TWI338348B - Forming abrupt source drain metal gate transistors - Google Patents

Forming abrupt source drain metal gate transistors Download PDF

Info

Publication number
TWI338348B
TWI338348B TW094125624A TW94125624A TWI338348B TW I338348 B TWI338348 B TW I338348B TW 094125624 A TW094125624 A TW 094125624A TW 94125624 A TW94125624 A TW 94125624A TW I338348 B TWI338348 B TW I338348B
Authority
TW
Taiwan
Prior art keywords
gate
trench
substrate
forming
layer
Prior art date
Application number
TW094125624A
Other languages
English (en)
Other versions
TW200616152A (en
Inventor
Nick Lindert
Suman Datta
Jack Kavalieros
Mark Doczy
Matthew Metz
Justin Bask
Robert Chau
Mark Bohr
Anand Murthy
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW200616152A publication Critical patent/TW200616152A/zh
Application granted granted Critical
Publication of TWI338348B publication Critical patent/TWI338348B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

1338348 (1) 九、發明說明 【發明所屬之技術領域】 本發明有關於製造半導體裝置之方法,更詳而言之, • 具有金屬閘極電極之半導體裝置》 【先前技術】 具有非常薄由二氧化矽製成之閘極電介質的金屬氧化 • 半導體(MOS )場效電晶體可能會遭受不能令人接受的閘 極漏電流。自高電介質常數(K)電介質材料取代二氧化 矽形成閘極電介質可降低閘極漏電流量。於此所使用之高 k電介質意指高於10之電介質常數。 由於此種高k電介質層可能與多晶矽不適合,於包含 高k電介質之裝置中可能較佳使用金屬閘極電極。當製造 包含金屬閘極電極之互補金屬氧化半導體(CMOS )裝置 時,可能有必要從不同的金屬製造NMOS以及PMOS閘極 • 電極。可使用取代的閘極製程自不同形成材料形成閘極電 極。於該製程中,選擇性地移除由一對間隔體包夾之第一 多晶矽層至第二多晶矽層以於間隔體之間形成溝槽。以第 .一金屬塡充該溝槽。接著移除第二多晶矽層,並以與第一 金屬不同之第二金屬取代。 因此,需要一種形成取代的金屬閘極電極之替代方 法。 【發明內容及實施方式】 -5- (4) 1338348 層18超過具不同導電性之犧牲層,以致於不移除相反導 電種類犧牲層的絕大部分。 當犧牲層18爲雜摻η型時,濕蝕刻程序可包含將犧 ' 牲層 1 8暴露至包含氫氧化物源之水溶液足夠時間足夠溫 - 度,以移除實質上所有的層18。氫氧化物源可包含於去離 子水中介於約2以及30體積百分比之氫氧化氨或氫氧化 四烷基氨,如氫氧化四甲基氨(“ΤΜΑΗ”)。 • 可藉由將犧牲層18暴露於維持於約15 °C以及約901 之間(例如約40°C以下)的溫度之溶液中以選擇性移除任 何殘留之犧牲層18,該溶液包含於去離子水中介於約2以 及30體積百分比之氫氧化氨。於該暴露步驟中,其較佳 維持至少一分鐘,可能期望施加介於約 10 kHz至約 2,〇〇〇kHz頻率同時以介於約1至10瓦特/平方公分釋放 之音波能量。 於一實施例中,可藉由將具有約1,350埃厚度之犧牲 鲁層18暴露於約25 °C溶液中約30分鐘以選擇性移除犧牲層 18,該溶液包含於去離子水中15體積百分比之氫氧化 氨,同時施加於約1,000 kHz以約5瓦特/平方公分釋放 之音波能量。 作爲一替代方式,可藉由將犧牲層18暴露於維持於 約60°C以及約90°C之間的溫度的溶液中至少—分鐘以選 擇性犧牲層18,該溶液包含於去離子水中介於約20以及 30體積百分比之TMAH,同時施加音波能量。可藉由將具 有約1,3 5 0埃厚度之犧牲層18暴露於約80°C溶液中約2 -8- (5) 1338348 分鐘,選擇性移除犧牲層18,該溶液包含於去離子水中 25體積百分比之氫氧化氨,同時施加於約1,000 kHz以約 5瓦特/平方公分釋放之音波能量,這可實質上移除所有 的層18而不移除相反導電類型電晶體的犧牲層的絕大部 ' 分°假閘極電介質層1 9可足夠厚以防止施加用以移除犧 牲層1 8之蝕刻物到達位於假閘極電介質層1 9下方的通道 區域。 # 參照第6圖,可於溝槽22中形成側壁間隔體24。可 由氮化物形成之間隔體24形成自最終閘極邊緣的偏置, 以允許重疊於源極汲極區域上。於一實施例中,間隔體24 可小於1 〇奈米寬。接下來,可利用濕蝕刻移除薄電介質 層1 9。例如,可利用氫氟酸。接著可使用乾蝕刻蝕刻由間 隔體24之間的開口暴露出之通道區域中的矽。於一實施 例中’乾蝕刻可使用六氟化硫(SF6)、氯或NF3。於本 發明一實施例中’結果爲產生向下延伸至大約等於深源極 ® 汲極區域12深度之深度,如第7圖中所示。 接著’如第8圖所示’可以磊晶材料28塡充溝槽26 的一部分至淺源極汲極區域14上表面的高度。材料28可 例如爲鍺、鍺化矽、InSb或碳摻雜矽之類者。例如,具有 lE19cm3慘雜程度的η型晶層可於電流流動方 向形成壓應力。 於一實施例中材料28可於底部高摻雜並且於表面低 慘雜。於其他實施例中’材料2 8可均勻地無摻雜、低摻 雜或高慘雜。可於PMOS結構中使用ρ型選擇性磊晶區 -9- (6) 1338348 域。 接著可使用例如磷酸移除間隔體24,並亦可移除下方 閘極電介質19殘留部分。於一實施例中,少於30奈米之 薄氧化物(未圖示)可於低溫下生長或化學性生長以保護 • 磊晶式生長的材料28。磷酸爲可選擇性移除此種氧化物 者。 如第9圖中所示,可形成u型高k電介質層32»可 ® 用於製造高k電介質層32的一些材料包含:氧化紿、氧 化鈴矽、氧化鑭、氧化鑭鋁、氧化鉻、氧化鍺矽、氧化 鉬' 氧化鈦、氧化鋇緦鈦、氧化鋇鈦、氧化緦鈦、氧化 釔、氧化鋁、氧化鉛銃鉬以及鈮化鉛錫。特別是氧化飴、 氧化鉻、氧化鈦以及氧化鋁爲較佳者。雖已於此描述可用 於形成高k閘極電介質層3 2的材料的數個範例,可以其 他材料製造該層以降低閘極漏電量。於本發明一實施例中 該層32具有電介質常數高於1〇以及自15至25。 ® 可使用傳統沉積方法將高k閘極電介質層32形成於 材料 28 上,該方法例如爲傳統化學蒸氣沉積 (“CVD”)、低壓CVD或物理蒸氣沉積(“PVD”)程序。 較佳者,使用傳統原子層CVD程序。於此種程序中,金 屬氧化先驅物(如金屬氯化物)以及蒸氣以選定的流速提 供至CVD反應器中,其接著於選定之溫度與壓力下操作 以於材料28以及高k閘極電介質層之間產生原子級平滑 表面。該CVD反應器應操作夠長時間以形成具有期望厚 度之層。於大多數的應用中,高k閘極電介質層32可低 -10- (7) 1338348 於約60埃厚度’例如,以及於一實施例中,介於約5埃 至40埃厚度。 於NMOS範例中可形成N型金屬層30於層32上。層 30可包含任何η型導電材料,自其可衍生出NM〇S閘極 • 電極。Ν型金屬層30較佳具有熱穩定特性,使之適用於 製造半導體裝置的金屬NMOS閘極電極。 可用於形成η型金屬層30之材料包含:鈴、锆、 # 鈦、鉬、鋁以及其合金,如包含這些元素的金屬碳化物, 亦即碳化飴、碳化鉻、碳化鈦、碳化钽以及碳化鋁。可使 用諸如傳統噴濺或原子層CVD程序之熟知的PVD或CVD 程序形成Ν型金屬層30於第一高k電介質層32上。如第 9圖中所示,可移除塡充溝槽26內之外的η型金屬層 30。可經由濕或乾蝕刻程序或適當的CMP操作自裝置其 他部分移除層3〇。電介質層32可作爲止蝕刻或止硏磨 物。 ® Ν型金屬層30可作爲金屬NMOS閘極電極,具有介 於約3.9 eV以及約4.2 eV之間的工作函數並介於約25埃 至約2,000埃之間的厚度,且於一實施例中,可特別爲介 於約500埃至約1,600埃之間的厚度。 所得之結構具有通道應力隨著電流流動方向朝源極以 及汲極向外延伸。由於矽鍺晶格大於矽晶格因而產生應 力。可控制鍺濃度以達成最大量的應力。 於形成η型金屬層30之後,移除用於PMOS裝置之 犧牲層1 8 ’以產生PMOS裝置用之位於側壁間隔體之間的 (8) 1338348 溝槽。於較佳實施例中,PMOS犧牲層18暴露於包含於去 離子水中介於約20以及約30體積百分比之TMAH的溶液 中足夠時間足夠溫度(如介於約 60 °C以及約90 °C之 間),同時施加音波能量,以移除所有PMOS犧牲層而不 移除絕大部分的η型金屬層。 替代地,可實施乾蝕刻程序以選擇性移除PMOS犧牲 層1 8 »當犧牲層1 8爲ρ型摻雜(如以硼),此種乾蝕刻 # 程序可包含將犧牲層 18暴露於衍生自六氟化硫 (“SF6”)、溴化氫(“HBr”)、碘化氫(“HI”)、氯、氬 以及/或氦之電漿中。此種選擇性乾蝕刻程序可於平行薄 板反應器中或電子迴旋加速共振蝕刻器中。 可如同有關η型層描述般由PMOS層30取代PMOS 犧牲層18。Ρ型金屬層30可包含任何ρ型導電材料,自 其可衍生出PMOS閘極電極。Ρ型金屬層30較佳具有熱穩 定特性,使之適用於製造半導體裝置的金屬PMOS閘極電 #極。 可用於形成P型金屬層30之材料包含:釕、祀、 鉑、鈷、鎳以及導電金屬氧化物,如氧化釕。可使用諸如 傳統噴濺或原子層CVD程序之熟知的PVD或CVD程序形 成P型金屬層30於第二高k電介質層上。可移除塡充溝 槽內之外的ρ型金屬層。可經由濕或乾蝕刻程序或適當的 CMP操作自裝置其他部分移除層30,其中電介質層32可 作爲止蝕刻或止硏磨物。 P型金屬層30可作爲金屬PMOS閘極電極,具有介於 -12- (10) (10)1338348 改與變化。 【圖式簡單說明】 第】-9圖代表當執行本發明一實施例時形成之結構的 剖面: 第1 〇- 1 2圖代表當執行本發明一實施例時形成之結構 的剖面; 第1 3 - 1 4圖代表當執行本發明一實施例時形成之結構 的剖面:以及 第15圖爲針對本發明一實施例摻雜物對距離之標繪 圖。 於這些圖中顯示的特徵並非意圖以真實比例繪製。 【主要元件符號說明】 10 :基板 1 2 :深源極以及汲極區域 1 4 :淺源極汲極區域 17, 16 :間隔體 18 :犧牲層 19 :假電介質層 2〇 :電介質層 22 :溝槽 24 :間隔體 26 :溝槽 -14· (11) (11)1338348
2 8 ·晶晶材料 30 :金屬層 32:高k電介質層 36:源極汲極延伸摻雜

Claims (1)

1338348 > · · 十、申請專利範圍 附件3A : 第94 1 25624號專利申請案 中文申請專利範圍替換本 民國98年8月1〇日修正 1· 一種製造半導體裝置之方法,包含: 使用一位於半導體基板上之閘極爲遮罩以佈植該半導
致使佈植的雜質下擴散於該閘極底下; 移除該閘極;以及 移除該閘極底下之基板以移除下擴散的雜質。 2 .如申請專利範圍第1項之方法,包含形成犧牲閘極 結構於一對間隔體之間。 3.如申請專利範圍第2項之方法,包含以電介質層覆 蓋該結構。
4 ·如申請專利範圍第3項之方法,包含移除該閘極結 構。 5 .如申請專利範圍第4項之方法,包含於移除該閘極 結構後留下之間隙內形成間隔體。 6 ·如申請專利範圍第5項之方法,包含使用該間隔體 以經由該間隙蝕刻溝槽入該基板內。 7.如申請專利範圍第6項之方法,包含沉積半導體材 料於該溝槽內以部分地塡充該溝槽。 8.如申請專利範圍第7項之方法,包含塡充該溝槽至 1338348 實質上等於該基板高度之高度。 9.如申請專利範圍第8項之方法,包含形成閘極電介 質層以及閘極電極於該半導體材料上。 1 〇 ·如申請專利範圍第9項之方法,包含以磊晶材料 塡充於該溝槽內。 11.一種製造半導體裝置之方法,包含: 形成第一閘極結構於基板上; 使用該閘極結構爲遮罩以形成源極/汲極摻雜於基板 中; 致使該源極/汲極摻雜下擴散於該閘極結構底下; 移除該第一閘極結構以形成間隙並藉此移除下擴散的 摻雜; 形成間隔體於該間隙中; 使用該間隔體作導引以形成溝槽於基板內 以半導體材料塡充該溝槽;以及 形成第二閘極電極結構於該經塡充之溝槽上。 1 2.如申請專利範圍第1 1項之方法,包含以電介質覆 蓋該第一閘極結構。 1 3 .如申請專利範圍第1 1項之方法,包含沉積磊晶材 料於該溝槽內。 1 4 ·如申請專利範圍第1 1項之方法,包含以該半導體 材料塡充該溝槽至實質上等於該基板高度之高度。 1 5 ·如申請專利範圍第1 1項之方法’包含形成閘極電 介質層於該第二閘極電極結構之下於塡充該溝槽的該半導 -2- 1338348 j· · 體材料之上
TW094125624A 2004-08-25 2005-07-28 Forming abrupt source drain metal gate transistors TWI338348B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/925,566 US7704833B2 (en) 2004-08-25 2004-08-25 Method of forming abrupt source drain metal gate transistors

Publications (2)

Publication Number Publication Date
TW200616152A TW200616152A (en) 2006-05-16
TWI338348B true TWI338348B (en) 2011-03-01

Family

ID=35519849

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094125624A TWI338348B (en) 2004-08-25 2005-07-28 Forming abrupt source drain metal gate transistors

Country Status (5)

Country Link
US (2) US7704833B2 (zh)
KR (1) KR100869771B1 (zh)
CN (1) CN101006569B (zh)
TW (1) TWI338348B (zh)
WO (1) WO2006026010A2 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100574338B1 (ko) * 2004-01-19 2006-04-26 삼성전자주식회사 반도체 장치의 금속 게이트 형성 방법
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7531404B2 (en) * 2005-08-30 2009-05-12 Intel Corporation Semiconductor device having a metal gate electrode formed on an annealed high-k gate dielectric layer
US8450165B2 (en) * 2007-05-14 2013-05-28 Intel Corporation Semiconductor device having tipless epitaxial source/drain regions
US7713814B2 (en) * 2008-01-04 2010-05-11 International Business Machines Corporation Hybrid orientation substrate compatible deep trench capacitor embedded DRAM
US7892911B2 (en) * 2008-01-10 2011-02-22 Applied Materials, Inc. Metal gate electrodes for replacement gate integration scheme
US20090189201A1 (en) * 2008-01-24 2009-07-30 Chorng-Ping Chang Inward dielectric spacers for replacement gate integration scheme
US7964487B2 (en) * 2008-06-04 2011-06-21 International Business Machines Corporation Carrier mobility enhanced channel devices and method of manufacture
US8017997B2 (en) * 2008-12-29 2011-09-13 International Business Machines Corporation Vertical metal-insulator-metal (MIM) capacitor using gate stack, gate spacer and contact via
TWI419324B (zh) 2009-11-27 2013-12-11 Univ Nat Chiao Tung 具有三五族通道及四族源汲極之半導體裝置及其製造方法
US8936976B2 (en) * 2009-12-23 2015-01-20 Intel Corporation Conductivity improvements for III-V semiconductor devices
DE102010002450B4 (de) * 2010-02-26 2012-04-26 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Transistoren mit Metallgateelektrodenstrukturen mit großem ε und angepassten Kanalhalbleitermaterialien
CN102194747A (zh) * 2010-03-03 2011-09-21 中国科学院微电子研究所 形成沟道材料的方法
US8722482B2 (en) * 2010-03-18 2014-05-13 Globalfoundries Inc. Strained silicon carbide channel for electron mobility of NMOS
JP4982582B2 (ja) * 2010-03-31 2012-07-25 株式会社東芝 マスクの製造方法
CN102237277B (zh) * 2010-04-27 2014-03-19 中国科学院微电子研究所 半导体器件及其形成方法
CN102347234B (zh) * 2010-07-29 2013-09-18 中国科学院微电子研究所 半导体器件结构及其制造方法
CN102376551B (zh) * 2010-08-19 2015-12-16 中国科学院微电子研究所 半导体器件结构的制造方法及其结构
CN102543744B (zh) * 2010-12-29 2014-12-24 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
JP2012146817A (ja) * 2011-01-12 2012-08-02 Toshiba Corp 半導体装置及びその製造方法
CN102593172B (zh) * 2011-01-14 2015-05-06 中国科学院微电子研究所 半导体结构及其制造方法
CN102655092B (zh) * 2011-03-01 2014-11-05 中芯国际集成电路制造(上海)有限公司 晶体管的制备方法
US8519487B2 (en) * 2011-03-21 2013-08-27 United Microelectronics Corp. Semiconductor device
CN102842506B (zh) * 2011-06-23 2015-04-08 中国科学院微电子研究所 一种应变半导体沟道的形成方法
CN102891175B (zh) * 2011-07-19 2016-03-16 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
US9263566B2 (en) 2011-07-19 2016-02-16 Semiconductor Manufacturing International (Beijing) Corporation Semiconductor device and manufacturing method thereof
US8994123B2 (en) * 2011-08-22 2015-03-31 Gold Standard Simulations Ltd. Variation resistant metal-oxide-semiconductor field effect transistor (MOSFET)
CN103123899B (zh) * 2011-11-21 2015-09-30 中芯国际集成电路制造(上海)有限公司 FinFET器件制造方法
CN103123900B (zh) * 2011-11-21 2015-09-02 中芯国际集成电路制造(上海)有限公司 FinFET器件制造方法
CN103137488B (zh) * 2011-12-01 2015-09-30 中国科学院微电子研究所 半导体器件及其制造方法
CN103295899B (zh) * 2012-02-27 2016-03-30 中芯国际集成电路制造(上海)有限公司 FinFET器件制造方法
KR101885242B1 (ko) * 2012-03-02 2018-08-03 주성엔지니어링(주) 발광장치 및 그 제조방법
US9373684B2 (en) * 2012-03-20 2016-06-21 Semiwise Limited Method of manufacturing variation resistant metal-oxide-semiconductor field effect transistor (MOSFET)
US9099492B2 (en) 2012-03-26 2015-08-04 Globalfoundries Inc. Methods of forming replacement gate structures with a recessed channel
US9269804B2 (en) * 2012-07-28 2016-02-23 Semiwise Limited Gate recessed FDSOI transistor with sandwich of active and etch control layers
US9190485B2 (en) * 2012-07-28 2015-11-17 Gold Standard Simulations Ltd. Fluctuation resistant FDSOI transistor with implanted subchannel
US9263568B2 (en) 2012-07-28 2016-02-16 Semiwise Limited Fluctuation resistant low access resistance fully depleted SOI transistor with improved channel thickness control and reduced access resistance
US8999831B2 (en) 2012-11-19 2015-04-07 International Business Machines Corporation Method to improve reliability of replacement gate device
US9012276B2 (en) 2013-07-05 2015-04-21 Gold Standard Simulations Ltd. Variation resistant MOSFETs with superior epitaxial properties
KR102065973B1 (ko) * 2013-07-12 2020-01-15 삼성전자 주식회사 반도체 장치 및 그 제조 방법
CN104517822B (zh) * 2013-09-27 2017-06-16 中芯国际集成电路制造(北京)有限公司 一种半导体器件的制造方法
US9245971B2 (en) 2013-09-27 2016-01-26 Qualcomm Incorporated Semiconductor device having high mobility channel
US9614053B2 (en) 2013-12-05 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Spacers with rectangular profile and methods of forming the same
US9214553B2 (en) 2014-03-07 2015-12-15 Globalfoundries Inc. Methods of forming stressed channel regions for a FinFET semiconductor device and the resulting device
US9184179B2 (en) 2014-03-21 2015-11-10 International Business Machines Corporation Thin channel-on-insulator MOSFET device with n+ epitaxy substrate and embedded stressor
US20150333068A1 (en) 2014-05-14 2015-11-19 Globalfoundries Singapore Pte. Ltd. Thyristor random access memory
CN105336786B (zh) * 2014-08-15 2019-05-21 中国科学院微电子研究所 半导体器件及其制造方法
US9324831B2 (en) * 2014-08-18 2016-04-26 Globalfoundries Inc. Forming transistors without spacers and resulting devices
US9431485B2 (en) 2014-12-23 2016-08-30 GlobalFoundries, Inc. Formation of finFET junction
US11049939B2 (en) 2015-08-03 2021-06-29 Semiwise Limited Reduced local threshold voltage variation MOSFET using multiple layers of epi for improved device operation
EP3185300A1 (en) * 2015-12-21 2017-06-28 IMEC vzw Drain extension region for tunnel fet
US11373696B1 (en) 2021-02-19 2022-06-28 Nif/T, Llc FFT-dram

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294477A (ja) * 1988-09-30 1990-04-05 Toshiba Corp 半導体装置及びその製造方法
US5576227A (en) * 1994-11-02 1996-11-19 United Microelectronics Corp. Process for fabricating a recessed gate MOS device
US5937297A (en) * 1998-06-01 1999-08-10 Chartered Semiconductor Manufacturing, Ltd. Method for making sub-quarter-micron MOSFET
KR100275739B1 (ko) * 1998-08-14 2000-12-15 윤종용 역방향 자기정합 구조의 트랜지스터 및 그 제조방법
JP2000077658A (ja) 1998-08-28 2000-03-14 Toshiba Corp 半導体装置の製造方法
FR2788629B1 (fr) * 1999-01-15 2003-06-20 Commissariat Energie Atomique Transistor mis et procede de fabrication d'un tel transistor sur un substrat semiconducteur
KR100372641B1 (ko) * 2000-06-29 2003-02-17 주식회사 하이닉스반도체 다마신 공정을 이용한 반도체 소자의 제조방법
JP2002100762A (ja) * 2000-09-22 2002-04-05 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2002353445A (ja) 2001-05-30 2002-12-06 Sony Corp 溝ゲート型電界効果トランジスタの製造方法
KR100400325B1 (ko) * 2001-12-31 2003-10-01 주식회사 하이닉스반도체 수직형 트랜지스터 및 그 제조 방법
KR100487922B1 (ko) * 2002-12-06 2005-05-06 주식회사 하이닉스반도체 반도체소자의 트랜지스터 및 그 형성방법

Also Published As

Publication number Publication date
CN101006569B (zh) 2011-10-05
US20100151669A1 (en) 2010-06-17
WO2006026010A3 (en) 2006-10-26
US7951673B2 (en) 2011-05-31
WO2006026010A2 (en) 2006-03-09
US7704833B2 (en) 2010-04-27
KR20070051922A (ko) 2007-05-18
TW200616152A (en) 2006-05-16
CN101006569A (zh) 2007-07-25
US20060046399A1 (en) 2006-03-02
KR100869771B1 (ko) 2008-11-21

Similar Documents

Publication Publication Date Title
TWI338348B (en) Forming abrupt source drain metal gate transistors
US7569443B2 (en) Complementary metal oxide semiconductor integrated circuit using raised source drain and replacement metal gate
KR100865885B1 (ko) 반도체 구조물과 그 형성 방법
TWI248121B (en) A method for making a semiconductor device that includes a metal gate electrode
US7902058B2 (en) Inducing strain in the channels of metal gate transistors
TWI287875B (en) A method for forming a semiconductor device and an integrated circuit
US7732285B2 (en) Semiconductor device having self-aligned epitaxial source and drain extensions
US7144783B2 (en) Reducing gate dielectric material to form a metal gate electrode extension
US8173993B2 (en) Gate-all-around nanowire tunnel field effect transistors
TWI544630B (zh) 具有高濃度的硼摻雜鍺之電晶體
TW201137985A (en) Multi-gate semiconductor device with self-aligned epitaxial source and drain
US8507892B2 (en) Omega shaped nanowire tunnel field effect transistors
US20110169105A1 (en) Semiconductor device and method for manufacturing the same
JP2009032955A (ja) 半導体装置、およびその製造方法
US7148099B2 (en) Reducing the dielectric constant of a portion of a gate dielectric
US20060237801A1 (en) Compensating for induced strain in the channels of metal gate transistors
US10396156B2 (en) Method for FinFET LDD doping
WO2014034748A1 (ja) 半導体装置及びその製造方法
JP2010080674A (ja) 半導体装置、およびその製造方法
US20060148150A1 (en) Tailoring channel dopant profiles
US20240055300A1 (en) Method for manufacturing semiconductor device
US20240030312A1 (en) Method for manufacturing semiconductor device