WO2006073017A1 - プラズマcvdを用いて炭素膜を製造する装置およびその製造方法ならびに炭素膜 - Google Patents

プラズマcvdを用いて炭素膜を製造する装置およびその製造方法ならびに炭素膜 Download PDF

Info

Publication number
WO2006073017A1
WO2006073017A1 PCT/JP2005/018894 JP2005018894W WO2006073017A1 WO 2006073017 A1 WO2006073017 A1 WO 2006073017A1 JP 2005018894 W JP2005018894 W JP 2005018894W WO 2006073017 A1 WO2006073017 A1 WO 2006073017A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical body
voltage
carbon film
carbon
vacuum chamber
Prior art date
Application number
PCT/JP2005/018894
Other languages
English (en)
French (fr)
Inventor
Masanori Haba
Original Assignee
Dialight Japan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005000803A external-priority patent/JP4676764B2/ja
Priority claimed from JP2005000800A external-priority patent/JP2006188382A/ja
Priority claimed from JP2005088813A external-priority patent/JP2005307352A/ja
Priority claimed from JP2005115560A external-priority patent/JP4925600B2/ja
Priority claimed from JP2005115558A external-priority patent/JP4917758B2/ja
Application filed by Dialight Japan Co., Ltd. filed Critical Dialight Japan Co., Ltd.
Priority to KR1020057023130A priority Critical patent/KR101313919B1/ko
Priority to KR1020127023664A priority patent/KR101342356B1/ko
Priority to US10/558,874 priority patent/US8808856B2/en
Priority to CN2005800003526A priority patent/CN1906127B/zh
Priority to EP05793094A priority patent/EP1834925A1/en
Publication of WO2006073017A1 publication Critical patent/WO2006073017A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to an apparatus, a method, and a carbon film structure for manufacturing a nanostructured carbon film using plasma CVD.
  • a carbon film can be formed on a substrate.
  • the source gas is generally introduced while controlling the gas pressure.
  • Plasma is generated by applying DC power to a pair of opposed flat plate electrodes. Heat the substrate.
  • a carbon film is formed on the substrate by controlling the ion energy to the substrate (see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 11-50259
  • This plasma CVD method has a high gas pressure.
  • the voltage for generating plasma is high.
  • the film formation time is long.
  • a plate electrode having a large electrode area is required.
  • a long electrode surface is required. Larger equipment. An expensive device is required.
  • the electrode area increases as compared with the wire deposition area, and power is wasted. With a wire with a circular cross section, it is not possible to deposit a carbon film evenly around the entire circumference! /.
  • the present invention includes a step of disposing a tubular body having an opening in a part thereof in a vacuum chamber, a step of disposing a base material inside the tubular body, and forming a carbon film in the vacuum chamber.
  • a plasma is generated inside the cylindrical body through a step of introducing a gas for the film and a step of applying a voltage for generating plasma to the cylindrical body, and the plasma causes the surface of the base material to be generated.
  • a carbon film is formed.
  • the voltage is a high-frequency voltage.
  • the voltage is a negative DC voltage.
  • the voltage is a voltage obtained by superimposing a high-frequency voltage on a negative DC voltage.
  • the DC voltage is not limited to its application form, but includes, for example, not only continuous application but also pulse application.
  • the meaning of having an opening in a part of the cylindrical body includes any opening provided in the cylindrical body.
  • it includes the opening on one end and both ends of the cylindrical body, and the opening and displacement of the peripheral wall.
  • Examples of the hole in the peripheral wall of the cylindrical body include a spiral shape, a mesh shape, and a slit shape.
  • the cylindrical body cross section includes any shape regardless of circular or rectangular.
  • the cylindrical body includes a box-shaped body that is not limited to the name "cylinder” as a cylindrical body.
  • the substrate is not limited to a shape as long as it can form a carbon film, and is not limited to a linear shape, and may be various shapes such as a plate shape and a cylindrical shape.
  • the carbon film includes carbon nanowalls, carbon nanotubes, carbon nanofibers, and carbon metal nanotrees.
  • the plasma generated in the internal space of the cylindrical body has a high electron density. Even if the gas pressure is not high, it has an appropriate concentration and activity. Therefore, the carbon film can be formed with a low gas pressure.
  • the plasma generated in the cylindrical body is highly dense. Therefore, a carbon film can be efficiently formed with low power.
  • the base material is arranged in the internal space of the cylindrical body, when the base material is a long wire, the cylindrical body is extended in the longitudinal direction of the wire to form a carbon film on the surface of the wire. be able to. Therefore, wasteful power consumption can be suppressed and film formation can be performed efficiently.
  • the carbon film can be formed with a uniform film thickness on the entire peripheral surface of the base material.
  • a carbon film can be uniformly formed with low cost and low power consumption.
  • FIG. 1 is a schematic view of a carbon film manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a modification of the coil in FIG.
  • FIG. 3 is a partial perspective view of a modified example of the wire in FIG.
  • FIG. 4 is a schematic diagram of characteristic evaluation by electron emission in FIG.
  • FIG. 5 is a graph of electron emission characteristics in FIG.
  • FIG. 6 is a perspective view showing an example of a linear light source using the wire in FIG.
  • FIG. 7 is a cross-sectional view of FIG.
  • FIG. 8 is a schematic view of an apparatus for producing a carbon film according to another embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of an electron emission characteristic evaluation method in FIG.
  • FIG. 10A is an SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 10B is a partially enlarged view of FIG. 10A.
  • FIG. 11A is an SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 11B is a partially enlarged view of FIG. 11A.
  • FIG. 12A is an SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 12B is a partially enlarged view of FIG. 12A.
  • FIG. 13A is an SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 13B is a partially enlarged view of FIG. 13A.
  • FIG. 14A is a SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 14B is a partially enlarged view of FIG. 14A.
  • FIG. 15A is a SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 15B is a partially enlarged view of FIG. 15A.
  • FIG. 16A is an SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 16B is a partially enlarged view of FIG. 16A.
  • FIG. 17A is an SEM image showing the state of the carbon film having different film formation conditions in FIG.
  • FIG. 17B is a partially enlarged view of FIG. 17A.
  • FIG. 17C is a conceptual diagram showing the structure of the carbon film of FIG. 17A.
  • FIG. 18 is a view showing a modification of the coil shown in FIG.
  • FIG. 19 is a view showing another modification of the coil shown in FIG.
  • FIG. 20 is a view showing another example of the apparatus of FIG.
  • FIG. 21 is a view showing still another example of the apparatus of FIG.
  • FIG. 22 is a schematic view of a manufacturing apparatus according to still another embodiment of the present invention.
  • FIG. 23A is a photograph showing a state in which plasma is generated by the manufacturing apparatus of FIG.
  • FIG. 23B is a photograph showing a state in which plasma is generated by the manufacturing apparatus of FIG.
  • FIG. 23C is a SEM image showing the state of the carbon film having different film formation conditions depending on the manufacturing apparatus of FIG.
  • FIG. 23D is a conceptual diagram showing the structure of the carbon film of FIG. 23C.
  • FIG. 23E is a conceptual diagram showing the structure of the needle-like film of FIG. 23D.
  • FIG. 24 is a schematic view of a manufacturing apparatus according to still another embodiment of the present invention.
  • FIG. 25 is a diagram showing a carbon metal nanotree.
  • FIG. 26 is a view showing another carbon metal nanotree.
  • FIG. 27 is a view showing still another carbon metal nanotree.
  • FIG. 28 is a view showing still another carbon metal nanotree.
  • FIG. 29 is a view showing still another carbon metal nanotree.
  • FIG. 30 is a view showing still another carbon metal nanotree.
  • FIG. 31 is a sectional view of a field emission lamp.
  • FIG. 32 is an enlarged view of the main part of FIG.
  • FIG. 33 is a sectional view taken along line AA in FIG.
  • FIG. 34 is a sectional view taken along line BB in FIG.
  • FIG. 35 is a cross-sectional view of another field emission lamp.
  • FIG. 36 is a sectional view taken along the line CC of FIG.
  • FIG. 37 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 38 is a partial view of a side panel and a heat-resistant support member showing a modification of the support portion that supports the heat-resistant support member.
  • FIG. 39 is a view showing another example of a cylindrical body.
  • FIG. 40 is a view showing another example of a carbon film production apparatus.
  • FIG. 41 is a view showing another example of a carbon film production apparatus.
  • FIG. 1 shows an outline of a carbon film manufacturing apparatus according to an embodiment of the present invention.
  • a coil 11 is installed in a vacuum chamber 10 indicated by a dotted line.
  • the coil 11 is a cylindrical body whose peripheral wall is spiral.
  • the coil 11 can be said to be a cylindrical body partially having an opening.
  • the materials for coil 11 are Cu, Ni, stainless steel, carbon, and so on.
  • the winding diameter, length, and the like of the coil 11 can be selected according to the size of the base material that is the target of carbon film formation.
  • a base material is an electroconductive wire as an example.
  • the internal space of the coil 11 is a vertically long, almost cylindrical shape.
  • a high frequency power source 12 is connected to both ends of the coil 11.
  • the power frequency of the high-frequency power source 12 is, for example, 13.56 MHz, 4 MHz, 27.12 MHz, 40.68 MHz, or the like.
  • the wire 13 is arranged along the longitudinal direction of the coil 11.
  • the wire 13 is arranged in the approximate center of the internal space of the coil 11 and forms a carbon film with a uniform film thickness all around it. Be able to film!
  • the material of the wire 13 is Ni, stainless steel, Fe, or the like.
  • the diameter of the wire 13 is not limited.
  • the diameter of the wire 13 is, for example, several mm.
  • the diameter of the wire 13 is, for example, 15 mm.
  • the heating power source 14 is connected between both ends of the wire 13.
  • the heating temperature of the wire 13 by energizing the power source 14 is in the range of 700 ° C to 1000 ° C.
  • the heating temperature is preferably 800 ° C. to: LOOO ° C.
  • a heating temperature of 800 ° C or higher is preferable for shortening the film formation time and improving the film quality. In a state where the wire 13 is heated to 800 ° C.
  • a raw material gas such as a hydrocarbon gas is supplied into the vacuum chamber 10 at a predetermined gas pressure while the flow rate is controlled.
  • Source gases include CH 2 / H, CH 2 ZAr, and CH 3 / O.
  • Processed gas is vacuum chamber
  • the CH concentration in the CH 2 / H gas is, for example, 90%, and the CH concentration in the CH ZAr gas is
  • the concentration is, for example, 20-60%, and the concentration of CH in the CH 2 / O gas is, for example, 95%
  • hydrocarbon gases such as C H can be used.
  • the gas pressure in the vacuum chamber 10 is 0.1 to 50 Torr. This gas pressure is preferably from 0.1 to: LOTorr, and more preferably from 0.5 to 50 Torr.
  • a high-frequency power of 100 W is supplied from the high-frequency power source 12 to the coil 11.
  • This supply generates plasma 15 in the coil 11.
  • the generation region of the plasma 15 became a cylindrical shape having a diameter of 50 mm and a length of 100 mm.
  • the gas pressure at this time was about 0.75 Torr, and the heating temperature of the wire 13 was about 800 ° C.
  • the wire 13 was formed with a carbon film all around it. The time required for the film formation was about 30 minutes.
  • the plasma 15 had a very high electron density, and the carbon film could be formed at a low gas pressure.
  • the plasma is maintained at a high density with a low power of 100 W.
  • the film formation rate of the carbon film can be increased by increasing the power supply.
  • the raw material gas introduced into the vacuum chamber 10 is preferably CH. CH emits plasma efficiently
  • the coil 11 By inserting the wire 13 into the coil 11, it is possible to easily form a carbon film on the entire surface (entire circumferential surface) of the wire 13.
  • the coil 11 may be lengthened according to the length of the wire 13. Even if the length of the wire 13 is greater than the height of the coil 11, the wire 13 can be moved up and down relative to the coil 11, or vice versa, by moving the coil 11 up and down relative to the wire 13. A carbon film can be formed.
  • the plurality of coils 11 are arranged side by side so that the wire 13 can be inserted.
  • a carbon film can be formed on the entire wire 13 such that the plasmas 15 generated in the coils 11 overlap each other.
  • Coil 11 can be placed sideways.
  • the wire 13 can include a flat wire 16, a wire 17 in which a plurality of wires are bundled or twisted, and a coiled wire 18.
  • Characteristic evaluation includes electron emission, SEM (scanning electron microscope) images, and Raman scattering spectroscopy.
  • the electron emission is performed by placing a wire 13 having a carbon film formed between the target (anode) 19 and a target (anode) 19 in a vacuum via an lmm space S.
  • a current was measured by applying a DC voltage between the target 19 and the wire 13 as a sword.
  • the horizontal axis represents voltage and the vertical axis represents current.
  • 1 OA to 8A is the threshold current, which is 970V.
  • the crystal size is preferably 1 to 10 m. If it is smaller than 1 ⁇ m, the radiation characteristics will be poor.
  • R is preferably between 5 and 8, and results were obtained.
  • the G band is for the E2g vibration mode of graphite, and the D band is due to sp 2 crystallites or the date order sp 2 component. Therefore, the larger R, the better the crystallinity [0037] According to the production of the carbon film configured as described above, a low gas pressure of 0.1 to 50 Torr, 300
  • a carbon film can be formed on the wire 13 with a low power of W and a short time of 30 minutes.
  • the power applied to the coil 11 is 300 W and the film formation time is 30 minutes. These electric power and film formation time vary depending on the coil material and the like, but in the embodiment, the electric power and the film formation time are lower and shorter than the conventional one.
  • Carbon films formed on the wire 13 include carbon nanowalls and carbon nanotubes.
  • the wire 13 is heated to 1000 ° C in CH4ZAr gas to prepare carbide on the surface of the wire 13, and thereafter Carbon nanowalls can be formed by this method.
  • a wire rod is formed using a Cu coil 11 under the following conditions.
  • a carbon film was formed on 13.
  • the wire 13 on which the carbon film is formed under the above film forming conditions has a good field electron emission characteristic, so that it can be used as a linear light source such as a thin luminaire, a display display device, or a backlight of a liquid crystal display device. Useful.
  • FIG. 6 is a perspective view of a linear light source suitable for, for example, a knocklight, and FIG. FIG.
  • This linear light source 20 includes a cylindrical vacuum sealed tube 21.
  • An anode portion 22 is accommodated in the vacuum sealing tube 21.
  • a wire 23 on which a carbon film as a cathode is formed is disposed directly above the anode 22.
  • the inside of the vacuum sealing tube 21 is maintained in a vacuum of about 10-6 Torr, for example.
  • the anode portion 22 includes a glass substrate 22a, an anode 22b that is made of ITO such as ITO formed on the glass substrate 22a, and a phosphor 22c formed on the anode 22b.
  • the anode portion 22 has an insulating support plate 28 protruding from both ends thereof in the longitudinal direction.
  • the support plate 28 supports the conductive wire 24 connected to the transparent electrode 22b and the conductive wire 25 connected to the wire 23 in a general manner.
  • the linear light source 20 when a DC voltage is applied between the anode 22 and the wire 23 from the power source 26, electrons are emitted from the wire 23 into the vacuum. These electrons are attracted to the anode 22b and collide with the phosphor 22c. Thereby, the phosphor 22 2c is excited to emit light.
  • Carbon films such as carbon nanotubes are materials that are expected to have many applications such as displays, lamps, nanodevices, and electron guns.
  • a carbon film can be formed without the need to previously apply a catalyst metal to the substrate.
  • FIG. 8 shows a schematic configuration of the manufacturing apparatus according to the present embodiment.
  • a coil 32 is installed in the vacuum chamber 31.
  • the coil 32 is made of, for example, Cu, Ni, stainless steel, carbon, or the like.
  • the coil 32 is connected to a high frequency power source 33.
  • a base material for forming a carbon film, such as a carbon nanotube, is disposed in the inner part of the coil 32.
  • the diameter of the wire 34 is, for example, about lmm.
  • the wire rod 34 preferably contains a metal that serves as a catalyst for forming the carbon film. Examples of this metal include stainless steel, Fe, and Ni.
  • a heating power source 35 is connected to the wire 34.
  • the wire 34 is heated to about 700 ° C to 800 ° C from this power source of 35 mm.
  • the wire 34 is not limited to a straight line but may be a coil or a wave. It may be a twist of multiple wires.
  • the vacuum chamber 31 is provided with a gas introduction part 36 and a gas exhaust part 37. From the gas inlet 36, carbon-based source gas and carrier gas, for example, CH 2 / H, CH ZAr
  • the gas pressure (total pressure) is preferably about lOPa to about LOOOPa.
  • a DC power supply 38 is connected to the wire 34.
  • a negative DC voltage is applied to the wire 34.
  • a wire 34 is supported through the coil 32 in the vacuum chamber 31.
  • the wire 34 is heated by energization.
  • a negative DC voltage is applied to the wire 34.
  • high frequency power is supplied to the coil 32.
  • Source gas is introduced from the gas introduction section 36 while controlling the flow rate. As a result, plasma 39 is generated in the coil 32.
  • the source gas is excited by the plasma 39 and a carbon film is formed on the outer surface of the wire 34.
  • a negative DC voltage is applied to the wire 34.
  • the surface of the wire 34 is sputtered.
  • a carbon film such as a carbon nanotube grows using the adhered fine particles as a catalyst.
  • a wire 34 in which carbon nanotubes are formed is disposed between the anode 40 and the anode 40 through a gap of 1 mm in a vacuum.
  • DC voltage is applied using wire 34 as the cathode.
  • the emission current at 5 VZ w m was measured.
  • Table 1 shows the film formation conditions, electron emission characteristics, and evaluation results of the film state by SEM images.
  • the input is the high-frequency power supplied to the coil 32
  • the voltage and current are the voltage and current for energizing and heating the wire 34
  • the time is the film formation time
  • the temperature is the wire.
  • Temperature, pressure indicate total pressure of CH4 and H2
  • electron emission characteristics indicate emission current measured as described above! /
  • FIGS. 10A and 10B SEM images corresponding to the respective conditions are shown in FIGS. 10A and 10B to FIGS. 17A and 17B, respectively.
  • Condition No. 1 was a condition in which a negative DC voltage was not applied, and small growth of carbon nanowalls (CN W) was observed. The electron emission current at 5VZm was not observed.
  • Conditions Nos. 2 to 5 are conditions for increasing the absolute value of the negative DC voltage, and the growth of the carbon nanowall (CNW) increases as the negative DC voltage increases. In addition, graph items grew. An increase in the electron emission current at 5 VZm was observed.
  • CNT carbon nanotubes
  • the absolute value of the negative DC voltage is preferably more than 100.
  • a carbon nanotube can be formed on the wire 34 on which no catalyst has been previously formed.
  • FIGS. 17A and 17B This carbon nanotube conceptually shows the structure of the carbon film in Fig. 17C.
  • a single carbon nanotube has a high aspect ratio and flickers due to shaking or wear of the tip.
  • the electric field is difficult to concentrate or the electric field is not concentrated. Therefore, there is a carbon fiber bundle in which a large number of carbon nanotubes are grouped and a plurality of carbon nanotubes are assembled into each group.
  • the wire 34 for forming the carbon nanotubes is long, and thus protrudes from the plasma generation region of the coil 32, the wire 34 is moved relative to the coil 32 so as to extend over the entire length of the wire 34. Carbon nanotubes may be deposited.
  • the diameter of the central portion 32a in the longitudinal direction of the coil 32 is increased, and the diameter of both end portions 32b is decreased so that the plasma is efficiently confined in the central portion. Try to increase the deposition rate.
  • the capacitive coupling type shown in FIG. 20 applies negative DC voltage to the wire 41 applied to the inductively coupled plasma CVD apparatus shown in FIG.
  • the wire 41 can be indirectly heated by the heater 42 or the like.
  • the DC voltage can be applied only at the initial stage of carbon nanotube formation.
  • a coil is wound around the outer periphery of a vacuum chamber. Some of these coils generate plasma in a vacuum chamber by passing a current from a high-frequency power source. In this manufacturing apparatus, it is necessary to supply high-frequency power to the coil from a high-frequency power source through an impedance matching circuit.
  • the present embodiment is a manufacturing apparatus that makes it possible to lengthen the plasma by extending the coil without the need to install an impedance matching circuit.
  • a conductive cylindrical body having an opening in at least a part of the peripheral wall is disposed in a vacuum chamber under reduced pressure and in a plasma generating gas atmosphere.
  • a negative DC voltage is applied to one end of the cylindrical body.
  • a cylindrical body having an opening there are a coil whose peripheral wall is spiral, and a cylindrical body whose peripheral wall is mesh-shaped or slit-shaped.
  • the shape of the cylindrical body may be any shape that can confine plasma in the space inside.
  • a DC negative voltage is applied to one end side of the cylindrical body. Do not connect a DC power supply to the other end of the tube.
  • the other end of the coil is set in a floating state, for example. With this configuration, plasma can be generated and confined in the internal space of the coil.
  • the extension of the coil is very simple. It is simple and inexpensive as a manufacturing device. In addition, a long plasma can be generated stably over a long period of time.
  • this manufacturing apparatus when a carbon film is formed on the surface of a long film formation target, it is only necessary to extend the coil in accordance with the length of the film formation target. Therefore, the film formation cost is low.
  • a carbon film for electron emission is formed on the surface of the wire to form a cathode for electron emission, and electrons are emitted by applying an electric field between the cathode and the anode.
  • the phosphor can be excited to emit light by colliding the electrons with the phosphor.
  • This manufacturing apparatus can be used as a plasma generating apparatus for an apparatus that performs processing using plasma, such as a plasma CVD apparatus, a plasma etching apparatus, and a plasma plating apparatus.
  • manufacturing apparatus 50 includes a cylindrical vacuum chamber 52 made of metal such as stainless steel.
  • the vacuum chamber 52 may itself be made of metal.
  • the vacuum chamber 52 has a structure in which the outer peripheral wall surface is covered with an insulating material from the viewpoint of safety. Can be made of metal.
  • the metal material of the vacuum chamber 52 is not particularly limited.
  • the vacuum chamber 52 is grounded!
  • the vacuum chamber 52 is provided with a gas inlet 54 and a gas outlet 56.
  • Plasma generation gas includes active gas and inert gas.
  • An example of the active gas is hydrogen gas.
  • An example of the inert gas is argon gas.
  • the pressure in the vacuum chamber may be in the range of lOPa to lOOOOPa.
  • a metal coil 58 is disposed inside the vacuum chamber 52.
  • the material of the coil 58 is not particularly limited.
  • An example of the material of the coil 58 is stainless steel.
  • One end side of the coil 58 is connected to the negative electrode of the DC power supply 60, and a negative DC voltage is applied thereto.
  • the positive electrode of the DC power supply 60 is grounded.
  • the inside of the vacuum chamber 52 is at the same potential as the positive potential of the DC power supply 60.
  • the other end side of the coil 58 is floated.
  • the other end of the coil 58 need not be floating.
  • the other end side of the coil 58 may be connected to one end side thereof.
  • the wire diameter of the coil 58 is not particularly limited. For example, 2mm to 25mm.
  • the spacing between the coils 58 is not particularly limited. For example, 2mm to 20mm. These wire diameters and spacings can be appropriately determined by experiments and the like.
  • the DC power supply 60 is preferably a voltage variable type.
  • the voltage of the DC power supply 60 ranges from 100V to 2000V.
  • the voltage of the DC power supply 60 can be appropriately determined by experiments or the like.
  • the inside of the vacuum chamber 52 is depressurized.
  • the gas inlet 54 force also introduces hydrogen gas as a plasma generating gas.
  • plasma 64 is generated in the internal space of the coil 58.
  • FIG. 23A and FIG. 23B show how the plasma 64 is generated in the internal space of the coil 58 by the manufacturing apparatus 50 corresponding to the present embodiment manufactured by the present inventor and arranged in the laboratory. It is a photograph shown. Although there is no sign in the photograph, the coil 58, the wire 62, and the plasma 64 are clearly photographed.
  • a method for forming a carbon film using the manufacturing apparatus 50 will be described.
  • An electrically conductive wire 62 is disposed inside the coil 58.
  • the AC power source 63 is connected to both ends of the wire 62 to heat the wire 62.
  • H2 gas and CH4 gas are introduced from the gas inlet 54. Vacuum Reduce the internal pressure of the chamber and apply the negative potential of the DC power supply 20 to the coil 58.
  • plasma 64 is generated in the internal space of the coil 58.
  • the CH4 gas is decomposed and a carbon film is formed on the surface of the wire 62.
  • the SEM (scanning electron microscope) image in FIG. 23C shows the state of the carbon film manufactured by the manufacturing apparatus in FIG. Manufacturing conditions are 5ccm for CH, 300ccm for H, substrate temperature 750 ° C, pressure
  • the power is 2000Pa
  • the DC power is 3000W
  • the noise is 120V
  • the deposition time is 15 minutes.
  • FIG. 23C (Photo 1) is an electron micrograph of an applied voltage of 3. OkV between the anode and the cathode and a magnification of 100000 times.
  • (Photo 2) is an enlargement (4300 times) of (Photo 1).
  • Figure 23D conceptually shows the structure of the carbon film shown in the photograph above.
  • FIG. 23E conceptually shows the acicular carbon film of FIG. 23D.
  • the first film F1 is a carbon nanowall having a mesh shape.
  • the second film F2 is surrounded by the first film F1.
  • the second film F2 has a needle shape whose tip is an electron emission point.
  • the tip of the second film F2 is higher than the first film F1.
  • the third film F3 is formed so as to cling to the lower part of the second film F2.
  • the first film F1 is continuously formed on the substrate S, and when viewed from the plane direction, the whole is almost mesh-like.
  • the height (H) of the first film F1 is about lOnm or less, and the width (W) is about 4 nm to 8 nm.
  • the second film F2 is formed to a height (h) higher than the height (H) of the first film F1, for example, about 60 m.
  • the shape of the third film F3 viewed from the side is generally flared. This shape is, for example, a conical shape. However, it is described as an easy-to-understand expression that does not mean a geometrically perfect conical shape, and actually has various shapes such as a laterally spread state and a spiral state. In any case, the third film F3 can support the second film F2 mechanically and firmly on the substrate S by contacting the substrate S with a wide bottom area. Electrical contact is secured.
  • the electric field is strongly concentrated on the tip of the second film F2. Electric field concentration does not occur in the first film F1.
  • the second film F2 blocks the mutual electric field concentration action by the first film F1.
  • An appropriate interval (D) is set, for example, about 100 / zm.
  • the degree of aggregation of the second film F2 has a very small effect on the electric field concentration of the second film F2 for each first film F1, which is not as dense as the conventional carbon nanotubes! /.
  • the second film F2 is highly oriented and has good electron emission characteristics. Therefore, the phosphor can be uniformly excited and emitted in the field emission lamp. Therefore, the field emission lamp can emit light uniformly.
  • the third film F3 can provide good electrical contact with the substrate for flowing current.
  • the second film F2 can exhibit high electric field concentration performance.
  • 8 in the Fowler-Nordheim equation is the radius at an arbitrary position (base in the embodiment)! :, Where h is the height from that position to the tip, and is expressed by the hZr formula.
  • the radius of the second film F3 decreases from the arbitrary position toward the tip. In the above description, the case where the radius decreases toward the tip as a whole is included even if there is a portion where the radius is partially large from any position to the tip. In addition, it is not necessary to limit the intermediate part between the tip of any position force and the case where it is straight.
  • the arbitrary position may be an intermediate position force that is not limited to the base of the carbon film.
  • the tip portion having the minimum radius becomes the maximum electric field concentration portion, and the electric field emission is performed.
  • Field emission at that part When saturates, field radiation occurs in the part where the radius gradually increases while maintaining the field radiation in that part.
  • the Faura Nordheim equation is an equation that describes the field density of the current emission into the vacuum. This formula is
  • I is a field emission current
  • s is a field emission area
  • is a constant
  • F is an electric field strength
  • is a work function
  • B is a constant
  • is an electric field concentration factor
  • V is an applied voltage.
  • the electric field concentration factor j8 is a coefficient for converting the applied voltage V into the electric field strength F (V / cm) according to the shape of the tip and the geometrical shape of the element.
  • FIG. 24 shows a configuration of another manufacturing apparatus 50.
  • the positive electrode of the DC power source 60 is provided inside the vacuum chamber 52. Also in this manufacturing apparatus 50, plasma 64 is generated in the internal space of the coil 52.
  • This embodiment relates to a novel carbon film structure (which can be named carbon metal nanotree).
  • the structure of the carbon nanotube is a columnar shape having a high aspect ratio.
  • Carbon nanotubes are used in field emission electron emission sources.
  • Carbon nanotubes have a high resistance because of their high aspect ratio. As a result, the amount of current is insufficient and the electron emission performance is easily affected. Therefore, the amount of current consumed to maintain high electron emission performance is large.
  • This embodiment has a high-density electron emission point, high aspect ratio, high conductivity, low current consumption,
  • This carbon membrane structure consists of carbon nanotubes (trunk carbon nanotubes) that extend like tree trunks, and many carbon nanotubes (branch carbon nanotubes) like the branches of this carbon nanotube Branch into a high orientation.
  • Branched carbon nanotubes constitute electron emission points where electric field concentration tends to occur.
  • the carbon film structure can constitute a cold cathode electron source that can emit electrons with high efficiency.
  • metal is encapsulated in the space inside the carbon nanotube, and the conductivity is improved. This improves the current supply performance and improves the electron emission performance.
  • the encapsulated metal is one or more of magnetic metals such as iron, nickel, cobalt, etc., which are metal catalysts for carbon nanotube growth, and these alloys can be selected. This makes it applicable to magnetic recording materials, sliding materials, wear-resistant materials, semiconductor materials, etc.
  • the carbon film structure of the present embodiment includes a large amount of metal. Nanoscale metal is held stably. It can be expected to be applied in many industrial fields due to its conductivity and magnetic properties. For example, there is an application to a storage medium such as a magnetic disk.
  • the branched carbon nanotubes are highly oriented on the trunk carbon nanotubes. For this reason, the metal encapsulated in the stem-like carbon nanotubes is also highly oriented, and is excellent in stabilizing magnetic properties.
  • the carbon film structure of the present embodiment When the carbon film structure of the present embodiment is applied to a cold cathode electron source, it can provide a cold cathode electron source having a high emission point density and a high electron emission performance. Since it contains a metal, it can be applied to magnetic recording materials, sliding materials, wear-resistant materials, semiconductor materials, and the like.
  • a metal coil containing a catalytic metal for carbon nanotube growth is placed in a vacuum chamber.
  • the number of metal coils may be one or more.
  • a high resistance metal wire is placed in the metal coil.
  • the vacuum chamber is depressurized and a mixed gas of hydrogen gas and carbon-based gas is introduced into the vacuum chamber. Maintain the potential of the metal wire at a negative potential and generate heat when energized.
  • High frequency voltage is applied between both ends of the metal coil! ] To generate plasma with mixed gas around the metal coil.
  • carbon metal nanotrees having the carbon film structure of the embodiment are formed on the surface of the metal wire.
  • the metal coil can be composed of only a catalytic metal.
  • a catalyst metal film formed on a metal can be used. Fe, Ni and Co are preferred as the catalyst metal.
  • Other catalyst metals include Y, Rh, Pd, Pt, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu.
  • nickel-based stainless steel such as 18-8 stainless steel (SUS304), chrome-based stainless steel such as 18 chrome stainless steel (SUS430), 13 chrome stainless steel (SUS410) in Japanese Industrial Standard JIS. be able to.
  • metal wire -chrome wire can be used.
  • the heat generation temperature of the metal wire can be about 500 ° C to 1000 ° C.
  • Metal wire is maintained at a negative potential of about 20V to 1400V. Can have.
  • the pressure of the vacuum chamber can be lOPa ⁇ : LOOOPa.
  • the carbon-based gas is not limited to methane gas, and a hydrocarbon-based gas such as acetylene or ethane can be selected.
  • a plasma space is generated around the metal coil by a mixed gas, and the catalyst metal contained in the metal coil is sputtered by the plasma, and the sputtered metal particles are formed on the surface of the metal wire. Adhere to.
  • catalytic metal adheres to the metal wire, carbon nanotubes grow on the surface of the metal wire due to the catalytic action of this catalytic metal.
  • the stem-shaped carbon nanotubes grow, and the branch-like carbon nanotubes branch and grow as the stem-shaped carbon nanotubes grow.
  • the catalyst metal is encapsulated in the space inside the carbon nanotube.
  • the carbon nanotube is maintained at a negative potential on the metal wire side, the high frequency voltage is applied to the metal coil, and the stem carbon nanotube is formed in the direction of the electric field formed by the application, that is, in the equipotential surface. Oriented in the vertical direction.
  • the branched carbon nanotubes are also oriented in the same direction. In this way, it is possible to obtain a carbon film structure having a tree structure in which branched carbon nanotubes are branched in a highly oriented manner from a plurality of locations of the trunk carbon nanotubes included in the metal.
  • the carbon film structure produced by the above production steps is shown in the electron micrographs of Figs.
  • the manufacturing conditions are as follows: the vacuum chamber is 100 Pa, the metal coil is 18-8 stainless steel (SUS304), the metal wire is Nichrome wire, and the heating temperature is 700 when the Nichrome wire is energized.
  • the negative potential of C and Nichrome wire is -100V, and the mixed gas is hydrogen gas and methane gas.
  • a direct light source and an edge light method as a planar light source that performs illumination having a planar spread.
  • the planar light source is disposed directly below the liquid crystal display device.
  • a light guide plate is disposed immediately below the liquid crystal display device.
  • a planar light source is arranged in parallel with the end face of the light guide plate.
  • the edge light system is the mainstream instead of the direct system.
  • the edge light method it is difficult to expect high brightness if the incident efficiency of light incident on the light guide plate is low.
  • the direct method allows light to be directly incident on the liquid crystal display device, and the light incident efficiency is extremely high.
  • an anode in which a phosphor is formed inside a vacuum seal between a rear panel and a front panel, and an electron emission cathode disposed opposite to the anode are arranged.
  • the front panel side is attached to the back surface of the liquid crystal display device, and the internal light emission is emitted to the liquid crystal display device through the front panel.
  • This front panel is made of a transparent member such as glass in order to increase the efficiency of light incident on the liquid crystal display device.
  • the front panel force generates heat due to the light emitted from the phosphor and thermally expands.
  • the front panel is made of glass.
  • the anode part is also a metal material. Therefore, there is a difference in thermal expansion between the front panel and the anode part. This generates thermal stress on the front panel.
  • thermal stress overlaps factors such as repetition of light emission and extinction of the planar light source, internal vacuum pressure, and thin structure of the front panel, and deforms the front panel. Deformation of the front panel may cause a decrease in brightness uniformity and, in the extreme, damage.
  • a thermal stress relieving material is provided between the front panel and the anode portion to relieve the thermal stress generated in the front panel.
  • the thermal stress relaxation material is preferably a relaxation material having a layered structure.
  • This relaxation material has, for example, my strength.
  • My strength includes natural strength such as soda mica, red strength, white strength, black strength, gold strength, iron strength, and so on. The artificial my power replaced with is preferred! /.
  • the thermal stress relaxation material absorbs the difference in thermal expansion and contraction between the front panel and the anode part. As a result, the front panel is prevented from being deformed by thermal stress even if light emission and emission stop are repeated, or even if the inside is a vacuum and the front panel has a thin structure.
  • the anode part can be supported by a heat-resistant support member and the heat-resistant support member can be provided in a state where it can move to the side panel.
  • Quartz glass, Tempax glass, Pycoal glass, Neoceram glass, Pyrex (registered trademark) glass, or the like can be used as the heat resistant support member. These glasses have excellent strength such as high durability against rapid cooling and rapid heating and high impact resistance.
  • the front panel is not subjected to thermal stress with the anode part due to the difference in thermal expansion and contraction thereof. As a result, similar to the above, the front panel is prevented from being deformed by thermal stress.
  • the field emission lamp 70 has a panel case provided with a vacuum sealed space by a rear nonel 72, a front panel 74 facing the rear panel 72, and a side panel 76 rising vertically from the periphery of the rear panel 72.
  • the rear panel 72 is surrounded by a side panel 76 to form a shallow recess, and the recess is sealed with a front panel 74 !.
  • FIGS. 31 and 32 For convenience of explanation, the directions are shown in FIGS. 31 and 32.
  • FIG. 31 the vertical direction is called the vertical direction
  • FIG. 32 the direction perpendicular to the paper is called the vertical direction.
  • the left-right direction in Figs. 31 and 32 perpendicular to the vertical direction is referred to as the horizontal direction (one direction in the plane).
  • the planar light source When the vertical dimension is short, the planar light source is thin, and when the planar dimension is large, the light emission area of the planar light source is large.
  • the rear panel 72 and the side panel 76 are also molded with an insulating material such as grease.
  • the inner surfaces of the rear panel 72 and the side panel 76 are preferably subjected to light reflection treatment such as aluminum deposition.
  • the front panel 74 is formed from a light-transmissive insulating material such as transparent or translucent glass resin.
  • a plurality of electron emission portions 86 are arranged on the inner surface of the rear panel 72 at equal intervals in the horizontal direction.
  • the electron emission portion 86 is composed of a conductive wire 86a extending long in the depth direction, and a carbon film 86b such as a carbon nanotube or a carbon nanowall provided on the outer surface of the conductive wire 86a. Yes.
  • an anode portion 84 that emits light by irradiation with electrons emitted from the electron emission portion 86 is provided.
  • the anode section 84 is composed of an anode 84a made of a transparent electrode such as an ITO film or a light transmissive electrode such as an aluminum vapor deposition film, and a phosphor 84b on the anode 84a.
  • the difference in thermal expansion and contraction between the front panel 74 and the anode portion 84 is between the inner surface 74a of the front panel 74 and the outer surface 84c of the anode portion 84.
  • a thermal stress relaxation material 88 is provided to relieve the thermal stress generated in the front panel 74 due to this.
  • the thermal stress relaxation material 88 preferably has a layered structure, for example, My force can be used.
  • the front panel 74 is made of glass, and the anode 84a of the anode portion 84 is made of metal, and there is a difference in thermal expansion and contraction between the two.
  • anode 84a is made of metal, the amount of thermal expansion and contraction is extremely small even when the temperature is increased by heating with the light emitted from phosphor 84a.
  • the front panel 74 is made of glass, and its thermal expansion / shrinkage amount is larger than that of the anode 84a, and heat is easily accumulated inside and the thermal stress tends to remain immediately.
  • the thermal stress relaxation material 88 that relaxes the thermal stress is interposed between the anode 84a and the front panel 74, even if the front panel 74 is heated by the light emitted from the phosphor 84a, The front panel 74 is not affected by the difference in thermal expansion and contraction from the anode 84a. Thermal stress hardly remains. As a result, deformation of the front panel 74 can be prevented.
  • the field emission lamp of the embodiment can be used as a backlight having excellent durability even if it is large and thin.
  • the anode part 84 is supported by the heat-resistant support member 90, and both ends of the support member 90 are interposed in the concave support part 76a on the inner surface of the side panel 76 with a slight gap.
  • the support member 90 can be made of a heat resistant material such as quartz.
  • the anode portion 84 is supported by the support member 90, and the support member 90 is provided in the support portion 76a so as to be movable with respect to the side panel 76. Even if there is a difference in thermal expansion and contraction with the anode part 84, the front panel 72 does not receive thermal stress with the anode part 84.
  • Fig. 39 shows another modification of the cylindrical body.
  • the cylindrical body placed inside the vacuum chamber is It should have an opening in one side or both ends or the peripheral wall.
  • the cylindrical body may be a cylindrical body 100 having a mesh-like peripheral wall or a cylindrical body 101 having a slit-like peripheral wall in addition to a coil having a spiral peripheral wall.
  • the shape of the other opening may be arbitrary.
  • the cylindrical body may have a rectangular cross section, not limited to a circular cross section.
  • Fig. 40 shows another modification of the manufacturing apparatus.
  • the vacuum chamber 112 has a gas inlet 114 and a gas outlet 116.
  • the internal pressure of the vacuum chamber 112 is in the range of lOPa to lOOOOPa.
  • a coil 120 that is a cylindrical body is disposed inside the vacuum chamber 112.
  • a conductive wire 122 is disposed in the internal space of the coil 120.
  • the coil 120 extends straight in one direction.
  • the internal space of the coil 120 is a cylindrical plasma generating space extending long in one direction.
  • the wire rod 122 is disposed in this internal space and extends in an elongated shape.
  • the coil 120 and the conductive wire 122 are opposed to each other with a required space in the extending direction.
  • One end of the coil 120 is connected to the negative electrode of a voltage variable type DC power supply 124.
  • the wire rod 122 is connected to the positive electrode of the DC power source 124.
  • the vacuum chamber 112 is depressurized and hydrogen gas is introduced as a plasma generating gas from the gas inlet 114, and the negative potential of the DC power supply 124 is changed to the cylindrical body 120 When applied to, plasma 126 is generated in the internal space of the cylindrical body 120.
  • a wire rod 122 is disposed inside the coil 120. Both ends of the wire rod 122 may be connected to the AC power source 123 to heat the wire rod 122. From the gas inlet 114, hydrogen gas is introduced as a plasma generating gas, and, for example, methane gas is introduced as a carbon-based gas for forming a carbon film on the surface of the wire 122. Then, the internal pressure of the vacuum chamber 112 is reduced. A negative potential of the DC power supply 124 is applied to the coil 120, and a positive potential is applied to the wire 122. As a result, plasma 126 is generated in the internal space of the coil 120. The methane gas is decomposed by the plasma 126, and a carbon film is formed on the surface of the wire 122 by this.
  • the coil 120 is a solid carbon source in the above, hydrogen ions in the hydrogen plasma collide at high speed with the coil 120, which is a solid carbon source to which a negative DC potential is applied. Carbon jumps out.
  • the ejected carbon chemically bonds with the hydrogen ions in the plasma (CxHy) and becomes a hydrocarbon compound and collides with the wire 122.
  • the hydrocarbon compound force that collided with the wire rod 122 also ejected hydrogen and carbon on the surface of the wire rod 122 Stops and accumulates. As a result, a carbon film is formed on the surface of the wire 122.
  • FIG. 41 is a configuration diagram of another carbon film manufacturing apparatus. This manufacturing equipment has a gas pressure of 0.1 to
  • a 50 Torr vacuum chamber 130 is provided.
  • a coil 131 is disposed as a cylindrical body.
  • Hydrogen gas and carbon-based gas are introduced into the vacuum chamber 130 as the raw material gas for forming the carbon film.
  • a high frequency power source 132 and a DC power source 133 are applied to the tubular body 131 as plasma generation voltages.
  • the high frequency power supply 132 is connected between both ends of the coil 131, and the DC power supply 133 is connected to one end side of the coil 131.
  • a high frequency voltage is applied across the coil 131.
  • a negative DC voltage is applied to one end side of the coil 131.
  • a voltage obtained by superimposing a high-frequency voltage on a negative DC voltage is applied to the coil 131.
  • plasma 134 is generated in the internal space of the coil 131.
  • a preferable carbon film is formed on the surface of the wire 135 which is a base material disposed inside the cylindrical body 131 by the plasma 134.
  • a cylindrical body having at least one opening at least in part may be used.
  • the manufacturing conditions are as follows: CH is 5 ccm, H is 300 ccm, and substrate temperature is 7
  • Carbon films as shown in FIGS. 23C to 23E could be produced in C, pressure 2000 Pa, DC power 3000 W, high-frequency power 500 W, noise 120 V, and deposition time 10 minutes. Industrial applicability
  • the carbon film manufacturing method according to the present invention is useful for manufacturing a carbon film for electron emission in a field emission lamp, an electron source, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】安価で低消費電力で均等に炭素膜を成膜する方法を提供すること。 【解決手段】この炭素膜の成膜方法は、真空チャンバに、一部に開孔を有する筒状体を配置するステップと、この筒状体の内部に基材を配置するステップと、上記真空チャンバに炭素膜成膜用のガスを導入するステップと、上記筒状体にプラズマ発生用の電圧を印加して筒状体の内部にプラズマを発生させ、このプラズマにより基材の表面に炭素膜を成膜するステップとを有する。                                                                         

Description

明 細 書
プラズマ CVDを用いて炭素膜を製造する装置およびその製造方法なら びに炭素膜
技術分野
[0001] 本発明は、プラズマ CVDを用いてナノ構造の炭素膜を製造する装置、方法ならび に炭素膜構造に関する。
背景技術
[0002] プラズマ CVD (Chemical Vapor Deposition)法にお!、ては炭素膜を基板上に成膜 することができる。プラズマ CVD法では、一般に、ガス圧を制御しながら原料ガスを 導入する。対向する一対の平板電極に、直流電力を印加してプラズマを生成させる。 基板を加熱する。基板へのイオンエネルギーを制御することによって、基板に炭素膜 を形成する (特許文献 1参照)。
特許文献 1:特開平 11― 50259号公報
発明の開示
発明が解決しょうとする課題
[0003] このプラズマ CVD法は、ガス圧が高圧である。プラズマの発生のための電圧が高電 圧である。成膜時間が長い。基板面積が大きい基板に成膜するには電極面積の大き い平板電極が必要である。長い線材に炭素膜を成膜するには、長い電極面が必要 である。装置が大型化する。コストが高い装置が必要である。特に、線材の成膜面積 と比較して電極面積が増大し、無駄に電力が消費される。断面円形の線材ではその 全周に均等に炭素膜を成膜することができな!/、。
課題を解決するための手段
[0004] 本発明は、真空チャンバに、一部に開孔を有する筒状体を配置するステップと、上 記筒状体の内部に基材を配置するステップと、上記真空チャンバに炭素膜成膜用の ガスを導入するステップと、上記筒状体にプラズマ発生用の電圧を印加するステップ と、を経て、上記筒状体の内部にプラズマを発生させ、このプラズマにより上記基材 の表面に炭素膜を成膜する。 [0005] 好ましくは上記電圧は、高周波電圧である。
[0006] 好ましくは上記電圧は負の直流電圧である。
[0007] 好ましくは上記電圧は負の直流電圧に高周波電圧を重畳した電圧である。
[0008] 上記電圧のうち直流電圧はその印加形態に限定されるものではなぐ例えば連続 的に印加する場合に限らず、パルス状に印加する場合も含む。
[0009] 筒状体の一部に開孔を有する意味は、筒状体に設けたいかなる開孔も含む。例え ば筒状体の一端側や両端側の開口、周壁の開孔の!、ずれも含む。
[0010] 上記筒状体の周壁の開孔としては例えば螺旋状、網目状およびスリット状がある。
上記筒状体断面は円形、矩形を問わず、いかなる形状も含む。
[0011] 上記筒状体は、「筒」という名称に限定される意義ではなぐ箱状のものも筒状体と して含む。
[0012] 基材は、炭素膜を成膜できればよいので、その形状には限定されず、線状に限ら ず、板状や筒状等の種々の形状であってもよい。
[0013] 炭素膜は、カーボンナノウォール、カーボンナノチューブ、カーボンナノファイバー、 カーボン金属ナノツリーを含む。
[0014] 本発明においては、筒状体の内部空間に発生したプラズマは高い電子密度を有し ている。ガス圧力が高圧でなくても適切な濃度および活性度を有する。そのため、低 いガス圧力で炭素膜を成膜することができる。筒状体内に発生するプラズマは、高密 度である。そのため、低い電力で効率的に炭素膜を成膜することができる。
[0015] 基材は、筒状体の内部空間に配置するので、基材が長い線材である場合、筒状体 を、線材の長手方向に延長して、線材表面に炭素膜を成膜することができる。そのた め、電力の無駄な消費を抑制し、かつ、効率的に成膜することができる。基材を、筒 状体の内部空間に配置することにより、基材の全周面に、炭素膜を均等な膜厚で成 膜することができる。
発明の効果
[0016] 本発明によれば、安価で低消費電力で均等に炭素膜を成膜することができる。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の実施の形態に係る炭素膜の製造装置の概略図である。 [図 2]図 2は、図 1におけるコイルの変形例の概略図である。
[図 3]図 3は、図 1における線材の変形例の部分斜視図である。
[図 4]図 4は、図 1における電子放射による特性評価の概略図である。
[図 5]図 5は、図 1における電子放射特性のグラフである。
[図 6]図 6は、図 1における線材を用いた線状光源の一例を示す斜視図である。
[図 7]図 7は図 6の断面図である。
圆 8]図 8は本発明の他の実施形態に係る炭素膜の製造装置の概略図である。
[図 9]図 9は図 8における電子放出特性の評価方法の説明図である。
圆 10A]図 10Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。
[図 10B]図 10Bは図 10Aの一部拡大図である。
圆 11A]図 11 Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。
[図 11B]図 11Bは図 11Aの一部拡大図である。
圆 12A]図 12Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。
[図 12B]図 12Bは図 12Aの一部拡大図である。
圆 13A]図 13Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。
[図 13B]図 13Bは図 13Aの一部拡大図である。
圆 14A]図 14Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。
[図 14B]図 14Bは図 14Aの一部拡大図である。
圆 15A]図 15Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。
[図 15B]図 15Bは図 15Aの一部拡大図である。
圆 16A]図 16Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。 [図 16B]図 16Bは図 16Aの一部拡大図である。
圆 17A]図 17Aは図 8において成膜条件が異なる炭素膜の状態を示す SEM像の図 である。
[図 17B]図 17Bは図 17Aの一部拡大図である。
[図 17C]図 17Cは図 17Aの炭素膜の構造を示す概念図である。
[図 18]図 18は図 1のコイルの変形例を示す図である。
[図 19]図 19は図 1のコイルの他の変形例を示す図である。
[図 20]図 20は図 1の装置の他の例を示す図である。
[図 21]図 21は図 1の装置の更に他の例を示す図である。
圆 22]図 22は本発明のさらに他の実施の形態に係る製造装置の概略図である。
[図 23A]図 23Aは図 22の製造装置によりプラズマが発生している様子を示す写真で ある。
[図 23B]図 23Bは図 22の製造装置によりプラズマが発生している様子を示す写真で ある。
圆 23C]図 23Cは図 22の製造装置により成膜条件が異なる炭素膜の状態を示す SE M像の図である。
[図 23D]図 23Dは図 23Cの炭素膜の構造を示す概念図である。
[図 23E]図 23Eは図 23Dの針状の膜の構造を示す概念図である。
[図 24]図 24は本発明のさらに他の実施の形態に係る製造装置の概略図である。
[図 25]図 25は、カーボン金属ナノツリーを示す図である。
[図 26]図 26は他のカーボン金属ナノツリーを示す図である。
[図 27]図 27はさらに他のカーボン金属ナノツリーを示す図である。
[図 28]図 28はさらに他のカーボン金属ナノツリーを示す図である。
[図 29]図 29はさらに他のカーボン金属ナノツリーを示す図である。
[図 30]図 30はさらに他のカーボン金属ナノツリーを示す図である。
[図 31]図 31はフィールドェミッションランプの断面図である。
[図 32]図 32は図 31の要部の拡大図である。
[図 33]図 33は図 31の A— A線に沿う断面図である。 [図 34]図 34は、図 31の B— B線に沿う断面図である。
[図 35]図 35は他のフィールドェミッションランプの断面図である。
[図 36]図 36は図 35の C C線に沿う断面図である。
[図 37]図 37は図 35の D— D線に沿う断面図である。
[図 38]図 38は耐熱性支持部材を支持する支持部の変形例を示すサイドパネルと耐 熱性支持部材との部分図である。
[図 39]図 39は筒状体の他の例を示す図である。
[図 40]図 40は炭素膜の製造装置の他の例を示す図である。
[図 41]図 41は炭素膜の製造装置の他の例を示す図である。
符号の説明
[0018] 10 真空チャンバ
11 コイル
12 高周波電源
13 線材
14 加熱用電源
発明を実施するための最良の形態
[0019] 以下、図面を参照して本発明の好ましい実施の形態を詳細に説明する。
[0020] 図 1に、本発明の実施の形態に係る炭素膜の製造装置の概略を示す。図 1におい て、点線で示した真空チャンバ 10内に、コイル 11を設置する。コイル 11は周壁が螺 旋状の筒状体である。コイル 11は一部に開孔を有する筒状体と言うことができる。コ ィル 11の素材は、 Cu、 Ni、ステンレス鋼、カーボンなどである。コイル 11の卷き径、 長さ等は、炭素膜の成膜対象である基材の大きさなどに応じて選択することができる 。基材は一例として導電性の線材である。コイル 11の内部空間は縦長のほぼ円筒形 状になっている。
[0021] コイル 11の両端に、高周波電源 12が接続される。高周波電源 12の電力周波数は 、例えば、 13. 56MHz, 4MHz、 27. 12MHz、 40. 68MHzなどである。コイル 11 の内部空間に、線材 13がコイル 11の縦長方向に沿って配置される。線材 13はコィ ル 11の内部空間のほぼ中央に配置されて、その全周囲に均等な膜厚で炭素膜を成 膜することができるようになって!/ヽる。
[0022] 線材 13の素材は、 Ni,ステンレス鋼, Feなどである。線材 13の直径は、限定されな い。線材 13の直径は例えば数 mmである。線材 13の直径は、例えば 1 5mmであ る。加熱用電源 14は線材 13の両端間に接続される。線材 13の電源 14の通電による 加熱温度は、 700°C〜1000°Cの範囲である。その加熱温度は、好ましくは、 800°C 〜: LOOO°Cである。加熱温度は 800°C以上であることが成膜時間の短縮と膜質の向 上に好ましい。線材 13が 800°C以上に加熱されている状態で、真空チャンバ 10内に 炭化水素ガス等の原料ガスが流量制御されかつ所定のガス圧力で供給される。原料 ガスには、 CH /H、 CH ZAr、 CH /O等がある。処理後のガスは真空チャンバ
4 2 4 4 2
10外に排気される。
[0023] CH /Hガス中の CHの濃度は、例えば、 90%であり、 CH ZArガス中の CHの
4 2 4 4 4 濃度は、例えば、 20〜60%であり、 CH /Oガス中の CHの濃度は、例えば、 95%
4 2 4
である。 C Hなどの他の炭化水素ガスを用いることができる。
2 2
[0024] 真空チャンバ 10内のガス圧は、 0. l〜50Torrである。このガス圧は、好ましくは、 0 . 1〜: LOTorrであり、より好ましくは、 0. 5〜50Torrである。
[0025] 高周波電源 12からコイル 11に 100W©度の高周波電力が供給される。この供給に よりコイル 11内にプラズマ 15が発生する。プラズマ 15の発生領域は、本発明者の実 験の 1つに従うと直径 50mm、長さ 100mmの円柱状となった。このときのガス圧力は 0. 75Torr程度であり、線材 13の加熱温度は 800°C程度であった。線材 13はその 全周に炭素膜が成膜された。その成膜に要した時間は約 30分であった。
[0026] 以上の実験では、プラズマ 15は、非常に高い電子密度を持ち、炭素膜の成膜を低 いガス圧で成膜することができた。上記プラズマは、 100W©度の低電力で高密度 に維持される。電力供給の増大により炭素膜の成膜速度を高くすることができる。真 空チャンバ 10に導入する原料ガスは CHが好ましい。 CHは効率良くプラズマを発
4 4
生して高密度の炭素膜形成ソースを形成することができる。短時間成膜が可能であ る。
[0027] コイル 11内に線材 13を挿通することにより、容易に線材 13の全面 (全周面)に炭素 膜を形成することができる。 [0028] 長い線材 13の表面に成膜する場合、コイル 11を線材 13の長さに合わせて長くす るとよい。コイル 11の高さよりも線材 13の長さが大きくても、線材 13をコイル 11に対し て上下動させるか、あるいは、その逆にコイル 11を線材 13に対して上下動させること により、線材 13に炭素膜を成膜することができる。
[0029] 図 2に示すように、コイル 11の上下方向の高さに対して線材 13の長さが大きい場合 、複数のコイル 11それぞれを線材 13が挿入することができるように並設する。これに より、各コイル 11に発生するプラズマ 15どうしが重なり合うようにして、線材 13全体に 炭素膜を成膜することができる。コイル 11は横向きに配置してもよ 、。
[0030] 線材 13は、図 3に示すように、平板状の線材 16、複数の線材を束ねたり、撚つたり した線材 17、コイル状の線材 18を挙げることができる。
[0031] 次に、特性評価について述べる。特性評価としては、電子放射、 SEM (走査型電子 顕微鏡)像、ラマン散乱分光法が挙げられる。
[0032] 電子放射は、図 4に示すように、真空中でターゲット (アノード) 19との間に lmmの空 間 Sを介して炭素膜を成膜した線材 13を配置し、線材 13を力ソードとしてターゲット 1 9と線材 13との間に直流電圧を印加して電流を計測した。
[0033] 図 5は、横軸が電圧、縦軸が電流を表す。図 4の構成では 1 OAないし 8Aが閾値電 流となり、 970Vとなる。一般に、放射特性は 4VZ w m (=4KVZmm)であり、本実 施の形態の 970VZmmは非常に優れていることが判る。
[0034] 線材 13の SEM像を観察したところ、放射特性に優れた結晶が成長していることが 判った。ナノウォールの結晶が十分に成長していないと、放射特性が悪くなる。結晶 の大きさは 1〜10 mが好ましぐ 1 μ mより小さいと放射特性が悪くなる。
[0035] ラマン散乱分光法は、一般に R=I /\ =4〜8であればよぐ本実施の形態の
1580 1350
Rは 5〜8であり好まし 、結果が得られた。
[0036] I : 1580cm— 1におけるピーク値(Gバンド)
1580
I : 1350cm— 1におけるピーク値(Dバンド)
1350
Gバンドは、グラフアイトの E2g振動モードに対する Dバンドは、 sp2微結晶、あるい は、デイスオーダ sp2成分によるものである。したがって、 Rが大きい程、結晶性がよい [0037] このように構成された炭素膜の製造によると、 0. l〜50Torrの低いガス圧力、 300
Wの低電力、 30分の短時間で線材 13に炭素膜を形成できる。
[0038] また、コイル 11内に線材 13を揷通することにより、容易に線材 13の全周面にほぼ均 等な膜厚で高品質な炭素膜を形成することができる。
[0039] コイル 11に印加する電力 300W、成膜時間 30分は一例である。これら電力、成膜 時間は、コイルの材質等により変化するが、実施の形態では従来よりも低電力、短時 間となる。
[0040] 線材 13に成膜される炭素膜としては、カーボンナノウォール、カーボンナノチューブ
、カーボンナノファイバーなどが挙げられる。
[0041] 線材 13にカーボンナノウォールを成膜する前ステップにて、例えば CH4ZArガス 中にて線材 13を 1000°Cに加熱して、線材 13の表面にカーバイドを作成しておき、 その後、上記の方法にてカーボンナノウォールを成膜することができる。
[0042] このように、カーノイドを作成することで、カーボンナノウォールがより強固に成膜さ れる。
[0043] さらに、上述の製造装置において、 Cu製のコイル 11を用いて、下記の条件で線材
13に炭素膜を成膜した。
[0044] 高周波電力: 200W
線材の加熱温度: 650°C
ガス流量 CH : 2ccm
4
H : 18ccm
2
ガス圧力: lOOPa
成膜時間: 30分
以上の成膜条件で炭素膜が成膜された線材 13は、電界電子放出特性が良好であ つたので、薄型の照明器具やディスプレイ表示装置、あるいは液晶表示装置のバッ クライトなどの線状光源として有用である。
[0045] 以下、炭素膜が成膜された線材 13を用いた線状光源の一例について、図 6及び図 7に基いて説明する。
[0046] 図 6は、例えば、ノ ックライトなどに好適な線状光源の斜視図であり、図 7は、その断 面図である。
[0047] この線状光源 20は、筒状の真空封止管 21を備える。真空封止管 21内には、陽極 部 22が収納配置される。陽極部 22の真上に、陰極部としての炭素膜が成膜された 線材 23が対向配置される。真空封止管 21の内部は、例えば、 10— 6Torr程度の真 空に維持される。
[0048] 陽極部 22は、ガラス基板 22aと、このガラス基板 22a上に形成された ITOなど力ゝらな る陽極 22bと、この陽極 22b上に形成された蛍光体 22cとを備える。
[0049] 陽極部 22は、その長手方向の両端部に、絶縁性の支持板 28がー体に突設されて いる。支持板 28によって、透明電極 22bに接続された導線 24および線材 23に接続 された導線 25が揷通支持される。線状光源 20において、陽極部 22と線材 23との間 に、電源 26から直流電圧を印加すると、線材 23から電子が真空中に放出される。こ の電子は陽極 22bに引き付けられて蛍光体 22cに衝突する。これによつて、蛍光体 2 2cが励起されて発光する。
(他の実施の形態)
カーボンナノチューブ等の炭素膜は、ディスプレイ、ランプ、ナノデバイス、電子銃 等数多くの応用が期待される材料である。炭素膜の成膜法として気相成長法がある 。気相成長法ではカーボンナノチューブの成長に基材に予め触媒を形成する必要 がある。
[0050] これに対して本実施の形態では予め基材に触媒金属を付与する必要なく炭素膜を 成膜することができる。
[0051] 図 8に本実施の形態に係る製造装置の概略構成を示す。真空チャンバ 31内に、コ ィル 32が設置される。コイル 32は、例えば、 Cu、 Ni、ステンレス鋼、カーボンなどか らなる。コイル 32は、高周波電源 33に接続される。コイル 32内〖こは、カーボンナノチ ユーブ等の炭素膜を形成する基材が配置される。線材 34の直径は例えば lmm程度 である。線材 34は、炭素膜の形成の触媒となる金属を含有するのが好ましい。この金 属には、例えば、ステンレス鋼、 Fe、 Niがある。
[0052] 線材 34に加熱用電源 35が接続される。線材 34はこの電源 35〖こより 700°C〜800 °C程度に加熱される。線材 34は、直線状に限らず、コイル状や波状であってもよぐ 複数の線材を撚り合わせたものであってもよ 、。
[0053] 真空チャンバ 31には、ガス導入部 36およびガス排気部 37が設けられている。ガス 導入部 36から炭素系の原料ガスおよびキャリアガス、例えば、 CH /H、 CH ZAr
4 2 4
、 CH /Oが導入され。処理後のガスはガス排気部 37から排気される。
4 2
[0054] ガス圧力(全圧)は、 lOPa〜: LOOOPa程度であるのが好ましい。
[0055] 線材 34には、直流電源 38が接続される。線材 34には、負の直流電圧が印加され る。
[0056] この実施の形態は、炭素膜を形成する線材 34に予め触媒金属を形成するステップ が無い。真空チャンバ 31内のコイル 32内に、線材 34を揷通支持する。
[0057] 次に、この線材 34を通電加熱する。その一方、線材 34に負の直流電圧を印加する 。さらに、コイル 32に、高周波電力を供給する。ガス導入部 36から原料ガス等をその 流量を制御しながら導入する。これによつてコイル 32内には、プラズマ 39が発生する 。このプラズマ 39により原料ガスが励起されて線材 34の外表面に炭素膜が成膜され る。
[0058] 線材 34に予め触媒金属を形成しない理由を説明する。
[0059] 線材 34には、負の直流電圧が印加されている。
[0060] そのため、線材 34の表面がスパッタリングされる。
[0061] スパッタリングされた線材 34に含まれている触媒金属の微粒子は、比較的ガス圧力 が高いために、線材 34側に引付けられて線材 34表面に付着する。
[0062] この付着した微粒子を触媒としてカーボンナノチューブ等の炭素膜が成長する。
[0063] 次に、成膜条件、特に直流バイアス電圧を変えた場合に、形成される膜の状態およ びその電子放出特性を評価した。
[0064] 電子放出特性は、図 9に示すように、真空中で、陽極 40との間に、 1mmの間隙を 介してカーボンナノチューブを成膜した線材 34を配置する。線材 34を陰極として直 流電圧を印加する。 5VZ w mでの放出電流を計測した。
[0065] 表 1に成膜条件、電子放出特性および SEM像による膜の状態の評価結果を示す
[0066] [表 1] 条件 カス - 1[星 seem 入力 J土 時間 /皿 '又 Bias 圧力 膜状態 遠視放出特性
No. CH4 H2 W V A min 。C V Pa 5V m
1 2 18 200 3.5 8 60 742 0 100 CNW (小) なし
2 2 18 200 3.7 8 120 700 -25 100 CNW (中) 0.8 μ A
3 2 18 200 3.7 8 120 710 -50 100 CNW (大) 0.24 jw A
4 2 18 200 3.38 8 60 830 一 100 100 ス亍ッフ 犬クラファイト 0.52 jL A
5 6 14 200 3.84 8 120 711 -100 100 クラファ仆膜 2jU A
6 2 18 200 3.5 8.2 60 700 -160 100 CNT (微量) なし
7 2 18 200 3.9 8.1 60 750 - 160 100 CNT 11 A
8 2 18 200 3.4 8 60 700 -160 100 CNT 5.4 U A
この表 1においては、入力は、コイル 32に供給される高周波電力を、電圧および電 流は、線材 34の通電加熱用の電圧および電流を、時間は、成膜時間を、温度は、線 材温度を、圧力は、 CH4および H2の全圧を、電子放出特性は、上述のようにして測 定された放出電流を示して!/、る。
[0067] 各条件に対応する SEM像を、それぞれ図 10A、 10B〜図 17A、 17Bに示す。
[0068] 条件 No. 1は、負の直流電圧を印加しない条件であり、カーボンナノウォール(CN W)の小さな成長が見られた。 5VZ mにおける電子放出電流は、認められなかつ た。
[0069] 条件 No. 2〜5は負の直流電圧の絶対値を大きくする条件であり、負の直流電圧の 増大に伴って、カーボンナノウォール (CNW)の成長が大きくなる。さらに、グラフアイ トが成長した。 5VZ mにおける電子放出電流の増加が認められた。
[0070] 条件 No. 6〜8に示すように、直流電圧が、 160Vでは、カーボンナノチューブ( CNT)の成長が認められた。
[0071] 条件 NO. 7, 8では、 5VZ mにおける電子放出電流が認められた。負の直流電 圧は、その絶対値が、 100を越える値であることが好ましい。
[0072] このように、線材 34に負の直流電圧を印加しながらプラズマ CVDを行うことにより、 予め触媒を形成していない線材 34に、カーボンナノチューブを成膜することができる
[0073] 注目すべきは、図 17A、図 17Bである。このカーボンナノチューブは図 17Cにその 炭素膜の構成を概念的に示す。カーボンナノチューブは単体では高アスペクト比に より先端の揺れや消耗等により発光ちらつき、輝度変化が発生しやすい。また、カー ボンナノチューブが多数密集すると、電界集中しにくいか、電界集中しない状態とな る。そこで、多数のカーボンナノチューブをグループ分け、各グループを複数のカー ボンナノチューブが集合したカーボンファイババンドルとしたものがある。
[0074] しかしながら、従来のカーボンファイババンドルでは、当該バンドル内ではカーボン ナノチューブが、基部側でも先端側でも密集しているために、カーボンファイババンド ルそれ自体は電界集中が起こり易くなつたとしても、単体と比較して電界集中しにく い。 [0075] 図 17Cで示すカーボンファイババンドルは、カーボンナノチューブそれぞれは、そ れぞれの基部側が集合する力 それぞれの先端側は花びらのように広がって互いに 密集していない。そのため、単体のカーボンナノチューブのように電界集中が極めて 起こり易い一方で、単体のカーボンナノチューブとは異なり、全体として、カーボンナ ノチューブ先端の揺れや消耗等による発光ちらつき、輝度変化が起こりにくい。図 17 Cの炭素膜の製造条件は CHが 2ccm、 Hが 18ccm、基板温度 650°C、圧力 100P
4 2
a、交流電力 200W、バイアス— 100V、成膜時間 30分であった。
[0076] カーボンナノチューブを成膜する線材 34が長 、ためにコイル 32のプラズマ発生領 域からはみ出す場合、線材 34を、コイル 32に対して相対的に移動させて、線材 34 の全長に亘つてカーボンナノチューブを成膜させるとよい。
[0077] 図 18に示すように、線材 34力 コイル 32よりも長い場合、複数のコイル 32を、線材
34の長手方向に沿って並設する。これにより、各コイル 32で発生するプラズマ同士 が重なり合わせて線材 34の全体に成膜するとよ ヽ。
[0078] 図 19に示すように、コイル 32の長手方向の中央部分 32aの卷き径を大きくし、両端 部分 32bの卷き径を小さくしてプラズマを中央部分に効率的に閉じ込めるようにして 成膜速度を高めるようにしてもょ ヽ。
[0079] (さらに他の実施の形態)
他の実施の形態として、図 20に示す容量結合型ある!/ヽは図 21に示す誘導結合型 のプラズマ CVD装置に適用する線材 41に負の直流電圧を印加する。線材 41を、ヒ ータ 42等によって間接的に加熱することができる。直流電圧の印加は、カーボンナノ チューブの成膜の初期の段階のみ行うことができる。
(さらに他の実施の形態)
このプラズマを用いた製造装置には、真空チャンバの外周にコイルを卷回する。こ のコイルに、高周波電源カゝら電流を流すことによって真空チャンバ内にプラズマを発 生させるものがある。この製造装置では、コイルに対して高周波電源からインピーダン ス整合回路を介して高周波電力を供給する必要がある。
[0080] そのため、このプラズマ発生装置を用いて長尺な線材表面に成膜するにはインピー ダンス整合回路を多数設置してコイルを延長してプラズマを長尺化することとなる。そ のため、相当にコストが大掛かりなものとなる。
[0081] 本実施の形態では、インピーダンス整合回路を設置する必要なくコイルを延長して プラズマを長尺化することを可能にした製造装置である。
[0082] この実施の形態の製造装置は、減圧されかつプラズマ発生用ガス雰囲気下の真空 チャンバ内に、周壁の少なくとも一部に開孔を有する導電性の筒状体を配置する。こ の筒状体の一端側に直流の負電圧を印加する。開孔を有する筒状体としては周壁 が螺旋状であるコイル、周壁が網目状あるいはスリット状である筒状体がある。筒状 体の形状はその内部の空間にプラズマを閉じ込めることができる形状であればよい。
[0083] 本実施の形態においては、筒状体の一端側に直流の負電圧を印加する。筒状体の 他端側には直流電源を接続しな ヽ。コイルの他端側を例えばフローティング状態に する。この構成によりコイルの内部空間にプラズマを発生させかつ閉じ込めることがで きる。
[0084] このような製造装置は、コイルを延設しても、コイルの延長上にインピーダンス整合 回路を設置する必要が何等ない。そのため、コイルの延設がきわめて簡単である。製 造装置としては簡易かつ安価である。これに加えて長尺化のプラズマを安定かつ長 期にわたり発生させることができる。
[0085] この製造装置の適用用途の一例は、長い成膜対象の表面に炭素膜を成膜する場 合、コイルをその成膜対象の長さに合わせて延長するだけで済む。そのため、成膜 費用が安価である。この製造装置で線材の表面に電子放出用の炭素膜を形成して 電子放出用の陰極とし、この陰極と陽極との間の電界印加により電子放出させる。こ の電子を蛍光体に衝突させて該蛍光体を励起発光することができる。
[0086] この製造装置は、プラズマ発生装置として、プラズマ CVD装置、プラズマエッチング 装置、プラズマプレーティング装置等のプラズマにより処理を行う装置に利用すること ができる。
[0087] 以下、添付した図面を参照して、本実施の形態を説明する。
[0088] 図 22を参照して製造装置 50は、ステンレス鋼等の金属製の円筒形の真空チャン バ 52を備える。真空チャンバ 52はそれ自体が金属製であってもよい。真空チャンバ 52は、その外周壁面を安全性の観点カゝら絶縁材料で被覆した構成として内周壁面 を金属製として構成することができる。真空チャンバ 52の金属材料には特に限定さ れない。
[0089] 真空チャンバ 52は接地されて!、る。真空チャンバ 52にはガス導入口 54とガス排出 口 56とが設けられている。プラズマ発生ガスには活性ガスや不活性ガスがある。活性 ガスとしては例えば水素ガスがある。不活性ガスとしては例えばアルゴンガスがある。 真空チャンバ内圧力は lOPaから lOOOOPaの範囲の圧力でよい。
[0090] 真空チャンバ 52の内部には金属製のコイル 58が配設されている。コイル 58の材料 には特に限定されな 、。コイル 58の材料の一例はステンレス鋼である。
[0091] コイル 58の一端側は直流電源 60の負極に接続されて負の直流電圧が印加されて いる。直流電源 60の正極は接地されている。これにより、真空チャンバ 52内は直流 電源 60の正電位と同電位となっている。
[0092] コイル 58の他端側はフローティングされている。コイル 58の他端側はフローティング する必要は必ずしもない。コイル 58の他端側がその一端側に接続されてもよい。コィ ル 58の線径には特に限定されない。例えば 2mmから 25mmである。コイル 58の線 間間隔には特に限定されない。例えば 2mmから 20mmである。これら線径、線間間 隔は実験等により適宜に決定することができる。
[0093] 直流電源 60は好ましくは電圧可変型である。直流電源 60の電圧は 100Vカゝら 200 0Vの電圧範囲である。直流電源 60の電圧は適宜に実験等により決定することがで きる。
[0094] 以上の構成を備えた製造装置 50にお 、て、真空チャンバ 52内を減圧する。ガス導 入口 54力もプラズマ発生用ガスとして水素ガスを導入する。直流電源 60の負の直流 電圧をコイル 58に印加する。これにより、コイル 58の内部空間にプラズマ 64を発生さ せる。
[0095] 図 23A、図 23Bは、本発明者が製造し実験室内に配置してある本実施の形態に対 応した製造装置 50によりコイル 58の内部空間にプラズマ 64が発生している様子を 示す写真である。写真内には符号をとれないが、コイル 58と線材 62とプラズマ 64と が明瞭に撮影されている。
[0096] この製造装置 50を用いた炭素膜の成膜方法を説明する。 [0097] コイル 58の内部に導電性の線材 62を配置する。線材 62の両端に交流電源 63を接 続して線材 62を加熱する。ガス導入口 54から H2ガスと CH4ガスとを導入する。真空 チャンバ内圧を減圧し、直流電源 20の負電位をコイル 58に印加する。この印加で、 コイル 58の内部空間にプラズマ 64が発生する。これにより、 CH4ガスが分解され、 線材 62の表面に炭素膜が成膜される。
[0098] 図 23Cの SEM (走査型電子顕微鏡)像に、図 22の製造装置により製造された炭素 膜の状態を示す。製造条件は、 CHが 5ccm、 Hが 300ccm、基板温度 750°C、圧
4 2
力 2000Pa、直流電力 3000W、ノィァス— 120V、成膜時間 15分である。
[0099] この図 23Cにおいて(写真 1)は、陽極と陰極との間の印加電圧 3. OkV、倍率 X 10 00倍の電子顕微鏡写真である。(写真 2)は(写真 1)を拡大 (4300倍)したものであ る。図 23Dに上記写真に示す炭素膜の構造を概念的に示す。図 23Eに図 23Dの針 状炭素膜を概念的に示す。図 23Cないし図 23Eに示すように、第 1の膜 F1は網目状 となったカーボンナノウォールである。第 2の膜 F2は第 1の膜 F1に囲まれている。第 2の膜 F2は先端が電子放出点となる針状になっている。第 2の膜 F2の先端は第 1の 膜 F1よりも高い。第 3の膜 F3が第 2の膜 F2の膜下部にまとわりつくように成膜されて いる。
[0100] 第 1の膜 F1は基板 S上に連続的に成膜され、平面方向から見た場合、全体がほぼ 網目状になっている。第 1の膜 F1の高さ(H)はほぼ lOnm以下の程度であり、幅 (W )は 4nmないし 8nm程度である。第 2の膜 F2は、第 1の膜 F1の高さ(H)よりも高い高 さ (h)、例えば、 60 m程度に成膜される。第 3の膜 F3は、側面から見た形状は概ね 裾広がりの形状をなしている。この形状は、例えば、円錐形状になっている。ただし、 幾何学的に完全な円錐形を意味するものではなぐ理解し易い表現として説明して いて、実際は横広がり状態、螺旋状態、等の各種の形状となっている。いずれにして も、第 3の膜 F3は、基板 Sに対して広い底面積で接触することにより、第 2の膜 F2を 基板 Sに機械的に強固に支持することができるとともに、基板 Sに対する電気的コンタ タトを確保している。
[0101] 第 2の膜 F2の先端には電界が強く集中する。第 1の膜 F1には電界集中が起こらな い。また、第 2の膜 F2は第 1の膜 F1により相互の間隔を互いの電界集中作用を阻害 しないように適宜の間隔(D)、例えば、 100 /z m程度隔てられている。第 2の膜 F2の 集合程度は、従来のカーボンナノチューブのような密集状態ではなぐ第 1の膜 F1毎 の第 2の膜 F2の電界集中に対する影響は極めて小さ!/、。
[0102] 上記炭素膜構造の作用を説明する。
[0103] (1)第 2の膜 F2の姿勢が第 3の膜 F3に支持されて極めて安定ィ匕しているから、電子 を安定して放出することができる。
[0104] (2)第 2の膜 F2は、高配向であり、電子放出特性が良い。そのため、フィールドエミ ッシヨンランプにおいて蛍光体を均一に励起発光させることができる。したがって、フ ィールドエミッションランプの均一な発光を可能にする。
[0105] (3)第 2の膜 F2は、第 3の膜 F3によって基板上に強固に支持されているので、高い アスペクト比でも、フィールドェミッションランプに対して高安定の電子放出源を提供 することができる。
[0106] (4)第 2の膜 F2の直径が細くても、第 3の膜 F3によって、電流を流し込むための基 板と良好な電気的コンタクトを得ることができる。
[0107] (5)第 2の膜 F2は、第 1の膜 F1により、互いの間隔が制約されているので、第 2の膜
F2の密集を制約することができる。そのため、第 2の膜 F2は高い電界集中性能を発 揮することができる。
[0108] 第 2の膜 F2にお!/、ては、フアウラノルドハイム(Fowler— Nordheim)の式における 電界集中係数 |8は、任意の位置 (実施の形態では基部)での半径を!:、その位置から 先端までの高さを hとして、 hZrの式で表される。第 2の膜 F3の半径は任意の位置か ら先端に向力うにつれて小さくなる。上記において、任意の位置から先端までの間で 、半径が部分的に大きい部分が存在しても、全体として先端に向けて半径が小さくな る場合を含む。また、任意の位置力 先端までの間の途中部分は真直ぐな場合に限 定する必要はない。途中部分において曲線状、折れ線状、等に変形していても、全 体として先端に向けて半径が小さくなるとよい。上記において、任意の位置は、炭素 膜の基部に限定するものではなぐ途中の位置力 でもよい。
[0109] 上記構成を有する第 2の膜 F2は、印加電圧が低いときは半径が最小である先端部 分が最大の電界集中部分となって、電界放射が行われる。その部分での電界放射 が飽和すると、その部分での電界放射を維持しつつ、半径が漸次、大きくなる部分で 電界放射が行われる。
[0110] そのため、印加電圧が上昇していくと先端部分で電界放射が飽和しても、他の部分 力 電界放射が行われる。その結果、印加電圧の上昇に伴い電界放射が増大して いく。これにより、電界放射が飽和しにくい炭素膜となる。
[0111] フアウラノルドハイムの式は電界放射は、真空に放出される電流密度を記述するで 表す式である。この式は、
I = sAFソ Θχρ (- B3 2/F)
F= β ν
で表される。
[0112] ただし、 Iは電界放射電流、 sは電界放射面積、 Αは定数、 Fは電界強度、 φは仕事 関数、 Bは定数、 βは電界集中係数、 Vは印加電圧である。電界集中係数 j8は、印 加電圧 Vを、先端部分の形状や素子の幾何学的形状により電界強度 F (V/cm)を 変換する係数である。
[0113] 図 24は、別の製造装置 50の構成を示す。この製造装置 50は、直流電源 60の正極 が真空チャンバ 52内部に臨設されている。この製造装置 50においても、コイル 52の 内部空間にプラズマ 64が発生する。
(さらに他の実施の形態)
この実施の形態は、新規な炭素膜構造 (カーボン金属ナノツリーと命名することがで きる)に関するものである。
[0114] カーボンナノチューブは、その構造が高アスペクト比の柱状である。
[0115] カーボンナノチューブは、その先端の針状形状により低電界で電界集中が起こり易 い。
[0116] カーボンナノチューブは電界放射型の電子放出源に用いられる。
[0117] この電子放出源はカーボンナノチューブを陰極側に配置する。陰極と対向して蛍光 体付きの陽極を配置する。陽極と陰極との間に電圧を印加する。これによりカーボン ナノチューブ先端に電界が集中する。これによりカーボンナノチューブの先端から電 子が放出される。 [0118] この放出した電子は蛍光体に衝突して蛍光体は励起発光する。この場合、蛍光体 は電子衝突した小エリア (発光点)でのみ励起発光する。そのため発光点密度向上、 換言すれば、高輝度発光のためにはカーボンナノチューブの先端が高密度に集合 する必要がある。
[0119] カーボンナノチューブの場合、その高アスペクト比により、先端が高密度に集合する と、電界集中が起こりにくい。
[0120] カーボンナノチューブは高アスペクト比のため抵抗値が高い。そのため電流量が不 足して電子放出性能に影響を受けやすい。そのため、電子放出性能を高く維持する ための消費電流量が大き 、。
[0121] 本実施の形態は、高密度な電子放出点、高アスペクト比、高導電性、低消費電流と
Vヽぅ長所を備えた炭素膜構造 (カーボン金属ナノツリー)を提供する。
[0122] この炭素膜構造は、木の幹のように延びるカーボンナノチューブ (幹状カーボンナノ チューブ)と、この幹状カーボンナノチューブ力 木の枝のように多数のカーボンナノ チューブ (枝状カーボンナノチューブ)が高配向に分岐して 、る。
[0123] これらカーボンナノチューブの内外表面のいずれかに金属が存在して全体がツリー をなしている。
[0124] 枝状カーボンナノチューブは電界集中が起こり易い電子放出点を構成する。
[0125] そのため、上記炭素膜構造は、高効率で電子放出をすることができる冷陰極電子源 を構成できる。カロえて、カーボンナノチューブ内の空間部に金属が内包されて導電 性が向上している。これにより電流供給性能が向上して電子放出性能が向上する。
[0126] この内包金属は、カーボンナノチューブの成長用金属触媒である鉄、ニッケル、コバ ルトなど磁性金属の 1種以上ある 、はこれらの合金を選択することができる。これによ り磁気記録材料、摺動材料、耐摩耗性材料、半導体材料等に適用することができる
[0127] 従来、カーボンナノチューブに金属を内包させる実用的な方法は見出されていな い。例えば、金属触媒を練り込んだカーボン電極間でアーク放電を行わせ、生成す るカーボンスーツ (煤)力もカーボンナノチューブを単離する方法がある。この単離方 法では内包金属は僅かである。他の従来では、カーボンナノチューブの先端を開口 し、その開口力も溶融金属を注入する方法もある。この注入方法では内包金属は僅 かである。
[0128] 本実施の形態の炭素膜構造は、金属を多量に内包する。ナノスケールの金属が安 定して保持されている。導電性、磁気特性を発揮して多くの産業分野での応用を期 待することができる。例えば、磁気ディスク等の記憶媒体への応用がある。
[0129] 本実施の形態の炭素膜構造では、幹状カーボンナノチューブに枝状カーボンナノ チューブが高配向している。そのため、幹状カーボンナノチューブに内包される金属 も高配向であるので、磁気特性の安定化に優れている。
[0130] 本実施の形態の炭素膜構造は、冷陰極電子源に適用すると、高発光点密度、高 電子放出性能の冷陰極電子源を提供することができる。カロえて、金属が内包されて いるから、磁気記録材料、摺動材料、耐摩耗性材料、半導体材料等に応用すること ができる。
[0131] 上記カーボン金属ナノツリーの製造例を説明する。
[0132] 真空チャンバ内にカーボンナノチューブ成長用の触媒金属を含有する金属コイル を配置する。この金属コイルの卷数は、 1巻きでも複数巻きでもよい。この金属コイル 内に、高抵抗の金属線材を配置する。真空チャンバを減圧して該真空チャンバ内に 水素ガスと炭素系ガスとの混合ガスを導入する。金属線材の電位を負電位に維持し かつ通電により発熱させる。金属コイルの両端間に高周波電圧を印力!]して当該金属 コイル周囲に混合ガスによるプラズマを発生させる。このプラズマにより金属線材の表 面に実施の形態の炭素膜構造であるカーボン金属ナノツリーが形成される。
[0133] 上記金属コイルは触媒金属だけで構成することができる。金属コイルは金属に触媒 金属を成膜したものを用いることができる。触媒金属として Fe, Ni, Coが好ましい。そ の他の触媒金属として、 Y, Rh, Pd, Pt, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Luがある。金属コイルの素材として、 日本工業規格 JISにおいて、 18— 8ステンレス 鋼(SUS304)等のニッケル系ステンレス鋼、 18クロムステンレス鋼(SUS430)、 13 クロムステンレス鋼(SUS410)等のクロム系ステンレス鋼を用いることができる。
[0134] 金属線材としては-クロム線を用いることができる。金属線材の発熱温度は 500°C〜 1000°C程度にすることができる。金属線材は— 20V〜一 400V程度の負電位に維 持することができる。
[0135] 真空チャンバの圧力は lOPa〜: LOOOPaを適用することができる。炭素系ガスは、メ タンガスに限定されず、アセチレン、ェタン等の炭化水素系ガスを選択することができ る。
[0136] 以上のステップにより、金属コイル周囲に混合ガスによるプラズマ空間が生成され、 このプラズマにより金属コイルに含有されている触媒金属がスパッタリングされて、そ のスパッタ金属粒子が、金属線材の表面に付着する。金属線材に触媒金属が付着 すると、この触媒金属の触媒作用により金属線材の表面にカーボンナノチューブが 成長していく。この成長に関しては、幹状カーボンナノチューブが成長すると共に、 幹状カーボンナノチューブの成長に伴ない、枝状カーボンナノチューブが分岐成長 していく。
[0137] 一方、カーボンナノチューブの成長と同時にカーボンナノチューブ内の空間部に触 媒金属が内包されていく。この場合、カーボンナノチューブには金属線材側が負電 位に維持され、金属コイルが高周波電圧が印加されていて、幹状カーボンナノチュ ーブはその印加により形成される電界方向、すなわち、等電位面に垂直な方向に配 向される。これと共に、枝状カーボンナノチューブも同方向に配向される。こうして金 属内包の幹状カーボンナノチューブの複数箇所から枝状カーボンナノチューブが高 配向に分岐したツリー構造を有する炭素膜構造を得ることができる。
[0138] 以上の製造ステップで製造した炭素膜構造を図 25から図 30までの電子顕微鏡写 真で示す。上記製造条件として、真空チャンバを 100Pa、金属コイルに 18— 8ステン レス鋼(SUS304)、金属線材にニクロム線、ニクロム線の通電による発熱温度が 700 。C、ニクロム線の負電位が— 100V、混合ガスが水素ガスとメタンガスである。
[0139] 図 25の倍率が 5000倍の写真では、幹状カーボンナノチューブに多数の枝状カー ボンナノチューブが高配向していることが判る。図 26の倍率が 10000倍の写真では 、幹状カーボンナノチューブに多数の枝状カーボンナノチューブが高配向して 、るこ とが判る。図 27の写真では写真中に示す lOOnm寸法から明らかであるように、幹状 カーボンナノチューブに多数の枝状カーボンナノチューブが高配向に分岐して 、る ことが判る。図 28の写真では写真中に示す lOOnm寸法から明らかであるように、幹 状カーボンナノチューブに多数の枝状カーボンナノチューブが高配向に分岐して ヽ ることが判る。図 29の写真では、幹状カーボンナノチューブに多数の枝状カーボン ナノチューブが高配向に分岐して 、ることが判る。図 30の写真では幹状カーボンナ ノチューブに多数の枝状カーボンナノチューブが高配向に分岐して 、ることが判る。 また、幹状カーボンナノチューブ内部に金属が内包されていることが判る。
(さらに他の実施の形態)
平面的な広がりを有する照明を行う面状光源には直下方式とエッジライト方式とが ある。直下方式では、面状光源は液晶表示装置の直下に配設される。エッジライト方 式では液晶表示装置の直下に導光板が配設される。導光板の端面と平行に面状光 源が配置される。近年の薄型化優先のパーソナルコンピュータ、薄型テレビ等におい ては、直下方式に代わり、エッジライト方式が主流である。エッジライト方式では、導光 板に入射する光の入射効率が低いと、高輝度化が期待しにくい。直下方式は、液晶 表示装置に直接光を入射させることができ、光入射効率が極めて高い。
[0140] このような直下方式の面状光源には、リアパネルとフロントパネルとの間の真空密封 内部に蛍光体が形成された陽極と、この陽極に対向配置した電子放出陰極とを配置 してなるフィールドェミッションランプがある。
[0141] このフィールドェミッションランプでは、フロントパネル側を液晶表示装置の背面に 取り付け、内部の発光をフロントパネルを介して液晶表示装置に出射する構造となつ ている。このフロントパネルは液晶表示装置への光の入射効率を高めるため、ガラス 等の透明部材により構成されている。
[0142] 以上のフィールドェミッションランプでは、そのフロントパネル力 蛍光体が発する光 により発熱して熱膨張する。この場合、フロントパネルがガラス材カ なる。陽極部が 金属材カもなる。そのため、フロントパネルと陽極部との熱膨張に差異を生じている。 これによりフロントパネルに熱応力が発生する。このような熱応力は面状光源の発光 と消光との繰り返しと内部の真空圧とフロントパネルの薄肉構成という要因も重なり、 フロントパネルを変形させる。フロントパネルの変形は、輝度均一性の低下、極端に は破損を引き起こすおそれがある。
[0143] この実施の形態ではフロントパネルの変形や破損を効果的に防止する。実施の形 態においては、フロントパネルと陽極部との間に、フロントパネルに発生する熱応力を 緩和する熱応力緩和材を設けて 、る。熱応力緩和材には層状構造を有する緩和材 が好ましい。この緩和材には例えばマイ力がある。層状構造であれば、フロントパネ ルの熱応力と陽極部の熱応力とが平面方向で互いに別方向に引張り合う場合、層状 構造によりその熱応力を緩和することができる。マイ力には、ソーダマイカ、紅マイ力、 白マイ力、黒マイ力、金マイ力、鉄マイ力、等の天然マイ力がある力 熱により水を出し て OH基を失うので、 OHを Fで置換した人工マイ力が好まし!/、。
[0144] 熱応力緩和材はフロントパネルと陽極部との間の熱膨張収縮の差異を吸収する。そ の結果、発光と発光停止が繰り返されても、また、内部が真空でかつフロントパネル が薄肉構成であっても、フロントパネルは、熱応力で変形することを防止される。
[0145] 陽極部を耐熱性の支持部材に支持するとともに該耐熱性支持部材をサイドパネル に動き得る状態に設けることができる。耐熱性支持部材には石英ガラス、テンパックス ガラス、パイコールガラス、ネオセラムガラス、パイレックス (登録商標)ガラス等を用い ることができる。これらガラスは共通して、急冷、急熱に対する耐久性が高ぐまた、衝 撃性が高い、等の強度に優れている。陽極部を支持部材に支持する構造では、フロ ントパネルはその熱膨張収縮の差異により陽極部との間で熱応力を受けることがなく なる。その結果、上記と同様に、フロントパネルは熱応力で変形することを防止される
[0146] 以下、添付した図面を参照して本実施の形態に係るフィールドェミッションランプを 詳細に説明する。
[0147] 図 31ないし図 34を参照して本実施の形態に係るフィールドェミッションランプを説 明する。フィールドェミッションランプ 70は、リアノネル 72と、リアパネル 72と対向する フロントパネル 74と、リアパネル 72の周囲から垂直に立ち上がるサイドパネル 76と、 により真空密封空間を備えたパネルケースを有する。
[0148] リアパネル 72はサイドパネル 76で囲まれて内部に浅底の凹部を形成し、この凹部 はフロントパネル 74で密封されて!、る。
[0149] なお、説明の便宜のため、図 31および図 32にその方向を記載している。図 31では 上下方向、図 32では紙面を垂直に貫通する方向を縦方向という。 [0150] その縦方向に直交する図 31、図 32の左右方向を横方向(平面内一方向)という。
[0151] 図 31では紙面を垂直に貫通する方向、図 32では上下方向を、リアパネル 72とフロ ントパネル 74との対向間の奥行き方向(平面内他方向)という。
[0152] 縦方向の寸法が短いと面状光源が薄型となり、平面寸法が大きいと面状光源の光 出射面積が大型となる。
[0153] リアパネル 72およびサイドパネル 76は榭脂等の絶縁材料力も成形されて 、る。リア パネル 72やサイドパネル 76の内面は好ましくはアルミニウム蒸着等による光反射処 理が施されている。
[0154] フロントパネル 74は、透明ないしは半透明のガラスゃ榭脂等の光透過性の絶縁材 料から成形されている。
[0155] 以上のパネルケースにおいて、リアパネル 72の内面上には複数の電子放出部 86 が横方向等間隔に配置されている。
[0156] 電子放出部 86は、奥行き方向に長く延びる導電性線材 86aと、該導電性線材 86a の外表面に設けられた、カーボンナノチューブ、カーボンナノウォール等の炭素膜 86 bとから構成されている。
[0157] フロントパネル 74の内面側には、電子放出部 86が放出した電子の照射により発光 する陽極部 84が設けられて 、る。
[0158] 陽極部 84は、 ITO膜等の透明性電極やアルミニウム蒸着膜等の光透過性電極か らなる陽極 84aとその陽極 84a上の蛍光体 84bと力 構成されている。
[0159] 以上の構成を備えたフィールドェミッションランプ 70においては、フロントパネル 74 の内面 74aと陽極部 84の外面 84cとの間に、フロントパネル 74と陽極部 84それぞれ の熱膨張収縮の差に起因してフロントパネル 74に発生する熱応力を緩和する熱応 力緩和材 88を設けている。
[0160] 熱応力緩和材 88には層状構造のものが好ましく例えばマイ力を用いることができる
。熱応力緩和材 88は、フロントパネル 74がガラス製であり、陽極部 84の陽極 84aが 金属製であり、両者間に熱膨張収縮に差異がある。
[0161] 陽極 84aは金属製であるので、蛍光体 84aの発光光により加熱されて温度上昇して も熱膨張収縮量は極めて小さ 、。 [0162] 一方、フロントパネル 74はガラス製であり、熱膨張収縮量は陽極 84aと比較して大き ぐかつ、内部に熱を蓄積しやすぐ熱応力が残留されやすい。
[0163] このような陽極 84aとフロントパネル 74との間に、熱応力を緩和する熱応力緩和材 8 8を介在させたので、フロントパネル 74が蛍光体 84aの発光光で加熱されても、フロ ントパネル 74は陽極 84aとの熱膨張収縮の差異の影響を受けずに済む。熱応力が 残留しにくい。結果、フロントパネル 74の変形を防止することができる。
[0164] 以上のフィールドェミッションランプ 70においては、蛍光体 84bの発光と発光停止と が繰り返されても、また、内部が真空でかつフロントパネル 74が薄肉のガラス製の構 成であっても、フロントパネル 74が熱応力で変形することを防止することができる。
[0165] 以上から、実施の形態のフィールドェミッションランプは、大型 ·薄型化しても耐久性 に優れたバックライトとして用いることができる。
[0166] 図 35ないし図 37を参照して別のフィールドェミッションランプを説明する。フィール ドエミッションランプ 70にお 、ては、陽極部 84を耐熱性の支持部材 90に支持すると ともに該支持部材 90の両端をサイドパネル 76の内面の凹状支持部 76aに若干の隙 間を介在して設けている。支持部材 90は例えば石英、等の耐熱性材料を用いること ができる。
[0167] このフィールドェミッションランプ 70によれば、陽極部 84を支持部材 90に支持し、該 支持部材 90をサイドパネル 76に対して動き得る状態に支持部 76aに設けたから、フ ロントパネル 72と陽極部 84との間に熱膨張収縮に差異があっても、フロントパネル 7 2は陽極部 84との間で熱応力を受けることがない。
[0168] その結果、蛍光体 84bの発光と発光停止とが繰り返されても、また、内部が真空でか つフロントパネル 72が薄肉構成であっても、フロントパネル 72は、熱応力で変形する ことを防止することができる。
[0169] なお、図 38で示すように、サイドパネル 76の内面から縦方向一対の凸部 76b, 76b を設け、両凸部 76b, 76b間の凹部 76cに支持部材 90の両端を設けることができる。 凸部 76b, 76bを一対ではなぐ一方のみとし、単にその凸部 76bに支持部材 90の 両端を搭載する形態でもよ ヽ。
[0170] 図 39に筒状体の他の変形例を示す。真空チャンバの内部に配置される筒状体は 一端側又は両端側または周壁の 、ずれかに開孔を有して 、ればよ!/、。
[0171] 筒状体は、螺旋状の周壁を有するコイル以外にも網目状の周壁を有する筒状体 1 00や、スリット状の周壁を有する筒状体 101でもよい。他の開孔の形状は任意でよい 。また、筒状体は断面円形に限るものではなぐ断面矩形でもよい。
[0172] 図 40に製造装置の他の変形を示す。真空チャンバ 112はガス導入口 114とガス排 出口 116とを有する。真空チャンバ 112の内圧力は lOPaから lOOOOPaの範囲であ る。真空チャンバ 112の内部に筒状体であるコイル 120が配設されている。コイル 12 0の内部空間には導電性の線材 122が配置されている。コイル 120は一方向にストレ ートに延びる。コイル 120の内部空間は一方向に長く延びる円筒形のプラズマ発生 用空間である。線材 122はこの内部空間に配置されて細長に延びる。コイル 120と導 電性線材 122とはその延設方向に所要の空間を隔てて相対向している。コイル 120 の一端側は電圧可変型の直流電源 124の負極に接続されている。線材 122は直流 電源 124の正極に接続されている。
[0173] 以上の構成を備えた製造装置 110において、真空チャンバ 112内を減圧しかつガ ス導入口 114からプラズマ発生用ガスとして水素ガスを導入し、直流電源 124の負電 位を筒状体 120に印加すると、筒状体 120の内部空間にプラズマ 126が発生する。
[0174] 炭素膜の成膜を説明する。コイル 120の内部に線材 122を配置する。線材 122の両 端を交流電源 123に接続し、線材 122を加熱してもよい。ガス導入口 114からプラズ マ発生用ガスとして水素ガスと、線材 122の表面に対する炭素膜成膜用の炭素系ガ スとして例えばメタンガスとを導入する。そして、真空チャンバ 112の内圧を減圧する 。直流電源 124の負電位をコイル 120に、正電位を線材 122に印加する。これにより 、コイル 120の内部空間にプラズマ 126が発生する。プラズマ 126によりメタンガスが 分解され、これによつて線材 122の表面に炭素膜が成膜される。
[0175] 上記においてコイル 120を固体炭素源とした場合、水素プラズマ中の水素イオン が直流負電位が印加されている固体炭素源であるコイル 120に高速衝突し、この衝 突エネルギーによりコイル 120から炭素が飛び出す。この飛び出した炭素がプラズマ 中の水素イオンと化学結合 (CxHy)して炭化水素化合物となって線材 122に衝突す る。線材 122と衝突した炭化水素化合物力も水素が飛び出し、線材 122表面に炭素 が止まり堆積する。その結果、線材 122表面に炭素膜が成膜される。
[0176] 図 41は、他の炭素膜の製造装置の構成図である。この製造装置は、ガス圧 0. 1〜
50Torrの真空チャンバ 130を備える。
[0177] この真空チャンバ 130の内部に筒状体としてコイル 131が配置される。
[0178] 真空チャンバ 130内に炭素膜成膜用の原料ガスとして水素ガスと炭素系ガスとが 導入される。
[0179] 筒状体 131にプラズマ発生用の電圧として高周波電源 132と直流電源 133とが印 加される。
[0180] 高周波電源 132はコイル 131の両端間に、直流電源 133はコイル 131の一端側に 接続される。
[0181] コイル 131の両端間に高周波電圧が印加される。
[0182] コイル 131の一端側に負の直流電圧が印加される。
[0183] これによりコイル 131には負の直流電圧に高周波電圧が重畳された電圧が印加さ れる。これにより、コイル 131の内部空間にプラズマ 134が発生する。このプラズマ 13 4により筒状体 131の内部に配置した基材である線材 135の表面に好ましい炭素膜 が成膜される。なお、コイル 131に代えて、少なくとも一部に少なくとも 1つの開孔を有 する筒状体でもよい。
[0184] 以上の重畳電圧の場合も、製造条件は、 CHが 5ccm、 Hが 300ccm、基板温度 7
4 2
50。C、圧力 2000Pa、直流電力 3000W、高周波電力 500W、ノィァス— 120V、成 膜時間 10分で、図 23Cないし図 23Eで示すような炭素膜を製造することができた。 産業上の利用可能性
[0185] 本発明にかかる炭素膜の製造方法は、フィールドェミッションランプや電子源等に おいて電子放出用の炭素膜の製造に有用である。

Claims

請求の範囲
[1] 基材の表面に炭素膜を成膜する装置であって、
炭素膜成膜用のガスが導入される真空チャンバと、
上記真空チャンバの内部に配置されかつ一部に開孔を有しかつ内部に基材を配置 することができる空間を有する筒状体と、
を備え、
上記真空チャンバの内部に上記ガスが導入され、かつ、上記筒状体にプラズマ発 生用の電圧が印加されると、上記筒状体の内部にプラズマを発生させて上記筒状体 の内部に配置した基材の表面に炭素膜を成膜する、装置。
[2] 上記電圧が、高周波電圧である、請求項 1に記載の装置。
[3] 上記電圧が、負の直流電圧である、請求項 1に記載の装置。
[4] 上記電圧が、負の直流電圧に高周波電圧を重畳した電圧である、請求項 1に記載の 装置。
[5] 基材の表面に炭素膜を成膜する装置であって、
炭素膜成膜用のガスが導入される真空チャンバと、
上記真空チャンバの内部に配置されかつ一部に開孔を有しかつ内部に基材を配置 することができる空間を有する筒状体と、
上記筒状体に高周波電圧を印加する電源とを備え、
上記真空チャンバの内部に上記ガスが導入され、かつ、上記筒状体に上記電源か ら高周波電圧が印加されると、上記筒状体の内部にプラズマを発生させて上記筒状 体の内部に配置した基材の表面に炭素膜を成膜する、装置。
[6] 基材の表面に炭素膜を成膜する装置であって、
炭素膜成膜用のガスが導入される真空チャンバと、
上記真空チャンバの内部に配置されかつ一部に開孔を有しかつ内部に基材を配置 することができる空間を有する筒状体と、
上記筒状体に負の直流電圧を印加する電源とを備え、
上記真空チャンバの内部に上記ガスが導入され、かつ、上記筒状体に上記電源か ら上記筒状体に負の直流電圧が印加されると上記筒状体の内部にプラズマを発生さ せて該筒状体の内部に配置した基材の表面に炭素膜を成膜する、装置。
[7] 基材の表面に炭素膜を成膜する装置であって、
炭素膜成膜用のガスが導入される真空チャンバと、
上記真空チャンバの内部に配置されかつ一部に開孔を有しかつ内部に基材を配置 することができる空間を有する筒状体と、
上記筒状体に負の直流電圧に高周波電圧を重畳した電圧 (重畳電圧)を印加する 電源とを備え、
上記真空チャンバの内部に上記ガスが導入され、かつ、上記筒状体に上記電源か ら上記重畳電圧が印加されると該筒状体の内部にプラズマを発生させて該内部に配 置した基材の表面に炭素膜を成膜する、装置。
[8] 上記電源が、上記筒状体の一端側に負極が接続されて負の直流電圧を当該筒状体 に印加する直流電源と、上記筒状体に両端が接続されて当該筒状体に高周波電圧 を印加する高周波電源とを含む請求項 7に記載の装置。
[9] 上記筒状体は、一端側、両端側または周壁の少なくともいずれかに開孔を有する、 請求項 1に記載の装置。
[10] 上記筒状体は、コイルである、請求項 1に記載の装置。
[11] 上記基材は、長手方向に延びる導電性の線材であり、
上記筒状体は、上記線材が延びる方向に合わせて長く延びる円筒形状を有する、 請求項 1に記載の装置。
[12] 上記線材は、真空封止管の内部において陽極と対向する陰極を構成する線材であ る請求項 11に記載の装置。
[13] 上記筒状体が長手方向に複数並設されている、請求項 1に記載の装置。
[14] 上記基材を通電加熱する電源を備える、請求項 1に記載の装置。
[15] 上記筒状体は長手方向に延長することが可能である、請求項 1に記載の装置。
[16] 請求項 1に記載の装置を用いて基材の表面に炭素膜を成膜する方法であって、この 方法は、
真空チャンバに、上記筒状体を配置するステップと、
上記筒状体の内部に基材を配置するステップと、 上記真空チャンバに上記ガスを導入するステップと、
上記筒状体に上記電圧を印加するステップと、
を有する。
[17] 上記電圧が、高周波電圧である、請求項 16に記載の方法。
[18] 上記基材に直流電圧を印加する、請求項 16に記載の方法。
[19] 上記電圧が、負の直流電圧である、請求項 16に記載の方法。
[20] 上記電圧が、負の直流電圧に高周波電圧を重畳した電圧である、請求項 16に記載 の方法。
[21] 上記筒状体は、一端側、両端側または周壁の少なくともいずれかに開孔を有する、 請求項 16に記載の方法。
[22] 上記筒状体を基材の長さに応じて延長する、請求項 16に記載の方法。
[23] 請求項 16に記載の方法により製造される炭素膜であって、
多数のカーボンナノチューブバンドルからなり、このカーボンナノチューブバンドル は、それを構成するカーボンナノチューブが互いに基部側では集合し、先端側では 間隔をもって離れて電界集中に有利な形態をなして ヽる炭素膜。
[24] 電子放出点の配置間隔を制約する第 1の膜と、
上記第 1の膜に囲まれた領域内で上記第 1の膜の膜高さよりも高く針状に延びてそ の先端が電子放出点となる第 2の膜と、
上記第 2の膜を主にその下部側で支持する第 3の膜と、
を備えた炭素膜。
[25] 上記第 2の膜が、任意の位置力 先端に向かうにつれて半径力 S小さくなる針形状を 有する請求項 24に記載の炭素膜。
[26] 上記針形状が、フアウラノルドノヽィムの式にぉ 、て hZr (ただし、 rは任意の位置での 半径、 hはその位置力 先端までの高さ)で表される電界集中係数 の幾何学形状 である請求項 25に記載の炭素膜。
[27] 請求項 24に記載の炭素膜を製造する方法であって、
真空チャンバに、一部に開孔を有する筒状体を配置するステップと、
上記筒状体の内部に基材を配置するステップと、 上記真空チャンバに炭素膜成膜用のガスを導入するステップと、
上記筒状体に負の直流電圧を印加して該筒状体の内部にプラズマを発生するステ ップと、
を含む方法。
[28] フアウラノルドハイムの式にお!、て hZr (ただし、 rは任意の位置での半径、 hはその 位置力 先端までの高さ)で表される電界集中係数 ι8を有し、かつ、その半径が任意 の位置力も先端に向かうにつれて小さくなる、炭素膜。
[29] 請求項 28に記載の炭素膜を製造する方法であって、
真空チャンバに、一部に開孔を有する筒状体を配置するステップと、
上記筒状体の内部に基材を配置するステップと、
上記真空チャンバに炭素膜成膜用のガスを導入するステップと、
上記筒状体に負の直流電圧を印加して該筒状体の内部にプラズマを発生するステ ップと、
を含む方法。
[30] 請求項 16に記載の方法により製造されて表面に炭素膜を電子放出用として有し、か つ、真空封止管の内部において陽極と対向する陰極を構成する線材。
[31] パネルケースと、このパネルケースの内面に設けられた蛍光体付き陽極と、このパネ ルケース内に蛍光体付き陽極と対向して配置される線状陰極とを備え、この線状陰 極を、請求項 16に記載の方法により製造されて表面に炭素膜を電子放出用として有 する線材により構成されているフィールドェミッションランプ。
[32] 請求項 1に記載の装置を用 、て基材の表面にカーボン金属ナノツリーを製造する方 法であって、
真空チャンバ内に上記筒状体として触媒金属を含有する筒状体を配置するステツ プと、
上記筒状体内に高抵抗の金属材を配置するステップと、
上記真空チャンバの内圧を減圧するステップと、
上記真空チャンバ内に炭素膜成膜用のガスとして水素ガスと炭素系ガスとの混合ガ スを導入するステップと、 上記筒状体に電圧として高周波電圧を印カロして前記導入した混合ガスをプラズマ 化して上記筒状体をスパッタすると共に上記高抵抗金属材を負電位に維持した状態 で通電発熱するステップと、
を有する方法。
[33] 上記筒状体が、金属コイルである、請求項 32に記載の方法。
[34] 木の幹状に延びる第 1のカーボンファイバと、この第 1のカーボンファイバ力 枝状に 分岐した多数の第 2のカーボンファイバとを備えた炭素膜。
[35] 上記カーボンファイバは金属を含有している請求項 34に記載の炭素膜。
[36] 請求項 35に記載の炭素膜を製造する方法であって、
真空チャンバ内に上記筒状体として触媒金属を含有する筒状体を配置するステップ と、
上記筒状体内に高抵抗の金属材を配置するステップと、
上記真空チャンバの内圧を減圧するステップと、
上記真空チャンバ内に炭素膜成膜用のガスとして水素ガスと炭素系ガスとの混合ガ スを導入するステップと、
上記筒状体に電圧として高周波電圧を印カロして前記導入した混合ガスをプラズマ 化して上記筒状体をスパッタすると共に上記高抵抗金属材を負電位に維持した状態 で通電発熱するステップと、
を有する方法。
PCT/JP2005/018894 2005-01-05 2005-10-13 プラズマcvdを用いて炭素膜を製造する装置およびその製造方法ならびに炭素膜 WO2006073017A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020057023130A KR101313919B1 (ko) 2005-01-05 2005-10-13 플라스마 cvd를 이용한 탄소 막 생성 장치 및 방법과,탄소 막
KR1020127023664A KR101342356B1 (ko) 2005-01-05 2005-10-13 플라스마 cvd를 이용한 탄소 막 생성 방법과 탄소 막
US10/558,874 US8808856B2 (en) 2005-01-05 2005-10-13 Apparatus and method for producing carbon film using plasma CVD and carbon film
CN2005800003526A CN1906127B (zh) 2005-01-05 2005-10-13 使用等离子体cvd制备碳膜的装置和方法以及碳膜
EP05793094A EP1834925A1 (en) 2005-01-05 2005-10-13 Apparatus for manufacturing carbon film by plasma cvd, method for manufacturing the same, and carbon film

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005000803A JP4676764B2 (ja) 2005-01-05 2005-01-05 フィールドエミッション型面状光源
JP2005-000800 2005-01-05
JP2005000800A JP2006188382A (ja) 2005-01-05 2005-01-05 カーボンナノチューブの製造方法
JP2005-000803 2005-01-05
JP2005-088813 2005-03-25
JP2005088813A JP2005307352A (ja) 2004-03-25 2005-03-25 炭素膜の製造装置およびその製造方法
JP2005115560A JP4925600B2 (ja) 2005-04-13 2005-04-13 プラズマ発生装置およびこれを用いた成膜方法
JP2005-115560 2005-04-13
JP2005115558A JP4917758B2 (ja) 2005-04-13 2005-04-13 カーボン金属ナノツリーおよびその製造方法
JP2005-115558 2005-04-13

Publications (1)

Publication Number Publication Date
WO2006073017A1 true WO2006073017A1 (ja) 2006-07-13

Family

ID=36647505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018894 WO2006073017A1 (ja) 2005-01-05 2005-10-13 プラズマcvdを用いて炭素膜を製造する装置およびその製造方法ならびに炭素膜

Country Status (4)

Country Link
EP (1) EP1834925A1 (ja)
KR (2) KR101342356B1 (ja)
TW (2) TW200630505A (ja)
WO (1) WO2006073017A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048603A (ja) * 2005-08-10 2007-02-22 Dialight Japan Co Ltd 炭素膜、電子放出源およびフィールドエミッション型の照明ランプ
JP2009242239A (ja) * 2009-07-27 2009-10-22 Life Technology Research Institute Inc 炭素膜構造
JP2010177186A (ja) * 2009-02-02 2010-08-12 Kochi Fel Kk 電界放出型光源
WO2011138837A1 (ja) * 2010-05-06 2011-11-10 高知Fel株式会社 電界放出型光源
JP2012138340A (ja) * 2010-12-27 2012-07-19 Qinghua Univ 電界放出陰極素子及びその製造方法
CN103523768A (zh) * 2013-09-27 2014-01-22 武汉博力信纳米科技有限公司 箱体密封化学气相反应制备连续碳纳米管纤维的装置和方法
US9656870B2 (en) 2007-12-12 2017-05-23 Nippon Steel & Sumikin Chemical Co., Ltd Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201233253A (en) * 2011-01-26 2012-08-01 Bing-Li Lai Plasma reaction method and apparatus
KR101400163B1 (ko) * 2012-02-27 2014-05-28 한밭대학교 산학협력단 탄소나노트리 및 그의 제조방법
KR101415175B1 (ko) * 2012-12-28 2014-07-04 인하대학교 산학협력단 열플라즈마를 이용한 그래핀의 제조 방법
KR102023415B1 (ko) * 2018-08-27 2019-09-23 (주)네프 탄소 나노 코팅 전극을 갖는 하이브리드 스위치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769790A (ja) * 1993-08-30 1995-03-14 Ulvac Japan Ltd 薄膜作製装置
JPH0978242A (ja) * 1995-09-14 1997-03-25 Sony Corp プラズマcvd装置
JPH09204832A (ja) * 1996-01-29 1997-08-05 Yazaki Corp 複合被覆電線の製造方法
WO2000040509A1 (fr) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Tube de carbone amorphe de l'ordre du nanometre et son procede de fabrication
JP2002518280A (ja) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク 整列した自立炭素ナノチューブおよびその合成
JP2002293521A (ja) * 2001-03-29 2002-10-09 Osaka Gas Co Ltd 樹枝状鉄−アルミニウム−炭素系複合体、カーボンナノツリー及びそれらの製造方法
JP2004060130A (ja) * 2002-07-31 2004-02-26 Futaba Corp カーボン繊維とその製造方法及び電子放出素子
JP2004303521A (ja) * 2003-03-31 2004-10-28 Hitachi Ltd 平面ディスプレイ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769790A (ja) * 1993-08-30 1995-03-14 Ulvac Japan Ltd 薄膜作製装置
JPH0978242A (ja) * 1995-09-14 1997-03-25 Sony Corp プラズマcvd装置
JPH09204832A (ja) * 1996-01-29 1997-08-05 Yazaki Corp 複合被覆電線の製造方法
JP2002518280A (ja) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク 整列した自立炭素ナノチューブおよびその合成
WO2000040509A1 (fr) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Tube de carbone amorphe de l'ordre du nanometre et son procede de fabrication
JP2002293521A (ja) * 2001-03-29 2002-10-09 Osaka Gas Co Ltd 樹枝状鉄−アルミニウム−炭素系複合体、カーボンナノツリー及びそれらの製造方法
JP2004060130A (ja) * 2002-07-31 2004-02-26 Futaba Corp カーボン繊維とその製造方法及び電子放出素子
JP2004303521A (ja) * 2003-03-31 2004-10-28 Hitachi Ltd 平面ディスプレイ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG N ET AL: "Carbon nanowalls for field-emissions and light-source applications.", PROC INT DISP WORKSHOPS., vol. 11, 2004, pages 1253 - 1254, XP002994948 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048603A (ja) * 2005-08-10 2007-02-22 Dialight Japan Co Ltd 炭素膜、電子放出源およびフィールドエミッション型の照明ランプ
US9656870B2 (en) 2007-12-12 2017-05-23 Nippon Steel & Sumikin Chemical Co., Ltd Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
JP2010177186A (ja) * 2009-02-02 2010-08-12 Kochi Fel Kk 電界放出型光源
JP2009242239A (ja) * 2009-07-27 2009-10-22 Life Technology Research Institute Inc 炭素膜構造
WO2011138837A1 (ja) * 2010-05-06 2011-11-10 高知Fel株式会社 電界放出型光源
JP2012138340A (ja) * 2010-12-27 2012-07-19 Qinghua Univ 電界放出陰極素子及びその製造方法
CN103523768A (zh) * 2013-09-27 2014-01-22 武汉博力信纳米科技有限公司 箱体密封化学气相反应制备连续碳纳米管纤维的装置和方法

Also Published As

Publication number Publication date
TWI403611B (zh) 2013-08-01
KR101313919B1 (ko) 2013-10-01
TW200630505A (en) 2006-09-01
KR20120117930A (ko) 2012-10-24
KR20070114327A (ko) 2007-12-03
TWI429781B (ja) 2014-03-11
EP1834925A1 (en) 2007-09-19
KR101342356B1 (ko) 2013-12-16

Similar Documents

Publication Publication Date Title
WO2006073017A1 (ja) プラズマcvdを用いて炭素膜を製造する装置およびその製造方法ならびに炭素膜
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US8808856B2 (en) Apparatus and method for producing carbon film using plasma CVD and carbon film
US20090311445A1 (en) Synthesis of Carbon Nanotubes by Selectively Heating Catalyst
JP2004512247A (ja) 電子サイクロトロン共鳴プラズマ成膜プロセスおよび一重壁カーボンナノチューブのための装置ならびにそれによって得られたナノチューブ
KR20090033138A (ko) 면가열원
JP2007173238A (ja) 電界放出陰極及び該陰極を用いる電界放出照明装置
JP2002179418A (ja) カーボン・ナノチューブ作成方法
Yi et al. Crack-assisted field emission enhancement of carbon nanotube films for vacuum electronics
JP5420835B2 (ja) プラズマ発生装置およびこれを用いた成膜方法
JP2005307352A (ja) 炭素膜の製造装置およびその製造方法
JP2006315882A (ja) カーボンナノチューブ集合体及びその製造方法
JP4917758B2 (ja) カーボン金属ナノツリーおよびその製造方法
TW201409521A (zh) 場發射陰極元件之製造方法、其場發射陰極元件及其場發射發光燈源
JP2007055856A (ja) 炭素膜、電子放出源および電界放射型照明ランプ
JP5213099B2 (ja) カーボンファイバーシート上のカーボンナノチューブの成長方法およびカーボンナノチューブエミッター
JP3734400B2 (ja) 電子放出素子
JP3854295B2 (ja) 電界電子エミッター及びディスプレー装置
JP2005097113A (ja) カーボンナノウォールの製造方法と製造装置
JP4578350B2 (ja) 炭素膜、電子放出源およびフィールドエミッション型の照明ランプ
KR20050117473A (ko) 전계 전자 방출 소자 및 조명 장치
JP2006188382A (ja) カーボンナノチューブの製造方法
TWI309428B (en) Emission source having carbon nanotube
JP4213409B2 (ja) 炭化水素、含酸素化合物を原料とする水素の生成装置
TWI343901B (en) Method and apparatus for manufacturing carbon nanotube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005793094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057023130

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20058003526

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007104867

Country of ref document: US

Ref document number: 10558874

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10558874

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005793094

Country of ref document: EP