1278483 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單說明) (一) 發明所屬之技術領域 本發明關於由線狀聚苯乙烯和多分枝狀聚苯乙烯所構 成的苯乙烯樹脂組成物及其製造方法。本發明的苯乙烯組 成物與具有同樣質量平均分子量的線狀聚苯乙烯比較下, 由於熔體質量流速高、成形時流動性優良,故適用爲各種 成形法的成形材料。 (二) 先前技術 苯乙烯系樹脂具剛性、優良的尺寸穩定性而且價廉, 故廣用於成形用途,但是近年來在各種用途中要求苯乙條 系樹脂有更提高的強度。爲了提高苯乙烯系樹脂的強度, 使苯乙烯系樹脂高分子量化係爲有效的手段,但是習知的 線狀苯乙烯由於高分子量化會伴隨地熔融黏度的增加,因 此有成形加工性明顯降低之問題。 作爲改善該成形加工性之降低的方法,一般爲添加可 塑劑,然而有所謂的最後所得之樹脂成形品的機械強度降 低之問題。使聚苯乙烯具有分枝構造以謀求該問題的解決 之例子,例如在特公昭41-19511號公報中,揭示使用苯 乙烯與2,2-雙(4,4-二第三丁基過氧基-氧基-環己基)-丙烷 等的多官能過氧化物的聚合起始劑於聚苯乙烯中導入分枝 之方法,但是該方法亦僅能將分枝度控制在低的範圍,難 以達成充分的分枝構造。 -6 - 1278483 特開平7- 1 660.1 3號公報中記載嘗試使聚苯乙烯具有分 枝構造而爲高分子量,以得到具有良好成形加工性的苯乙 烯系樹脂,其係使在苯乙烯中具有二乙烯苯等的2個以上 之乙烯基的化合物共聚合,而將分枝構造導入聚苯乙烯中 以得到質量平均分子量20萬〜200萬的聚苯乙烯系共聚 物。其記載該聚苯乙烯系共聚物之成形加工性優良,但是 該共聚物在聚合過程中易發生凝膠化,因此難以工業生 產,其添加量自然有限制,故所得到的樹脂之物性難以得 到大幅提高的效果。 又,特開平9-316261號公報中記載嘗試以同樣高分子 量而得到具有良好成形加工性的苯乙烯系樹脂,其爲將藉 由陰離子聚合所得到的星形分枝狀聚苯乙烯與藉由自由基 聚合所得到的線狀聚苯乙烯混合,而得到不損害剛性及耐 熱性、具有流動性和機械強度而且具有良好成形加工性的 苯乙烯系樹脂組成物,但是由於使用陰離子聚合而必須有 煩雜的控制,不適合於工業生產。 (三)發明內容 本發明所欲解決的問題爲提供苯乙烯樹脂組成物及其 製造方法,其雖然具有作爲成形加工品之良好強度的高分 子量,但是熔體質量流速和熔體張力高而成形加工性優 良,且製造時難以凝膠化。 本案發明人爲了解決上問題而專心致力的重複硏究, 結果發現含有由多分枝狀巨單體與苯乙烯共聚合所得到的 多分枝狀聚苯乙烯與線狀聚苯乙烯之苯乙烯樹脂共聚物雖 1278483 然具有優良的熔體張力(ΜΤ),但具有高的熔體質量流速 (MFR)而成形加工性優良,且難以凝膠化,因此完成本發 明。 即,本發明爲提供苯乙烯樹脂組成物,其特徵爲苯乙 烯樹脂組成物係由具有20萬〜3 5萬質量平均分子量的線 狀聚苯乙烯與具有100萬〜1 000萬質量平均分子量的多分 枝狀聚苯乙烯所構成且具有25萬〜70萬的平均分子量, 而且熔體質量流速(MFR)和熔體張力(ΜΤ)係各滿足下式(1) 和(2): MFRS45 X exp(-O.lxMwxlO·4) (1) (式中,MFR和Mw各表示苯乙烯樹脂組成物的熔體質量 流速和質量平均分子量)。 MT^0.07Mwx10'4+1.8 (2) (式中,ΜΤ和Mw各表示苯乙烯樹脂組成物的熔體張力和 質量平均分子量)。 又,本發明爲提供藉由使(A)多分枝狀巨單體與(B)苯 乙烯共聚合以製造上述苯乙烯樹脂組成物之方法,該多分 枝狀巨單體包含拉電子基與鍵結該拉電子基之鍵以外的3 個鍵皆爲鍵結碳原子的飽和碳原子所成的分枝構造與直接 鍵結於芳香環的雙鍵。 再者,本發明爲藉由(A)由含有選自於醚鍵、酯鍵及醯 胺鍵的重複構造單元所成的分枝構造與分枝末端之雙鍵的 多分枝狀巨單體與(B)苯乙烯之自由基聚合以形成上述多 分枝狀聚苯乙烯,以製造上述苯乙烯樹脂組成物之方法。 1278483 實施本發明的最佳形態 以下詳細說明本發明的樹脂組成物。 本發明的苯乙烯樹脂組成物係由在分子末端具有數個 雙鍵的多分枝狀巨單體與苯乙烯之聚合所得到得多分枝狀 聚苯乙烯,與同時生成的線狀聚苯乙烯所構成。 本發明之苯乙烯樹脂組成物中所含有的多分枝狀聚苯 乙烯的分枝構造係沒有特別的限制,但是較佳爲由含有拉 電子基及與鍵結該拉電子基之鍵以外的3個鍵皆爲鍵結碳 原子的飽和碳原子所成的分枝構造者與含有選自於醚鍵、 酯鍵及醯胺鍵的重複構造單元所成的分枝構造者。 多分枝狀聚苯乙烯的分枝構造來自苯乙烯與經共聚合 的多分枝狀巨單體者。本發明的苯乙烯樹脂組成物中所含 有的多分枝狀聚苯乙烯之分枝構造的拉電子基含量係每1 克多分枝狀聚苯乙烯有2.5X10·4毫莫耳〜5.0x1 0·1毫莫 耳,較佳5.0X10·4毫莫耳〜5.0X10·2毫莫耳。 本發明中所用的多分枝狀巨單體除了爲具有多分枝鏈 的單體外,係沒有特別的限制,其較佳者之一爲含有1個 分子中拉電子基與鍵結於該拉電子基的鍵以外的3個鍵皆 爲鍵結碳原子的飽和碳原子所成的分枝構造與直接鍵結於 芳香環的雙鍵之多分枝狀巨單體。該多分枝狀巨單體係爲 由AB2型單體所衍生的高分枝巨單體。第1圖中示意地顯 不所具有的分枝構造。 該分枝構造可藉由拉電子基所鍵結的活性亞甲基之親 核取代反應而容易地獲得。拉電子基例如可爲-CN、-N Ο 2、 1278483 -CONH2、-C〇N(R)2、-S02CH3、-P( = 0)(0R)2 等,在該些 拉電子基所結合的亞甲基係直接鍵結於芳香環或羰基環 時,亞甲基的活性變得更高。
本發明中所用的多分枝狀巨單體例如可爲具有含下述 通式⑴所表示的重複單元之分枝鏈的多分枝狀巨單體。 通式I Τι fz-y2—今
[式中,Yi 係由-CN、-N02、-CONH2、-CON(R)2、-S02CH3、 -P( = 0)(0R)2K成群中所選出的拉電子基,¥2係伸芳基、-0-C0-或-NH-CO-,Z 係由-(CH2)nO-、-(CH2CH20)n-、-(CH2CH2CH20)n-所成群中所選出的基,而且當丫2爲-〇-0〇-或-NH-CO-時,Z 係-(CH2)n-、-(CH2)nAr-、-(CH2)nOAr-、 -(CH2CH20)n-Ar-或-(CH2CH2CH20)n-Ar-(其中 Ar 係芳 基)], γ2例如爲由
所成群中所選出的伸芳基。其中Yi較佳爲-CN,Υ2較佳 爲伸苯基。當γ2爲伸苯基時,Ζ的鍵結位置可爲鄰位、 間位或對位中任一者,而沒有特別的限制,但是對位係較 佳的。又,Ζ的重複次數η係沒有特別的限制,但是從對 -10- 1278483 於苯乙烯的熔解性之觀點看,較佳爲1〜1 2,更佳2〜1 0。 具有上述分枝.構造的苯乙烯巨單體係於鹼性化合物的 存在下, ⑴以1分子中具有活性亞甲基和具有於活性亞甲基之親核 取代反應時的脫離基之AB2型單體的親核反應所得到自縮 合型縮合物作爲前驅物, (ii)使該聚縮合體中所殘留的未反應之活性亞甲基或次甲 基,與具有1分子中直接鍵結於芳香環的雙鍵和具有於活 性亞甲基之親核取代反應時的脫離基之化合物的親核反應 而獲得者。 該活性亞甲基之親核取代反應時的脫離基,皆爲鍵結 於飽和碳原子的鹵素、-〇S( = 02)R (其中R表示烷基或芳 基)等,具體例子爲溴、氯、甲磺醯氧基、甲苯磺醯氧基 等。 鹼性化合物較佳爲氫氧化鈉、氫氧化鉀等的強鹼,於 反應時當作水溶液使用。 1分子中具有活性亞甲基和具有於活性亞甲基之親核 取代反應時的脫離基之AB2型單體例如可爲溴乙氧基苯乙 腈、氯甲基苄氧基苯乙腈等的鹵化烷氧基苯乙腈類、甲苯 磺醯氧基-(伸乙基氧基)-苯乙腈、甲苯磺醯氧基-二(伸乙 基氧基)-苯乙腈等的具有甲苯磺醯氧基的苯乙腈類。 具有1分子中直接鍵結於芳香環的雙鍵和於活性亞甲 基之親核反應時的脫離基之代表性化合物例如爲氯甲基苯 乙稀、溴甲基苯乙稀等。 -11- 1278483 上述(i)係合成作爲前驅體的聚縮合體之反應,(ii)係爲 在前驅體中導入直接鍵結於芳香環的雙鍵而合成多分枝狀 巨單體的反應。(i)的反應與(i i)的反應可爲各反應逐次 地進行’亦可爲在同一反應系統內同時地進行。可藉由改 變單體與鹼性化合物的配合比,而控制多分枝狀巨單體的 分子量。 本發明中所使用的多分枝狀巨單體之較佳者以外,例 如可爲含有選自於酯鍵、醚鍵及醯胺鍵的重複構造單元所 構成的分枝構造與分枝末端的乙烯性雙鍵的多分枝狀巨單 體。 在具有酯鍵作重複構造單元的多分枝狀巨單體中,與 形成分子鏈的酯鍵之羰基所鄰接的碳原子係爲飽和碳原 子,而且於該碳原子上的氫原子皆爲經取代的分子鏈所成 的多分枝聚酯多元醇中,導入乙烯基或異丙烯基等的乙烯 性雙鍵。於多分枝聚酯多元醇中導入乙烯性雙鍵的情況, 可藉由酯化反應或加成反應來進行。 再者,上述多分枝聚酯多元醇可爲市售Perstorp公司 製「Boltorn H20、H30、H40」。 上述多分枝聚酯多元醇可在其之羥基的一部分預先經 由醚鍵或其它鍵而導入取代基,又,亦可使其之羥基的一 部分藉由氧化反應或其它反應而改質。 又,多分枝聚酯多元醇之羥基的一部分可預先被酯化。 該多分枝聚酯多元醇的代表性例子爲在具有1個羥基 的化合物中,與羧基鄰接的碳原子爲飽和碳原子,而且該 -12- 1278483 碳原子上的氣原子皆被取代,且藉由使具有2個羥基的一 兀羧酸反應而成爲多分枝狀聚合物,其次使該聚合物之末 端基的經基與丙烯酸或甲基丙烯酸等的不飽和羧、含異氰 酸酯基的丙烯酸系化合物等反應而得到者。 再者’就具有酯鍵作爲重複構造單元的多分枝狀聚合 物而 r=i ’ 匕馬里亞(Tamalia)氏等在「Angew. Chem. Int. Ed. Engl· 29」第138〜177頁(1990年)中亦有記載。 作爲上述具有1個以上羥基的化合物,可爲a)脂肪族 二醇、脂環狀二醇或芳香族二醇,b)三醇,c)四醇,d)山 梨糖醇及甘露糖醇等的糖醇,e)無水新庚糖醇或二異戊四 醇,f)oc-甲基糖苷等的α-烷基糖苷,g)乙醇、己醇等的一 官能性醇’ h)分子量至多8000者,及環氧烷類或其衍生 物,與使上述a)〜g)中任一者所選出的醇之1種以上的羥 基反應而生成的含有羥基的聚合物等。 脂肪族二醇、脂環狀二醇及芳香族二醇例如爲丨,2_乙 二醇、1,3-丙二醇、1,4-丁 二醇、1,5-戊二醇、1,6-己二醇、 聚四氫呋喃、二羥甲基丙烷、新戊基丙烷、2-丙基-2-乙基 -1,3 -丙二醇、1,2 -丙二醇、1,3 -丁二醇、二乙二醇、三乙 二醇、聚乙二醇、二丙二醇、三丙二醇、聚丙二醇;環己 烷二甲醇、1,3-二噁烷-5,5-二甲醇;1,4-苯二甲醇、卜苯 基-1,2-乙二醇等。 二醇例如爲三經甲基丙院、三經甲基乙院、二羥甲基 丁烷、丙三醇、1,2,5_己三醇等。 四醇例如爲異戊四醇、貳三羥甲基丙烷、二丙三醇、 -13- 1278483 負ζ二經甲基乙院等。 作爲具有2個以上鍵結於芳香環的羥基之芳香族化合 树’例如可爲1,3,5_二經基苯、ι,4 -苯二甲醇、1-苯基-1,2_ 乙二醇等。 一元羧酸(其中與羧基鄰接的碳原子爲飽和碳原子、且 該碳原子上的氫原子皆被取代、且具有2個以上的羥基) 之例子爲二羥甲基丙酸、α,α-雙(羥甲基)丁酸、α,α,α-三(羥 甲基)乙酸、α,α-雙(羥甲基)戊酸、α,α-雙(羥甲基)丙酸等。 藉由使用該一元羧酸,可以抑制酯分解反應,而形成多分 枝聚酯多元醇。 又,於製造該多分枝狀聚合物時,較宜使用觸媒,該 觸媒例如爲二烷基錫氧化物、鹵化二烷基錫、二烷基錫雙 羧酸鹽,或亞錫氧化物等的有機錫化合物、四丁基鈦酸鹽 等的鈦酸鹽、路以士酸、對甲苯磺酸等的有機磺酸等。 作爲具有醚鍵當作重複構造單元的多分枝狀巨單體, 例如爲使具有1個以上羥基的化合物與具有1個以上羥基 的環狀醚化合物反應而成爲多分枝狀聚合物,其次使該聚 合物之末端基的羥基與丙烯酸或甲基丙烯酸等的不飽和 酸、含異氰酸酯基的丙烯酸系化合物、4 -氯甲基苯乙烯等 的鹵化甲基苯乙烯反應而得者。又,作爲多分枝狀聚合物 的製法,亦可使用根據Williamson的醚合成法,使具有1 個以上羥基之化合物與含有2個以上羥基和鹵原子、_ 0S020CH3或-0S02CH3之化合物反應的方法。 作爲具有1個以上羥基的化合物,可能使用上述者。 -14- 1278483 作爲具有丨個以上羥基的環狀醚化合物,例如爲3 _乙 基-3-(羥甲基)氮雜環丁烷、2,3-環氧基-1-丙醇、2,3-環氧 基-1-丁醇、3,4_環氧基-1-丁醇等。 作爲於Williamson的醚合成法中所使用得具有1個以 上羥基之化合物,可爲上述者,但是較佳爲具有2個以上 鍵結於芳香環的羥基之芳香族化合物。作爲該化合物的代 表性例子,例如爲1,3,5-三羥基苯、1,4-苯二甲醇、^苯 基乙二醇等。 又,作爲含有2個以上羥基和鹵原子、-0S020CH3或-0S02CH3之化合物,例如爲5-(溴甲基)-1,3-二羥基苯、2_ 乙基-2-(溴甲基)-1,3-丙二醇、2-甲基-2-(溴甲基)-1,3-丙二 醇、2-(溴甲基)-2-(羥甲基)-1,3-丙二醇等。 而且,在製造上述多分枝狀聚合物時,通常使用觸媒 係較宜的,該觸媒例如爲BF3二乙醚、FS03H、C1S03H、 HC104 等。 又,作爲具有醯胺鍵當作重複構造單元的多分枝狀巨 單體,例如爲分子中醯胺鍵經由氮原子成爲重複構造者, 代表性者爲Dentoritech公司製的雷那來香2.0(ΡΑΜΑΜ樹 枝狀寡聚物)。 於導入多分枝狀巨單體時,分枝末端的雙鍵數目愈多, 則與苯乙烯的共聚物之多分枝狀聚苯乙烯的分枝度愈高, 本發明中所用的多分枝狀巨單體的分枝度(DB)如下式(3) 所定義,分枝度(DB)的範圍較佳爲〇.3〜0.8, DB = (D + L)/ (D + T + L) (3) -15- 1278483 (式中,D係枝狀單元的數目,L係線狀單元的數目,T係 末端單元的數目)。 而且,上述D、L和Τ係可藉由13NMR的測定,由來 自活性亞甲基及其反應的二級、三級、四級碳原子數或一 級、二級、三級氮原子數所求得,例如D相當於四級碳原 子數或三級氮原子數,L相當於三級氮原子數或二級氮原 子數,T相當於二級碳原子數或一級氮原子數。 爲了將多分枝狀聚苯乙烯的質量平均分子量控制在 1000萬以下,本發明中所使用的多分枝狀巨單體之質量 平均分子量較佳係1000〜15000,更佳2000〜5000。 於多分枝狀巨單體中所導入的直接鍵結於芳香環的雙 鍵之含量就每1克多分枝狀巨單體而言,較佳爲0·1毫莫 耳〜5.5毫莫耳,更佳0.5毫莫耳〜3·5毫莫耳。若比0.1 毫莫耳更少時,則難以得到高分子量的多分枝狀聚苯乙 烯,若超過5.5毫莫耳,則過度地增大多分枝狀聚苯乙烯 之分子量。 藉由使上述多分枝狀巨單體與苯乙烯進行聚合,可得 到多分枝狀巨單體和苯乙烯的共聚物’即多分枝狀聚苯乙 烯,與同時生成的線聚苯乙烯之混合物’即本發明的苯乙 烯樹脂組成物。 聚合反應可使用已知慣用的苯乙烯聚合方法。聚合方 法並沒有特別的限制,較佳爲塊狀聚合、懸浮聚合或溶液 聚合。亦可不使用聚合起始劑而使熱聚合,但是較佳爲使 用慣用的自由基聚合起始劑。又,聚合時所必要的懸浮劑 -16- 1278483 或乳化劑等聚合助劑可使用一般製造聚苯乙烯時所慣用 者。 相對於苯乙烯,多分枝狀巨單體的配合率以質量基準 而言較佳係 5 0 p p m〜1 %,更佳 1 0 0 p p m〜2 0 0 0 p p m。多分枝 狀巨單體的配合率若比5 Oppm少,則難以得到本發明的充 分效果。 爲了降低聚合反應的反應物黏性,可於反應系統內加 入有機溶劑,該有機溶劑例如爲甲苯、乙基苯、二甲苯、 乙腈、苯、氯苯、二氯苯、甲氧苯、二胺基苯、二甲基甲 醯胺、N,N-二甲基乙醯胺、甲乙酮等。 特別地在欲添加大量的多分枝狀巨單體時,從抑制凝 膠化的觀點看,較宜使用有機溶劑。藉此可大幅增加先前 所示的多分枝狀巨單體之添加量,而不會發生凝膠化。 所用的自由基起始劑並沒有特別的限制,已知慣用的 例子爲雙(第三丁基過氧基)環己烷、2,2_雙(第三丁基 過氧基)丁烷、2,2-雙(4,4-二第三丁基過氧基環己基)丙烷 等的過氧基縮酮類, 氫過氧化異丙苯、第三丁基氫過氧化物等的氫過氧化物 類,二第三丁基過氧化物、二茴香基過氧化物、二第三己 基過氧化物等的二烷基過氧化物類,苯甲醯基過氧化物、 二桂皮醯基過氧化物等的二醯基過氧化物類,第三丁基過 氧基苯甲酸酯、二第三丁基過氧基異酞酸酯、第三丁基過 氧基異丙基單羧酸酯等的過氧基酯類, 11^’-偶氮雙異丁腈、11^’-偶氮雙(環己烷-1-腈)、1^3’- -Π- 1278483 偶氮雙(2-甲基丁腈)、n,N,-偶氮雙(2,4-二甲基戊膪)、N,N’-偶氮雙[2-(羥甲基)丙腈]等,可以使用其丨種或2種以上 的組合。 再者’若爲了不使苯乙烯樹脂組成物的分子量變成過 大’則可添加鏈轉移劑。鏈轉移劑可以使用具有1個鏈轉 移基的單官能鏈轉移劑或具有數個鏈轉移基的多官能鏈轉 移劑。單官能鏈轉移劑例如爲烷基硫醇類、硫羥乙酸類等。 多官能鏈轉移劑例如爲乙二醇、新戊二醇、三羥甲基 丙烷、異戊四醇、二異戊四醇、三異戊四醇、山梨糖醇等 的多元醇羥基被硫羥乙酸或2_氫硫基丙酸所酯化者。 於製造本發明的苯乙烯樹脂組成物時,除了如上述以 一階段來聚合多分枝狀巨單體和苯乙烯之方法,亦可混合 預先另行合成的線狀聚苯乙烯與多分枝狀聚苯乙烯,而製 造具有任意之多分枝狀聚苯乙烯和線狀聚苯乙烯的混合比 之苯乙烯樹脂組成物。 本發明的苯乙烯樹脂組成物由於以分子程度均勻分散 混合絡合多分枝狀聚苯乙烯和線狀聚苯乙烯,故在彎曲試 驗時顯示習用線狀聚苯乙烯所沒有的優良耐彎折強度。另 外,從多分枝狀聚苯乙烯和線狀聚苯乙烯能以分子程度均 勻分散混合絡合之觀點看,與所製造的多分枝狀聚苯乙燦 和線狀苯乙烯之混合比較下,多分枝狀巨單體和苯乙烯的 1階段聚合係較佳的,又從製造效率的觀點看,i階段聚 合亦較佳。 在以凝膠層析術(GPC)來測量本發明的苯乙烯樹脂組成 -18- 1278483 物之分子量時’來自線狀聚苯乙烯的波峰係出現在低分子 量例,而來自多分枝狀聚苯乙烯的波峰係在高分子量側, 可由兩波峰的面積比來決定兩聚苯乙烯的組成比以及各聚 苯乙烯的質量平均分子量。 本發明的苯乙烯樹脂組成物雖然具有作爲成形品的良 好熔體張力和耐彎折強度,但爲了具有高熔體質量流速而 有好的加工性,故苯乙烯樹脂組成物中含有的線狀聚苯乙 烯之質量平均分子量爲25萬〜35萬,而且多分枝狀聚苯 乙烯的質量平均分子量爲100萬〜1000萬,更佳200萬〜500 萬。若多分枝狀聚苯乙烯的質量平均分子量低於1〇〇萬, 則不能得到充分強度,若超過1 〇〇〇萬則不能得到良好的 成性加工性。 再者,苯乙烯樹脂組成物的質量平均分子量爲25萬〜70 萬,更佳2 8萬〜5 0萬。又,就樹脂組成物中的線狀聚苯 乙烯與多分枝狀聚苯乙烯的質量比而言,線狀聚苯乙烯: 多分枝狀聚苯乙烯較佳爲99.1: 0.9至75: 25,更佳99: 1 至 85 : 15。 本發明的苯乙烯樹脂組成物雖然含有習知線狀聚苯乙 烯所沒見到的超高分子量之多分枝狀聚苯乙烯,但是本發 明的苯乙烯樹脂組成物即使含有如此的超高分子量成分, 也不會實質地發生凝膠化,而可容易地溶解在有機溶劑 中〇 本發明的苯乙烯樹脂組成物之熔體質量流速係滿足質 量平均分子量的關係式(1 ),而且具有比具有同樣質量平 -19 - 1278483 均分子量的習知線狀聚苯乙烯的熔體質量流速更高的値。 式⑴ MFR(g/min)^45 x exp(-0.1xMwxl0 4) (式中,MFR和Mw各表示苯乙燃樹脂組成物的溶體質重 流速和質量平均分子量)。 再者,熔體質量流速(MFR,g/min)係指依照JIS K 7 2 1 0 : 9 9之方法,在2 0 0 °C、加重4 9N下測定之値。 若苯乙烯樹脂組成物的MFR低於由式(1)所算出的値 時,則不能得到良好的成形加工性。 又,作爲顯示本發明之苯乙烯樹脂組成物的強度和成 性加工性之指標的熔體張力(MT)亦同樣地滿足質量平均分 子量的關係式(2),而且具有比具有同樣質量平均分子量 的習知線狀聚苯乙烯的熔體張力更高的値。 式⑺ MT(g)^0.07Mwxl0'4+1.8 (式中,MT和Mw各表示苯乙烯樹脂組成物的熔體張力和 質量平均分子量)。 熔體張力(MT)係表示樹脂熔融時的拉伸張力,爲樹脂 的韌性和成形性的指標。熔體張力愈高,則樹脂的拉伸張 力愈大,可提高押出成形時的生產速度。 本發明中的熔體張力(MT)係指使用Cap ill 〇 gram(東洋 精株式會社製1B型),毛細管長度(l) 5 0.8 Omm,直徑 (D) 1.27mm,筒之直徑(B)爲9.55mm,剪切速率爲60m/s 時,在試料的熔融黏度成爲1 3 0 0 P a · s的溫度,股條的牽 -20- 1278483 引速度爲20m/miri時所測定的MT(g)之値。苯乙烯樹脂組 成物的MT比由式(2)所算出的値低時,樹脂組成物的韌性 差。 含有本發明之多分枝狀聚苯乙烯的苯乙烯樹脂組成物 雖然具有高分子量,但與具有同等分子量的習知線狀聚苯 乙烯比較下,熔體質量流速高、於苯乙烯樹脂組成物之製 造時及成形加工時具有優良流動性、優良的生產性及加工 性。因此,可藉由射出成形、押出成形、真空成形、氣壓 成形、押出發泡成形、壓延成形、吹塑成形等的成形方法 作成各種成形品,可使用於比以往更廣泛的用途。 (四)實施方式 實施例 使用以下實施例來更進一步說明本發明。本發明當然 應不受該些實施例的範圍所限制。其次說明測定方法。 (GPC測定法) 使用高速液體層析儀(東曹株式會社製HLC-8220GPC)、RI 檢出器、TSKGel G6000Hxl + G5000Hxl+G4000Hxl+G3000Hxl+TSKguard columnHxl-H,溶劑TFH,在流速1.0毫升/分鐘、溫度 4〇°C測定。 層析圖的解析係使用multistation GPC-8020來進行, 以解析軟體來分離兩個出現的波峰,求得線狀聚苯乙烯和 多分枝狀苯乙烯的各質量平均分子量,結果示於表1至3 中。表中的PIMw、P2Mw分別表示線狀聚苯乙烯和多分 -21 - 1278483 枝狀苯乙烯的質量平均分子量。又,在表中,於進行波峰 之分離解析前的樹脂組成物全體的質量平均分子量係以全 體Mw表示,所檢出的最大Mw係以最大Mw表示。 第2圖顯示實施例2的層析圖。橫軸爲滯留時間,縱 軸爲波峰強度,滯留時間愈少的成分峰,分子量愈高。圖 中’實線表示測定結果所得到的波峰,虛線表示解析結果 所得到的波峰。高分子量側的波峰係爲多分枝狀聚苯乙烯 (P2),低分子量側的波峰係爲線狀聚苯乙烯(ρι)。 (NMR測定法) 藉由核磁共振分光法(lH-NMR)求得多分枝狀巨單體的 乙燦性雙鍵之量,以每試料質量的莫耳數來表示。又,藉 由13C-NMR求得來自活性亞甲基及其反應的二級、三級、 四級碳原子數,以求得多分枝狀巨單體的分枝度。 (熔體質量流速測定法) 依照JIS K72 1 0:99來測定。而且測定條件爲溫度2(rC、 荷重40Ν。 (熔體張力測定法) 使用Capillogram(東洋精株式會社製1Β型)求得熔體 張力。所使用的裝置之毛細管長度(L)爲5 0.80mm,直徑(D) 爲1.27mm,筒之直徑(B)爲9.55mm,剪切速率爲60m/s 時,在試料的熔融黏度成爲1 3 0 0 P a · s的溫度,股條的牽 引速度爲2 〇 m / m i η時測量Μ T ( g)。 (玻璃轉移溫度測定法) 製作樣品的〇.4mm厚薄膜,藉由動態黏彈性裝置(雷翁 -22- 1278483 特里庫司公司製DMA)求得玻璃轉移溫度(Tg)。 (甲苯不溶分測定法) 將試料以1克/1 〇〇毫升的濃度溶解在甲苯中後,溶、液 中的不溶分在1 2000rpm經30分鐘離心分離。乾燥所離心 分離出的甲苯不溶分,求得乾燥後質量’依下式求彳辱甲苯 不溶分。 甲苯不溶分(%) =[乾燥後的不溶分質量/試料的質量]χ1 〇〇 (耐彎折強度測定法) 使熱壓所成形的原板經由單發二軸拉伸機而得到 0.2mm厚的片。拉伸溫度爲130°C,拉伸倍率爲縱橫同時 2·3倍。該片的一部分根據JIS P-81115,由彎曲破裂次數 求得耐彎折強度。 (參考例:η 多分枝狀巨單體(M-ml)之合成 於設有攪拌裝置、滴液漏斗、溫度計、氮氣導入裝置 及冒泡器的1 000毫升茄子型燒瓶內,於氮氣環境下,使 35克4-溴二(伸乙氧基)苯乙腈溶解於8 00毫升二甲亞楓 (DMSO)中。在水浴內溫成爲30 °C後,滴下66毫升50 %氫 氧化鈉水溶液。照樣保持在30 °C,攪拌2小時而得到多分 枝狀巨單體的前驅物。再者,將56.6克4-氯甲基苯乙烯 滴到該反應物中,攪拌2小時而得到多分枝狀巨單體溶 液。 過濾所得到的溶液以去除固體成分,將濾液投入含2M 毫升5莫耳/升鹽酸水溶液的5升甲醇中,以沈澱出多分 枝狀巨單體。所沈澱出的多分枝狀狀巨單體經抽吸過濾, -23- 1278483 依蒸餾水、甲醇之順序來回洗淨3次。於減壓下乾燥所得 到的多分枝狀巨單體24小時,而得到24克多分枝狀巨單 體(Μ _ m 1) 0 藉由GPC來測量所得到的多分枝狀巨單體(M-ml),結 果質量平均分子量爲11,000。又,由1H-NMR的測定結果 確認直接鍵結於芳香環的雙鍵之導入量爲2.66毫莫耳/ 克。分枝度爲〇 · 6。 $考例2)多分枝狀巨單體之合成 於參考例1中使用4-甲苯磺醯氧基二(伸乙氧基)苯乙 膪代替4-溴二(伸乙氧基)苯乙腈,以外與參考例1同樣地 作,而得到25克多分枝狀巨單體(M-m2)。所得到的多分 枝狀巨單體(M-m2)之質量平均分子量爲5,800。又,由 iH-NMR的測定結果確認直接鍵結於芳香環的雙鍵之導入 量爲2.04毫莫耳/克。 (參考例3)多分枝狀巨單體(M-m3)之合成 於參考例2中使用6.6毫升50%氫氧化鈉水溶液代替66 毫升50%氫氧化鈉水溶液,以外與參考例2同樣地作,而 得到29克多分枝狀巨單體(M_m3)。所得到的多分枝狀巨 單體(M-m3)之質量平均分子量爲7,000。又,由1H-NMR 的測定結果確認直接鍵結於芳香環的雙鍵之導入量爲1 . 84 毫莫耳/克。 (參考輒_1)多分枝狀百垔體之合成 <多分枝聚醚多元醇1之合成> 於設有攪拌機、溫度計、滴液漏斗及冷凝器的2升燒 -24- 1278483 瓶中,於室溫下,加入50.5克乙氧基化異戊四醇(5莫耳 環氧乙烷加成異戊四醇)、1克BF3二乙醚溶液(50%),加 熱到ll〇°C。於其中,邊控制反應的發熱,邊在35分鐘內 徐徐加入45 0克3-乙基- 3-(羥甲基)氮雜環丁烷。當發熱平 息時,更在1 2 0 °C攪拌反應混合物3.5小時,然後冷卻到 室溫。 所得到的多分枝聚醚多元醇之重量平均分子量爲 3,500,羥値爲 5 10。 <具有甲基丙烯醯基及乙醯基的多分枝狀聚醚1之合成> 於設有攪拌機、溫度計、冷凝器的狄恩-史塔庫傾析器 及氣體導入管的反應器中,加入50克上述<多分枝聚醚多 元醇1之合成〉所得到的多分枝聚醚多元醇、13.8克甲基 丙烯酸、1 5 0克甲苯、〇. 〇 6克氫醌、1克對甲苯磺酸,於 混合溶液中以每分鐘3毫升的速度吹入7 %含氧氮氣,同 時在常壓下攪拌、加熱。調節加熱量以使對傾析器的餾出 液量爲每小時3 · 0克,繼續加熱直到脫水量達到2 · 9克爲 止。 反應結束後,一次冷卻,添加3 6克醋酸酐、5 · 7克胺 基磺酸,於60 °C攪拌10小時。然後,爲了去除殘留的醋 酸和氫醒’用5 0克5 %氫氧化鈉水溶液洗淨4次,再用5 0 克1 %硫酸水溶液洗1次,用5 0克水洗淨2次。於減壓下, 將0 · 0 2克甲氧酮加到所得到的有機層,邊導入7 %氧氣邊 蒸餾去除溶劑,得到6 0克具有異丙烯基和乙醯基的多分 枝狀聚醚。所得到的多分枝聚醚之質量平均分子量爲 -25- 1278483 4 5 00 ’多分枝聚醚多元醇的異丙烯基和乙醯基導入率各爲 3 5 % 和 6 0 % 〇 (參..考_.例_ 5立多分枝狀巨單體之合成 <具有苯乙烯基和乙醯基的多分枝聚醚丨之合成> 於設有攪拌機、具乾燥管的冷凝器、滴液漏斗和溫度 計的反應器中,加入50克上述 <多分枝聚醚多元醇1之合 成 >所得到的多分枝聚醚多元醇、100克四氫呋喃和4 · 3克 氫氧化鈉,於室溫下攪拌。於其內歷1小時滴下2 6 · 7克4-氯甲基苯乙烯,再於50 °C攪拌所得到的反應混合物4小 時。 反應結束後,一次冷卻,添加34克醋酸酐、5.4克胺 基磺酸,於60 °C攪拌10小時。然後,於減壓下蒸餾去除 四氫咲喃,將所得到的混合物溶解於1 5 0克甲苯中,爲了 去除殘留的醋酸,用50克5%氫氧化鈉水溶液洗淨4次, 再用50克1 %硫酸水溶液洗1次,用50克水洗淨2次。 於減壓下,由有機層蒸餾去除溶劑,而得到7 0克具有苯 乙烯基和乙醯基的多分枝聚醚。所得到的多分枝聚酸之質 量平均分子量爲5 300,多分枝聚醚多元醇的苯乙烯基和 乙醯基導入率各爲4 0%和5 5%。 「參考例6)多分枝狀巨單體之合成 <具有苯乙烯基的PAMAM樹枝狀寡聚物之合成> 於設有攪拌機、具乾燥管的冷凝器、滴液漏斗和溫度 計的反應器中,加入50克PAM AM樹枝狀寡聚物(商品名 稱雷那來香2.0: Dentritech公司製)的甲醇溶液(20重量 -26- 1278483 %),於減壓下邊攪拌邊蒸餾去除甲醇。接著,添加5 〇克 四氫呋喃及2.6克微粉化氫氧化鈉,於室溫下攪拌。於其 內歷10分鐘滴下7.2克4-氯甲基苯乙烯,於5〇ac更攪拌 4小時。 反應結束後,冷卻及過濾固體後,於減壓下蒸餾去除 四氫呋喃,得到1 4克具有苯乙烯基的樹枝狀寡聚物。所 得到的樹枝狀寡聚物之苯乙烯基含量爲3.0毫莫耳/克。 (參考例7)多分枝狀巨單體之合成 <具有苯乙烯基和乙醯基的多分枝聚醚多元醇2> 於設有攪拌機、冷凝器、遮光性滴液漏斗和溫度計的 氮氣可密封之遮光性反應容器中,在氮氣氣流下,加入0 · 5 克無水1,3,5-三羥基苯、29克碳酸鉀、2.7克18-皇冠-6 及180克丙酮,邊攪拌邊滴下由21.7克5-(溴甲基)-1,3-二羥基苯和1 8 0丙酮所構成的溶液,歷3小時。然後,直 到5-(溴甲基)-1,3-二羥基苯消失爲止,於攪拌下加熱回 流。 然後,添加10.3克4-氯甲基苯乙烯,直到其消失爲止, 再於攪拌下加熱回流。然後,將4克醋酸酐和0.6克胺基 磺酸加到反應混合物中,於室溫下攪拌一夜。冷卻後,過 濾去除反應混合物中的固體,於減壓下蒸餾去除溶劑。使 所得而的混合物溶解於二氯甲烷中,用水洗淨3次後,將 二氯甲烷溶液滴到己烷中,以沈澱出多分枝聚醚。將其過 濾、乾燥,而得到1 4克具有苯乙烯基和乙醯基多分枝聚 醚多元醇。質量平均分子量爲40 50,苯乙烯基含量爲3.3 -27- 1278483 毫莫耳/克。 (爹考例8)冬分枝状百單體合成 <具有甲基丙烯醯基和乙醯基的多分枝聚酯多元醇之合成> 於設有7%氧氣導入管、溫度計、具冷凝器的狄恩-史 塔庫傾析器及攪拌機的反應器中,加入 10克[Boltorn H2 0]、1.25克二丁錫氧化物、100克具有異丙烯基作爲官 能基的甲基丙烯酸甲酯及0.05克氫醌,邊以3毫升/分鐘 的速度將7%氧氣吹入混合溶液中,邊於攪拌下加熱。調 節加熱量以使對傾析器的餾出液量爲每小時15〜20克,每 小時取出傾析器內的餾出液,添加其相當量的甲基丙烯酸 甲酯而進行6小時反應。 反應結束後,於減壓下蒸餾去除甲基丙烯酸甲酯,爲 對羥基加帽,添加1 〇克醋酸酐、2克胺基磺酸,於室溫 下攪拌1 〇小時。過濾去除胺基磺酸,於減壓下蒸餾去除 醋酸酐和醋酸後,將殘留物溶解在70克醋酸乙酯中,爲 了去除氫醌,用20克5%氫氧化鈉水溶液洗淨4次,再用 20克7%硫酸水溶液洗2次,用20克水洗淨2次。將0.0045 克甲氧酮加到所得到的有機層中,於減壓下,邊導入7% 氧氣邊蒸餾去除溶劑,而得到1 2克具有異丙烯基和乙醯 基的多分枝聚酯。所得到的多分枝聚酯之質量平均分子量 爲2860,數量平均分子量爲3770,異丙烯基和乙醯基對 多分枝聚酯多元醇(A)的導入率爲各爲55%和40%。 (實施例1) 於具有渦輪翼的5升不銹鋼製反應器中,加入2000毫 -28- 1278483 升·離子交換水’將當作懸浮安定劑的1 〇克凝膠化聚乙烯 醇' 0 · 0 5克十二基苯磺酸鈉加到其中並使溶解後,依序添 加均勻溶解有〇·6克多分枝巨單體1〇〇〇克苯乙 烧、2.8克苯甲醯基過氧化物、〇.6克第三丁基過氧基苯甲 酸酯。 反應器內經氮氣置換後,在5 00rpm的攪拌下升溫,於 92 C懸浮聚合6小時,其次在117宄反應3小時。所生成 的粒狀聚本乙烯經洗淨、脫水、乾燥,而得到9 8 〇克苯乙 嫌樹脂組成物。以料筒溫度23 〇t:的押出機將該樹脂造粒。 使用所得到的苯乙烯樹脂組成物,製作耐彎折強度測定法 中所記載的片’以測量耐彎折強度。所得到的耐彎折強度 爲1 2次。 (實施例2) 於實施例1中使用多分枝狀巨單體(M-m2)代替多分枝 狀巨單體(M-ml),以外與實施例1同樣地作,而得到苯乙 烯樹脂組成物。使用所得到的苯乙烯樹脂組成物,製作耐 彎折強度測疋法中所記載的片,以測量耐彎折強度。所得 到的苯乙烯樹脂組成物之耐彎折強度爲1 3次。 (實施例3) 於實施例1中使用多分枝狀巨單體(M_m3)代替多分枝 狀巨單體(M-m 1),以外與實施例i同樣地作,而得到苯乙 烯樹脂組成物。 (實施例4) 於實施例1中將多分枝狀巨單體(M_ml)的添加量由0.6 -29- 1278483 克改爲Ο · 2克’以外與實施例丨同樣地作,而得到苯乙烯 樹脂組成物。 (實施例5) 於實施例1中將多分枝狀巨單體(M_ml)的添加量由0.6 克改爲0 · 4克,以外與實施例1同樣地作,而得到苯乙烯 樹脂組成物。 (實施例6) 於實施例1中使用多分枝狀巨單體(Μ - m 4)代替多分枝 狀巨單體(M-ml),以外與實施例1同樣地作,而得到苯乙 烯樹脂組成物。 (實施例7) 於實施例1中使用多分枝狀巨單體(M_m5)代替多分枝 狀巨單體(Μ - m 1 ),以外與實施例1同樣地作,而得到苯乙 烯樹脂組成物。 (實施例8) 於實施例1中使用多分枝狀巨單體(M-m6)代替多分枝 狀巨單體(Μ - m 1 ),以外與實施例1同樣地作,而得到苯乙 烯樹脂組成物。 (實施例9) 於實施例1中使用多分枝狀巨單體(M-m7)代;替乡分 狀巨卓體(Μ - m 1)’以外與貫施例1问樣地作,而得到苯乙 烯樹脂組成物。 (實施例1 0) 於實施例1中使用多分枝狀巨單體乡#g -30- 1278483 狀巨單體(M-ml),以外與實施例1同樣地作,而得到苯乙 烯樹脂組成物。
(比較例U 不添加多分枝狀巨單體(M-ml),以外與實施例1同樣 地作,而得到線狀聚苯乙烯。使用所得到的線狀聚苯乙烯, 製作耐彎折強度測定法中所記載的片,以測量耐彎折強 度。所得到的線狀聚苯乙烯之耐彎折強度爲7次。 (比較例2) 反應時間爲7小時,將2.8克苯甲醯基過氧化物、0.6 克第三丁基過氧基苯甲酸酯改爲3.6克1,1-雙(第三丁基過 氧基)-3,3,5-三甲基環己烷、0.3克第三丁基過氧基苯甲酸 酯’以外與實施例1同樣地作,而得到線狀聚苯乙烯。 _(比較例3) 將2·8克苯甲醯基過氧化物、0.6克第三丁基過氧基苯 甲酸酯改爲2.3克1,1-雙(第三丁基過氧基)-3,3,5-三甲基 環己烷、0 · 5克第三丁基過氧基苯甲酸酯,以外與實施例 1同樣地作,而得到線狀聚苯乙烯。 (比較例4、 添加1 2克與苯乙烯一起流動的石蠘(出光興產株式會 社製達夫尼油C Ρ - 5 0 S ),以外與實施例1同樣地作,而 得到苯乙烯樹脂組成物。 _(實施例 將多分枝狀巨單體(Μ - m 1)的添加量改爲1 · 5克,以外 與實施例1同樣地作,而得到苯乙烯樹脂組成物。 -31 - 1278483 (實施例12) 在押出中使實施例6所得到的苯乙烯樹脂組成物與比 較例2所得到的線狀聚苯乙烯以質量比7:3作熔融捏合, 而得到新的苯乙烯樹脂組成物。 表1 実施例1 実施例2 実施例3 実施例4 巨單體種類 Μ — m 1 M — m 2 M —m 3 M — m 1 巨單體 添加量 (ppm) 600 600 600 200 全體Mw (ΧΙΟ4) 38.9 42.5 45.8 32. 1 Ρ 1 Mw (ΧΙΟ4) 31.8 33.0 38.6 32.9 P 2Mw (ΧΙΟ4) 221 224 262 213 Ρ 1 /Ρ 2 (一) 93/7 93/7 94/6 99/1 最 r^M w (ΧΙΟ4) 1, 767 1,326 3,019 633 MF R (g/10min) 1.3 0.9 0.5 2. 7 ΜΤ (g) 5.2 5.7 6.5 4.6 甲苯不溶分 (質量%) 0 0 0 0 丁 g (°C) 106 106 106 106 -32- 1278483
表2 比較例1 比較例2 比較例3 比較例4 巨單體種類 一 一 一 ~ 巨單體 添加量 (ppm). — 一 一 一 全體Mw (ΧΙΟ4) 25. 5 33.0 40. 2 40.2 Ρ 1 Mw (ΧΙΟ4) 25. 5 33.0 40. 2 40. 2 P 2Mw (ΧΙΟ4) — 一 — 一 Ρ 1/Ρ 2 (一) 100/0 100/0 100/0 100/0 最高Mw (ΧΙΟ” 490 500 500 500 MFR (g/10min) 2· 2 1.4 0.6 0.9 MT (g) 3. 5 4· 0 4. 4 4.2 甲苯不溶分 (質量%) 0 0 0 0 Tg (°C) 105 106 106 . 98
-33- 1278483 表3 実施例5 実施例6 実施例7 実施例8 巨單體種類 M —m 1 Μ— m 4 M— m 5 M —m 6 巨單體 添加量 (ppm) 400 600 600 600 全體Mw (ΧΙΟ4) 37. 3 44. 5 42. 7 40. 1 Ρ 1 Mw (ΧΙΟ4) 33. 2 33.0 31.9 32. 5 P 2Mw (ΧΙΟ4) 216 274 225 223 Ρ 1/Ρ 2 (一) 96/4 93/7 95/5 96/4 最高Mw (ΧΙΟ4) 935 2,632 2,584 2,088 MFR (g/10min) 1· 5 0.9 1· 1 1. 2 MT (g) 4.8 5.9 5. 1 5.0 甲苯不溶分 (質量%) 0 0 0 0 T g (°C) 106 106 106 . 106 -34- 1278483 表4 実施例9 実施例10 実施例11 実施例12 巨單體種類 M—m 7 M — rn 8 M—m 1 Μ — m 1 巨單體 添加量 (ppm) 600 600 1,500 1,050 全體Mw (ΧΙΟ” 46.3 45.4 55. 3 48.2 P lMw (ΧΙΟ。 32.6 36. 0 44. 8 42.2 P 2 Mw (X104) 278 262 246 242 P 1/P 2 (一) 93/7 93/7 90/10 93/7 最高Mw (X104) 2,993 3, 326 2,761 2, 761 MFR (g/lOmin) 0· 6 0· 7 0.5 0. 6 MT (g) 6.7 7.5 9.5 8.7 甲苯不溶分 (質量%) 0 0 0 0 Tg (°C) 106 106 106 , 106 第3圖中顯示實施例1〜1 0和比較例1〜3的質量平均分 子量與MFR之關係。橫軸爲分子量Mw(xl04),縱軸爲 MFR(克/分鐘),圓形記號表示實施例的苯乙烯樹脂組成 物,方形記號表示比較例的線狀聚苯乙烯。本發明之含多 分枝狀聚苯乙烯的苯乙烯樹脂組成物雖然具有高的質量平 均分子量,但是明顯地具有比較高的MFR。 由表1、2及3可知,含多分枝狀聚苯乙稀的本發明苯 乙烯樹脂組成物之熔體質量流速、熔體張力和耐彎折強度 之値係高於具有同樣質量平均分子量的習知線狀聚苯乙 烯,而且成形加工性、韌性和強度係明顯優良。 -35- 1278483 產業上的利用可畔忤 本發明能提供苯乙烯樹脂組成物及其製造方法,其雖 然具有作爲成形加工品之良好強度的高分子量,但是熔體 質量流速和熔體張力係比具有同樣質量分子量的習知線狀 聚苯乙烯高,成形加工性優良,且製造時難以凝膠化。 (五)圖式簡單說明 第1圖顯示由AB2型單體所衍生的多分枝狀巨單體之 分枝構造的示意圖。 第2圖顯示實施例2之樹脂組成物的GPC層析圖,其 中橫軸爲滯留時間,而縱軸爲波峰強度。 第3圖顯示實施例1〜1 〇和比較例1〜3的質量平均分子 量與MFR之關係,圓形爲實施例者,方形爲比較例者, 曲線爲根據式(MFR = 45xexp(-O.lxMwxlO·4)的質量平均分 子量與MFR的關係。 -36-