TWI333002B - - Google Patents

Download PDF

Info

Publication number
TWI333002B
TWI333002B TW093101045A TW93101045A TWI333002B TW I333002 B TWI333002 B TW I333002B TW 093101045 A TW093101045 A TW 093101045A TW 93101045 A TW93101045 A TW 93101045A TW I333002 B TWI333002 B TW I333002B
Authority
TW
Taiwan
Prior art keywords
single crystal
region
phosphorus
doped
concentration
Prior art date
Application number
TW093101045A
Other languages
English (en)
Other versions
TW200506113A (en
Original Assignee
Shinetsu Handotai Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Handotai Kk filed Critical Shinetsu Handotai Kk
Publication of TW200506113A publication Critical patent/TW200506113A/zh
Application granted granted Critical
Publication of TWI333002B publication Critical patent/TWI333002B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

1333002 玖、發明說明 【發明所屬之技術領域·】 本發明係關於藉由切克勞斯基法之磷摻雜單晶矽之製 造方法及磷摻雜N型單晶矽晶圓,特別係關於未含有v 區域、OSF區域及大差排群(LSEPD、LFPD)區域,高耐壓 而具有優異的電氣特性之無缺陷區域的磷摻雜單晶矽之製 造方法及磷摻雜N型單晶矽晶圓。 【先前技術】 作爲半導體裝置之基板而被使用的單晶,例如有單晶 矽,主要是藉由切克勞斯基法(Czochralski Method,以下 稱爲CZ法)來製造。 當藉由CZ法來製造單晶時,例如使用第2圖所示的 單晶製造裝置10來加以製造。此單晶製造裝置10,具 有:例如用來收容矽之類的多結晶原料而將其熔融的構 件、及用來遮斷熱的隔熱構件等;這些構件係收容在主爐 室11內。從主爐室11的爐頂部,連接往上延伸的拉昇室 1 2,其上部則設置利用吊線1 4將單晶1 3拉昇的機構(未 圖示)。 在主爐室11內’設置:收容被熔化的原料溶液15之 石英坩堝16、及支持該石英坩堝16的石墨坩堝17;這些 坩堝16、17係藉由驅動機構而旋轉升降自如地被軸18所 支持。此坩堝16、17的驅動機構,係構成隨著單晶13的 拉昇而補償原料融液15的液面降低,使得坩堝16、17僅 -5- 1333002 上升液面降低量。 而且’圍繞著坩渦16、17,配置用來熔融原料的石 墨加熱器19。在此石墨加熱器19的外側,設置包圍該加 熱器周圍的隔熱構件20,用來防止從石墨加熱器19來的 熱直接輻射至主爐室11» 又’在坩堝的上部設置石墨筒23,在其外側下端設 置面對原料熔液15的隔熱材24,使得能夠攔截來自熔液 φ面的輻射同時將原料熔液15表面保溫。 _ 將原料塊收容在被配置於上述般的單晶製造裝置內的 石英坩堝16中;此石英坩堝16係藉由上述石墨加熱器 19來進行加熱,使石英坩堝16內的原料塊熔化。對於此 原料塊熔化後的原料熔液15,利用連接在吊線14下端的 種晶夾頭2 1而被固定的種晶2 2,使其接觸熔液:然後藉 由一邊使種晶22旋轉一邊拉昇,在種晶22的下方,育成 具有所希望的直徑和品質的單晶1 3。此時,在使種晶22 鲁浸入原料熔液1 5之後,直徑暫時縮小成3 mm左右之後, 進fT形成晶頸部之所謂的縮頸(necking),接著擴大至所希 望的口徑而拉昇出無差排的結晶。 藉由如此的CZ法所製造的單晶矽,主要係用於半導 ' 體裝置的製造。近年來,隨著半導體裝置的高集積化,元 * 件的微細化持續地進行。而由於元件的微細化,結晶成長 中所產生的Grown-in結晶缺陷的問題,成爲日益重要的 問題。 在此,說明關於Grown-in結晶缺陷(參照第4圖) 1333002 對於單晶矽而言,在結晶成長速度比較高速的情況, 空洞型的點缺陷集‘中而形成空隙之原因的FPD(Flow Pattern Defect)等的Grown-in結晶缺陷,高密度地存在於 結晶徑方向的全部區域,這些缺陷存在的區域,被稱爲V (Vacancy)區域。又,若使成長速度變低,隨著成長速度 的降低,OSF(氧化誘導疊層缺陷、Oxidation Induced Stacking Fault)區域從結晶的週邊開始環狀地發生,在此 環的外側,被認爲是晶格間矽集合之差排環(dislocation loop)的發生原因之 LSEPD(Large Secco Etch Pit Defect) ' LFPD(Large Flow Pattern Defect)等的缺陷,低 密度地存在;存在這些缺陷的區域被稱爲I(Interstitial)區 域。進而,若使成長速度變成低速,則OSF環往晶圓的 中心收縮而消滅,整個面成爲I區域。 近年來’在V區域和I區域的中間之OSF環外側, 沒有造成空孔的 FPD等、也沒有造成晶格間矽的 LSEPD、LFPD等之區域的存在,被發現出來。此區域被 稱爲N(中性區域、Neutral)區域。又,若將N區域進一步 地分類,有鄰接OSF環的外側之Nv區域(空洞多的區域) 和鄰接I區域的Ni區域(晶格間矽多的區域);已知在Νν 區域,當熱氧化處理後,氧析出量多,而在Ni區域,幾 乎沒有氧析出。 這些Grown-in缺陷,被認爲係根據拉昇速度(F)和從 矽的熔點至1 400 °C之間的拉昇軸方向的結晶內溫度斜度 的平均値(G)的比値亦即F/G之參數,由其輸入量來決定 1333002 (例如參照「V.V.Voronkov,Journal of Crystal Growth,59 (1 982),625〜643」)。亦即,若調節拉.昇速度和溫度斜 度,使得F/G成爲一定,則能夠以所希望的缺陷區域或是 .所希望的無缺陷區域的狀態,拉昇單晶(例如參照日本特 開 2000-178099 號公報)。 因此,以往’爲了得到無缺陷的單晶,需要在N區 域控制拉昇速度來拉昇單晶。此N區域的單晶,由於要 φ在較爲被限定的拉昇速度範圍內加以育成,其速度控制困 • 難,結晶的生產性和良率低。所以,需要一種擴展無缺陷 區域的拉昇速度範圍,使得能夠更簡單地製造的方法。 【發明內容】 本發明係鑒於如此的問題點而發明出來,其目的在於 提供一種能夠簡單且價廉地製造出例如未含有V區域、 OSF區域及大差排群(LSEPD、LFPD)區域,而具有高耐壓 φ之優異電氣特性之無缺陷區域的磷摻雜單晶矽之方法及磷 摻雜N型單晶矽晶圓。 本發明,爲了解決上述課題,提供一種磷摻雜單晶矽 之製造方法,係針對藉由切克勞斯基法來製造出P(磷)摻 ' 雜的單晶矽之方法,其特徵爲: • 至少使得A1(鋁)濃度爲2X10l2at〇ms/CC以上,來進行 單晶的成長。 如此,藉由構成爲 A1(鋁)濃度爲2xl012atoms/cc以 上,來進行磷摻雜單晶矽的成長,可以獲得在比N區域 -8- 1333002 更低速側的區域不存在LFPD、LSEPD等的大差排群,而 成爲無缺陷的I區域之磷摻雜單晶矽。因此,由於能夠使 以往被限定於N區域的無缺陷區域,擴展至I區域,所以 變成能夠以簡單且價廉的方式,提供具有高耐壓之優異的 電氣特性之磷摻雜單晶矽。 此情況,理想爲:其中進行單晶的成長,使得前述單 晶矽中的磷的濃度’爲lxl〇14atoms/CC以上。 利用使得前述單晶矽中的磷的濃度,爲 lx 1014atoms/cc以上,來進彳了單晶的成長,能夠得到充分的 N型的導電性。 此情況,理想爲:其中前述單晶的成長,當以 F(mm/min)表示拉昇速度、以GrC/mm)表示從矽的熔點至 1 4 00 °C之間的拉昇軸方向的結晶內溫度斜度的平均値時, 係使得F/G(mm2/°C · min)的値爲0.2以下的値之方式來進 行拉昇;進而,理想爲:其中使前述結晶的成長,在N 區域、I區域的範圍內進行。 如此,利用使得F/G(mm2/°C · min)的値爲0.2以下的 値之方式來進行拉昇,例如能夠在N區域、I區域的範圍 內進行結晶的成長。由於本發明之摻雜有A1的磷摻雜單 晶矽,其I區域也沒有缺陷,所以只要在上述範圍內,變 能夠容易得到無缺陷的磷摻雜單晶矽。 進而,本發明提供一種磷摻雜單晶矽,其特徵爲: 利用上述方法來製造; 進而提供一種由該磷摻雜單晶矽切割出來的矽晶圓。 -9- 1333002 若使用本發明的製造方法來製造磷摻雜單晶矽,能夠 生產性佳地製造出高品質的磷摻雜單晶矽。因此,從該磷 摻雜單晶矽切割出來的矽晶圓,不但高品質且價廉。 又,本發明提供一種磷摻雜Ν型單晶矽晶圓,其特 徵爲:Α1(鋁)濃度至少爲2Xl〇12at〇mS/cc以上。 如此,Al(|g)濃度至少爲2xl012atoms/cc以上的P(碟) 摻雜N型單晶矽晶圓,其比N區域更低速側的區域沒有 • LFPD、LSEPD等的大差排群,更能夠得到成爲無缺陷的工 • 區域之磷摻雜單晶矽。因此,能夠簡單且價廉地供給具有 高耐壓之優異電氣特性之磷摻雜N型單晶矽晶圓。 此情況,前述晶圓中的磷的濃度,理想爲1χ1〇14 atoms/cc 以上 ° 如此,利用前述晶圓中的磷的濃度,爲1 X 1 〇 14 atoms/cc以上,則能夠得到充分的N型的導電性。 此情況’前述晶圓的全面,理想爲N區域及/或I區 φ域的晶圓。 如此,利用前述晶圓的全面,爲N區域及/或I區域 的晶圓,則本發明的磷摻雜N型單晶矽晶圓,由於連I區 域也無缺陷’所以能夠簡單且價廉地製造,而且成爲具有 高耐壓之優異電氣特性之晶圓。 ‘ 如以上所述’若根據本發明,在藉由切克勞斯基法來 製造出磷慘雜單晶砂時,利用摻雜規定量的銘,由於I區 域成爲無缺陷區域,所以能夠簡單且價廉地提供例如未含 有V區域、OSF區域及大差排群(LSEPD、LFPD)區域,而 -10- 1333002 具有高耐壓之優異電氣特性之N區域和無缺陷I區域的磷 摻雜單晶矽之製造方法及磷摻雜N型單晶矽晶圓。 【實施方式】 (實施本發明的最佳形態) 以下,說明關於本發明的實施形態,但是本發明並不 被限定於這些實施形態。 在此,從拉昇結晶的矽熔點開始至1400 °C之間的拉 昇軸方向的結晶內溫度斜度的平均値G(°C /mm)的値,係 藉由綜合傳熱解析軟體FEMAG的計算而算出。 FEMGA 係在文獻(F. Dupret,P. Nicodeme, Y.Ryckmans,P. Wouters, and M. J. Crochet, Int. J. Heat Mass Transfer ,33,1849(1990))中所揭示的綜合傳熱解析軟 體。 以下說明本發明。 在藉由切克勞斯基法來製造B (硼)摻雜單晶矽時,從 結晶肩部至晶錠軀體尾部,使單晶的成長速度由高速漸漸 地變低速的情況,當到達某一成長速度時,OSF收縮;然 後,在更低速區域中,各相會依照N區域(Nv、Ni區 域)、1區域的順序,依次地被形成。特別是在比N區域 更低速側的I區域,已知有尺寸達到1 0 β m以上的大差排 群被形成,而存在LSEPD、LFPD等的缺陷。再者,B摻 雜單晶砂的情況,形成N區域係在F/G(mm2/°C . min)的 値爲0.20〜0.22的範圍的時候。 -11 - 1333002 另一方面,在藉由切克勞斯基法法來製造磷摻雜單晶 矽時,從結晶肩部至晶錠軀體尾部’,若使單晶的成長速度 由高速漸漸地變低速,當到達某一成長速度時,OSF收 縮:然後’在更低速區域中,各相會依照N區域(Nv、Ni 區域)、I區域的順序,依次地被形成。又,在此I區域的 大差排群中,未含有LFPD,僅爲LSEPD。再者,磷摻雜 單晶矽的情況,形成N區域係在F/GMm2/^ · min)的値 $爲0.18〜0.20的範圍的時候。 ' 如此,硼摻雜單晶矽和磷摻雜單晶矽,已知其缺陷分 布的動態相異。本發明的發明人,特別根據I區域的結晶 缺陷的發生狀況的相異,發現在磷摻雜單晶矽中,從天然 石英坩堝溶出而被加入拉昇結晶內部的A1元素,會抑制 原本在I區域中的大差排群的形成。 拉昇磷摻雜單晶矽之際,使用幾乎不含A1成份的合 成石英坩堝時,在I區域被確認有大差排群的存在。然 鲁而,當使用天然石英坩堝而使得 A1元素在 5x lOHatoms/cc以上至未滿2xl012atoms/cc的濃度範圍內被 加入拉昇結晶內部時,已知:在比Ni區域更低速側的I 區域,雖然被確認有高密度的LSEPD,但是在更低速區 ' 域,則沒有LSEPD的形成,而爲無缺陷的I區域。因 ' 此,本發明的發明人,當調查LSEPD消滅時的邊界附近 的I區域的 A1濃度的時候,得知爲2xl012atoms/cc程 度,此時,該邊界的F/G(mm2/°C · min)的値爲0.17。 而且,本發明的發明人,根據上述般的事實,使用合 -12- l333〇〇2 成石英增堝,在充塡多晶矽原料時,添加純A1金屬粒, 使得在拉昇結晶內部,加入2xl〇12atoms/cc以上的A1元 素。而且,從結晶肩部至晶錠軀體尾部,若使成長速度由 高速漸漸地變低速,即使在比Ni區域更低速的I區域, 沒有大差排群的形成而無缺陷,進而在更低速也同樣爲無 缺陷區域》因此,對於將A1摻雜至磷摻雜結晶中,判 明:在OSF和N區域邊界的F/G(mm2广C . min)爲0.2以 下的區域’形成N區域和無缺陷的I區域。 再者’ A1係P型的導電性元素,因而高濃度摻雜時 需要注意。特別是要使摻雜不會導致裝置(元件)設計上的 故障,加入結晶內部的A1濃度,理想爲控制成不會超過 lxl014atoms/cc。 又’磷摻雜單晶矽中的磷濃度,理想爲將磷摻雜成 lxl014atoms/cc以上。這是由於摻雜的磷的濃度,若爲 lxl014at〇mS/cc以上,則具有充分的N型的導電性的緣 故。 以下,舉出具體實施例和比較例來具體地說明本發 明’但是本發明並不被限定於這些實施例。 (實施例1 ) 使用第2圖所示的單晶製造裝置來製造單晶矽。將原 料多晶砂150Kg和純A1金屬粒4mg放入直徑24吋 (60 〇mm)的石英坩堝內,拉昇直徑210mm、方位<1〇〇> 的單晶矽。拉昇單晶矽時,控制成長速度,使得成長速度 -13- 1333002 從結晶頭部至尾部由0.60mm/min至〇2〇mm/mi的範圍 內’漸漸地減少。又,製造單晶砂,使得其隣濃度爲 3xl014 〜5.5xl014atoms/cc、氧濃度爲 24 〜27ppina (ASTM ·79)。 將育成的各單晶棒的晶身部,如第3圖(a)所示地沿 著結晶軸成長方向每10cm的長度,塊狀地切斷之後,進 而往結晶軸方向進行縱剖切斷加工,製作出數枚厚度大約 _ 2mm的試樣。 • 關於上述試樣’藉由WLT測定器(SEMILAB WT-85) 及射哥蝕刻(Secco etching),調查V區域、〇SF區域、N 區域、I區域的各區域的分布狀況(參照第3圖(b))亦即 FPD、LFPD、LSEPD等的分布狀況、及〇SF的發生狀 況,確認各區域的邊界的F/G(mm2/°C · min)的値。 具體而言,首先,關於FPD、LFPD、LSEPD的評 價’將試樣中的1枚平面硏削之後,施以米勒蝕刻、射哥 φ蝕刻(30分鐘),無攪拌的狀態下加以放置而經過規定的處 理後,進行各缺陷的密度測定。又,關於OSF的評價, 將試樣中的1枚,施行1150 °C、100分鐘(濕氧氣環境)的 熱處理後加以冷卻(以800°C出入),再利用藥液除去氧化 ' 膜之後,進行〇SF環圖案的確認和密度測定。 • 進而,將往結晶軸方向縱剖切斷加工後的切片試樣, 刳刨加工成直徑200mm的尺寸,藉由硏磨加工成鏡面狀 態,再藉由900 °C高溫氧化而在晶圓表面形成氧化薄膜 後,利用熱硫酸回收氧化膜中的重金屬’根據藉由該溶液 -14- j333〇°2 φ的WAS法所得到的測定値,測量出包含在結晶體中的 A1濃度。 · 第1圖(d)顯示出根據以上的測定所判定之更詳細的 各區域的分布狀況;又,位於各區域邊界的 F/G(mm2/ t · min)及A1濃度,如以下所示。 OSF 和 N 區域邊界的 F/G(mm2/°C . min): 0.20 N區域和I區域(無缺陷)邊界的F/G(mm2/t: · min): 0.18F/G = 0.17 附近的結晶體中的 A1濃度:4.1 X 1 0 12atoms/cc (實施例2 ) 除了將原料多晶矽150Kg和純A1金屬粒8mg放入石 英坩堝內以外,與實施例1同樣地製造單晶矽之後,進行 各測定。 第1圖(d)顯示出根據以上的測定所判定之更詳細的 各區域的分布狀況;又,位於各區域邊界的 F/G(mm2/ °C · m i n)及A1濃度,如以下所示^ OSF 和 N 區域邊界的 F/G(mm2/°C · min) : 0.20 N區域和I區域(無缺陷)邊界的F/G(mm2/°C . min): 0.1 8 F/G = 0·17附近的結晶體中的 A1濃度:8.8 X 1 012atoms/cc (比較例1 ) -15- 1333002 除了只將原料多晶矽150Kg放入石英坩堝內而沒有 加入A1金屬粒以外,與實施例1'同樣地製造單晶矽之 後,進行各測定* 第1圖(b)顯示出根據以上的測定所判定之更詳細的 各區域的分布狀況;又,位於各區域邊界的F/G(mm2/ 。(:‘ min)及A1濃度,如以下所示。 〇SF 和 N 區域邊界的 ρ/0(ιηπι2/1〇 · min) : 0.20 N區域和I區域(大差排群形成)邊界的F/G(mm2广C · min) : 〇 · 18 F/G = 0.17附近的結晶體中的Ai濃度:1 x 1〇 8 atoms/cc (比較例2) 除了將原料多晶矽150Kg和純A1金屬粒2mg放入石 英i甘渦內以外,與實施例1同樣地製造單晶矽之後,進行 0各測定。 第1圖(c)顯示出根據以上的測定所判定之更詳細的 各區域的分布狀況;又,位於各區域邊界的F/G(mm2/ °C . min)及A1濃度,如以下所示。 OSF 和 N 區域邊界的 F/G(_2/t>c · min) : 0.20 . N區域和1區域(大差排群形成)邊界的F/G(mm2/°C · min) : 0.18 I區域(大差排群形成)和I區域(無缺陷)邊界的 F/G(mm2/°C · min) ; 〇 1? -16- 1333002 F/G = 0.17 附近的結晶體中的 A1
濃度:1 .8 X ίο atoms/cc (比較例3 ) 除了將原料多晶矽150Kg和純A1金屬 英坩堝內,並使B(硼)濃度爲ΐχΐ〇15〜I·5 來製造單晶矽以外,與實施例1同樣地製造 進行各測定。 第1圖(a)顯示出根據以上的測定所判 各區域的分布狀況;又,位於各區域邊男 °C · min)及A1濃度,如以下所示。 OSF和N區域邊界的F/G(mm2/°C · min N區域和I區域(大差排群形成)邊界的 min) : 0.20 F/G = 0.17附近的結晶體中的 A1 10l2atoms/cc 由第1圖可知,磷摻雜單晶矽的情況’ 滿2xl012atomS/cc的比較例1和比較例2中 成大差排群;又,即使出現無缺陷的I區域 份而已(第 1圖(b)、(C))。然而’ A1 1012at〇mS/cc以上的實施例1和實施例2中 所示,I區域成爲無缺陷,在比0SF和N區 速側的全面,成爲無缺陷區域。 另一方面,硼摻雜單晶矽的情況,如比 粒4mg放入石 X 1 0 15atoms/cc 單晶矽之後, 定之更詳細的 L 的 F/G(mm2/ ):0.22 F/G(mm2/°C · 濃度.3 . 8 χ 於A1濃度未 ,在I區域形 ,也僅是一部 濃度爲 2 χ ,如第1圖(d) 域的邊界更低 較例3所示, -17- 1333002 即使A1濃度爲2xl012atoms/cc以上,亦如第1圖(a)所 示,在I區域形成大差排群,無缺陷的,1區域沒有出現。 再者,本發明並不被限定於上述實施形態。上述實施 形態僅是例示而已,只要是具有與本發明的申請專利範圍 中所記載的技術思想實質上相同的構成,而達成同樣的作 用效果者,不論爲何,皆被包含在本發明的技術範圍內。 【圖式簡單說明】 第1圖係表示在各條件下的成長速度和結晶缺陷分布 的關係之說明圖。(a)比較例3、(b)比較例1、(c)比較例 2、(d)實施例1、2。 第2圖係單晶製造裝置的槪略圖。 第3圖(a)係表示單晶矽的成長速度和結晶切斷位置 的關係之關係圖;(b)係表示成長速度和各區域的說明 圖。 第4圖係表示根據習知技術之成長速度和結晶缺陷分 布的關係之說明圖。 [符號說明] 1 〇 :單晶製造裝置 1 1 :主爐室 12 :拉昇室 1 3 :單晶 1 4 :吊線 -18 - 1333002 15 :原料熔液 1 6 :石英坩堝 1 7 :石墨坩堝 18 :軸 1 9 :石墨加熱器 20 :隔熱構件
2 1 :種晶夾頭 2 2 :種晶 23 :石墨筒 2 4 :隔熱材
-19 -

Claims (1)

1333002
拾、申請專利範圍 1. 一種磷摻雜單晶矽之製造方法.,係藉由切克勞斯 基法來製造p(磷)摻雜的單晶矽之方法,其特徵爲: 前述磷摻雜單晶矽爲磷摻雜N型單晶矽,至少使 A1(鋁)濃度成爲2xl012atoms/cc以上來進行單晶的成長, 前述結晶的成長,係在N區域及/或I區域的範圍內 進行。 2 .如申請專利範圍第1項所述的磷摻雜單晶矽之製 造方法,其中使得前述單晶矽中的磷的濃度,成爲 lxl014atoms/cc以上,來進行單晶的成長。 3 .如申請專利範圍第1項所述的磷摻雜單晶矽之製 造方法,其中前述單晶的成長,當以F(mm/min)表示拉昇 速度、以G(°C/mm)表示從矽的熔點至1 400°C之間的拉昇 軸方向的結晶內溫度斜度的平均値時,係使得F/G(mm2/ °C · min)的値成爲0.2以下的値之方式來進行拉昇。 4 .如申請專利範圍第2項所述的磷摻雜單晶矽之製 造方法,其中前述單晶的成長,當以F(mm/min)表示拉昇 速度、以G(°C/mm)表示從矽的熔點至1400°C之間的拉昇 軸方向的結晶內溫度斜度的平均値時’係使得F/G(mm2/ t · min)的値成爲0.2以下的値之方式來進行拉昇° 5. —種磷摻雜N型單晶矽,其特徵爲: 利用申請專利範圍第1、2、3或4項所記載的方法來 製造的,在N區域及/或I區域之範圍內成長者。 6. —種矽晶圓,其特徵爲: -20- 1333002 由申請專利範圍第5項所記載的在N區域及/或I區 域之範圍內成長的磷摻雜N型單晶矽切割出來β 7 . —種磷摻雜Ν型單晶矽晶圓,其特徵爲: 至少Α1(鋁)濃度爲2xl012at〇ms/cc以上,前述單晶矽 晶圓,爲N區域及/或I區域的晶圓。 8 .如申請專利範圍第7項所述的磷摻雜N型單晶矽 晶圓,其中前述晶圓中的磷的濃度’爲lxlO14 atoms/cc 以上。
TW093101045A 2003-01-17 2004-01-15 Process for producing P doped silicon single crystal and P doped N type silicon single crystal wafer TW200506113A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010436A JP4207577B2 (ja) 2003-01-17 2003-01-17 Pドープシリコン単結晶の製造方法

Publications (2)

Publication Number Publication Date
TW200506113A TW200506113A (en) 2005-02-16
TWI333002B true TWI333002B (zh) 2010-11-11

Family

ID=32767251

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093101045A TW200506113A (en) 2003-01-17 2004-01-15 Process for producing P doped silicon single crystal and P doped N type silicon single crystal wafer

Country Status (6)

Country Link
US (1) US7214268B2 (zh)
EP (1) EP1591566B8 (zh)
JP (1) JP4207577B2 (zh)
KR (1) KR101029141B1 (zh)
TW (1) TW200506113A (zh)
WO (1) WO2004065666A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200428637A (en) * 2003-01-23 2004-12-16 Shinetsu Handotai Kk SOI wafer and production method thereof
JP4854917B2 (ja) * 2003-03-18 2012-01-18 信越半導体株式会社 Soiウェーハ及びその製造方法
JP4432458B2 (ja) * 2003-10-30 2010-03-17 信越半導体株式会社 単結晶の製造方法
DE102004039197B4 (de) 2004-08-12 2010-06-17 Siltronic Ag Verfahren zur Herstellung von dotierten Halbleiterscheiben aus Silizium
JP4604889B2 (ja) * 2005-05-25 2011-01-05 株式会社Sumco シリコンウェーハの製造方法、並びにシリコン単結晶育成方法
JP5167654B2 (ja) * 2007-02-26 2013-03-21 信越半導体株式会社 シリコン単結晶ウエーハの製造方法
JP5003283B2 (ja) * 2007-05-23 2012-08-15 信越半導体株式会社 シリコン単結晶の引上げ方法
JP6107308B2 (ja) * 2013-03-28 2017-04-05 信越半導体株式会社 シリコン単結晶製造方法
JP7463934B2 (ja) 2020-10-07 2024-04-09 信越半導体株式会社 N型シリコン単結晶ウェーハの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741390A (ja) * 1993-07-29 1995-02-10 Nippon Steel Corp シリコンの熱処理方法
JP3195889B2 (ja) * 1994-07-06 2001-08-06 信越半導体株式会社 シリコン単結晶の製造方法及び石英ガラスルツボ
JP3525141B2 (ja) * 1997-08-20 2004-05-10 独立行政法人 科学技術振興機構 抵抗率が低いn型又はp型金属シリコンの製造方法
JP3412531B2 (ja) * 1998-08-31 2003-06-03 信越半導体株式会社 リンドープシリコン単結晶ウエーハ及びエピタキシャルシリコンウエーハ及びこれらの製造方法
JP3601328B2 (ja) 1998-12-14 2004-12-15 信越半導体株式会社 シリコン単結晶の製造方法およびこの方法で製造されたシリコン単結晶とシリコンウエーハ
JP4634553B2 (ja) * 1999-06-08 2011-02-16 シルトロニック・ジャパン株式会社 シリコン単結晶ウエーハおよびその製造方法

Also Published As

Publication number Publication date
EP1591566A1 (en) 2005-11-02
EP1591566B8 (en) 2015-11-18
JP2004224577A (ja) 2004-08-12
US20060065184A1 (en) 2006-03-30
KR20050091783A (ko) 2005-09-15
EP1591566A4 (en) 2012-04-25
TW200506113A (en) 2005-02-16
KR101029141B1 (ko) 2011-04-13
EP1591566B1 (en) 2015-10-14
WO2004065666A1 (ja) 2004-08-05
JP4207577B2 (ja) 2009-01-14
US7214268B2 (en) 2007-05-08

Similar Documents

Publication Publication Date Title
JP3783495B2 (ja) 高品質シリコン単結晶の製造方法
JP4805681B2 (ja) エピタキシャルウェーハおよびエピタキシャルウェーハの製造方法
JP2001220289A (ja) 高品質シリコン単結晶の製造装置
JP3787472B2 (ja) シリコンウエーハおよびその製造方法ならびにシリコンウエーハの評価方法
JPH0812493A (ja) シリコン単結晶の製造方法
TWI333002B (zh)
JP4193610B2 (ja) 単結晶の製造方法
JP3634133B2 (ja) 結晶欠陥の少ないシリコン単結晶の製造方法及びシリコン単結晶ウエーハ
JP4151474B2 (ja) 単結晶の製造方法及び単結晶
JP4158237B2 (ja) 高品質シリコン単結晶の育成方法
WO2004092455A1 (ja) 単結晶の製造方法
JP2004149374A (ja) シリコンウェーハの製造方法
JP4750916B2 (ja) シリコン単結晶インゴットの育成方法およびそれを用いたシリコンウェーハ
JP5223513B2 (ja) 単結晶の製造方法
JP4273793B2 (ja) 単結晶の製造方法
JP2000016897A (ja) 高品質シリコン単結晶の製造方法
JP4218460B2 (ja) 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法
JP4134800B2 (ja) 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法
JP4082394B2 (ja) シリコンウエーハの評価方法
JP4048660B2 (ja) Czシリコン単結晶の製造方法
JP4577320B2 (ja) シリコンウェーハの製造方法
JP5136253B2 (ja) シリコン単結晶の育成方法
JP2009280428A (ja) エピタキシャルシリコンウェーハ
JP4148059B2 (ja) 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法
JP4577319B2 (ja) シリコン単結晶の育成方法