CN102543744B - 晶体管及其制作方法 - Google Patents

晶体管及其制作方法 Download PDF

Info

Publication number
CN102543744B
CN102543744B CN201010613284.3A CN201010613284A CN102543744B CN 102543744 B CN102543744 B CN 102543744B CN 201010613284 A CN201010613284 A CN 201010613284A CN 102543744 B CN102543744 B CN 102543744B
Authority
CN
China
Prior art keywords
semiconductor layer
semiconductor substrate
transistor
crystal orientation
epitaxial loayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010613284.3A
Other languages
English (en)
Other versions
CN102543744A (zh
Inventor
三重野文健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Beijing Corp
Priority to CN201010613284.3A priority Critical patent/CN102543744B/zh
Priority to US13/204,319 priority patent/US8492213B2/en
Publication of CN102543744A publication Critical patent/CN102543744A/zh
Priority to US13/923,883 priority patent/US8569798B1/en
Application granted granted Critical
Publication of CN102543744B publication Critical patent/CN102543744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66651Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7849Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being provided under the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种晶体管及其制作方法,所述方法包括:提供半导体衬底,所述半导体衬底上形成有半导体层,所述半导体层的晶向与所述半导体衬底的晶向不同;在所述半导体层上形成伪栅极结构;在所述伪栅极结构两侧的半导体衬底和半导体层内形成源区和漏区;在所述半导体层上形成与所述伪栅极结构齐平的层间介质层;去除所述伪栅极结构、位于所述伪栅极结构下方的半导体层,在所述层间介质层和半导体层内形成开口,所述开口露出下方的半导体衬底;在所述开口内形成金属栅极结构。本发明提高了载流子的迁移速率,增大了晶体管的饱和电流。

Description

晶体管及其制作方法
技术领域
本发明涉及半导体技术领域,特别涉及晶体管及其制作方法。
背景技术
应变记忆技术(Stress Memorization Technique,简称SMT)以及应力刻蚀阻挡层技术(Stressd-CESL,contact etch stop layer)是现有的提高晶体管载流子迁移率的两种技术。通过上述两种技术,在晶体管的沟道区形成稳定应力,提高沟道中的载流子迁移率。所述应力平行于沟道长度方向,可以为延伸应力或压缩应力。通常拉伸应力可以使得沟道区域中的原子排列更加疏松,从而提高电子的迁移率,适用于NMOS晶体管;而压缩应力使得沟道区域内的原子排布更加紧密,有助于提高空穴的迁移率,适用于PMOS晶体管。
请参考图1~图3,为现有技术的晶体管的制作方法剖面结构示意图。
首先,参考图1,提供半导体衬底10,所述半导体衬底10上形成有NMOS晶体管和PMOS晶体管,所述NMOS晶体管和PMOS晶体管之间具有隔离结构11。所述NMOS晶体管包括P阱(未示出)、形成于P阱内的NMOS晶体管源/漏区12、位于源/漏区12之间半导体衬底上的NMOS晶体管栅极13;所述PMOS晶体管包括:N阱(未示出)、形成于N阱内的PMOS晶体管的源/漏区14、位于源/漏区14之间的PMOS晶体管的栅极15。
然后,参考图2,在所述NMOS晶体管以及PMOS晶体管表面形成覆盖源/漏区12、栅极13以及半导体衬底10的应力层16,所述应力层16的材质可以为氮化硅。所述应力层16可以提供拉伸应力或压应力。假设所述应力层16提供拉伸应力,对NMOS晶体管产生有益影响。
然后,参考图3,使用掩膜层进行刻蚀,去除PMOS晶体管表面的应力层16,保留位于NMOS晶体管表面的应力层16。然后,进行退火,使得NMOS晶体管表面的应力层16诱发拉伸应力,所述拉伸应力保留在NMOS晶体管中,提高了NMOS晶体管沟道区载流子(即电子)的迁移率。在退火之后,通常进行刻蚀工艺去除位于NMOS晶体管的栅极13、源/漏区12以及半导体衬底10的应力层16。
在公开号为CN101393894A的中国专利申请中可以发现更多关于现有的MOS晶体管的制作方法。
但是,在实际中发现,利用现有的方法形成的晶体管的饱和电流值偏低,影响器件的性能。
发明内容
本发明解决的问题是提供了一种晶体管及其制作方法,所述方法提高了晶体管的饱和电流,改善了器件的性能。
为解决上述问题,本发明提供一种晶体管的制作方法,包括:
提供半导体衬底,所述半导体衬底上形成有半导体层,所述半导体层的晶向与所述半导体衬底的晶向不同;
在所述半导体层上形成伪栅极结构;
在所述伪栅极结构两侧的半导体衬底和半导体层内形成源区和漏区;
在所述半导体层上形成与所述伪栅极结构齐平的层间介质层;
去除所述伪栅极结构、位于所述伪栅极结构下方的半导体层,在所述层间介质层和半导体层内形成开口,所述开口露出下方的半导体衬底;
在所述开口内形成金属栅极结构。
可选地,所述晶体管为NMOS晶体管,所述半导体衬底的晶向为(100),所述半导体层的晶向为(110)。
可选地,所述晶体管为PMOS晶体管,所述半导体衬底的晶向为(110),所述半导体层的晶向为(100)。
可选地,所述半导体层的厚度为3~30纳米。
可选地,还包括:
进行轻掺杂离子注入,在所述半导体衬底和半导体层内形成轻掺杂区的步骤,所述轻掺杂区位于所述栅极结构两侧。
可选地,在所述开口内制作所述金属栅极结构之前,还包括:
在所述开口内制作外延层的步骤,所述外延层位于所述金属栅极结构与半导体衬底之间,所述外延层的晶向与所述半导体衬底的晶向相同。
可选地,所述外延层的材质为锗硅,所述锗硅中锗的质量浓度范围为4~40%。
可选地,还包括:对所述外延层进行缺陷吸附离子注入的步骤,在所述外延层内形成缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷。
可选地,所述缺陷吸附离子注入的掺杂离子为氟离子或氮离子。
可选地,所述半导体层的去除方法为湿法刻蚀的方法。
可选地,所述湿法刻蚀的方法利用的溶液为碱性溶液。
相应地,本发明还提供一种晶体管,包括:
半导体衬底,所述半导体衬底上形成有半导体层,所述半导体层的晶向与所述半导体衬底的晶向不同;
层间介质层,位于所述半导体层上;
开口,位于所述层间介质层和半导体层内,所述开口露出下方的半导体衬底;
金属栅极结构,位于所述开口内;
源区,位于所述金属栅极结构一侧的半导体层和半导体衬底内;
漏区,位于所述金属栅极结构另一侧的半导体层和半导体衬底内。
可选地,所述晶体管为NMOS晶体管,所述半导体衬底的晶向为(100),所述半导体层的晶向为(110)。
可选地,所述晶体管为PMOS晶体管,所述半导体衬底的晶向为(110),所述半导体层的晶向为(100)。
可选地,所述半导体层的厚度为3~30纳米。
可选地,还包括:
轻掺杂区,位于所述半导体衬底和半导体层内,且所述轻掺杂区位于所述金属栅极结构两侧。
可选地,还包括:
外延层,位于所述金属栅极结构与半导体衬底之间,且所述外延层位于所述源区和漏区之间,所述外延层的晶向与所述半导体衬底的晶向相同,且所述外延层与所述半导体层齐平。
可选地,所述外延层的材质为锗硅,所述锗硅中锗的质量浓度范围为4~40%。
可选地,所述外延层内形成有缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷。
可选地,所述缺陷吸附离子为氟离子或氮离子。
与现有技术相比,本发明具有以下优点:
本发明首先在半导体衬底上形成与所述半导体衬底具有不同晶向的半导体层,在所述半导体层上制作伪栅极结构,接着,在所述伪栅极结构两侧的半导体衬底和半导体层内形成源区和漏区;由于所述源区和漏区是形成在所述半导体衬底和半导体层内的,所述源区和漏区之间的半导体衬底和半导体层作为沟道区,所述半导体衬底和半导体层的晶向不同,从而所述半导体衬底和半导体层在所述沟道区产生应力,该应力提高了源区和漏区的载流子的迁移率,从而提高了晶体管的饱和漏电流,改善了半导体器件的性能;
进一步优化地,在所述开口内制作所述金属栅极结构之前,还包括:在所述开口内制作外延层的步骤,从而制作的外延层与所述半导体衬底的晶向相同,利用该外延层制作取代半导体层作为沟道区的一部分,可以减小由于半导体层与半导体层的晶向不同在所述沟道区引起的漏电流,并且外可以防止外延层的晶向与所述半导体衬底的晶向不同引起的载流子的迁移速率下降的问题;
进一步优化地,还包括:对所述外延层进行缺陷吸附离子注入的步骤,在所述外延层内形成缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷,从而防止沟道区的缺陷引起的氧化增强扩散效应,减小器件的漏电流。
附图说明
图1~图3是现有技术的晶体管制作方法剖面结构示意图;
图4是本发明的晶体管制作方法流程示意图;
图5~图11是本发明的晶体管制作方法剖面结构示意图。
具体实施方式
现有的方法形成的晶体管的饱和电流值偏低,影响器件的性能。经过发明人研究发现,造成所述晶体管的饱和电流值偏低的原因是,晶体管的载流子的迁移率偏低,无法满足实际的要求,影响了器件的性能。并且,随着晶体管特征尺寸的缩小,现有的晶体管的特征尺寸缩小至45纳米范围,栅介质层的厚度减小,源区和漏区之间的距离缩短,从而使得所述晶体管内存在的漏电流问题也较为严重。
发明人经过创造性劳动,提出一种晶体管的制作方法,请参考图4所示的本发明的晶体管制作方法流程示意图。所述方法包括:
步骤S1,提供半导体衬底,所述半导体衬底上形成有半导体层,所述半导体层的晶向与所述半导体衬底的晶向不同;
步骤S2,在所述半导体层上形成伪栅极结构;
步骤S3,在所述伪栅极结构两侧的半导体衬底和半导体层内形成源区和漏区;
步骤S4,在所述半导体层上形成与所述伪栅极结构齐平的层间介质层;
步骤S5,去除所述伪栅极结构、位于所述伪栅极结构下方的半导体层,在所述层间介质层和半导体层内形成开口,所述开口露出下方的半导体衬底;
步骤S6,在所述开口内形成金属栅极结构。
下面结合具体的实施例对本发明的技术方案进行详细的说明。为了更好地说明本发明的技术方案,请参考图5~图11所示的本发明一个实施例的晶体管制作方法剖面结构示意图。
首先,请参考图5,提供半导体衬底100,所述半导体衬底100上形成有半导体层101,所述半导体层101的晶向与所述半导体衬底100的晶向不同。
由于所述半导体层101的晶向与所述半导体衬底100的晶向不同,从而在所述半导体层101与所述半导体衬底100之间产生应力。所述应力的类型与所述半导体层101的晶向与所述半导体衬底100的晶向有关系。
具体地,当所述半导体衬底100的晶向为(100),所述半导体层101的晶向为(110)时,所述半导体衬底100与所述半导体层101之间产生的应力为拉应力,该拉应力能够提高电子的迁移率,从而有益于提高NMOS晶体管的饱和电流值;当所述半导体衬底100的晶向为(110),所述半导体层101的晶向为(100)时,所述半导体衬底100与所述半导体层101之间产生的应力为压应力,该压应力能够提高空穴的迁移率,从而有益于提高PMOS晶体管的饱和电流值。
若要产生足够的应力,所述半导体层101需要满足一定的厚度,即所述半导体层101的厚度需要大于3纳米;但是所述半导体层101的厚度也不应过大,以防止无法形成符合要求的晶体管,所述半导体层101的厚度应小于32纳米。在上述的厚度范围内,能够产生足够的应力,有效提高载流子的迁移率,同时不会影响晶体管的性能。
接着,请参考图6,在所述半导体层101上形成栅介质层102,在所述栅介质层102上形成伪栅极103。所述伪栅极103与栅介质层102共同构成伪栅极结构。
所述栅介质层102的材质为电学绝缘材质,所述电学绝缘材质优选为氧化硅或氮氧化硅。所述栅介质层102的厚度范围为3~80埃。所述栅介质层102优选地利用氧化工艺制作。
所述伪栅极103的材质为多晶硅。所述多晶硅可以利用化学气相沉积工艺制作。所述化学气相沉积工艺与现有技术相同,作为本领域技术人员的公知技术,在此不做详细的说明。
作为本发明的优选实施例,在伪栅极103形成后,还要在所述伪栅极103和栅介质层102的两侧的半导体层101上形成伪栅极侧墙(spacer)104,所述伪栅极侧墙104用于保护所述伪栅极103和栅介质层102。所述伪栅极侧墙104可以为单层的氧化硅层或多层的氧化硅层-氮化硅层-氧化硅层构成的ONO结构。
然后,请参考图7,在所述伪栅极103和栅介质层102两侧的半导体衬底100和半导体层101内形成源区105和漏区106。
所述源区105和漏区106通过源/漏离子注入(SD implant)形成。所述源/漏离子注入与现有技术相同,作为本领域技术人员的公知技术,在此不做详细的说明。
所述源区105和漏区106之间的半导体层101和半导体衬底100为沟道区。由于所述半导体层101与所述源区105和漏区106之间产生应力,从而有利于提高所述沟道区的载流子的迁移速率,进而可以提高晶体管的饱和电流。
接着,请参考图8,在所述半导体层101上形成与所述栅极104齐平的层间介质层107。所述层间介质层107的材质可以为氧化硅、氮化硅、碳化硅或氮氧化硅。
接着,请参考图9,进行刻蚀工艺,去除所述伪栅极103(参考图8)、栅介质层102(参考图8)以及位于所述栅介质层102下方的部分半导体层101,在所述层间介质层107和半导体层101内形成开口,所述开口露出下方的半导体衬底100。所述开口用于在后续的工艺步骤中制作金属栅极结构。所述去除的部分半导体层101的宽度等于所述伪栅极结构的宽度。
所述伪栅极103和栅介质层102的去除方法可以为干法刻蚀或湿法刻蚀,若采用干法刻蚀去除所述伪栅极103和栅介质层102,可以采用含有氟离子、氟离子的等离子体进行刻蚀,若采用湿法刻蚀,可以采用酸性溶液,所述酸性溶液可以为盐酸、醋酸和硝酸的混合溶液;所述半导体层101的去除方法为湿法刻蚀的方法,所述湿法刻蚀的方法采用碱性溶液,所述碱性溶液可以采用KOH溶液,所述碱性溶液也可以采用氢氧化铵溶液。
由于所述刻蚀工艺可能造成位于伪栅极103和栅介质层102两侧的伪栅极侧墙104(参考图8)损伤,从而可能引起后续形成的金属栅极结构漏电流。因此,作为本发明的优选实施例,还需要进行刻蚀工艺,去除位于所述伪栅极103和栅介质层102两侧的伪栅极侧墙104(参考图8),从而露出下方的部分半导体层101。
然后,请参考图10,进行轻掺杂离子注入(LDD implant),在所述半导体层101和半导体衬底100内形成轻掺杂区108,所述轻掺杂离子注入具有一定的倾斜角度,以能够控制形成的轻掺杂区108的宽度,防止将掺杂离子注入所述开口下方的半导体衬底100内。作为一个实施例,所述轻掺杂区离子注入的角度范围为20~45度。
然后,请参考图11,作为优选的实施例,在所述轻掺杂区域108形成后,还需要进行外延工艺,在所述半导体层101内的开口内形成外延层109,所述外延层109的晶向与所述半导体衬底100的晶向相同。所述外延层109的位置与后续形成的金属栅极结构的位置对应,所述外延层109位于所述源区105和漏区106之间的半导体层101内,且所述外延层109与所述半导体层101齐平。由于所述外延层109与所述半导体衬底100的晶向相同,利用该外延层109可以作为沟道区的一部分,从而减小由于半导体层与半导体层的晶向不同在所述沟道区引起的漏电流。
所述外延层109的材质为半导体材质,作为一个实施例,所述外延层109的材质为锗硅,其中锗的质量浓度为4~40%。
在所述外延层109形成后,还要对所述外延层109进行缺陷吸附离子注入的步骤,在所述外延层109内形成缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷。本实施例中,所述缺陷吸附离子注入的掺杂离子为氟离子或氮离子。所述缺陷吸附离子用于吸附沟道区内的缺陷,从而防止沟道区的缺陷引起的氧化增强扩散效应,减小器件的漏电流。
然后,请继续参考图11,在所述层间介质层107的开口的侧壁上制作金属栅极侧墙110,所述金属栅极侧墙110的材质为氧化硅、氮化硅、碳化硅或氮氧化硅。所述金属栅极侧墙110的厚度应小于20纳米,以有利于减小晶体管的面积。
接着,在所述层间介质层107的开口的侧壁和底部制作高K介质层111,所述高K介质层111的材质可以为氧化铪、氧化铪硅、氧化镧、氧化锆、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛或氧化铝等。其中位于所述开口底部的高K介质层111覆盖于所述外延层109的表面。
由于所述高K介质层111位于所述开口的侧壁和底部,从而与现有技术的高K介质层只形成在开口的底部相比,本发明减小了晶体管的漏电流。
接着,继续参考图11,在所述开口内制作金属栅极112,所述金属栅极112与所述层间介质层107、金属侧墙1110、高K介质层111和金属栅极112齐平。所述金属栅极112与所述高K介质层111共同构成金属栅极结构,所述金属栅极结构位于所述外延层109上方。
经过上述工艺步骤形成的晶体管,请参考图11所示,所述晶体管包括:
半导体衬底100,所述半导体衬底100上形成有半导体层101,所述半导体层101的晶向与所述半导体衬底100的晶向不同;
层间介质层107,位于所述半导体层101上;
开口,位于所述层间介质层107和半导体层101内,所述开口露出下方的半导体衬底100;
金属栅极结构,位于所述开口内,所述金属栅极结构包括位于所述开口内的高K介质层111和金属栅极112,其中所述高K介质层111位于所述开口的侧壁和底部,所述金属栅极112将所述开口填满;
金属栅极侧墙110,位于所述开口的侧壁,且所述金属栅极结构与所述层间介质层107之间;
源区105,位于所述金属栅极结构一侧的半导体层101和半导体衬底100内;
漏区106,位于所述金属栅极结构另一侧的半导体层101和半导体衬底100内。
作为本发明优选实施例,所述晶体管还包括:
外延层109,位于所述金属栅极结构与半导体衬底100之间,且所述外延层109的位置与所述源区105和漏区106的位置对应,所述外延层109的晶向与所述半导体衬底100的晶向相同,所述外延层109用于将所述半导体层101内的开口填满;
轻掺杂区108,位于所述半导体衬底100和半导体层101内,且所述轻掺杂区108位于所述金属栅极结构两侧。
所述外延层109作为晶体管的沟道区,其晶向与所述半导体衬底100的晶向相同,从而所述外延层109可以晶体管的漏电流,并且可以防止沟道区的晶向与所述半导体衬底100的晶向不同引起的载流子的迁移速率下降的问题。所述外延层109的材质为锗硅,其中锗的质量浓度为4~40%,所述外延层109内有缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷。所述缺陷吸附区内的掺杂离子为氟离子或氮离子。
需要说明的是,所述半导体层100的晶向和半导体衬底100的晶向需要根据所述晶体管的类型进行具体的设置,当所述晶体管为NMOS晶体管,所述半导体衬底100的晶向为(100),所述半导体层101的晶向为(110),在所述半导体衬底100与半导体层101之间产生的应力为拉应力,从而有利于提高电子的迁移速率,有利于增大NMOS晶体管的饱和电流;当所述晶体管为PMOS晶体管,所述半导体衬底100的晶向为(110),所述半导体层101的晶向为(100),从而有利于提高空穴的迁移速率,有利于增大PMOS晶体管的饱和电流。
若要产生足够的应力,所述半导体层101需要满足一定的厚度,即所述半导体层101的厚度需要大于3纳米;但是所述半导体层101的厚度也不应过大,以防止无法形成符合要求的晶体管,所述半导体层101的厚度应小于32纳米。在上述的厚度范围内,能够产生足够的应力,有效提高载流子的迁移率,同时不会影响晶体管的性能。作为本发明的一个实施例,所述半导体层的厚度为3~30纳米。
综上,本发明提供了一种晶体管及其制作方法,所述方法首先在半导体衬底上形成与所述半导体衬底具有不同晶向的半导体层,在所述半导体层上制作伪栅极结构,接着,在所述伪栅极结构两侧的半导体衬底和半导体层内形成源区和漏区;由于所述源区和漏区是形成在所述半导体衬底和半导体层内的,所述源区和漏区之间的半导体衬底和半导体层作为沟道区,所述半导体衬底和半导体层的晶向不同,从而所述半导体衬底和半导体层在所述沟道区产生应力,该应力提高了源区和漏区的载流子的迁移率,从而提高了晶体管的饱和漏电流,改善了半导体器件的性能;
在本发明优选实施例中,在所述开口内制作所述金属栅极结构之前,还包括:在所述开口内制作外延层的步骤,从而制作的外延层与所述半导体衬底的晶向相同,利用该外延层制作取代半导体层作为沟道区的一部分,可以减小由于半导体层与半导体层的晶向不同在所述沟道区引起的漏电流,并且外可以防止外延层的晶向与所述半导体衬底的晶向不同引起的载流子的迁移速率下降的问题;
在本发明优选实施例中,还包括:对所述外延层进行缺陷吸附离子注入的步骤,在所述外延层内形成缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷,从而防止沟道区的缺陷引起的氧化增强扩散效应,减小器件的漏电流。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (18)

1.一种晶体管的制作方法,其特征在于,包括:
提供半导体衬底,所述半导体衬底表面上形成有半导体层,所述半导体层的晶向与所述半导体衬底的晶向不同,所述半导体层和半导体衬底之间产生应力;
在所述半导体层上形成伪栅极结构;
在所述伪栅极结构两侧的半导体衬底和半导体层内形成源区和漏区;
在所述半导体层上形成与所述伪栅极结构齐平的层间介质层;
去除所述伪栅极结构、位于所述伪栅极结构下方的半导体层,在所述层间介质层和半导体层内形成开口,所述开口露出下方的半导体衬底;
在所述开口内形成外延层,所述外延层的晶向与所述半导体衬底的晶向相同,且所述外延层与所述半导体层齐平;
在所述开口内形成金属栅极结构。
2.如权利要求1所述的晶体管的制作方法,其特征在于,所述晶体管为NMOS晶体管,所述半导体衬底的晶向为(100),所述半导体层的晶向为(110)。
3.如权利要求1所述的晶体管的制作方法,其特征在于,所述晶体管为PMOS晶体管,所述半导体衬底的晶向为(110),所述半导体层的晶向为(100)。
4.如权利要求1所述的晶体管的制作方法,其特征在于,所述半导体层的厚度为3~30纳米。
5.如权利要求1所述的晶体管的制作方法,其特征在于,还包括:
进行轻掺杂离子注入,在所述半导体衬底和半导体层内形成轻掺杂区的步骤,所述轻掺杂区位于所述栅极结构两侧。
6.如权利要求1所述的晶体管的制作方法,其特征在于,所述外延层的材质为锗硅,所述锗硅中锗的质量浓度范围为4~40%。
7.如权利要求6所述的晶体管的制作方法,其特征在于,还包括:对所述外延层进行缺陷吸附离子注入的步骤,在所述外延层内形成缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷。
8.如权利要求7所述的晶体管的制作方法,其特征在于,所述缺陷吸附离子注入的掺杂离子为氟离子或氮离子。
9.如权利要求1所述的晶体管的制作方法,其特征在于,所述半导体层的去除方法为湿法刻蚀的方法。
10.如权利要求9所述的晶体管的制作方法,其特征在于,所述湿法刻蚀的方法利用的溶液为碱性溶液。
11.一种晶体管,其特征在于,包括:
半导体衬底,所述半导体衬底表面上形成有半导体层,所述半导体层的晶向与所述半导体衬底的晶向不同,所述半导体层和半导体衬底之间产生应力;
层间介质层,位于所述半导体层上;
开口,位于所述层间介质层和半导体层内,所述开口露出下方的半导体衬底;
金属栅极结构,位于所述开口内;
源区,位于所述金属栅极结构一侧的半导体层和半导体衬底内;
漏区,位于所述金属栅极结构另一侧的半导体层和半导体衬底内;
外延层,位于所述金属栅极结构与半导体衬底之间,且所述外延层位于所述源区和漏区之间,所述外延层的晶向与所述半导体衬底的晶向相同,且所述外延层与所述半导体层齐平。
12.如权利要求11所述的晶体管,其特征在于,所述晶体管为NMOS晶体管,所述半导体衬底的晶向为(100),所述半导体层的晶向为(110)。
13.如权利要求11所述的晶体管,其特征在于,所述晶体管为PMOS晶体管,所述半导体衬底的晶向为(110),所述半导体层的晶向为(100)。
14.如权利要求11所述的晶体管,其特征在于,所述半导体层的厚度为3~30纳米。
15.如权利要求11所述的晶体管,其特征在于,还包括:
轻掺杂区,位于所述半导体衬底和半导体层内,且所述轻掺杂区位于所述金属栅极结构两侧。
16.如权利要求11所述的晶体管,其特征在于,所述外延层的材质为锗硅,所述锗硅中锗的质量浓度范围为4~40%。
17.如权利要求11所述的晶体管,其特征在于,所述外延层内形成有缺陷吸附离子,所述缺陷吸附离子用于吸附沟道区内的缺陷。
18.如权利要求17所述的晶体管,其特征在于,所述缺陷吸附离子为氟离子或氮离子。
CN201010613284.3A 2010-12-29 2010-12-29 晶体管及其制作方法 Active CN102543744B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201010613284.3A CN102543744B (zh) 2010-12-29 2010-12-29 晶体管及其制作方法
US13/204,319 US8492213B2 (en) 2010-12-29 2011-08-05 Transistor and method for forming the same
US13/923,883 US8569798B1 (en) 2010-12-29 2013-06-21 Semicondcutor device comprising transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010613284.3A CN102543744B (zh) 2010-12-29 2010-12-29 晶体管及其制作方法

Publications (2)

Publication Number Publication Date
CN102543744A CN102543744A (zh) 2012-07-04
CN102543744B true CN102543744B (zh) 2014-12-24

Family

ID=46350323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010613284.3A Active CN102543744B (zh) 2010-12-29 2010-12-29 晶体管及其制作方法

Country Status (2)

Country Link
US (2) US8492213B2 (zh)
CN (1) CN102543744B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140187051A1 (en) * 2012-12-27 2014-07-03 Intermolecular Inc. Poly Removal for replacement gate with an APM mixture
US9893070B2 (en) 2016-06-10 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and fabrication method therefor
US10276719B1 (en) * 2018-04-30 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627488B2 (en) * 2000-06-29 2003-09-30 Hynix Semiconductor Inc. Method for fabricating a semiconductor device using a damascene process
CN101154682A (zh) * 2006-09-30 2008-04-02 中芯国际集成电路制造(上海)有限公司 金属氧化物半导体器件及其制造方法
CN101310386A (zh) * 2004-06-21 2008-11-19 国际商业机器公司 用于高迁移率平面和多栅极mosfet的混合衬底技术

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531410B2 (en) * 2001-02-27 2003-03-11 International Business Machines Corporation Intrinsic dual gate oxide MOSFET using a damascene gate process
US7704833B2 (en) * 2004-08-25 2010-04-27 Intel Corporation Method of forming abrupt source drain metal gate transistors
US7465992B2 (en) * 2005-04-27 2008-12-16 International Business Machines Corporation Field effect transistor with mixed-crystal-orientation channel and source/drain regions
US7589995B2 (en) * 2006-09-07 2009-09-15 Micron Technology, Inc. One-transistor memory cell with bias gate
CN101393894B (zh) 2007-09-20 2011-08-17 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
JP2010050347A (ja) * 2008-08-22 2010-03-04 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
TWI419324B (zh) * 2009-11-27 2013-12-11 Univ Nat Chiao Tung 具有三五族通道及四族源汲極之半導體裝置及其製造方法
CN102222692B (zh) * 2010-04-14 2013-06-12 中国科学院微电子研究所 半导体器件及其制造方法
US8309418B2 (en) * 2010-08-23 2012-11-13 International Business Machines Corporation Field effect transistor device with shaped conduction channel
CN102569394B (zh) * 2010-12-29 2014-12-03 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627488B2 (en) * 2000-06-29 2003-09-30 Hynix Semiconductor Inc. Method for fabricating a semiconductor device using a damascene process
CN101310386A (zh) * 2004-06-21 2008-11-19 国际商业机器公司 用于高迁移率平面和多栅极mosfet的混合衬底技术
CN101154682A (zh) * 2006-09-30 2008-04-02 中芯国际集成电路制造(上海)有限公司 金属氧化物半导体器件及其制造方法

Also Published As

Publication number Publication date
US8569798B1 (en) 2013-10-29
US20130277762A1 (en) 2013-10-24
US20120168879A1 (en) 2012-07-05
CN102543744A (zh) 2012-07-04
US8492213B2 (en) 2013-07-23

Similar Documents

Publication Publication Date Title
US10424592B2 (en) Method of integrating a charge-trapping gate stack into a CMOS flow
US10199494B2 (en) Laterally diffused metal-oxide-semiconductor devices and fabrication methods thereof
CN101800228B (zh) 半导体装置
US8652908B2 (en) Semiconductor devices employing high-K dielectric layers as a gate insulating layer and methods of fabricating the same
CN102569394B (zh) 晶体管及其制作方法
US20160133723A1 (en) Tunneling Field Effect Transistor (TFET) With Ultra Shallow Pockets Formed By Asymmetric Ion Implantation and Method of Making Same
CN1841772A (zh) 半导体器件及其制造方法
US20110073954A1 (en) Semiconductor device and method of fabricating the same
KR101663829B1 (ko) 반도체 장치 및 그 제조 방법
KR100607346B1 (ko) 플래쉬 메모리 소자의 제조 방법
CN102543744B (zh) 晶体管及其制作方法
CN104681490A (zh) Cmos晶体管的形成方法
US7851855B2 (en) Semiconductor device and a method for manufacturing the same
CN103377892B (zh) 半导体器件制造方法
US6794233B2 (en) Methods of fabricating a MOSFET
KR20080026258A (ko) 반도체 소자의 제조 방법
CN103426758B (zh) 深耗尽沟道场效应晶体管及其制备方法
KR100598172B1 (ko) 리세스 게이트를 갖는 트랜지스터의 제조 방법
US20220149185A1 (en) Method for making ldmos device
US6720224B2 (en) Method for forming transistor of semiconductor device
KR20060100779A (ko) 다중 ldd 영역을 구비한 반도체 소자의 형성방법
KR100815964B1 (ko) 반도체 소자 및 그 제조 방법
KR0137816B1 (ko) 반도체 소자의 mosfet 제조방법
US20070161175A1 (en) Method for forming a gate insulating layer of a semiconductor device
JP2007281068A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant