TWI330419B - Electrochemical device with high capacity and method for preparing the same - Google Patents

Electrochemical device with high capacity and method for preparing the same Download PDF

Info

Publication number
TWI330419B
TWI330419B TW095130431A TW95130431A TWI330419B TW I330419 B TWI330419 B TW I330419B TW 095130431 A TW095130431 A TW 095130431A TW 95130431 A TW95130431 A TW 95130431A TW I330419 B TWI330419 B TW I330419B
Authority
TW
Taiwan
Prior art keywords
gas
electrochemical device
charging
active material
battery
Prior art date
Application number
TW095130431A
Other languages
English (en)
Other versions
TW200717898A (en
Inventor
Sung Kyun Chang
Eui Yong Bang
Min Chul Jang
Sang Hoon Choy
Ki Young Lee
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Publication of TW200717898A publication Critical patent/TW200717898A/zh
Application granted granted Critical
Publication of TWI330419B publication Critical patent/TWI330419B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

1330419 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種電化學裝置,其利用具有一氣體生成 高原電位的一電極活性材料,換言之,於充電期間在高原 5電位處產生氣體生成反應。並且,本發明係關於一製備相 同電化學裝置之方法。 【先前技術】 行動通訊工業以及資訊電子工業於近年來顯著發展,導 10 致對於具有高容量及低重量之鋰二次電池的需求與曰倶 增。然而,自從行動設備具備更多種功能時,其能量消耗 量增加,致使此類行動設備其驅動能源的電池被要求提供 更尚電力及谷篁。同時,有效以及密集的研究與發展,朝 向以價格低廉的鎳(Ni)、錳(Μη)、鐵(Fe)或其他類似金屬取 15 代昂貴以及供應受限的鈷(Co)。 ,二而相較於LiCo〇2,LiMn2C〇4提供一約少於20百 分比之較低電池容量,並且於高溫下會有Mn溶解的問題 產生。此外,相較於LiC〇〇2,LiNi〇2雖提供一改善的能量 密度,但是卻衍生—安全相關問題。再者,相較於LiC〇02, 20 UFeP〇4提供一約少於20百分比之較低電池容量,並且產 生一關於充電速率特性的問題。 至於一充電時期具有一氣體生成高原電位的一電極活 性材料,具有下述問題:當一電池充電至氣體生成反應尚 未產生的此一程度,電池呈現一低容量,以及當一電池充 1330419 電至氣體生成反應產生的此_程度,由於氣體生成致使電 池本身無法變賣。 【發明内容】 5 ® 士匕’本發明著眼於上述問題。本發明之發明者已進行 諸多研究,並發現在第一次充電循環(最初充電循環)充電至 超過氣體生成高原電位的一程度時,會導致一大量氣體生 二然而後續之充電循環即使在超過氣體生成高原電位的 私度下執行’也不會有一大量氣體生成。本發明係以此 10 發現為基礎。 15 本發明之一目的係利用在電化學裝置充電至超過氣體 生成高原電位的一程度後’實行一氣體釋放步驟,進而解 決電化學裝置外觀上的一變化,以及因為氣體生成,導致 所產生的-電化學裝置循環壽命與充電速率兩特性降低等 問題。本發明之另_㈣’係提供—電化學裝置,在第二 次充電循環過程,、經由充電至超過氣體生成高原電位t 程度,進而提升其電容量。 恐俅,係提供製備 ㈣可包括:使用於—充電期間具有—氣體生成高原 Μ/電極活性材料,將—電化學裝置充電至超過高原 電位的-程度、然後釋放該電化學裝置的氣體。 依本發明之另一態樣,係提供製備一電化學裝置,其包 材Γ 一上電期間具有一氣體生成高原電位的-電極活性 學裝置充電至超過高原電位的-程度,然後 20 釋放氣體。 較佳地,於第一次夯雷 的一程度。 電循%後立即充電至超過高原電位 在下文中,本發明將詳盡敘述。 依本發明所述之該電》風胜里 冤化予破置,具有可充電至超過高原 電位的-程度’然後释放氣體之特徵。 一般而言,部份電極活性材料經由充/放電循環期間, 電極活性材料内基本元素的氧化數變化,因而具有超出氧 化/還原電位戟義的-衫範圍之高原電位。 此類電極活性材料—和於古Ε _ 十叙於阿原電位範圍内產生氧氣,如 此可使材料穩定,因而解決因—上升電壓所引起的不穩定 性。換言之,在第一次充電«,鐘(Li)的釋出並非經由形 成電極活性材料之-過渡金屬的氧化/還原反應所造成而 是經由氧氣釋出的方式。當氧氣被釋放,充電並非在氧氣 以及材料結構内的金屬間完成,因此以。釋出的方式進而 解決此問題。當形成電極活性材料之過渡金屬(例如猛),直 氧化數於放電後即由4+轉變為3+,所以此類已釋出的鐘(u) 可以嵌回-陰極中。換言之,當產生上述氧氣缺陷(即電極 活性材料被活化)後,充/放電循環可以經由電極活性材料之 過渡金屬的氧化/還原反應而完成。於此,雖然過渡金屬(例 如錳)的氧化數從4 +降至3+,但並未參與第一次充電循環之 後即產生的鋰(Li)嵌入/釋出反應,其可能參與第一次充電 循環後的充/放電反應,由此增加可逆電容量。 因此’氣體生成高原電位存在於一高於電極活性材料之 UJU419 過渡金屬的氧化還原電位。 如上所述,於一充電時期夕带 产 功之電極活性材料,具有氣體(例 如氧氣)生成反應的一特定笳π 亏疋乾圍之兩原電位,只有在第一次 充電循環中超過高原電位的—游择吐 J %度時,會產生一大量氣 體。因此,在第一次充雷描女, 元Μ5衣内產生的氣體經移除後,便
可以解決因產生一大量氣體,生4、CI 、體所k成的問體,即使於後續的 充/放電循環,電化學裝置充雷、 予衣至超過高原電位的一程度。 因此,依本發明所述’當執行第一次充電循環至超過高原 電位的-程度,然後執行—釋放氣體步驟,可能增加一電
化學裝置的電容量,而在執行第_ A丨、)这A L·灯罘一-人以及後續充/放電循環 至超過氣體生成高原電位的一程度時,不會有一大量氣體 產生® 另外,該電化學裝置在第一次充電循環充電至超過高原 電位的一程度後,即使一充電電壓在第二次以及後續的充/ 15 j電循環中降低,相較於未在第—次充電循環充電至超過 高原電位的一程度之相同的電化學裝置,此電化學裝置顯 示一明顯增加的電容量(請參考圖5)。 一般而言,認為電極活性材料在高原電位的一範圍内, 具有鋰缺陷的一活性結構,因此除了有一不可逆之相變過 20 程’還有產生氣體的反應。 ^ 電池是用下述分子式1所表示的一化合物,作為_ 陰極活性材料進行充/放電循環,其在第一次充電循環出現 位於4.4〜4.6V的一高原電位,以及一大量氣體在高原電位處 產生(u月參考圖3及4) 〇 1330419 換α之,為了使下述分子式1所表示的該電極活性材料 提供高容量之特徵,使用該電極活性材料的電池必須充電 致超過高原電位的-程度,以便於活化電極活性材料以及 修飾其結構。然而,此事例中,因氣體生成而造成一問題。 5 此氣體生成導致電池外觀上的一變化,並且降低一電極 内的附著力,進而對該電極充/放電的一致性產生不利地影 響,因此產生含鋰副產物,導致循環壽命特性下降。此外, 由於氣體生成導致電極間的差距增加,所以充電速率特性 會因增加阻抗、過電壓以及其他類似電性進而降低。簡言 10之,此氣體生成對於一電池的整體品質會造成不利地影響。 同時,如果電池沒有充電至超過高原電位的一程度,由 分子式1所表示的電極活性材料所提供的電池可能無法獲 得高容量特徵。 依本發明所述,上述發生在一電池内,因氣體生成所導 15致的問題可以獲得解決,以及經由充電一電池至超過高原 電位的一程度至少—回,然後釋放電池氣體,可以使電池 獲得高容量,即使連續充電至超過高原電位的一程度亦無 妨。換舌之,只要電池充電至超過高原電位的一程度一回, 乳體生成便不會再發生,同時此高原將消失(請參考圖 20 φ ’ 再者’如上文中所提及,電池充電至超過高原電位的一 %度至少一回,然後釋放氣體,相較於不曾充電超過高原 電位的—程度之一電池’即使後續的充電不超過高原電位 的程度,依然顯示一增加的電容量(請參考圖5)。 更特別地,電極活性材料包括下述分子式1所表示的— U30419 固態溶液: [分子式1] XLi(Li1/3M2/3)〇2 + YLiMO2 其中Μ為至少一元素’選自由具有一氧化數為4 +之元素 5 所組成之群組;
Μ’為至少一元素,選自過渡金屬;以及 在附帶條件X+Y=l的情形下,〇<χ<1以及〇<γ<ι。 备電極活性材料在高於河,氧化還原電位的一電位水準 進行一充電循環時,鋰從電極活性材料中釋出,在此同時 氧亦釋出進而修正氧化還原價。此方式中,電極活性材料 顯示一高原電位。 較佳為以分子式丨所表示之化合物,因為在高於高原電 位的一電壓(4.4〜4.8V)執行一充電步驟以及一釋放氣體步 驟,於後續充/放電循環期間,其仍能提供作為一穩定的電 15 極活性材料。 較佳地,Μ為至少一元素選自由Mn、Sn、以及丁丨金屬 所組成之群組,以及為至少一元素選自由Ni、Mn、c〇、 以及Cr金屬所組成之群組。 當一電化學裝置使用包含分子式丨所表示的化合物作為 20該電極活性材料,並充電至超過高原電位的一程度至少一 回,然後釋放氣體,此電化學裝置可以具有一丨〇〇〜28〇mAh/g 之放電容量,較佳地施加3.0〜4.4V的一電壓範圍可得 170〜250mAh/g之放電容量。當電化學裝置不依上述方式充 電,在相同的電壓範圍内,其所顯示的一放電容量近乎 1330419 90mAh/g。因此’依本發明所述之電化學裝置明顯增加其電 容量(請參考圖5)。 此外’當一電化學裝置使用包含分子式1所表示的化合 物作為電極活性材料,並充電至超過高原電位的一程度至 5 少一回,然後釋放氣體,此電化學裝置可以具有一 100 350mAh/g之放電容量,較佳地施加3.〇〜4·8ν的一電壓 範圍可得200〜280mAh/g之放電容量(請參考圖4)。 下文中,經由在超過氣體生成高原電位的一程度執行最 初充電後立即移除所生成的氣體,進而獲得的電化學裝置 10 將做更詳盡的敘述。 較佳地,依本發明所述之電化學裝置為一鋰離子電池。 一般而言,一鋰離子電池包括具有陰極活性材料泥漿物 的陰極與陰極集電器,具有陽極活性材料泥漿物的一 陽極與-陽極集電H,以及為了阻礙電子料及為了執行 15
兩電極間鋰離子的傳導,因而置於兩電極之間的一隔離 片同樣地,一含鋰鹽之有機電解液注入電極與隔離片的 空隙内。 經離子電池内所使用的電極活性材料,為可以在超過高 原電位的-程度執行最初充電後立即產生—大量氣體的一 電極活性材料’而其從第二次充電循職便不具有高原電 位也不產生氣體。舉例之,電極活性材料為分子式i所示之 一種陰極活性材料,其可單獨❹或者可與下述群組中至 少一個陰極活性材料組合’進而提供—陰極:Licoo「 UNi〇2、LiMn〇2、LiMn2〇4、Li(NiaC〇bMne)〇2(其中 〇<a小 20 1330419 0<b<卜 0<C<1 以及 a+b+c=1)、LiNii yC〇y〇2、Lic〇i γΜηγ〇2、
LiNiuMriYC^其中 βΥ<1)、Li(NiaC〇bMnc)〇4(其 中 0<a<2、 0<b<2、〇<c<2 以及 a+b+c=2)、LiMn2.zNiz〇4、
LiMn2-zC〇z〇4(其中 〇<z<2)、Lic〇p〇4、以及 uFep〇4。 舉例之,混合上述陰極活性材料、一導電劑 '及一黏著 劑,形成一混合物後,將其置於一陰極集電器上,然後乾 燥可以獲得陰極。如果需要,混合物可以進一步包括填充 劑。 陰極集電器一般具有3〜5〇〇叩的_厚度。陰極集電器無 特殊限制’、要在電池使用的同時具有高導電性且不會導 致任何化學改變。可以使用於本發明之陰極集電器,其特 殊舉例可包括:不鏽鋼、在呂、鎳、鈦、燒結碳,或者銘或不 鏽鋼的表面以碳、錄 '鈦、銀或其他類似物質做處理。集 15 20 電=以具有精細的表面粗度以便於增加其陰極活性材料 =附著力’以及可以形成各種形狀,包括一薄臈形、薄板 =薄片形、網狀、多孔主體 '發泡主體、非編織主體或 其他相似形狀。 般而。’導電劑添加至包含陰極活性材料的混合物 其—用量為佔混合物總重量的卜%重量百分比。 2特殊限制’只要在電池使用的同時具有高導電性且不 殊舉匕學改變。可以使用於本發明之導電劑,其特 里牛;匕括:石墨例如天然石墨或人造石墨;碳黑例如碳 裂碳黑等t黑.、/咖碳黑、槽碳黑、爐碳黑、燈碳黑、熱 ,V電纖維例如破纖維或金屬纖維丨金屬粉末 12 例如氟碳化合物、鋁、鎳粉末等 欽酸鉀等等;導電金屬氧化物例如氧化鈦:::氧:鋅、 料例如聚苯類衍生物。 /、他導電材 5 黏著劑係為了幫助活性材料與導電劑戈其 之間的黏著,以及將活性材料黏著至集電号工讀料 黏著劑添加至包含陰極活性史而言, 混合物總重量的〗,量百分比的;==用量為佔 者劑,其特殊舉例可包括:聚偏 /發明之勒 ΙΟ 基纖维素(CMC) ”殿粉、經丙;稀、:乙婦醇、幾甲 乙婦四氫彻、四氣乙媒t 、纖維素 '聚 虱乙烯、聚乙烯、聚丙烯、乙丙三元 氟橡f TM)、磺化乙丙三元共聚物、苯乙烯丁烯橡膠、 鼠橡勝'各種共聚物或其他類似物質。 歸探办 殊限膨脹’填充劑可隨意地使用。填麵 沐丨民制,只要為纖維狀材料, 15 致任何化學改蠻7 且在電池使用的同時不會導 例可本發明之填充劑,其特殊舉 狀材乙稀、聚丙婦等等,·以及纖維 狀材枓例如玻璃纖維、碳纖維等等。 電器"Tt㈣㈣㈣料的—混合物塗佈至一陽極集 20 進一牛々^乾無可以獲得陽極。如果需要,混合物可以 進步包括上述添加劑。 特殊=集!器一般具有3〜5°〇_的-厚度。陽極集電器無 致任^化與1在電池使用的同時具有高導電性且不會導 殊舉例可=文變。可以使用於本發明之陽極集電器,其特 牛。匕舌:不鏽鋼、铭、鎳、鈦、燒結碳、銅,或不鏽 13 1330419 鋼的表面以碳、鎳、鈦、銀等等做處理,紹_錦合金或且他 類材料。此外,如同陰極集電器,陽極集電器可以旦有精 細的表面粗纟以便於增加陽極活性材料的附著力,二及可 以形成各種形狀’包括一薄膜形、薄拓 /寻板形、溽片形、網狀、 夕孔主體、發泡主體、非編織主體或其他相似形狀。 可以使用於本發明之陽極活性材料,其特殊舉例可包括· 碳例如硬質碳或者石墨化碳;金屬複合氧化物例如 .
LixFe2〇3((^Xsl)、…觸他如)' 如…条㈣其中 Me表示 Μη、Fe、Pb或 Ge ; Me,表示八卜 B、p .. 内I、II或III族元素’或者一函素原子;〇sx$i ; 〇仍3;以 及bZ^8);鋰金屬;鋰合金;矽合金;錫合金丨金屬氧化 物例如 SnO、Sn〇2、Pb0、Pb〇2、pb2〇3、pb3〇4、sb2〇3、 H〇4、sb2o5、Ge0、Ge〇2、Bi2〇3、Bi2〇4以及出办 3導 電高分子例如聚乙炔;以及Li_c〇_Ni系材料。 15 置於陰極與陽極之間的隔離片,為包含具有隔絕特性、 高離子滲透性 '以及機械強度的一薄臈。隔離片一般具有 一 〇·〇】〜ΙΟμπι的孔徑以及一 5〜300μπι的厚度。可以使用於本 發明之隔離片,其特殊舉例可包括:烯烴聚合物例如具有化 學耐党性及疏水性的聚丙烯;以及以玻璃纖維或聚乙婦所 形成的薄片或不織網。當使用一固態電解液例如一聚合物 電解液’該固態電解液可以提供作為一隔離片。 作為一電解液化合物之非水性電解液可包括一環狀碳 酸酯及/或直鏈碳酸酯。環狀碳酸酯之特殊舉例可包括:碳酸 乙烯酯(EC)、碳酸丙烯酯(PC)、r -丁内酯(GBL)、或其他 20 1330419 相似碳酸酯。較佳地,直鏈碳酸酯選自由碳酸二乙酯 (DEC)、碳酸二甲酯(DMC)、碳酸甲基乙基酯(EMC)以及碳 酸甲基丙基酯(MPC)所組成之群組,但不受限於此。此外, 除了碳酸酯化合物之外,非水性電解液進一步可包括一鋰 鹽。較佳地,鋰鹽選自由 LiCl〇4、LiCF3S03、LiPF6、LiBF4、 LiAsF0以及LiN(CF3S〇2)2所組成之群組,但不受限於此。 依本發明所述之鋰離子電池,其製造係經由導入於一陰 極與一陽極間之一多孔隔離月,然後以一傳統方式將非水 性電解液注入其中。 依本發明所述之鋰離子電池可以具有任何形狀,例如一 圓柱形、一稜形、一類似小袋形或其他相似形狀。 【實施方式】 15 20 下述將具體說明本發明之較佳實施例,但本發明所主張 之權力範圍自應以申請專利範圍為準,而非僅限 施例。 [實施例1】 2/5ΓΤ使/ Li(LiG.2NiG2Mn°_6)〇2 (3/5[Li(L“)〇2] + .、曰^ l/2Mni/2]〇2)作為-陰極活性材料,以队6:6的比例 m 5此陰極活性材料、 ^ ^ ^ 乍為導電劑的碳、以及作為一黏 者Μ的♦偏二氟乙稀(pv 物。將該陰極活性材料一陰極活性材料泥漿 3 '、化水物塗佈於具有一15μηι厚度的鋁 '、陰極。使用人造石墨作為一陽極活性 材科’以及使用溶於 • EMC(比例為 i:2)之 1M LiPF6 溶 15 液作為》 & 電解液,進而提供一袋型電池。 電4池:卜次充電循環充電至4.8V,然後釋放氣體 [比較例7 一次充電循環後,測量電池的體積變化。 ^除了在第一次充電循環充電至4.2V, ^的步驟之外,其餘製作電池的方式皆相 方式。然後,測量電池的體積變化。 [比較例2] 10 除了在第一次充電循環充電至4.4V, 體的步驟之外’其餘製作電池的方式皆相 t作方式。然後,測量電池的體積變化。 [比較例31 除了在第一次充電循環充電至4·8ν, 15 體的步驟之外,其餘製作電池的方式皆相 製作方式。然後,測量電池的體積變化。 [比較例4] 除了在第-次充電循環充電至4·4ν,而且沒有釋放氣 體的步驟之外’其餘製作電池的方式皆相同於實施例i的 20 而且沒有釋放氣 同於實施例1的 而且沒有釋放氣 同於實施例1的 而且沒有釋放氣 同於實施例1的 製作方式。然纟’電池進行第二次充電循環,並測量電池 的體積變化。 下述表格1中_示實施例1以及比較例1〜4纟個電池在 第一次及第二次循環後,各個電池的膨脹程度。 表格1 充電電壓 最初厚度 充電後厚度 厚度變化 (mm) (mm) (mm) 16 1330419 實施例1 4.8 V 4.01 4.1 0.09 比較例1 4.2 V 3.98 4.06 0.08 比較例2 4.4 V 3.98 4.12 0.14 比較例3 4.8 V 4 5.52 1.52 比較例4 4.8 V 4.02 5.58 1.56
10
15 由表格1可知,依實施例1所述之電池,其最初充電至 4-8V,然後釋放氣體,在第二次充電循環後測量電池厚度 艾化,顯示一膨脹程度相似於充電至4 2V的電池。此表示 當—電池於第一次充電循環充電至4·8ν後釋放氣體,不會 進—步產生一大量氣體。 曰 [比較例5] …1〜〜仰冋万式獲侍隙極,使用U金屬作 陽極,以及使用溶於EC: EMC(比例為i :2)之iΜ咖 液作為-電解液,進而提供一硬幣型電池 〜V電壓範圍内的充/放電容量(請參考圖丨如 I比較例6] 除了電池充電至4·4ν 比較例5所干之方4. < &电池方式如同於 2) 。 式,亚測量電池的充/放電容量(請參考圖
[實施例2J t、了电池充電至4.8V之外,其餘製造電、·也方·^ 比較例5所示之方式, 冤池方式如同於 3) 。 並測莖電池的充/放電容量(請參考圖 [實施例3 j
除了電池在第一次抵& L 及以及苐一久循環皆充電至4 8v 17 20 1330419 之外,其餘製造電池方式如同於比較例5所示之方式,並 測量電池的充/放電容量(請參考圖4)。
[實施例4J “除了電池在第一次循環充電至4.8V以及第二次循環充 電至4.4V之外,其餘製造電池方式如同於比較例$所示之 方式,並測量電池的充/放電容量(請參考圖5)。 由圖1〜4可知,依實施例2及3所示,充電至超過高原 =位的一電壓之電池顯示一明顯增加之電容量,以及各個 電池的高原電位於第二次循環消失。 前文可知,依本發明所述,可能解決當使用一可提 供高容量卻不適用於一高容量電池的電極活性材料所引發 的問題。此類問題係導因於氣體生成,當使用此類電㈣ 性材料的一電池,為了且有—^定旦 "有问今里,必須充電至超過氣 15 20 旦生成尚原Μ位的-程度。為了解決此問題,依本發明所 ;放將:池充電至超過氣體生成高原電位的-程度,然後 =讀括換言之’本發明可以解決因氣體生成所導致的 一電池外形的變化,以及-電池循環壽命特性 速率特性的降低。於第一次循環後,電池可以充電 至超過南原電位的-程度’不會進一步產生氣 供一明顯增加的電容量。 、且 如 雖然:發明以目前認為最實用且較佳具體實例作說 日但應虽瞭解本發明並非只侷限;^ # π # 、 例與圖示,相反地,而是處所揭露之具體實 精神與範圍下所做的各種修部與變化。申°月專•圍之 18 (S > 1330419 5
10 【圖式簡單說明】 圖1係本發明一比較例5在3〜4.25V的-電池充電時的一充/放電特性圖。 圖2係本發明一比較例6在3〜4.4V的一 電池充電時的一充/放電特性圖。 圖3係本發明一實施例2在3〜4.8V的一 電池充電時的一充/放電特性圖。 圖4係本發明一實施例3在3〜4.8V的一 第一次循環,電池充電時的一充/放電特性圖 圖5係本發明一實施例4在3〜4.8V的一 第一次循環,以及在3〜4,4V的一電壓範圍内 環,電池充電時的一充/放電特性圖。 15 【主要元件符號說明】 Μ _ -電壓範圍内, 電壓範圍内, 電壓範圍内, 電壓範圍内的 0 電壓範圍内的 的從第二次循 19

Claims (1)

  1. Ι·0419 f 月修正頁 第泛3,猶,7 L·*"·'—丨一十—*:~十、申請專利範圍:
    1. 一種製備電化學裝置的方法,其步驟包括·.於一充電 期間,在電化學裝置内使用具有一氣體生成具有位於一 4.4〜4.8V範圍之高原電位的一電極活性材料予以充電,且充 5電至超過咼原電位的一程度;以及释放該電化學裝置的氣 體; '
    其中其中該電極活性材料包括處於一固態溶液狀態的 一化合物,由下述分子式1表示: [分子式1] 10 XLi(Lil/3M2/3)〇2 + YLiM,〇2 其中Μ為至少一元素選自*Mn 之群組; 、Sn以及Ti金屬所組成 為至少一元素選自由Ni、 之群組;以及 Mn、Co以及Cr金屬所組成
    在附帶條件X+Y= 1的情形下 2.如申請專利範圍第1項所述 氣(〇2) 〇 ,〇<Χ<1 以及〇<γ<1。 之方法,其中該氣體為氧 20 乂—種電化學裝置,复白杠一曰士仏 Ljr 八 ,、有陰極活性材料之 :二:有陽極活性材料之陽極、一隔離片、以: 2有機電解液’其中該陰極或陽極活性材料包括下:: 子式1所表示的一固態溶液, 述刀 體生成位於-4.4〜4.8V範圍之充電期間具有一氣 $韶涡古店价 之呵原電位’該電化學裝置充雷 至超過π原電位的-程度,然後釋放氣體; 充電 [分子式1] 20 1330419 XLi(Li1/3M2/3)〇2 + YLiM,〇2 其令M為至少一元素選自由Μη、Sn以及Ti金屬所組成 之群組; M’為至少一元素選自由Ni、Mn、Co以及Cr金屬所組成 5 之群組;以及 在附帶條件X+Y=l的情形下,〇<χ<1以及〇<γ<1。 4.如申請專利範圍第3項所述之電化學裝置,其在充電 至超過高原電位的一程度並且釋放氣體後,於一 3 〇〜44V 電壓範圍内,顯示一;[〇〇〜28〇Amh/g的放電容量。 0 5.如申請專利範圍第3項所述之電化學裝置,其在充電 至超過高原電位的一程度並且釋放氣體後,於一 3〇〜4.8V 電壓範圍内’顯示一100〜350Amh/g的放電容量。 6.如申請專利範圍第3項所述之電化學裝置,其設計成 可使用於充電至超過氣體生成高原電位的一程度之後。 5 7.如申請專利範圍第3項所述之電化學裝置,其設計成 可使用於充電至不超過氣體生成高原電位的一程度之後。 如申請專利範圍第3至7項所述之任一項之電化學裝 置’其為一經二次電池。 21
TW095130431A 2005-08-19 2006-08-18 Electrochemical device with high capacity and method for preparing the same TWI330419B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050076488 2005-08-19

Publications (2)

Publication Number Publication Date
TW200717898A TW200717898A (en) 2007-05-01
TWI330419B true TWI330419B (en) 2010-09-11

Family

ID=37757775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095130431A TWI330419B (en) 2005-08-19 2006-08-18 Electrochemical device with high capacity and method for preparing the same

Country Status (5)

Country Link
US (2) US8241773B2 (zh)
JP (2) JP5259403B2 (zh)
CN (1) CN101243565B (zh)
TW (1) TWI330419B (zh)
WO (1) WO2007021148A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI330419B (en) * 2005-08-19 2010-09-11 Lg Chemical Ltd Electrochemical device with high capacity and method for preparing the same
KR100793011B1 (ko) * 2007-02-16 2008-01-08 에스케이에너지 주식회사 리튬이차전지의 제조방법
KR100793010B1 (ko) * 2007-02-16 2008-01-08 에스케이에너지 주식회사 리튬이차전지의 제조방법
US20080241645A1 (en) * 2007-03-26 2008-10-02 Pinnell Leslie J Lithium ion secondary batteries
US20080248375A1 (en) * 2007-03-26 2008-10-09 Cintra George M Lithium secondary batteries
JP5357268B2 (ja) 2009-12-04 2013-12-04 日産自動車株式会社 電気デバイス用正極材料およびこれを用いた電気デバイス
CN102971892B (zh) 2010-02-24 2016-05-18 株式会社Lg化学 高容量正极活性材料和包含所述高容量正极活性材料的锂二次电池
JP5598955B2 (ja) * 2010-03-04 2014-10-01 Necエナジーデバイス株式会社 二次電池およびその製造方法
CN103283066B (zh) 2010-12-27 2016-04-20 株式会社杰士汤浅国际 非水电解质二次电池用正极活性物质、其制造方法、非水电解质二次电池用电极、非水电解质二次电池及该二次电池的制造方法
JP2012142154A (ja) 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
JP2012142155A (ja) 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2012212632A (ja) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイスの製造方法
JP5741942B2 (ja) * 2011-08-24 2015-07-01 トヨタ自動車株式会社 リチウム二次電池の容量回復方法
KR101414955B1 (ko) 2011-09-26 2014-07-07 주식회사 엘지화학 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지
JP6102556B2 (ja) * 2013-06-19 2017-03-29 日産自動車株式会社 非水電解質二次電池の製造方法
JP5888798B2 (ja) * 2014-08-01 2016-03-22 Necエナジーデバイス株式会社 二次電池およびその製造方法
GB2548128B (en) 2016-03-09 2021-12-15 Zapgo Ltd Method of reducing outgassing

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US678232A (en) 1900-12-24 1901-07-09 Carl Ferdinant Ekman Fender.
JPH04149965A (ja) * 1990-10-15 1992-05-22 Agency Of Ind Science & Technol バナジウム系電解液の製造方法
JP3506397B2 (ja) 1995-03-28 2004-03-15 三井金属鉱業株式会社 リチウム二次電池用正極材料およびその製造方法、並びにこれを用いたリチウム二次電池
JP2000195513A (ja) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd 非水電解質二次電池
JP3754218B2 (ja) 1999-01-25 2006-03-08 三洋電機株式会社 非水電解質電池用正極及びその製造方法、ならびこの正極を用いた非水電解質電池及びその製造方法
DE10017931A1 (de) * 2000-04-11 2001-12-06 Siemens Ag Verfahren zur Diagnose einer Abgasreinigungsanlage einer lambdageregelten Brennkraftmaschine
JP4830178B2 (ja) 2000-06-06 2011-12-07 パナソニック株式会社 非水電解液二次電池及びその正極活物質の製造方法
CN1348229A (zh) 2000-10-10 2002-05-08 肖云升 一种提高锂离子电池容量的方法
US6803149B2 (en) * 2000-12-04 2004-10-12 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
JP4942249B2 (ja) * 2001-01-15 2012-05-30 トータル ワイヤレス ソリューショオンズ リミテッド リチウムイオン二次電池の製造方法
US20020122973A1 (en) 2001-03-02 2002-09-05 Delphi Technologies, Inc. Method of preparation of lithium battery
JP4080337B2 (ja) * 2001-03-22 2008-04-23 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
AU2002355544A1 (en) * 2001-08-07 2003-02-24 3M Innovative Properties Company Cathode compositions for lithium ion batteries
KR100804522B1 (ko) 2001-11-29 2008-02-20 삼성에스디아이 주식회사 이차전지의 제조방법
KR100441524B1 (ko) 2002-01-24 2004-07-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 슬러리 조성물
JP4192477B2 (ja) 2002-03-08 2008-12-10 日本電気株式会社 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
CN1249838C (zh) * 2002-04-10 2006-04-05 黄穗阳 高能安全聚合物锂离子电池及其生产工艺
JP2003331916A (ja) 2002-05-08 2003-11-21 Tdk Corp 二次電池および二次電池の製造方法
KR20030092386A (ko) * 2002-05-29 2003-12-06 현대자동차주식회사 플라즈마 반응기가 채용된 차량용 배기가스 저감 시스템및 이 시스템 제어방법
JP3963130B2 (ja) * 2002-06-27 2007-08-22 トヨタ自動車株式会社 触媒劣化判定装置
CN1181591C (zh) * 2002-07-30 2004-12-22 中山大学 二次鋰离子电池开口正压化成方法及其用于制造电池的方法
TW565017U (en) 2002-11-13 2003-12-01 Yu-Lin Jung Improved structure of battery
JP2004247059A (ja) * 2003-02-10 2004-09-02 Toyota Motor Corp リチウムイオン二次電池
CN1595689A (zh) 2003-09-08 2005-03-16 中国科学院物理研究所 锰系正极材料及其制备与用途
JP4044914B2 (ja) 2004-06-15 2008-02-06 株式会社キーエンス 走査顕微鏡
JP4843918B2 (ja) * 2004-08-26 2011-12-21 新神戸電機株式会社 複合酸化物材料及びリチウム二次電池用正極活物質
KR100628470B1 (ko) * 2004-11-03 2006-09-26 삼성에스디아이 주식회사 리튬 전지용 전해질 및 이를 포함하는 리튬 전지
US7771874B2 (en) * 2005-06-29 2010-08-10 Fmc Corporation Lithium manganese compounds and methods of making the same
KR100786968B1 (ko) 2005-07-22 2007-12-17 주식회사 엘지화학 전극활물질의 전처리 방법
TWI330419B (en) * 2005-08-19 2010-09-11 Lg Chemical Ltd Electrochemical device with high capacity and method for preparing the same
DE102005045888B3 (de) * 2005-09-26 2006-09-14 Siemens Ag Vorrichtung zum Betreiben einer Brennkraftmaschine

Also Published As

Publication number Publication date
US20070042269A1 (en) 2007-02-22
JP2013127979A (ja) 2013-06-27
US9017841B2 (en) 2015-04-28
WO2007021148A1 (en) 2007-02-22
JP5259403B2 (ja) 2013-08-07
JP2009505367A (ja) 2009-02-05
CN101243565A (zh) 2008-08-13
US8241773B2 (en) 2012-08-14
US20120251883A1 (en) 2012-10-04
TW200717898A (en) 2007-05-01
CN101243565B (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
TWI330419B (en) Electrochemical device with high capacity and method for preparing the same
TWI269472B (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
TW511314B (en) Non-aqueous electrolyte secondary cell
TWI311827B (en) Positive electrode active material and non-aqueous electrolyte secondary cell
CN102945963B (zh) 具有核-壳结构的电极活性材料
CN106063001B (zh) 非水电解质二次电池
TW201014020A (en) Cathode compositions for lithium-ion electrochemical cells
TW580777B (en) Lithium ion secondary battery
TW200905955A (en) Cathode compositions for lithium-ion batteries, and lithium-ion batteries incorporating same
TW200805733A (en) Lithium secondary battery containing capsule for controlled-release of additives
TW200908421A (en) Anode, battery, and methods of manufacturing them
CN102376946A (zh) 正极活性物质和包括所述正极活性物质的锂电池
Jing et al. Synergistic enhancement effects of LLZO fibers and interfacial modification for polymer solid electrolyte on the ambient-temperature electrochemical performances of solid-state battery
TW200522410A (en) Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
CN107112502A (zh) 非水电解质二次电池用负极板及使用该负极板的非水电解质二次电池
WO2004102702A1 (ja) 層状リチウムニッケル系複合酸化物粉体及びその製造方法
JP6128481B2 (ja) 非水電解質二次電池
CN111771301B (zh) 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
TW200405606A (en) Electrochemical cell for a lithium ion battery with improved high-temperature stability
JP2015028855A (ja) リチウムイオン二次電池の負極材用粉末、およびそれに用いる導電助剤
JP2011228052A (ja) リチウムイオン二次電池
TWI237919B (en) Battery cell
CN108365174A (zh) 一种锂离子电池正极材料的预锂化方法
JP2008282667A (ja) 有機電解質を用いたリチウムイオン2次電池の正極活物質
JP3430058B2 (ja) 正極活物質および非水電解質二次電池