JP2011228052A - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP2011228052A
JP2011228052A JP2010095097A JP2010095097A JP2011228052A JP 2011228052 A JP2011228052 A JP 2011228052A JP 2010095097 A JP2010095097 A JP 2010095097A JP 2010095097 A JP2010095097 A JP 2010095097A JP 2011228052 A JP2011228052 A JP 2011228052A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
negative electrode
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010095097A
Other languages
English (en)
Other versions
JP5099168B2 (ja
Inventor
Naoto Yasuda
直人 安田
Toru Abe
徹 阿部
Junichi Niwa
淳一 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2010095097A priority Critical patent/JP5099168B2/ja
Priority to CN201180012997.7A priority patent/CN102792509B/zh
Priority to PCT/JP2011/001980 priority patent/WO2011129066A1/ja
Priority to DE112011101346T priority patent/DE112011101346T5/de
Priority to US13/581,355 priority patent/US20120321955A1/en
Publication of JP2011228052A publication Critical patent/JP2011228052A/ja
Application granted granted Critical
Publication of JP5099168B2 publication Critical patent/JP5099168B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】活物質の使用量を従来よりも低減させても、電池容量がほとんど低下しないリチウムイオン二次電池を提供する。
【解決手段】リチウムおよびマンガンを少なくとも含み層状岩塩構造をもつリチウム遷移金属複合酸化物を含む正極活物質を有する正極と、炭素系材料、珪素系材料および錫系材料のうちの少なくとも一種を含む負極活物質を有する負極と、非水電解液と、を備えるリチウムイオン二次電池であって、
前記リチウム遷移金属複合酸化物は不可逆容量を有し、
前記負極の金属リチウムに対する0Vまでの初回の充電時の実容量は、前記正極の金属リチウムに対する4.7Vまでの初回の充電時の実容量よりも小さいことを特徴とする。
【選択図】なし

Description

本発明は、リチウムイオン二次電池に関するものである。
近年、携帯電話やノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量でかつ高容量の二次電池が必要とされている。現在、この要求に応える高容量二次電池としては、正極材料としてコバルト酸リチウム(LiCoO)、負極材料として炭素系材料、を用いた非水二次電池が商品化されている。このような非水二次電池はエネルギー密度が高く、小型化および軽量化が図れることから、幅広い分野で電源としての使用が注目されている。しかしながら、LiCoOは希少金属であるCoを原料として製造されるため、今後、資源不足が深刻化すると予想される。さらに、Coは高価であり、価格変動も大きいため、安価で供給の安定している正極材料の開発が望まれている。
そこで、構成元素の価格が安価で、供給が安定しているマンガン(Mn)を基本組成に含むリチウムマンガン酸化物系の複合酸化物の使用が有望視されている。その中でも、4価のマンガンイオンからなり、充放電の際にマンガン溶出の原因となる3価のマンガンイオンを含まないLiMnOという物質が注目されている。
ところで、LiCoOやLiMnOなどの酸化物は、炭素に比べて金属リチウムに対する電極電位が高い。つまり、これらの酸化物を正極材料、炭素系材料を負極材料としてリチウムイオン二次電池を構成する場合、たとえば長期間の使用により炭素系材料が劣化すると、負極が炭素の理論容量を超えて負極表面にリチウムが析出しやすくなる。そこで、安全性の観点から、リチウムの析出を防止するために正極容量よりも負極容量を大きくするのが通常である。そしてこの場合、二次電池の容量は、容量の小さい正極の容量に応じて決定(正極規制)される。
一方、特許文献1には、保存性の向上の観点から、正極の容量よりも負極の容量を小さくした、負極規制のリチウムイオン二次電池が開示されている。この二次電池は、正極の容量よりも負極の容量を小さくすることで、充電時に正極から放出するリチウムの割合を制限している。その結果、負極電位の低下に伴う炭素と電解液との反応による被膜の形成が抑制され、また、正極活物質の結晶構造の崩壊が抑制されて、充電状態での保存性が向上する。
特表2002−151154号公報
特許文献1では、正極容量よりも負極容量を小さくすることで、負極の体積を小さくできると記載されている。そして、負極活物質として使用される炭素系材料は、リチウムマンガン複合酸化物よりも比重が小さいため、体積の減少効果は大きく、電池の体積エネルギー密度が高くなると述べている。しかしながら、特許文献1に記載の電池はいわゆる「負極規制」となるため、初期電池容量が小さくなるという欠点を有する。
本発明は、活物質の使用量を従来よりも低減させても、電池容量がほとんど低下しないリチウムイオン二次電池を提供することを目的とする。
リチウムイオン二次電池の電池容量は、これまで、リチウムイオンの移動により生じると考えられてきた。したがって、充電により正極から移動したリチウムイオンが負極に吸蔵されたまま移動しなくなることで、不可逆容量が発生すると考えられてきた。ところが、本発明者等が正極活物質としてのLiMnOの充放電特性を調査した結果、初回の充電によりLiMnOからリチウムイオン以外の陽イオンが負極に移動していることがわかった。これは、LiMnOからなる正極活物質を含む正極とグラファイトからなる負極とでリチウムイオン二次電池を組み立てた場合に、初回の充電後の負極(炭化リチウム)のリチウム元素を発光分光分析(ICP)および酸化還元滴定により平均価数分析した結果、充電容量から算出した理論値よりもリチウム含有量が少ないことがわかったためである。つまり、初回の充電時にLiMnOを正極活物質として用いた正極から放出される実際のリチウムイオンは、見かけの充電容量よりも少ないことになる。したがって、負極の容量を従来よりも小さく設定しても、充放電によるリチウムの授受に影響がなく、従来と同等の充電容量が得られることがわかった。そして本発明者は、この成果を発展させることで、以降に述べる種々の発明を完成させるに至った。
すなわち、本発明のリチウムイオン二次電池は、リチウムおよびマンガンを少なくとも含み層状岩塩構造をもつリチウム遷移金属複合酸化物を含む正極活物質を有する正極と、炭素系材料、珪素系材料および錫系材料のうちの少なくとも一種を含む負極活物質を有する負極と、非水電解液と、を備えるリチウムイオン二次電池であって、
前記リチウム遷移金属複合酸化物は不可逆容量を有し、
前記負極の金属リチウムに対する0Vまでの初回の充電時の単位面積当たりの実容量は、前記正極の金属リチウムに対する4.7Vまでの初回の充電時の単位面積当たりの実容量よりも小さいことを特徴とする。
なお、本発明のリチウムイオン二次電池に用いられるリチウム遷移金属複合酸化物は、初回の充電により放出されたイオンのうち、リチウムイオンではなく、少なくとも「リチウムイオンを除く陽イオン」が負極から移動せずに不可逆容量となるために、負極の容量を従来よりも低減させても従来と同等の充電容量が得られると考えられる。「リチウムを除く陽イオン」についての詳細は不明であるが、本発明者等はプロトンであると予測している。たとえば、リチウム遷移金属複合酸化物がLiMnOであれば、LiMnOからリチウムとともに酸素が抜けてLiOを生成すると言われており、このLiOが電解液と反応して、プロトン(H)が生成することが推測される。このようなプロトンは、リチウムイオンよりもイオン半径が小さいため、仮に負極の容量全てが吸蔵リチウムで埋まっても、負極に吸着されたり吸着されたりしやすいと考えられる。またプロトンは、負極において水素ガス、メタンガスなどの水素含有ガスとなるため、負極に吸蔵されなくても不可逆容量となり得る。本明細書では、これ以降、上記のリチウム遷移金属複合酸化物から放出されるイオンのうち「リチウムを除く陽イオン」を、「プロトン等」と略記する。
ここで「実容量」とは、所定の使用状態で電池を使用したときの実際の容量値である。つまり、正極の初回充電時の「実容量」は、リチウム遷移金属複合酸化物からのリチウムイオンの放出だけでなくプロトン等の放出も加味した値である。
ちなみに、特許文献1では、負極規制のリチウムイオン二次電池が開示されている。しかしながら、特許文献1のリチウムイオン二次電池は、後述の比較例2に相当する。つまり、特許文献1では、プロトン等に起因する不可逆容量を有するリチウム遷移金属複合酸化物を正極活物質として用いることは想定されていない。
本発明のリチウムイオン二次電池は、従来よりも負極活物質の使用量を低減させても、従来と同等の容量を示すため、活物質の単位質量当たりの充放電効率が高まる。そして、負極活物質の使用量が従来よりも少なくなることで、本発明のリチウムイオン二次電池は内容量が低減され、軽量化・小型化につながる。
以下に、本発明のリチウムイオン二次電池を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。また、その数値範囲内において、本明細書に記載した数値を任意に組み合わせることで数値範囲を構成し得る。
本発明のリチウムイオン二次電池は、主として、リチウムおよびマンガンを少なくとも含み層状岩塩構造をもつリチウム遷移金属複合酸化物を含む正極活物質を有する正極と、炭素系材料、珪素系材料および錫系材料のうちの少なくとも一種を含む負極活物質を有する負極と、非水電解液と、を備える。
前述の通り、本発明のリチウムイオン二次電池は、少なくともプロトン等(つまり、初回の充電時に対極に移動する陽イオンのうちリチウムイオンを除く陽イオン)を次回の充電時に吸蔵しない不可逆容量を有するリチウム遷移金属複合酸化物を含む正極活物質を使用する場合に、功を奏する。このような正極活物質は、リチウムおよびマンガンを少なくとも含み層状岩塩構造をもち、かつ不可逆容量を有するリチウム遷移金属複合酸化物を含む、と規定することができる。
上記のリチウム遷移金属複合酸化物を組成式で表すのであれば、LiMOである。LiMOを基本組成とするリチウム遷移金属複合酸化物は、層状岩塩構造をもち上記のような不可逆容量を示す。このことは、X線回折、電子線回折、前述のICP分析などを用いて確認することが可能である。組成式において、Mは4価のMnを必須とする一種以上の金属元素を表し、Liはその一部が水素で置換されてもよい。
なお、本明細書において「基本組成とする」とは、化学量論組成のものに限定されるわけではなく、たとえば、製造上不可避的に生じるLi、MnまたはOが欠損した非化学量論組成のもの等、をも含む。上記組成式において、Liは、原子比で60%以下さらには45%以下が水素(H)に置換されていてもよい。また、Mは全て4価のマンガン(Mn)であるのが好ましいが、Mnのうちの50%未満さらには80%未満がMn以外の他の金属元素で置換されていてもよい。他の金属元素としては、電極材料とした場合の充放電可能な容量の観点から、Ni、Al、Co、Fe、Mg、Tiから選ばれるのが好ましい。
また、正極活物質は、上記の層状岩塩構造をもつリチウム遷移金属複合酸化物(これ以下「必須のリチウム遷移金属複合酸化物」と略記)とは別に、従来からリチウムイオン二次電池の正極活物質として用いられているその他の化合物をさらに含んでもよい。具体的には、LiCoO、LiNi0.5Mn0.5、LiNi1/3Mn1/3Co1/3、LiMn12、LiMn等が挙げられる。なお、これらの化合物は、プロトン等を不可逆容量の原因とせず、不可逆容量が少ないリチウム遷移金属複合酸化物である。これらの化合物は、必須のリチウム遷移金属複合酸化物と別々に合成した後に、それらを粉末の状態で混合した混合粉末として調製してもよい。また、組み合わせによっては、これらの化合物は、必須のリチウム遷移金属複合酸化物との固溶体として合成することも可能である。
このとき、必須のリチウム遷移金属複合酸化物は、正極活物質を100モル%としたときに、必須のリチウム遷移金属複合酸化物を20モル%以上含むのが好ましい。20モル%未満では、プロトン等(つまり、初回の充電時に対極に移動する陽イオンのうちリチウムイオンを除く陽イオン)の量が少なくなり、負極活物質の使用量を低減して正極と負極との実容量の差を大きくした場合に、負極に吸蔵可能なリチウム量を上回る量のLiが負極に移動する可能性がある。そのため、金属リチウムのデンドライト析出などが発生しやすくなるため好ましくない。さらに好ましい必須のリチウム遷移金属複合酸化物の含有量は、正極活物質を100モル%としたときに、30モル%以上さらには50モル%以上である。
負極活物質は、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体やコークス等の炭素物質の粉状体などの炭素(C)を含む炭素系材料、珪素単体、酸化珪素、珪素化合物などの珪素(Si)を含む珪素系材料および錫、酸化錫、錫化合物などの錫(Sn)を含む錫系材料のうちの少なくとも一種を含むのが好ましい。これらの材料は、金属リチウムに対する電極電位が低いため、本発明のリチウムイオン二次電池の負極材料として好適である。
本発明のリチウムイオン二次電池では、負極の実容量が、正極の実容量よりも小さい。「実容量」の定義は、上述の通りである。ここで比較する正極と負極の実容量は、いずれも、対極に金属リチウムを用いた電気化学セルにおける実際の容量値とする。正極の実容量は、金属リチウムに対する4.7Vまでにおける初回の充電時の単位面積当たりの実際の容量値とする。負極の実容量は、金属リチウムに対する0Vまでにおける初回の充電時の単位面積当たりの実際の容量値とする。なお、単位面積当たりの実容量は、対極と対向する正極または負極の面積を用いて算出する。その他の条件は、正極も負極も同じ条件とするのが望ましい。その他の条件とは、電圧を除く充放電条件(電流密度など)、電気化学セルの構成(セパレータ、電解質の種類や濃度など)、正極活物質および負極活物質の含有量、測定温度、などが挙げられる。
上記の方法により得られる正極および負極の実容量は、主として、活物質の種類および活物質の含有量によって決定される、固有の値である。したがって、正極活物質と負極活物質との組み合わせ、正極活物質に含まれる必須のリチウム遷移金属複合酸化物の含有量、などを調整して負極の実容量が正極の実容量よりも小さくなるように選択するとよい。
ところで、必須のリチウム遷移金属複合酸化物は、初回の充電により放出した陽イオン(リチウムイオンおよびプロトン等)のうちの3分の2(66%)程度が充放電に寄与するリチウムイオンであると言われている。さらに、負極活物質と電解液との反応が進行し、負極表面に被膜が形成されることで、リチウムは消費される。そのため、実際に充放電に関与することができるリチウムイオンは66%よりも少なくなる。負極の実容量は実際に充放電に関与するリチウムイオンに見合うだけあればよいため、必須のリチウム遷移金属複合酸化物のみからなる(つまり含有量が100モル%)正極活物質であれば、負極の実容量は、正極の実容量の62%以上、64%以上さらには67%以上であるとよい。また、正極活物質を100モル%としたときに、必須のリチウム遷移金属複合酸化物を60モル%以上含む場合、負極の実容量は、正極の実容量の70%以上、73%以上さらには77%以上あるとよい。いずれの場合においても、負極の実容量を低減することで小型化および軽量化を図れるため負極の実容量が小さいほど好ましいが、正極の実容量に対して負極の実容量を小さくしすぎると、負極表面にリチウムが析出しやすくなるため望ましくない。正極の実容量に対する負極の実容量の上限を規定するのであれば、負極の実容量は、正極の実容量の100%未満、95%以下さらには90%以下である。
なお、必須のリチウム遷移金属複合酸化物の含有量が100モル%未満の場合であっても、必須のリチウム遷移金属複合酸化物のみの1サイクル目の充放電効率および正極活物質に含まれるその他の化合物のみの1サイクル目の充放電効率、を測定して正極活物質に含まれるモル比に応じて比例配分することで、充放電に寄与するリチウム量および必要な負極の実容量を算出することが可能である。
正極および負極は、主として、上記の活物質と、この活物質を結着する結着剤と、からなるのが好ましい。さらに、導電助材を含んでもよい。結着剤および導電助材にも特に限定はなく、一般のリチウムイオン二次電池で使用可能なものであればよい。導電助材は、電極の電気伝導性を確保するためのものであり、たとえば、カーボンブラック、アセチレンブラック、黒鉛などの炭素物質粉状体の1種または2種以上を混合したものを用いることができる。結着剤は、活物質および導電助材を繋ぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂などを用いることができる。
正極および負極は、少なくとも正極活物質または負極活物質が結着剤で結着されてなる活物質層が、集電体に付着してなるのが一般的である。そのため、正極および負極は、活物質および結着剤、必要に応じて導電助材を含む電極合材層形成用組成物を調製し、さらに適当な溶剤を加えてペースト状にしてから集電体の表面に塗布後、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。
集電体は、金属製のメッシュや金属箔を用いることができる。集電体としては、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂からなる多孔性または無孔の導電性基板が挙げられる。多孔性導電性基板としては、たとえば、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、不織布などの繊維群成形体、などが挙げられる。無孔の導電性基板としては、たとえば、箔、シート、フィルムなどが挙げられる。電極合材層形成用組成物の塗布方法としては、ドクターブレード、バーコーターなどの従来から公知の方法を用いればよい。
粘度調整のための溶剤としては、N−メチル−2−ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。
電解質としては、有機溶媒に電解質を溶解させた有機溶媒系の電解液や、電解液をポリマー中に保持させたポリマー電解質などを用いることができる。その電解液あるいはポリマー電解質に含まれる有機溶媒は特に限定されるものではないが、負荷特性の点からは鎖状エステルを含んでいることが好ましい。そのような鎖状エステルとしては、たとえば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートに代表される鎖状のカーボネートや、酢酸エチル、プロピロン酸メチルなどの有機溶媒が挙げられる。これらの鎖状エステルは、単独でもあるいは2種以上を混合して用いてもよく、特に、低温特性の改善のためには、上記鎖状エステルが全有機溶媒中の50体積%以上を占めることが好ましく、特に鎖状エステルが全有機溶媒中の65体積%以上を占めることが好ましい。
ただし、有機溶媒としては、上記鎖状エステルのみで構成するよりも、放電容量の向上をはかるために、上記鎖状エステルに誘導率の高い(誘導率:30以上)エステルを混合して用いることが好ましい。このようなエステルの具体例としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートに代表される環状のカーボネートや、γ−ブチロラクトン、エチレングリコールサルファイトなどが挙げられ、特にエチレンカーボネート、プロピレンカーボネートなどの環状構造のエステルが好ましい。そのような誘電率の高いエステルは、放電容量の点から、全有機溶媒中10体積%以上、特に20体積%以上含有されることが好ましい。また、負荷特性の点からは、40体積%以下が好ましく、30体積%以下がより好ましい。
有機溶媒に溶解させる電解質としては、たとえば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiCnF2n+1SO(n≧2)などが単独でまたは2種以上混合して用いられる。中でも、良好な充放電特性が得られるLiPFやLiCSOなどが好ましく用いられる。
電解液中における電解質の濃度は、特に限定されるものではないが、0.3〜1.7mol/dm、特に0.4〜1.5mol/dm程度が好ましい。
また、電池の安全性や貯蔵特性を向上させるために、非水電解液に芳香族化合物を含有させてもよい。芳香族化合物としては、シクロヘキシルベンゼンやt−ブチルベンゼンなどのアルキル基を有するベンゼン類、ビフェニル、あるいはフルオロベンゼン類が好ましく用いられる。
本発明のリチウムイオン二次電池は、一般のリチウムイオン二次電池と同様に、正極と負極の間に挟装されるセパレータを備えるとよい。
セパレータとしては、強度が充分でしかも電解液を多く保持できるものがよく、そのような観点から、5〜50μmの厚さで、ポリプロピレン製、ポリエチレン製、プロピレンとエチレンとの共重合体などポリオレフィン製の微孔性フィルムや不織布などが好ましく用いられる。
本発明のリチウムイオン二次電池の形状は円筒型、積層型、コイン型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極と負極との間にセパレータを挟装させ電極体とする。そして正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リードなどで接続し、この電極体に上記電解液を含浸させ電池ケースに密閉し、リチウムイオン二次電池が完成する。
リチウムイオン二次電池を使用する場合には、はじめに充電を行い、正極活物質を活性化させる。ただし、上記の複合酸化物を正極活物質として用いる場合には、初回の充電時にリチウムイオンの放出とともに酸素が発生する。そのため、電池ケースを密閉する前に充電を行うのが望ましい。
本発明のリチウムイオン二次電池は、携帯電話、パソコン等の通信機器、情報関連機器の分野の他、自動車の分野においても好適に利用できる。たとえば、このリチウムイオン二次電池を車両に搭載すれば、リチウムイオン二次電池を電気自動車用の電源として使用できる。
以上、本発明のリチウムイオン二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
以下に、本発明のリチウムイオン二次電池の実施例を挙げて、本発明を具体的に説明する。
〔負極の作製〕
負極活物質としてグラファイトを含む負極を作製した。
グラファイトとアセチレンブラック(導電助剤)とポリフッ化ビニリデン(結着剤)とを質量比で92:3:5となるように混合した。これを、N−メチル−2−ピロリドン(NMP)に分散させてスラリーを得た。このスラリーを集電体である銅箔(厚さ10μm)に塗布し、120℃で12時間以上真空乾燥した。乾燥後プレスし、直径16mmφに打ち抜き、負極とした。なお、スラリーの塗布量は、負極活物質換算で9mg/cmであった。
得られた電極について、金属リチウムを対極として電気化学セルを作製し、0Vから1.2Vの電圧範囲における電極容量(実容量)を測定した。なお、電解液としてエチレンカーボネートとエチルメチルカーボネートとを体積比1:2の混合溶媒にLiPFを1.0mol/L溶解させてなる非水電解液を用い、セパレータとして厚さ20μmの微孔性ポリエチレンフィルムを両電極間に配置して、電気化学セル作製した。この電気化学セルを用い、30℃一定温度下において0.2Cの条件で充放電試験を行った。その結果、この電極の初回の充電容量は、負極活物質の単位質量当たり355mAh/g(負極の単位面積当たり3.0mAh/cm)であった。
〔正極の作製〕
正極活物質としてLiMnOを含む正極を作製した。
平均一次粒子径200nmのLiMnOを準備した。LiMnOとアセチレンブラックとポリフッ化ビニリデンとを質量比で80:10:10となるように混合した。これを、NMPに分散させてスラリーを得た。このスラリーを集電体であるアルミニウム箔(厚さ15μm)に塗布し、120℃で12時間以上真空乾燥した。乾燥後プレスし、直径16mmφに打ち抜き、正極とした。なお、電極の塗布重量は、負極活物質換算で5mg/cmまたは10mg/cmとし、二種類の正極#01および#02とした。
また、正極活物質としてLiMnOに換えて0.6LiMnO−0.2LiNi0.5Mn0.5−0.2LiNi1/3Mn1/3Co1/3、0.6LiMnO−0.4LiMn12、0.3LiMnO−0.7LiNi0.5Mn0.5またはLiNi0.5Mn0.5(いずれも平均一次粒子径200nm)を含む正極#03〜#06を、上記と同様の手順で作製した。つまり、#01および#02は正極活物質として充電時にリチウム以外のイオンを放出するLiMnOを100mol%含み、#03および#04は60mol%、#05は30mol%、#06はLiMnOを含まない正極とした。
それぞれの電極について、金属リチウムを対極として電気化学セルを作製し、4.7Vから2.0Vの電圧範囲における電極容量を測定した。なお、電解液としてエチレンカーボネートとエチルメチルカーボネートとを体積比1:2の混合溶媒にLiPFを1.0mol/L溶解させてなる非水電解液を用い、セパレータとして厚さ20μmの微孔性ポリエチレンフィルムを両電極間に配置して、電気化学セルを作製した。この電気化学セルを用い、30℃一定温度下において0.2Cの条件で定電流定電圧充電−定電流放電充放電試験を行った。充放電試験より得られた正極の初回の充電容量およびその後の放電容量(つまり1サイクル目の充放電容量)を、正極活物質の単位質量当たり、および正極の単位面積当たりで、それぞれ表1に示した。
Figure 2011228052

これ以下、負極および正極の1サイクル目の充電容量を、それぞれ、正極および負極の「実容量」、と記載する。
表1より、#01および#02の正極活物質は、その充放電効率から、充電容量の約38%が不可逆容量であることがわかった。#01および#02の正極活物質はLiMnOが100モル%であったが、LiMnOの含有割合が少ない#03〜#05の正極活物質では、LiMnOの含有割合が少ないほど不可逆容量が減少した。
〔リチウムイオン二次電池の作製〕
〔実施例1〕
上記の負極(実容量:3.0mAh/cm)と正極#02(実容量:4.2mAh/cm)とを組み合わせてコイン型のリチウムイオン二次電池を作製した。電解液としてエチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPFを1.0mol/L溶解させてなる非水電解液を用い、セパレータとして厚さ20μmの微孔性ポリエチレンフィルムを両電極間に配置した。
〔実施例2〕
上記の負極(実容量:3.0mAh/cm)と正極#03(実容量:3.8mAh/cm)とを組み合わせてリチウムイオン二次電池を作製した。
〔実施例3〕
上記の負極(実容量:3.0mAh/cm)と正極#04(実容量:3.25mAh/cm)とを組み合わせてリチウムイオン二次電池を作製した。
〔実施例4〕
上記の負極(実容量:3.0mAh/cm)と正極#05(実容量:3.6mAh/cm)とを組み合わせてリチウムイオン二次電池を作製した。
〔比較例1〕
上記の負極(実容量:3.0mAh/cm)と正極#01(実容量:2.1mAh/cm)とを組み合わせてリチウムイオン二次電池を作製した。
〔比較例2〕
上記の負極(実容量:3.0mAh/cm)とLiMnOを含まない正極#06(実容量:3.2mAh/cm)とを組み合わせてリチウムイオン二次電池を作製した。
〔評価〕
〔リチウムイオン二次電池の充放電試験〕
上記の各リチウムイオン二次電池を用いて、30℃の一定温度の下、4.6Vから1.9Vの範囲で0.2Cのレートにおいて定電流・定電圧充電−定電流放電充放電試験を行った。充放電試験より得られた初回の充電容量およびその後の放電容量(つまり1サイクル目の充放電容量)を、正極活物質の単位質量当たり、および正極の単位面積当たりで、それぞれ表2に示した。
また、実施例1のリチウムイオン二次電池に対しては、30℃の一定温度の下、4.5Vから1.9Vまたは4.0Vから1.9Vの範囲で0.2Cのレートにおいて定電流・定電圧充電−定電流放電充放電試験を行った。1サイクル目の充電容量および放電容量を表2に示した。
Figure 2011228052
実施例1のリチウムイオン二次電池では、3.0mAh/cmの実容量をもつ負極と4.2mAh/cmの実容量をもつ正極#02とを組み合わせて用いた。つまり、この二次電池は、負極の実容量が正極の実容量よりも小さくなるように構成されていた。一方、比較例1のリチウムイオン二次電池は、実施例1と同じ負極を用いているが、正極の実容量が負極の実容量よりも小さくなるように構成されていた。しかし、これらの二次電池において、正極活物質の単位質量当たりの充放電容量に差は生じなかった。つまり、実施例1のリチウムイオン二次電池は、負極の実容量を低減しても、比較例1のような従来のリチウムイオン二次電池と同等の性能が発揮されることが確認できた。
また、実施例1のリチウムイオン二次電池では、正極活物質としてLiMnOを使用した。一方、比較例2のリチウムイオン二次電池では、正極活物質としてLiNi0.5Mn0.5を使用した。いずれの二次電池も、負極の実容量が正極の実容量よりも小さくなるように構成されているが、実施例1の二次電池では正極の実容量に近い充電容量、比較例2の二次電池では負極の実容量に近い充電容量、を示した。換言すれば、リチウムイオン二次電池の充電容量は、実施例1では正極規制、比較例2では負極規制、であった。つまり、正極活物質がLiMnOであれば、正極の実容量よりも負極の実容量を小さくしても正極の実容量の全てを充電可能である点において、従来のリチウムイオン二次電池と大きく異なった。
また、実施例2〜4のリチウムイオン二次電池においても、実施例1のリチウムイオン二次電池と同様に、負極の実容量よりも大きな正極の実容量の電池を構成しても、充電容量が大きく低下せず、また放電容量も負極表面に形成される皮膜に消費されるLiの量を考慮すると大きな容量の低下は無いと考えられた。
すなわち、実施例1〜4のリチウムイオン二次電池は、負極の実容量が正極の実容量より小さいにもかかわらず、充放電効率において、比較例1のリチウムイオン二次電池と大差は無かった。これは、LiMnOを含む正極活物質から初回の充電の際に対極に移動するリチウムイオンは、正極の実容量に満たない量であったことを示す。負極の実容量が正極の実容量よりも小さいにもかかわらず充電容量の値が大きかったのは、充電過程においてプロトン等が発生し、それがリチウムとともに負極に移動したためと考えられる。
実施例1のリチウムイオン二次電池において、充放電電圧の上限を変化させても、充放電効率に大きな変化はなかった。すなわち、実施例1のリチウムイオン二次電池は、いずれの電圧範囲においても、充電された容量を全て放出することができないことがわかった。この結果から、負極の実容量を超える充電容量は、従来のリチウムイオン二次電池において起こりうる過剰な充電による電解液の分解によるものではなく、上記のように、充電過程においてリチウムイオンとともにプロトン等のLiイオン以外の陽イオンが移動したためであることがわかった。

Claims (7)

  1. リチウムおよびマンガンを少なくとも含み層状岩塩構造をもつリチウム遷移金属複合酸化物を含む正極活物質を有する正極と、炭素系材料、珪素系材料および錫系材料のうちの少なくとも一種を含む負極活物質を有する負極と、非水電解液と、を備えるリチウムイオン二次電池であって、
    前記リチウム遷移金属複合酸化物は不可逆容量を有し、
    前記負極の金属リチウムに対する0Vまでの初回の充電時の単位面積当たりの実容量は、前記正極の金属リチウムに対する4.7Vまでの初回の充電時の単位面積当たりの実容量よりも小さいことを特徴とするリチウムイオン二次電池。
  2. 前記リチウム遷移金属複合酸化物は、少なくとも、初回の充電時に放出する陽イオンのうちリチウムイオンを除く陽イオンを、次回の充電時に吸蔵しない不可逆容量を有する請求項1記載のリチウムイオン二次電池。
  3. 前記リチウム遷移金属複合酸化物は、組成式:LiMO(MはMnを必須とする一種以上の金属元素、Liはその一部が水素で置換されてもよい)で表される請求項1または2に記載のリチウムイオン二次電池。
  4. 前記リチウム遷移金属複合酸化物は、LiMnOである請求項3記載のリチウムイオン二次電池。
  5. 前記正極活物質は、該正極活物質を100モル%としたときに前記リチウム遷移金属複合酸化物を20モル%以上含む請求項1〜4のいずれかに記載のリチウムイオン二次電池。
  6. 前記負極活物質は、炭素系材料である請求項1〜5のいずれかに記載のリチウムイオン二次電池。
  7. 請求項1〜6のいずれかに記載のリチウムイオン二次電池を搭載したことを特徴とする車両。
JP2010095097A 2010-04-16 2010-04-16 リチウムイオン二次電池 Expired - Fee Related JP5099168B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010095097A JP5099168B2 (ja) 2010-04-16 2010-04-16 リチウムイオン二次電池
CN201180012997.7A CN102792509B (zh) 2010-04-16 2011-04-01 锂离子二次电池
PCT/JP2011/001980 WO2011129066A1 (ja) 2010-04-16 2011-04-01 リチウムイオン二次電池
DE112011101346T DE112011101346T5 (de) 2010-04-16 2011-04-01 Lithium-Ionen -Sekundärbatterie
US13/581,355 US20120321955A1 (en) 2010-04-16 2011-04-01 Lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095097A JP5099168B2 (ja) 2010-04-16 2010-04-16 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2011228052A true JP2011228052A (ja) 2011-11-10
JP5099168B2 JP5099168B2 (ja) 2012-12-12

Family

ID=44798454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095097A Expired - Fee Related JP5099168B2 (ja) 2010-04-16 2010-04-16 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20120321955A1 (ja)
JP (1) JP5099168B2 (ja)
CN (1) CN102792509B (ja)
DE (1) DE112011101346T5 (ja)
WO (1) WO2011129066A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183919A1 (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 수명특성이 향상된 이차전지용 양극 활물질 및 이의 제조방법
WO2014030298A1 (ja) * 2012-08-21 2014-02-27 株式会社三徳 全固体リチウムイオン電池及び正極合材
JP2014167886A (ja) * 2013-02-28 2014-09-11 Toshiba Corp 電池
WO2016152991A1 (ja) * 2015-03-24 2016-09-29 日本電気株式会社 高安全性・高エネルギー密度電池
US9590237B2 (en) 2013-02-25 2017-03-07 Kabushiki Kaisha Toyota Jidoshokki Lithium-ion secondary battery and method for producing the same
US10741841B2 (en) 2013-07-29 2020-08-11 Lg Chem, Ltd. Electrode active material having improved energy density and lithium secondary battery including the same
JPWO2021010085A1 (ja) * 2019-07-12 2021-01-21
US11088391B2 (en) 2014-11-18 2021-08-10 National Institute Of Advanced Industrial Science And Technology Lithium ion battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870411B (zh) * 2016-04-15 2018-04-06 上海电力学院 一种锂离子电池负极活性材料的制备方法
CN110212247B (zh) * 2018-02-28 2021-02-09 宁德时代新能源科技股份有限公司 电芯
CN112599861A (zh) * 2020-12-28 2021-04-02 长虹三杰新能源有限公司 一种钴酸锂动力电池的制备方法
WO2023145506A1 (ja) * 2022-01-28 2023-08-03 パナソニックエナジー株式会社 非水電解質二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151154A (ja) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2007184145A (ja) * 2006-01-06 2007-07-19 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2008091041A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009158415A (ja) * 2007-12-27 2009-07-16 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用正極活物質及びそれを有する非水電解液二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2975727B2 (ja) * 1991-07-24 1999-11-10 三洋電機株式会社 非水電解液電池
JP3426689B2 (ja) * 1994-03-23 2003-07-14 三洋電機株式会社 非水電解質二次電池
JPH07296850A (ja) * 1994-04-28 1995-11-10 Matsushita Electric Ind Co Ltd 非水電解液リチウム二次電池
JPH07320784A (ja) * 1994-05-23 1995-12-08 Matsushita Electric Ind Co Ltd 非水電解液リチウム二次電池
US7358009B2 (en) * 2002-02-15 2008-04-15 Uchicago Argonne, Llc Layered electrodes for lithium cells and batteries
US7635536B2 (en) * 2004-09-03 2009-12-22 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
CN101237044A (zh) * 2008-02-29 2008-08-06 厦门大学 纳米级锂离子电池正极材料岩盐型锰酸锂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151154A (ja) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2007184145A (ja) * 2006-01-06 2007-07-19 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2008091041A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009158415A (ja) * 2007-12-27 2009-07-16 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用正極活物質及びそれを有する非水電解液二次電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183919A1 (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 수명특성이 향상된 이차전지용 양극 활물질 및 이의 제조방법
US10573880B2 (en) 2012-06-04 2020-02-25 Lg Chem, Ltd. Cathode active material for secondary battery with enhanced lifespan characteristics and method of preparing the same
WO2014030298A1 (ja) * 2012-08-21 2014-02-27 株式会社三徳 全固体リチウムイオン電池及び正極合材
JP2014041720A (ja) * 2012-08-21 2014-03-06 Idemitsu Kosan Co Ltd 全固体リチウムイオン電池及び正極合材
US9362591B2 (en) 2012-08-21 2016-06-07 Santoku Corporation All-solid-state lithium ion battery and positive electrode mixture
US9590237B2 (en) 2013-02-25 2017-03-07 Kabushiki Kaisha Toyota Jidoshokki Lithium-ion secondary battery and method for producing the same
JP2014167886A (ja) * 2013-02-28 2014-09-11 Toshiba Corp 電池
US10741841B2 (en) 2013-07-29 2020-08-11 Lg Chem, Ltd. Electrode active material having improved energy density and lithium secondary battery including the same
US11088391B2 (en) 2014-11-18 2021-08-10 National Institute Of Advanced Industrial Science And Technology Lithium ion battery
JPWO2016152991A1 (ja) * 2015-03-24 2018-01-18 日本電気株式会社 高安全性・高エネルギー密度電池
WO2016152991A1 (ja) * 2015-03-24 2016-09-29 日本電気株式会社 高安全性・高エネルギー密度電池
JP2021048146A (ja) * 2015-03-24 2021-03-25 日本電気株式会社 高安全性・高エネルギー密度電池
JP7173121B2 (ja) 2015-03-24 2022-11-16 日本電気株式会社 高安全性・高エネルギー密度電池
JPWO2021010085A1 (ja) * 2019-07-12 2021-01-21
WO2021010085A1 (ja) * 2019-07-12 2021-01-21 株式会社村田製作所 二次電池

Also Published As

Publication number Publication date
WO2011129066A1 (ja) 2011-10-20
JP5099168B2 (ja) 2012-12-12
DE112011101346T5 (de) 2013-01-24
CN102792509A (zh) 2012-11-21
CN102792509B (zh) 2015-04-01
US20120321955A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5099168B2 (ja) リチウムイオン二次電池
JP5910627B2 (ja) 二次電池
JP5152246B2 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
EP2919304B1 (en) Positive electrode active material and hybrid ion battery
JP4837614B2 (ja) リチウム二次電池
JP5476246B2 (ja) 非水電解質二次電池及び正極合剤の製造方法
US8932758B2 (en) Electrode active material, nonaqueous secondary battery electrode, and nonaqueous secondary battery
WO2012035648A1 (ja) 非水電解液二次電池用活物質および非水電解液二次電池
JP2002175808A (ja) リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
WO2011118302A1 (ja) 電池用活物質および電池
US20190148724A1 (en) Lithium ion secondary battery
JP2012099316A (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP4530822B2 (ja) 非水電解質二次電池及びその充電方法
JP2014216211A (ja) 電極及び非水系二次電池
JP5242315B2 (ja) 非水電解質二次電池
JP5333658B2 (ja) 電池用活物質および電池
JP6911545B2 (ja) 負極及び非水電解質蓄電素子
JP2007115507A (ja) 負極活物質及び水系リチウム二次電池
JP2014197511A (ja) 非水電解液二次電池
JP2023161891A (ja) リチウム硫黄電池用正極、リチウム硫黄電池及びその充放電方法
JP2006012544A (ja) 水系電解液リチウム二次電池
JP5640666B2 (ja) リチウム二次電池
JP5147890B2 (ja) 非水電解質二次電池及びその充電方法
JP2012174339A (ja) 非水電解液及びリチウムイオン二次電池
JP2014063660A (ja) 硫酸塩及びリチウム二次電池用正極材料、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120314

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120528

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5099168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees