以避免彼此的電場集中作用受阻礙。第2膜F2之聚集程度,並不像習知碳奈米管那麽密集,因此第1膜F1對第2膜F2電場集中之影響極少。
茲說明該碳膜構造之作用。
(1)第2膜F2受第3膜F3的支撐而使其具有極安定的姿勢,因此能穩定地放出電子。
(2)第2膜F2形成高配向,具有良好的電子放出特性。因此,能均一地激發場致發射燈之螢光體而使其發光。故能使場致發射燈均一地發光。
(3)第2膜F2被第3膜F3強固地支撐在基板上,就算具有高的高寬比,仍可對場致發射燈提供安定性佳的電子放出源。
(4)雖第2膜F2的直徑小,但藉由第3膜F3,能與流通電流之基板形成良好的電氣接觸。
(5)第2膜F2經由第1膜F1來控制彼此的間隔,故能限制第2膜F2的密集度。因此,能使第2膜F2發揮更佳的電場集中性能。
第2膜F2中福勒諾漢(Fowler-Nordheim)式之電場集中係數β,當任意位置(實施形態為基部)的半徑為r、由該位置至前端之高度為h時,係以h/r表示。第2膜F2的半徑從任意位置往前端越來越小。上述情形亦包含,在從任意位置到前端之間,就算有局部半徑較大的部分,整體而言仍是越往前端半徑越小的情形。又在從任意位置到前端間之中途部分,並不限於筆直的情形,中途部分也能是曲線狀、折線狀等的變形,只要整體而言越往前端半徑越小即可。上述說明中之任意位置,並不限於碳膜之基部,也可以是從中途位置起。
具有上述構成之第2膜F2,當施加電壓低時,半徑最小之前端部分會成為最大的電場集中部分,而進行電場放射。當該部分之電場放射飽和時,會邊維持該部分之電場放射,邊擴大放射半徑,而在半徑變大的部分進行電場放射。
因此,即使施加電壓上昇而造成前端部分之電場放射飽和時,仍能從其他部分進行電場放射。藉此可形成電場放射不易飽和之碳膜。
福勒諾漢(Fowler-Nordheim)式,係將電場放射以放出至真空中之電流密度來描述之式子,該式子能用I=sAF2 /Φexp(-B3 / 2 /F) F=β V來表示。
其中,I代表電場放射電流,s代表電場放射面積,A代表常數,F代表電場強度,Φ代表工作函數,B代表常數,β代表電場集中係數,V代表施加電壓。電場集中係數β,係將施加電壓V依前端部分的形狀及元件之幾何形狀而轉換成電場強度F(V/cm)之係數。
圖24顯示其他製造裝置50的構成。該製造裝置50係將直流電源60的正極設於真空室52內部。該製造裝置50也能在線圈52的內部空間產生電漿64。
(其他實施形態)
本實施形態係和新穎碳膜構造(可命名為金屬奈米樹)有關。
碳奈米管之構造係呈高寬比大的柱狀,利用其前端之針狀容易在低電場下產生電場集中,其適用於電場放射型之電子放出源。
該電子放出源,係將碳奈米管配置於陰極側。在陰極對面配置具有螢光體之陽極。在陰極與陽極之間施加電壓。藉此使電場集中於碳奈米管前端,而由碳奈米管前端放出電子。
所放出的電子會撞擊螢光體而激發其發光。這時,螢光體僅在受電子撞擊之小區域(發光點)產生激發發光。為了提昇發光點密度、亦即為獲得高密度發光,必須使碳奈米管前端呈高密度地聚集。
碳奈米管因其高寬比大,當前端形成高密度聚集時,難以產生電場集中。
碳奈米管因其高寬比大,故阻抗值高。因此電流量不足而容易影響電子放出性能。為維持良好的電子放出性能,必須較大的消耗電流量。
本實施形態,係提供一具有高密度的電子放出點、高寬比大、高導電性、低消耗電流等各種優點之碳膜構造(碳金屬樹)。
該碳膜構造,係具有像樹幹狀延伸之碳奈米管(幹狀碳奈米管),並從該幹狀碳奈米管像樹枝般以高配向分枝出多數根碳奈米管(枝狀碳奈米管)。
這些碳奈米管之內外表面均有金屬存在而使整體呈樹狀。
枝狀碳奈米管構成容易產生電子集中之電子放出點。
因此,上述碳膜構造係構成能以高效率放出電子之冷陰極電子源。此外,在碳奈米管內的空間部含有金屬而使導電性提昇。藉此能提昇電流供給性能而提高電子放出性能。
該內含之金屬,係選自碳奈米管成長用金屬觸媒之鐵、鎳、鈷等磁性金屬中1種以上或其等的合金。藉此能適用於磁記錄材料、滑動材料、耐摩耗性材料、半導體材料等等。
以往,並未發現能使金屬內含於碳奈米管之實用方法。例如有一種單離方法,係在摻有金屬觸媒之碳電極間進行電弧放電,而從所生成之碳衣(煤)分離出碳奈米管。該單離方法所得之內含金屬量很少。此外尚有一方法,係將碳奈米管前端開口,而由該開口注入熔融金屬。該注入方法所得之內含金屬量也很少。
本實施形態之碳膜構造,係內含有多量之金屬,能將奈米級的金屬安定地保持,能發揮其導電性、磁特性而應用於許多產業領域,例如能應用於磁碟等之記憶媒體。
本實施形態之碳膜構造,係在幹狀碳奈米管上分支出高配向之枝狀碳奈米管。因此,內含於幹狀碳奈米管之金屬也呈高配向,而具有安定的磁特性。
本實施形態之碳膜構造,當應用於冷陰極電子源時,可提供高發光點密度、高電子放出性能之冷陰極電子源。此外,由於內含有金屬,故能應用於磁記錄材料、滑動材料、耐摩耗性材料、半導體材料等。
茲說明上述碳金屬奈米樹之製造例。
將含有碳奈米管成長用金屬觸媒之金屬線圈配置於真空室內。該金屬線圈之匝數,可為1匝或複數匝。在該金屬線圈內配高電阻之金屬線材。將真空室減壓後在該真空室內導入氫氣與烴系氣體之混合氣體。將金屬線材之電位維持於窅電位並通電使其發熱。在金屬線圈兩端間施加高頻電壓,而在該金屬線圈周圍產生混合氣體所造成的電漿。藉由該電漿,而在金屬線材表面形成碳金屬奈米樹(實施形態之碳膜構造)。
上述金屬線圈也能僅由觸媒金屬來構成。金屬線圈,也能使用在金屬上形成觸媒金屬膜而成者。觸媒金屬較佳為Fe、Ni、Co。其他的觸媒金屬包含Y、Rh、Rd、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Lu。金屬線圈的材料可使用:日本工業規格JIS之18-8不鏽鋼(SUS304)等的鎳系不鏽鋼,18鉻不鏽鋼(SUS430)、13鉻不鏽鋼(SUS410)等的鉻系不鏽鋼。
金屬線材可使用鎳鉻合金線。金屬線材之發熱程度為500~1000℃左右。金屬線材能維持在-20V~-400V左右的負電位。
真空室的壓力可為10Pa~1000Pa。烴系氣體不限於甲烷,也能選擇乙炔、乙烷等的烴系氣體。
經由以上步驟,在金屬線圈周圍會生成混合氣體所造成之電漿空間,該電漿會將金屬線圈中的觸媒金屬濺擊出,該濺擊出之金屬粒子會附著於金屬線材表面。當觸媒金屬附著於金屬線材時,利用該觸媒金屬之觸媒作用會在金屬線材表面進行碳奈米管之成長。該成長中,在進行幹狀碳奈米管成長的同時,也會進行枝狀碳奈米管之分支成長。
另一方面,在進行碳奈米管成長的同時,觸媒金屬會被包入碳奈米管內之空間部。這時,碳奈米管之金屬線材側係維持負電位,且在金屬線圈上施加有高頻電壓,幹狀碳奈米管則朝該電壓施加所形成的電場方向(與等電位面垂直的方向)配向。在此同時,枝狀碳奈米管也朝相同方向配向。如此般,能在內含金屬之幹狀碳奈米管之複數部位呈高配向分支出枝狀碳奈米管,而獲得具有樹狀構造之碳膜構造。
圖25~圖30顯示經以上步驟所製造出的碳膜構造之電子顯微鏡照片。其製造條件為:真空室壓力100Pa,金屬線圈使用18-8不鏽鋼(SUS304),金屬線材使用鎳鉻合金線,鎳鉻合金線通電後之發熱溫度700℃,鎳鉻合金線之負電位為-100V,混合氣體係使用氫氣與甲烷氣體。
圖25為倍率5000倍的照片,可看出在幹狀碳奈米管分支出多數個高配向之枝狀碳奈米管。圖26為倍率10000倍的照片,可看出在幹狀碳奈米管分支出多數個高配向之枝狀碳奈米管。圖27的照片,如照片中100nm刻度可明顯看出,在幹狀碳奈米管分支出多數個高配向之枝狀碳奈米管。圖28的照片,如照片中100nm刻度可明顯看出,在幹狀碳奈米管分支出多數個高配向之枝狀碳奈米管。圖29的照片,可看出在幹狀碳奈米管分支出多數個高配向之枝狀碳奈米管。圖30的照片,可看出在幹狀碳奈米管分支出多數個高配向之枝狀碳奈米管。且能看出在幹狀碳奈米管內部含有金屬。
(其他實施形態)
能進行平面展開照明之面狀光源,係包含直下方式與邊緣照明方式。所謂直下方式,係將面狀光源配設於液晶顯示裝置之正下方。所謂邊緣照明方式,係在液晶顯示裝置正下方配設導光板,而在導光板之端面配設面狀光源。近年來流行之薄型個人電腦、薄型電視等,其主流已從直下方式轉為邊緣照明方式。在邊緣照明方式,若射入導光板之光入射效率差,將難以達成高亮度化。在直下方式,由於能直接將光射入液晶顯示裝置,其光入射效率極高。
直下方式之面狀光源係包含場放射燈,其係配置陽極(在後面板與前面板間之真空密封內部形成螢光體而構成)、及對向配置於陽極之陰極而構成。
該場放射燈,係將其前面板側安裝於液晶顯示裝置的背面,透過前面板而將其內部的發光射到液晶顯示裝置。該前面板係由玻璃等的透明構件構成,以提高光線朝液晶顯示裝置之人射效率。
以上構造之場放射燈,其前面板會因螢光體發光之發熱而產生熱膨脹。這時,因前面板由玻璃材構成,陽極部由金屬材構成,前面板與陽極部之熱膨脹量不同。如此會在前面板產生熱應力。這種熱應力,加上面狀光源反覆進行之發光與消光、其內部的真空壓、以及前面板之薄型構成等原因,會導致前面板之變形。當前面板變形時,可能會使亮度均一性變差,甚至會造成破損。
本實施形態能有效防止前面板之變形或破損。本實施形態,在前面板與陽極部間設有熱應力緩和材(用來緩和前面板所產生之熱應力)。熱應力緩和材較佳為具有層狀構造之緩和材,例如為雲母。當前面板之熱應力與陽極部之熱應力在平面方向彼此朝不同方向拉伸時,利用層狀構造能緩和該熱應力。雲母係包含鈉雲母、紅雲母、白雲母、黑雲母、金雲母、鐵雲母等的天然雲母,但會受熱放出水而失去OH基,因此較佳為用F取代OH之人工雲母。
熱應力緩和材可吸收前面板與陽極部間之熱膨脹收縮量的差異。結果,就算反覆進行發光與停止發光,又就算內部為真空且前面板採薄型構成,仍能防止前面板受熱應力而產生變形。
陽極部是被耐熱性的支持構件所支持,將該耐熱性支持構件以可移動的狀態設於側板。耐熱性支持構件可使用石英玻璃、天帕庫斯玻璃、派克爾玻璃、尼奧謝拉姆玻璃、派勒斯玻璃(均為登記商標)等等。這些玻璃,對劇冷、劇熱之耐久性良好,耐衝擊性高,且強度優異。以支持構件來支持陽極部時,前面板不會受其與陽極部間的熱應力(因熱膨脹收縮量之差異而產生)之影響,結果,和上述同樣地,能防止前面板受熱應力而產生變形。
以下,參照所附圖式詳細說明本實施形態之場放射燈。
參照圖31~圖34說明本實施形態之場放射燈。場放射燈70具有面板盒,該面板盒之真空密封空間,係由後面板72、與後面板72相對向之前面板74、從後面板72周圍垂直豎起之側面板76所包圍。
後面板72在被側面板76包圍的內部形成淺底的凹部,該凹部被前面板74密封住。
為方便說明,圖31及圖32中標示出方向。圖31以上下方向為縱方向,圖32以垂直貫通紙面的方向為縱方向。且以正交於縱方向之圖31、32中的左右方向為橫方向(平面內之一方向)。
圖31以垂直貫通紙面的方向、圖32以上下方向為平面內另一方向(後面板72與前面板74之彼此間的深度方向)。
縱方向尺寸較短時會形成薄型的面狀光源,平面尺寸較大時該面狀光源之光出射面積變大。
後面板72及前面板76係由樹脂等的絕緣材料成形出。
後面板72與側面板76的內面較佳為藉由蒸鍍鋁等來施以光反射處理。
前面板74係由透明或半透明之玻璃、樹脂等的光透過性絕緣材料成形出。
以上構造的面板盒中,在後面板72的內面上沿橫方向以等間隔配置有複數個電子放出部86。
電子放出部86係具備:朝深度方向延伸之導電性線材86a,以及設於該導電性線材86a外表面之碳奈米管、碳奈米壁等的碳膜86b。
在前面板74的內面側設有陽極部84,當電子放出部86放出的電子照射時會產生發光。
陽極部84係具備:ITO膜等的透明性電極、或鋁蒸鍍膜等的光透過性電極所構成的陽極84a,以及陽極84a上的螢光體84b。
具備以上構成之場放射燈70中,係在前面板74的內面74a與陽極部84的外面84c之間設置熱應力緩和材88,俾緩和因前面板74與陽極部84間之熱膨脹收縮差而發生於前面板74上之熱應力。
熱應力緩和材88以層狀構造者為佳,例如可使用雲母。於前面板74為玻璃製,陽極部84之陽極84a為金屬製,故兩者之熱膨脹收縮量不同。
由於陽極84a為金屬製,就算受螢光體84a發光之加熱而造成溫度上昇,其產生之熱膨脹收縮量極小。
另一方面,由於前面板74為玻璃製,其熱膨脹收縮量比陽極84a為大,且內部容易蓄熱,因此容易產生熱應力之殘留。
若在陽極84a與前面板74之間介入可緩和熱應力之熱應力緩和材88,就算前面板74受螢光體84a發光而被加熱,前面板不會受其與陽極部間的熱膨脹收縮量之差異而影響,故熱應力不容易殘留,結果能防止前面板74之變形。
以上之場放射燈70,就算反覆進行螢光體84b之發光與停止發光,又就算內部為真空且前面板採薄型玻璃製構成,仍能防止前面板受熱應力而產生變形。
基於此,實施形態之場放射燈70,就算變得大型且薄型化,仍能構成耐久性優異的背光單元。
參照圖35~37來說明其他的場放射燈。場放射燈70,係用耐熱性的支持構件90來支持陽極部84,並將該支持構件90的兩端隔著若干間隙設在側面板76內部的凹狀支持部76a。支持構件90例如可使用石英等的耐熱性材料。
依據該場放射燈70,由於用支持構件90來支持陽極84,並將該支持構件90以可相對側面板76移動的狀態設於支持部76a,就算前面板72與陽極部84之間有熱膨脹收縮量的差異,前面板72仍不致受其與陽極部84間的熱應力之影響。
結果,就算反覆進行螢光體84b之發光與停止發光,又就算內部為真空且前面板72採薄型構成,仍能防止前面板72受熱應力而產生變形。
如圖38所示,可在側面板76的內面設置縱向延伸之一對凸部76b、76b,並將支持構件90兩端設在兩凸部76b、76b間的凹部76c。凸部76b、76b為一對或單一個皆可,只要能將支持構件90兩端裝載於該凸部76b即可。
圖39顯示筒狀體之其他變形例。配置於真空室內部之筒狀體,只要其一端側、兩端側、或周壁具有開孔即可。
筒狀體,除具有螺旋狀周壁之線圈以外,也能是具有網狀周壁之筒狀體100,或具有狹縫狀周壁之筒狀體101。開孔的形狀不拘。筒狀體不拘截面圓形者,也能呈截面矩形。
圖40顯示製造裝置之其他變形例。真空室112具有氣體導入口114與氣體排出口116。真空室112的內壓力在10Pa~10000Pa的範圍。在真空室112內部配置筒狀體之線圈120。在線圈120的內部空間配置導電性線材122。線圈120是朝一方向筆直延伸。線圈120之內部空間,係朝一方向延伸之圓筒形電漿產生用空間。線材122是在內部空間配置呈細長延伸配置。線圈120與導電性線材122隔著既定空間配置成相對向。線圈120一端側連接於電壓可變型直流電源124之負極。線材122連接於直流電源124的正極。
具備以上構成之製造裝置110,當將真空室112內減壓且自氣體導入口114導入電漿產生用氣體(氫氣),並將直流電源124的負電位施加於筒狀體120時,筒狀體120的內部空間會產生電漿126。
其次說明碳膜之成膜。將線材122配置於線圈120內部。線材122兩端可連接於交流電源123,以將線材122加熱。自氣體導入口114導入電漿產生用氣體(氫氣)、及碳系氣體之例如甲烷氣體(用來在線材122表面形成碳膜)。接著,將真空室112內減壓,將直流電源124的負電位施加於線圈120,將正電位施加於線材122。藉此在線圈120的內部空間產生電漿126。藉電漿126使甲烷氣體分解,而在線材122表面上形成碳膜。
當線圈120為固態碳源時,氫電漿中之氫離子會高速撞擊固態碳源之線圈120(被施加直流負電位),該撞擊能量會使線圈120中的碳飛出,飛出的碳和電漿中的氫離子化學鍵結成碳氫化合物(CxHy)後撞擊線材122。和線材122撞擊後之碳氫化合物中的氫會飛出,之後沉積在線材122表面。藉此在線材122表面形成碳膜。
圖41係顯示其他的碳膜製造裝置。該製造裝置具備壓氣為0.1~50Torr之真空室130。
在該真空室130內部配置筒狀體之線圈131。
在真空室130內部導入碳膜成膜用原料氣體(氫氣及碳系氣體)。
對筒狀體131施加電漿產生用的電壓(高頻電源132與直流電源133)。
高頻電源132係連接於線圈131的兩端間,直流電源133係連接於線圈131的一端側。藉此在線圈131的兩端間施加高頻電壓,在線圈131的一端側施加負的直流電壓。
藉此在線圈131施加在負的直流電壓上重疊高頻電壓而成之電壓,而在線圈131的內部空間產生電漿134。利用該電漿134,在筒狀體131內部所配置之基材(線材135)表面形成良好的碳膜。可取代線圈131,而使用至少局部設有至少一開孔之筒狀體。
以上之重疊電壓的情形,在製造條件CH4 :5ccm、H2 :300ccm、基板溫度750℃、壓力2000Pa、直流電力3000W、高頻電力500W、偏壓-120V,成膜時間10分鐘下,能製造出圖23C~圖23E所示之碳膜。
本發明之碳膜之製造方法,係適用於製造場放射燈或電子源中之電子放出用之碳膜。
10...真空室
11...線圈
12...高頻電源
13...線材
14...加熱用電源
15...電漿
圖1係本發明實施形態之碳膜製造裝置之概略圖。
圖2係圖1之線圈變形例之概略圖。
圖3係圖1之線材變形例之局部立體圖。
圖4係圖1之電子放射特價評價之概略圖。
圖5係用來說明圖1之電子放射特性。
圖6係使用圖1的線材之線狀光源例之立體圖。
圖7係圖6之截面圖。
圖8係本發明其他實施形態之碳膜製造裝置之概略圖。
圖9係圖8之電子放出特性之評價方法之說明圖。
圖10A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖10B係圖10A之局部放大圖。
圖11A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖11B係圖11A之局部放大圖。
圖12A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖12B係圖12A之局部放大圖。
圖13A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖13B係圖13A之局部放大圖。
圖14A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖14B係圖14A之局部放大圖。
圖15A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖15B係圖15A之局部放大圖。
圖16A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖16B係圖16A之局部放大圖。
圖17A係顯示圖8之不同成膜條件的碳膜狀態之SEM像;圖17B係圖17A之局部放大圖;圖17C係顯示圖17A的碳膜構造之概念圖。
圖18係顯示圖1線圈之變形例。
圖19係顯示圖1線圈之其他變形例。
圖20係顯示圖1裝置之其他例。
圖21係顯示圖1裝置之其他例。
圖22係本發明另一實施形態之製造裝置之概略圖。
圖23A係顯示以圖22的製造裝置產生電漿時的照片;圖23B係顯示以圖22的製造裝置產生電漿時的照片;圖23C係顯示用圖22的製造裝置在不同成膜條件下之碳膜狀態的SEM像;圖23D係顯示圖23C的碳膜構造之概念圖;圖23E係顯示圖23D的針狀膜構造之概念圖。
圖24係本發明另一實施形態之製造裝置之概略圖。
圖25係顯示碳金屬奈米樹之圖。
圖26係顯示其他碳金屬奈米樹之圖。
圖27係顯示其他碳金屬奈米樹之圖。
圖28係顯示其他碳金屬奈米樹之圖。
圖29係顯示其他碳金屬奈米樹之圖。
圖30係顯示其他碳金屬奈米樹之圖。
圖31係場放射燈之截面圖。
圖32係圖31之重要部分放大圖。
圖33係沿圖31的A-A線之截面圖。
圖34係沿圖31的B-B線之截面圖。
圖35係其他場放射燈之截面圖。
圖36係沿圖35的C-C線之截面圖。
圖37係沿圖35的D-D線之截面圖。
圖38係顯示支持部(用來支持耐熱性支持構件)的變形例之側面板與耐熱性支持構件之局部圖。
圖39係顯示筒狀體其他例之圖。
圖40係顯示碳膜製造裝置之其他例。
圖41係顯示碳膜製造裝置之其他例。
10...真空室
11...線圈
12...高頻電源
13...線材
14...加熱用電源
15...電漿

Claims (35)

  1. 一種成膜裝置,係用來在基材表面形成碳膜之裝置,其具備:用來導入碳膜成膜用氣體之真空室;以及線圈,係配置於該真空室內部,連接於電源且內部空間呈縱長之大致圓筒狀,由具有導電性之材料構成,且為銅、鎳、不銹鋼、碳製者,當在該真空室內部導入該氣體,且對該線圈施加電漿產生用的電壓時,會在該線圈內部產生電漿,以在該線圈內部所配置之基材表面形成碳膜。
  2. 如申請專利範圍第1項之成膜裝置,其中,該電壓為高頻電壓。
  3. 如申請專利範圍第1項之成膜裝置,其中,該電壓為負的直流電壓。
  4. 如申請專利範圍第1項之成膜裝置,其中,該電壓為在負的直流電壓上重疊高頻電壓而成之電壓。
  5. 一種成膜裝置,係用來在基材表面形成碳膜之裝置,其具備:用來導入碳膜成膜用氣體之真空室;線圈,係配置於該真空室內部,連接於電源且內部空間呈縱長之大致圓筒狀,由具有導電性之材料構成,且為銅、鎳、不銹鋼、碳製者,用來對該線圈施加高頻電壓之電源;當在該真空室內部導入該氣體,且由該電源對該該線 圈施加高頻電壓時,會在該線圈內部產生電漿,以在該線圈內部所配置之基材表面形成碳膜。
  6. 一種成膜裝置,係用來在基材表面形成碳膜之裝置,其具備:用來導入碳膜成膜用氣體之真空室;線圈,係配置於該真空室內部,連接於電源且內部空間呈縱長之大致圓筒狀,由具有導電性之材料構成,且為銅、鎳、不銹鋼、碳製者,用來對該線圈施加負的直流電壓之電源;當在該真空室內部導入該氣體,且由該電源對該該線圈施加負的直流電壓時,會在該線圈內部產生電漿,以在該線圈內部所配置之基材表面形成碳膜。
  7. 一種成膜裝置,係用來在基材表面形成碳膜之裝置,其具備:用來導入碳膜成膜用氣體之真空室;線圈,係配置於該真空室內部,連接於電源且內部空間呈縱長之大致圓筒狀,由具有導電性之材料構成,且為銅、鎳、不銹鋼、碳製者,用來對該線圈施加重疊電壓(在負的直流電壓上重疊高頻電壓而成的電壓)之電源;當在該真空室內部導入該氣體,且由該電源對該該線圈施加重疊電壓時,會在該線圈內部產生電漿,以在該線圈內部所配置之基材表面形成碳膜。
  8. 如申請專利範圍第7項之成膜裝置,其中,該電源 係包含直流電源及高頻電源;該直流電源之負極連接於線圈之一端,以將負的直流電壓施加於線圈;該高頻電源連接於線圈兩端,以將高頻電壓施加於線圈。
  9. 如申請專利範圍第1項之成膜裝置,其中,該線圈之一端側、兩端側、周壁等三部位之至少任一設有開孔。
  10. 如申請專利範圍第1項之成膜裝置,其中,該基材係朝長方向延伸之導電性線材;該線圈,係具有沿線材之延伸方向延伸之圓筒形狀。
  11. 如申請專利範圍第10項之成膜裝置,其中,該線材,係構成真空密封管內部之陰極(與陽極相對向)。
  12. 如申請專利範圍第1項之成膜裝置,其中,該線圈係沿長方向並設複數個。
  13. 如申請專利範圍第1項之成膜裝置,其具備用來對基材進行通電加熱之電源。
  14. 如申請專利範圍第1項之成膜裝置,其中,該線圈能朝長方向延長。
  15. 一種成膜方法,係使用申請專利範圍第1項之成膜裝置來在基材表面形成碳膜之方法,其具備以下步驟:在真空室內配置該線圈之步驟,該線圈係連接於電源且內部空間呈縱長之大致圓筒狀,由具有導電性之材料構成,且為銅、鎳、不銹鋼、碳製者,在該線圈的內部配置基材之步驟, 在真空室導入該氣體之步驟,以及對該線圈施加該電壓之步驟。
  16. 如申請專利範圍第15項之成膜方法,其中,該電壓為高頻電壓。
  17. 如申請專利範圍第15項之成膜方法,其中,對該基材施加直流電壓。
  18. 如申請專利範圍第15項之成膜方法,其中,該電壓為負的直流電壓。
  19. 如申請專利範圍第15項之成膜方法,其中,該電壓係在負的直流電壓上重疊高頻電壓而成之電壓。
  20. 如申請專利範圍第15項之成膜方法,其中,該線圈,係在一端側、兩端側、周壁等三部位之至少任一設有開孔。
  21. 如申請專利範圍第15項之成膜方法,其中,該線圈長度能配合基材長度而延長。
  22. 一種碳膜,係使用如申請專利範圍第15項之成膜方法,以CH4 與H2 之比(CH4 /H2 )為1/9、基板溫度650℃,壓力100Pa,交流電力200W,偏壓100V,成膜時間30分鐘之製造條件所製造成的碳膜;其由多數個碳奈米管束所構成,構成各碳奈米管束之碳奈米管,彼此在基部側聚集,且在前端側隔著間隔分離,以構成有利於電場集中的形態。
  23. 一種碳膜,係使用如申請專利範圍第15項之成膜方法,以CH4 與H2 之比(CH4 /H2 )為1/60、基板溫度750 ℃,壓力2000Pa,交流電力3000W,偏壓120V,成膜時間15分鐘之製造條件所製造成的碳膜,該碳膜具備第1膜、第2膜及第3膜;該第1膜,係用來限制電子放出點之配置間隔;該第2膜,在被第1膜包圍的區域內,以比第1膜更高的高度呈針狀延伸,以其前端作為電子放出點;該第3膜,係用來支持該第2膜之下部側。
  24. 如申請專利範圍第23項之碳膜,其中,該第2膜係具有由任意位置起越往前端半徑越小之針狀。
  25. 如申請專利範圍第24項之碳膜,其中,該針形,係具有以福勒諾漢(Fowler-Nordheim)式之h/r(r為任意位置的半徑,h為由該位置至前端之高度)表示之電場集中係數β的幾何形狀。
  26. 如申請專利範圍第15項之碳膜之製造方法,係以CH4 與H2 之比(CH4 /H2 )為1/60、基板溫度750℃,壓力2000Pa,交流電力3000W,偏壓120V,成膜時間15分鐘之製造條件來製造申請專利範圍第23項之碳膜;該方法具備以下步驟:在真空室配置線圈之步驟;該線圈係內部空間呈縱長之大致圓筒狀,由具有導電性之材料構成,且為銅、鎳、不銹鋼、碳製者,在該線圈內部配置基材之步驟;在該真空室導入碳膜成膜用氣體之步驟;以及對該線圈施加負的直流電壓、來在該線圈內部產生電 漿之步驟。
  27. 一種碳膜,係使用如申請專利範圍第15項之成膜方法,以CH4 與H2 之比(CH4 /H2 )為1/60、基板溫度750℃,壓力2000Pa,交流電力3000W,偏壓120V,成膜時間15分鐘之製造條件所製造成的碳膜,該碳膜具有以福勒諾漢(Fowler-Nordheim)式之h/r(r為任意位置的半徑,h為由該位置至前端之高度)表示之電場集中係數β,且由任意位置起越往前端其半徑越小。
  28. 如申請專利範圍第15項之碳膜之製造方法,係以CH4 與H2 之比(CH4 /H2 )為1/60、基板溫度750℃,壓力2000Pa,交流電力3000W,偏壓120V,成膜時間15分鐘之製造條件,製造申請專利範圍第27項之碳膜;該方法具備以下步驟:在真空室配置局部設有開孔之線圈之步驟;該線圈係內部空間呈縱長之大致圓筒狀,由具有導電性之材料構成,且為銅、鎳、不銹鋼、碳製者,在該該線圈內部配置基材之步驟;在該真空室導入碳膜成膜用氣體之步驟;以及對該線圈施加負的直流電壓、來在該線圈內部產生電漿之步驟。
  29. 一種線材,係藉由申請專利範圍第15項之方法所製造出,其表面具有電子放出用之碳膜,且構成真空管內部之陰極(與陽極相對向),該碳膜係申請專利範圍第22項之碳膜。
  30. 一種場放射燈,係具備:面板盒,設於該面板盒內面之具有螢光體之陽極,以及以與該具有螢光體之陽極呈相對向而配置於面板盒內之線狀陰極;該線狀陰極,係由線材構成,該線材,係以申請專利範圍第15項之成膜方法製造出之在表面具有電子放出用碳膜者;該碳膜係申請專利範圍第22項之碳膜。
  31. 一種碳金屬奈米樹之製造方法,係使用申請專利範圍第1項之成膜裝置來在基材表面形成碳金屬奈米樹者,該方法具備以下步驟:在真空室內配置含有金屬觸媒的筒狀體(當作該筒狀體);在筒狀體內配置高阻抗之金屬材;將真空室的內壓予以減壓;在真空室內導入碳膜成膜用之氣體(氫氣與碳系氣體之混合氣體);以及對筒狀體施加高頻電壓,使所導入之混合氣體電漿化而濺蝕該筒狀體,且以維持負電位的狀態將該高阻抗金屬材通電而使其發熱。
  32. 如申請專利範圍第31項之碳金屬奈米樹之製造方法,其中,該筒狀體為金屬線圈。
  33. 一種碳膜,係具有呈樹幹狀延伸之第1碳纖維、 及多數根第2碳纖維,該第2碳纖維係由第1碳纖維呈枝狀分支出。
  34. 如申請專利範圍第33項之碳膜,其中,該碳纖維係含有金屬。
  35. 一種碳膜之製造方法,係用來製造申請專利範圍第34項之碳膜,該方法具備以下步驟:在真空室內配置含有金屬觸媒的筒狀體(當作該筒狀體);在筒狀體內配置高阻抗之金屬材;將真空室的內壓予以減壓;在真空室內導入碳膜成膜用之氣體(氫氣與碳系氣體之混合氣體);以及對筒狀體施加高頻電壓,使所導入之混合氣體電漿化而濺蝕該筒狀體,且以維持負電位的狀態將該高阻抗金屬材通電而使其發熱。
TW094138909K 2005-01-05 2005-11-04 An apparatus for manufacturing a carbon film using plasma CVD, a method for manufacturing the same, and a carbon film TWI403611B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005000803A JP4676764B2 (ja) 2005-01-05 2005-01-05 フィールドエミッション型面状光源
JP2005000800A JP2006188382A (ja) 2005-01-05 2005-01-05 カーボンナノチューブの製造方法
JP2005088813A JP2005307352A (ja) 2004-03-25 2005-03-25 炭素膜の製造装置およびその製造方法
JP2005115558A JP4917758B2 (ja) 2005-04-13 2005-04-13 カーボン金属ナノツリーおよびその製造方法
JP2005115560A JP4925600B2 (ja) 2005-04-13 2005-04-13 プラズマ発生装置およびこれを用いた成膜方法

Publications (1)

Publication Number Publication Date
TWI403611B true TWI403611B (zh) 2013-08-01

Family

ID=36647505

Family Applications (2)

Application Number Title Priority Date Filing Date
TW094138909K TWI403611B (zh) 2005-01-05 2005-11-04 An apparatus for manufacturing a carbon film using plasma CVD, a method for manufacturing the same, and a carbon film
TW094138909A TW200630505A (en) 2005-01-05 2005-11-04 Apparatus for producing carbon film and production method therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW094138909A TW200630505A (en) 2005-01-05 2005-11-04 Apparatus for producing carbon film and production method therefor

Country Status (4)

Country Link
EP (1) EP1834925A1 (zh)
KR (2) KR101342356B1 (zh)
TW (2) TWI403611B (zh)
WO (1) WO2006073017A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578350B2 (ja) * 2005-08-10 2010-11-10 株式会社ピュアロンジャパン 炭素膜、電子放出源およびフィールドエミッション型の照明ランプ
CN101896424B (zh) 2007-12-12 2015-05-13 新日铁住金化学株式会社 内包金属的树状碳纳米结构物、碳纳米结构体、内包金属的树状碳纳米结构物的制备方法、碳纳米结构体的制备方法以及电容器
JP2010177186A (ja) * 2009-02-02 2010-08-12 Kochi Fel Kk 電界放出型光源
JP2010282956A (ja) * 2009-05-01 2010-12-16 Kochi Fel Kk 電界放出型光源
JP5121791B2 (ja) * 2009-07-27 2013-01-16 株式会社ライフ技術研究所 炭素膜構造
CN102074429B (zh) * 2010-12-27 2013-11-06 清华大学 场发射阴极结构及其制备方法
TW201233253A (en) * 2011-01-26 2012-08-01 Bing-Li Lai Plasma reaction method and apparatus
KR101400163B1 (ko) * 2012-02-27 2014-05-28 한밭대학교 산학협력단 탄소나노트리 및 그의 제조방법
KR101415175B1 (ko) * 2012-12-28 2014-07-04 인하대학교 산학협력단 열플라즈마를 이용한 그래핀의 제조 방법
CN103523768B (zh) * 2013-09-27 2018-02-09 武汉博力信纳米科技有限公司 箱体密封化学气相反应制备连续碳纳米管纤维的装置和方法
KR102023415B1 (ko) * 2018-08-27 2019-09-23 (주)네프 탄소 나노 코팅 전극을 갖는 하이브리드 스위치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769790A (ja) * 1993-08-30 1995-03-14 Ulvac Japan Ltd 薄膜作製装置
JPH0978242A (ja) * 1995-09-14 1997-03-25 Sony Corp プラズマcvd装置
JP3236493B2 (ja) * 1996-01-29 2001-12-10 矢崎総業株式会社 複合被覆電線の製造方法
WO1999065821A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
KR100458108B1 (ko) * 1998-12-28 2004-11-26 오사까 가스 가부시키가이샤 아몰퍼스 나노 스케일 카본 튜브 및 그 제조 방법
JP4553510B2 (ja) * 2001-03-29 2010-09-29 大阪瓦斯株式会社 樹枝状鉄−アルミニウム−炭素系複合体、カーボンナノツリー及びそれらの製造方法
JP4156879B2 (ja) * 2002-07-31 2008-09-24 双葉電子工業株式会社 カーボン繊維の製造方法。
JP2004303521A (ja) * 2003-03-31 2004-10-28 Hitachi Ltd 平面ディスプレイ装置

Also Published As

Publication number Publication date
EP1834925A1 (en) 2007-09-19
KR101342356B1 (ko) 2013-12-16
TW200630505A (en) 2006-09-01
KR20120117930A (ko) 2012-10-24
KR20070114327A (ko) 2007-12-03
KR101313919B1 (ko) 2013-10-01
WO2006073017A1 (ja) 2006-07-13
TWI429781B (zh) 2014-03-11

Similar Documents

Publication Publication Date Title
TWI403611B (zh) An apparatus for manufacturing a carbon film using plasma CVD, a method for manufacturing the same, and a carbon film
JP4575349B2 (ja) 電界放出陰極及び該陰極を用いる電界放出照明装置
US8808856B2 (en) Apparatus and method for producing carbon film using plasma CVD and carbon film
TWI462873B (zh) 奈米碳管結構的製備方法
TW201345830A (zh) 奈米碳管結構及其製備方法
JP2004512247A (ja) 電子サイクロトロン共鳴プラズマ成膜プロセスおよび一重壁カーボンナノチューブのための装置ならびにそれによって得られたナノチューブ
JPH10112253A (ja) 電子放出膜および方法
US6946780B2 (en) Carbon body, process for producing the carbon body, and electric field emission electron source using the carbon body
TWI435358B (zh) A carbon film having a shape suitable for the emission of electric field, a carbon film structure, and an electron emitter
WO2007015445A1 (ja) プラズマ発生装置およびこれを用いた成膜方法
JP2005307352A (ja) 炭素膜の製造装置およびその製造方法
CN1906127B (zh) 使用等离子体cvd制备碳膜的装置和方法以及碳膜
TWI482192B (zh) 場發射陰極元件之製造方法、其場發射陰極元件及其場發射發光燈源
JP4917758B2 (ja) カーボン金属ナノツリーおよびその製造方法
Li et al. Dependence of optimum thickness of ultrathin diamond-like carbon coatings over carbon nanotubes on geometric field enhancement factor
JP2007055856A (ja) 炭素膜、電子放出源および電界放射型照明ランプ
TWI381990B (zh) 一種奈米碳管膜前驅、奈米碳管膜及其製造方法以及具有該奈米碳管膜之發光器件
JP3734400B2 (ja) 電子放出素子
TW201347604A (zh) 場發射裝置
TW200540910A (en) Field electron emission component and lighting equipment
JP4707336B2 (ja) カーボンナノファイバーを用いた電子源の製造方法
KR102581254B1 (ko) 탄소 에미터 증착 장치 및 증착 방법
JP4578350B2 (ja) 炭素膜、電子放出源およびフィールドエミッション型の照明ランプ
TWI466595B (zh) A plasma generating device and a film forming method using the same
Park et al. Atmospheric Plasmas for Carbon Nanotubes (CNTs)