TW589782B - Pseudo-differential amplifier and analog-to-digital converter using the same - Google Patents

Pseudo-differential amplifier and analog-to-digital converter using the same Download PDF

Info

Publication number
TW589782B
TW589782B TW091133814A TW91133814A TW589782B TW 589782 B TW589782 B TW 589782B TW 091133814 A TW091133814 A TW 091133814A TW 91133814 A TW91133814 A TW 91133814A TW 589782 B TW589782 B TW 589782B
Authority
TW
Taiwan
Prior art keywords
analog
voltage
digital converter
circuit
digital
Prior art date
Application number
TW091133814A
Other languages
English (en)
Other versions
TW200300630A (en
Inventor
Shoji Kawahito
Daisuke Miyazaki
Original Assignee
Semiconductor Tech Acad Res Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Tech Acad Res Ct filed Critical Semiconductor Tech Acad Res Ct
Publication of TW200300630A publication Critical patent/TW200300630A/zh
Application granted granted Critical
Publication of TW589782B publication Critical patent/TW589782B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/45645Controlling the input circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45932Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedback means
    • H03F3/45937Measuring at the loading circuit of the differential amplifier
    • H03F3/45941Controlling the input circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • H03M1/167Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages all stages comprising simultaneous converters
    • H03M1/168Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages all stages comprising simultaneous converters and delivering the same number of bits

Description

589782 五、發明說明(1) 發明所屬之技術領域 本發明是有關於一種包括兩放大器之虛擬差動放大 器電路以及一種使用該虛擬差動放大器電路之類比數位 (A-D,analog-to-digital)轉換器,且特別是有關於一 種利用上述虛擬差動放大器之管道類比數位轉換器。 先前技術 使用差動放大器電路之管道類比數位轉換器是眾所 周知。差動放大器電路之一例子繪示於第1 0圖。於第1 0 圖之差動放大器電路100中,施加預定電壓Vpl至每一 PMOS電晶體MP1之閘極,並且施加預定電壓Vnl至一NMOS 電晶體Μ N4之閘極。形成一差訊對之兩個NMOS電晶體Μ N 3 之每一閘極為差動放大器電路1 0 0之一輸入端,並且分別 輸入兩輸入電壓ViA及ViB至上述輸入端。 此外,每一個在PMOS電晶體MP2與NMOS電晶體MN2之 間的接點為差動放大器電路1 0 0之一輸出端,並且分別由 上述輸出端輸出輸出電壓VoA及VoB。輸入一共模回授電 路(common—mode feedback circuit ,CMFB)之輸出信號 至每一 NMOS電晶體MN1之閘極,由此調整輸出電壓VoA及 VoB ° 在此,讓I 〇代表流經形成一差訊對之NMOS電晶體Μ N 3 之電流。然後,電源電流I 〇 / 4流經形成一回授電路之反 相放大器A 1及A 2之任一個。電流I 〇流經每一個由Ρ Μ〇S電 晶體ΜΡ 2與NMOS電晶體Μ Ν 2及ΜΝ 1所組成之串聯電路。當取 樣類比數位轉換器所輸入之信號時,將導通兩開關S W 1及
10467pif.pld 第4頁 589782 五、發明說明(2) S W 2以形成導電狀態。當保持類比數位轉換器所輸入之信 號時,將斷開兩開關以形成戴止狀態。 在最近幾年,因為行動通信及網際網路之通信速率 已經提高,影音設備之影像解析度及品質已經提昇,並 且碟片媒體之速率已經提高,所以對於高效能類比數位 轉換器之需求已經更為迫切。尤其,已經需要一種利用 C Μ 0 S在低電壓及低耗電量的情況下達到高速率及高準確 度之類比數位轉換器。 然而,第1 0圖所示之差動放大器電路1 0 0是一種完全 差動類型並且需要大的偏流作為所需之輸出電流。因 此,此種差動放大器電路由於高耗電量以致無效率,因 而無法達成降低類比數位轉換器之耗電量。此外,完全 差動類型之差動放大器電路1 0 0具有串聯在電源電壓與接 地電位之間的多級電晶體,因而以低電壓操作受到限 制。因此,也無法降低類比數位轉換器之電壓。 發明内容 本發明是為了解決上述問題。因此本發明的第一目 的就是在提供一種藉由利用兩級放大器取代差動放大器 電路以組成虛擬差動放大器電路而達成低耗電量並且在 低電壓操作之虛擬差動放大器電路。 此外,本發明的第二目的是提供一種使用上述虛擬 差動放大器電路之類比數位轉換器。 根據本發明之一觀點,一虛擬差動放大器電路包括
10467pif.ptd 第5頁 589782 五、發明說明(3) 放大並輸出第一輸入信號之第一放大器,以及放大並輸 出第二輸入信號之第二放大器,而上述第二輸入信號具 有與第一輸入信號相反的信號準位。上述第一及第二放 大器具有相同電路結構,具有相同特性,每一個都可虛 擬放大並輸出該對第一及第二輸入信號之一。 根據本發明,利用一對具有相同電路結構及特性並 且分別放大一對輸入信號之第一及第二放大器而未使用 一差訊對來形成一虛擬差動放大器電路。因此,可得到 一種具有差動放大功能並在低電壓操作且為低耗電量之 電路。 上述虛擬差動放大器電路可能具有串聯在第一及第 二放大器輸出端之間的第一及第二電容器、串聯在第一 及第二放大器輸入端之間的第三及第四電容器、一個用 以傳送第一及第二電容器之間接點的電壓至第三及第四 電容器之間接點之緩衝器區段、以及一個用以施加一預 定電壓至第一及第二電容器之間接點並且根據所輸入之 控制信號來控制上述電壓之開關區段。藉由這些方法, 可避免上述虛擬差動放大器電路之放大器之輸出電壓平 均值波動,因而可得到一種達成降低耗電量並且在低電 壓操作之高效能虛擬差動放大器電路。 特別地,當由上述開關區段施加一預定電壓時,第 一及第二電容器分別記憶上述預定電壓與第一及第二放 大器所輸出之兩信號之平均值之間的電壓差異值。另一 方面,第三及第四電容器經由上述緩衝器區段施加上述
10467pif. ptd 第6頁 589782 五、發明說明(4) 電壓差異至上述放大器。此種結構避免上述虛擬差動放 大器電路之放大器之輸出電壓平均值波動,因而可得到 一種能夠達成低耗電量及低電壓操作之高效能類比數位 轉換器。 根據本發明之另一觀點之一類比數位轉換器具有一 個用以取樣及保持一對具有相反電壓準位之類比信號之 取樣及保持電路(sampling and hold circuit)以及複數 個用以類比數位轉換由上述取樣及保持電路所輸出之一 對輸出信號並執行預定計算以輸出計算結果作為下一級 類比數位轉換器電路之一對輸入電壓之類比數位轉換器 電路。上述類比數位轉換器之這些類比數位轉換器電路 之每一個都具有一個用以類比數位轉換一對輸入電壓之 子類、比數位轉換器(s u b - A - D converter ) 、 一 4固用以數位 類比轉換由上述類比數位轉換所得資料之子數位類比轉 換器(s u b — D — A converter)、 一對利用由上述子數位類比 轉換器所得之電壓分別對於上述輸入之此對電壓執行算 術運算之算術單元、以及一個由一對具有相同電路結構 及相同特性並且對於由上述算術單元所得之電壓執行虛 擬差動放大之放大器所組成之虛擬差動放大器電路。 於上述類比數位轉換器中,使用一虛擬差動放大器 電路於每一個對上述取樣及保持電路所輸出之一對輸出 信號執行類比數位轉換及預定計算以輸出計算結果作為 下一級類比數位轉換器電路之一對輸入電壓之類比數位 轉換器電路。藉此方法,能夠達到低耗電量及低電壓操
10467pi f. ptd 第7頁 589782 五、發明說明(5) 作。 根據本發明之另一觀點,一類比數位轉換器包括一 個用以取樣及保持一對具有相反電壓準位之類比信號之 取樣及保持電路以及複數個用以類比數位轉換由上述取 樣及保持電路所輸出之一對輸出信號並執行預定計算以 輸出計算結果作為下一級類比數位轉換器電路之一對輸 入電壓之類比數位轉換器電路。這些類比數位轉換器電 路之中至少一個包括一個用以類比數位轉換一對輸入電 壓之子類比數位轉換器、一個用以數位類比轉換由上述 類比數位轉換所得資料之子數位類比轉換器、一對利用 由上述子數位類比轉換器所得之電壓分別對於上述輸入 電壓執行算術運算之算術單元、以及一個包括一對具有 相同電路結構及相同特性並且對於由上述算術單元所得 之電壓執行虛擬差動放大之放大器之虛擬差動放大器電 路。 此外,於上述類比數位轉換器中,使用一虛擬差動 放大器電路於至少一個對上述取樣及保持電路所輸出之 一對輸出信號執行類比數位轉換及預定計算以輸出計算 結果作為下一級類比數位轉換器電路之一對輸入電壓之 類比數位轉換器電路。使用一普通差動放大器電路於其 他類比數位轉換器電路。藉由這些方法,不僅能夠達到 上述類比數位轉換器之低耗電量及低電壓操作,而且可 避免上述虛擬差動放大器電路之放大器之輸出電壓平均 值波動導致效能變差◦因此,可得到一種能夠達成低耗
10467pif. ptd 第8頁 589782 五、發明說明(6) 電量及低電壓操作之高效能類比數位轉換器。 在這例子中,上述類比數位轉換器電路之其他普通 類比數位轉換器電路之每一個可能具有一個用以類比數 位轉換一對輸入電壓之子類比數位轉換器、一個用以數 位類比轉換由上述類比數位轉換所得資料之子數位類比 轉換器、一對利用由上述子數位類比轉換器所得之電壓 分別對於上述輸入電壓執行算術運算之算術單元、以及 一個對於由上述算術單元所得之電壓執行差動放大之差 動放大器電路。 較佳情況是上述虛擬差動放大器電路包括串聯在上述放 大器輸出端之間的第一及第二電容器、串聯在上述放大 器輸入端之間的第三及第四電容器、一個用以傳送第一 及第二電容器之間接點的電壓至第三及第四電容器之間 接點之緩衝器區段、以及一個用以施加一預定電壓至第 一及第二電容器之間接點並且根據所輸入之控制信號來 控制上述電壓之開關區段。 在這例子中,當由上述開關區段施加一預定電壓 時,第一及第二電容器分別記憶上述預定電壓與上述放 大器所輸出之兩信號之平均值之間的電壓差異值。另一 方面,第三及第四電容器經由上述緩衝器區段施加上述 電壓差異至上述放大器。在所有例子中,本發明之虛擬 差動放大器之每一放大器可能是一單端(single-end)放 大器。若第一及第二放大器是單端放大器,則能夠更有 效地達成降低耗電量及在低電壓操作。
10467pif. ptd 第9頁 589782 五、發明說明(7) 為讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉其較佳實施例,並配合所附圖式, 作詳細說明如下: 實施方式: 第一實施例 第1圖是本發明第一實施例之虛擬差動放大器電路之 電路圖。於以下說明中,虛擬差動放大器電路意指一種 使用兩個放大器並且其操作如同差動放大器電路之電 路。 第1圖所繪示之虛擬差動放大器電路1是由兩個具有 相同電路結構與相同特性之單端放大器2及3所形成。第1 圖所使用之單端放大器2及3揭露於I E I C基本會議報告 (Trans. Fundainentals)1999 年二月份第2 號第E82-A 卷。 因為這些放大器具有相同電路結構,所以下文將詳細說 明放大器2 。 放大器2包括反相放大器A1及A2、PMOS電晶體MP1及 MP2、NMOS電晶體MN1及MN2、開關S W 1及S W 2以及電容器C 1 及C2 。一個由PMOS電晶體MP1 、PMOS電晶體MP2 、NMOS電 晶體Μ N 2以及N Μ 0 S電晶體Μ N 1所組成之串聯電路被連接在 電源電壓V D D與接地電位之間。施加預定恒電壓V ρ 1至 PMOS電晶體ΜΡ1之閘極。NMOS電晶體ΜΝ1之閘極形成放大 器2之輸入端,並且在PMOS電晶體MP2與NMOS電晶體MN2之 間的接點形成放大器2之輸出端。
10467pif. ptd 第10頁 589782 五、發明說明(8) 一個由反相放大器A 1及電容器C 1所組成之串聯電路 形成PMOS電晶體MP2之回授電路,而一個由反相放大器A2 及電容器C 2所組成之串聯電路形成N Μ 0 S電晶體Μ N 2之回授 電路。連接開關S W 1在反相放大器A 1之輸出端與輸入端之 間,而連接開關S W 2在反相放大器A 2之輸出端與輸入端之 間。開關SW1及SW2根據由外部所輸出之信號來導通或斷 開以執行切換。以使用虛擬差動放大器電路1於管道類比 數位轉換器為例,當取樣上述類比數位轉換器所輸入之 信號時,將導通開關SW1及SW2以形成導電狀態。當保持 上述類比數位轉換器所輸入之信號時,將斷開上述開關 以形成截止狀態。 在此種結構中,虛擬差動放大器電路1可將流經第1 0 圖所示之先前差動放大器電路之差訊對之電流減少2 腥〇。特別地,虛擬差動放大器電路1總共消耗3腥〇,其 中包括流經每一放大器A 1及A 2之電流I 〇 / 4以及流經每一 由PMOS電晶體MP2與NMOS電晶體MN2及MN1所組成之串聯電 路之電流I 〇。以此方法,虛擬差動放大器電路1所消耗之 電流明顯少於上述先前差動放大器電路所消耗之電流5 月呈〇。 其次,將說明使用第1圖之虛擬差動放大器電路1於 平行管道類比數位轉換器。第2圖是一種使用第1圖之虛 擬差動放大器電路1之平行管道類比數位轉換器之結構實 例之方塊圖。 於第2圖中,平行管道類比數位轉換器1 0具有一取樣
10467ρι ('. ptd 第U頁 589782 五、發明說明(9) 及保持電路1 1 (以下稱為S / Η區段),而兩個具有在一預定 電壓(例如接地電位)附近之對稱波形之類比信號被輸入 至S / Η區段1 1 ,類比數位轉換器區段1 2由m級管道類比數 位轉換器電路A D 1至A D πι所組成,其中m是一正整數,而錯 誤校正器區段1 3對類比數位轉換器區段1 2所輸出之數位 資料執行錯誤校正。 此外,平行管道類比數位轉換器1 0具有一個產生複 數個不同參考電壓以輸出至每一類比數位轉換器電路A D 1 至A D m之參考電壓產生器區段1 4以及一個由外部時脈信號 C L K產生預定内部時脈信號以輸出至S / Η區段1 1 、類比數 位轉換器區段1 2及錯誤校正器區段1 3之内部時脈產生器 區段1 5。 S / Η區段1 1具有兩輸入端,即一正向輸入端及一負向 輸入端,上述兩輸入端形成平行管道類比數位轉換器1 0 之輸入端。上述正向輸入端接收正向類比信號,而上述 負向輸入端接收負向類比信號。上述正向及負向類比信 號是一對具有相反信號準位之信號。S / Η區段1 1根據來自 内部時脈產生器電路1 5之預定時脈信號對上述輸入類比 信號執行取樣及保持,然後輸出至類比數位轉換器區段 12。 類比數位轉換器區段1 2包括具有相同電路結構之m級 管道類比數位轉換器電路AD 1至A Dm,而每一管道類比數 位轉換器電路A D 1至A D m形成一 η位元管道類比數位轉換 器,其中η > 0 。
I0.167pif.ptcl 第12頁 589782 五、發明說明(ίο) 類比數位轉換器電路A D k由上一級電路接收具有相反 信號準位之正向輸出信號及負向輸出信號。特別地,第 一級類比數位轉換器電路A D 1由S / Η區段1 1接收正向及負 向輸出電壓,而類比數位轉換器電路ADk由上一級類比數 位轉換器電路A D ( k - 1 )接收正向及負向輸出電壓,其中2 S k $ m 〇 第3圖是類比數位轉換器電路ADk之内部結構之方塊 圖。於第3圖中,類比數位轉換器電路A D k具有一個形成 一 η位元類比數位轉換器之子類比數位轉換器2 1 、一個形 成一 η位元數位類比轉換器之子數位類比轉換器2 2、一對 算術單元2 3 a及2 3 b、以及由第1圖之放大器2及3所組成之 虛擬差動放大器電路1 。子類比數位轉換器2 1接收由上一 級電路所輸出之一對輸出信號作為一對之正向輸入電壓 V 1 P及負向輸入電壓V i Μ。子類比數位轉換器2 1將所接收 之正向輸入電壓ViP及負向輸入電壓乂丨…轉換成η位元資料 並輸出至錯誤校正器區段1 3,並且也輸出與此η位元資料 相對應之信號至子數位類比轉換器2 2。 回到第2圖,由每一類比數位轉換器電路AD 1至ADm所 輸出之η位元資料是一種冗餘表示型式。而錯誤校正器區 段1 3將自每一類比數位轉換器電路AD1至ADm所輸入之η位 元資料轉換成具有一預定位元長度之非冗餘表示型式之 位元資料,以便由輸出端OUT輸出作為已類比數位轉換之 數位資料。例如,若由每一類比數位轉換器電路A D 1至 A D m輸出1 . 5位元資料,則錯誤校正器區段1 3將上述1 . 5位
1 0467pif. ptd 第13頁 589782 五、發明說明(11) 元資料轉換成1位元資料以輸出作為已類比數位轉換之數 位資料。 此外,於第3圖中,子數位類比轉換器2 2輸出與由子 類比數位轉換器2 1所輸入之信號相對應之電壓至算術單 元2 3 a及2 3 b。算術單元2 3 a對正向輸入電壓V i P與子數位 類比轉換器2 2之輸出電壓執行預定算術運算以輸出其結 果至放大器2。算術單元2 3 b對負向輸入電壓V 1 Μ與子數位 類比轉換器2 2之輸出電壓執行預定算術運算以輸出其結 果至放大器3。放大器2放大上述輸入電壓以輸出作為正 向輸出電壓V ο Ρ ,而放大器3放大上述輸入電壓以輸出作 為負向輸出電壓VoM 。 其次,將說明在子類比數位轉換器2 1是一 1 . 5位元類 比數位轉換器並且子數位類比轉換器2 2是一 1 . 5位元數位 類比轉換器的情況下類比數位轉換器電路ADk之操作。 子類比數位轉換器2 1藉下列方程式(1 )由所輸入之正向輸 入電壓ViP及負向輸入電壓ViM計算輸入電壓Vi 。
Vi二ViP-ViM (1) 子類比數位轉換器2 1由參考電壓產生器區段1 4接收 預定參考電壓V r C P及V r C Μ。子類比數位轉換器2 1比較方 程式(1 )之輸入電壓V 1與參考電壓Vr~CP及VrCM,並根據比 較結果依照下列方程式(2 )至(4 )產生資料D k。 若 VrCP<Vi 則 Dk二 1 (2) 若 VrCM^Vi^VrCP 貝 1 Dk二0 (3) 若 V1〈 V r C Μ 則 D k 二-1 (4)
1 0467pi f.ptd 第14頁 589782 五、發明說明(12) 另一方面,子數位類比轉換器2 2由參考電壓產生器 電路14接收三種預定參考電壓VrP、Vcom以及VrM。其中 VrCP二VrP/4且VrCM二VrM/4 。例如,對方》某個Vr而言 Vc〇m = 0 、VrP = Vr 以及VrM二一Vr 。於此例中,VrCP = Vr/4 而 V C Μ = - V / 4。此外,子數位類比轉換器2 2、算術單元2 3 a 及2 3 b與放大器2及3組成算術電路2 5。子數位類比轉換器 2 2、算術單元2 3 a以及放大器2藉由執行下列方程式(5 )之 算術運算而產生正向輸出電壓V ο P,並且子數位類比轉換 器2 2、算術單元2 3 b以及放大器3藉由執行下列方程式(6 ) 之算術運算而產生負向輸出電壓V〇M。 V〇P=2 舴iP-RkP (5)
VoM=2 舴iM-RkM (6) 其中 若 Dk二1 則 RkP二VrP 及RkM二VrM , 若 Dk二0 則 RkP二Vcom 及RkM二Vcom , 若 Dk=-1 則 RkP=VrM 及RkM=VrP 。 以此方法,算術電路2 5使正向輸入電壓V i P與負向輸 入電壓V i Μ兩者加倍,並且根據子類比數位轉換器2 1所產 生之資料Dk增加或減少一預定電壓以產生正向輸出電壓 V ο P及負向輸出電壓V ο Μ,並將他們輸出至下一級類比數 位轉換器。最後一級類比數位轉換器ADm不需要算術電路 25 ° 其次,將繪示子類比數位轉換器2 1與算術電路2 5之 具體内部結構實例,並說明每一元件之操作。第4圖是子
1 0467pif. pld 第15頁 589782
五、發明說明(13) j =婁f位轉換裔2 1之結構圖,而第5圖是算術電路2 5之典 ^ 。此外,第6圖是子類比數位轉換器2 1及算術電 路=輛入之每一内部時脈信號之實例之時態圖。 ,第4圖中,子類比數位轉換器21包括兩個比較器31 之32乃控f電路33,而控制電路Μ為一種根據由比較器 山$ ^所付之比較結果來產生控制信號Sp、Sm及Sz以輪 出至子數位類比轉換器2 2之控制邏輯電路。 f,,SVi:V!P-ViM 且DVR 二VrCP-VrCM,則比較器31 批二:堅1與DVR/4並輸出指示比較結果之輸出信號SU至 牷f笔路33。比較器32比較電壓V!與-DVR/4並輸出指示 比較結果之輸出信號SL至控制電路33。例如,若 D 4〈 V i則柄出#號s U及S L兩者變為高準位(”高")。若 —DVR/4 $Vl $DVR/4則輸出信號SU變為低準位(”低”),且 =出信號SL變為”高”。若Vl< —DVR/4則輸出信號su 者變為π低"。 若輸入至控制電路33之輸出信號su及SL指示 DVR/UVi ,則控制電路33僅使控制信號sp變為,,高,,,並 使控制化號$1!1及Sz變為π低”。若輸出信號su及“指示 / 4 $ V 1 $ D V R / 4,則控制電路3 3僅使控制信號s z變為 "高",並使控制信號Sp及Sm變為"低"。若輸出信號su及 巧指示Vi< —DVR/4,則控制電路33僅使控制信號°Sm變為” 尚’並使控制信號Sp及Sz變為,|低"。 次若輸出信號SU及SL指示DVR/kVx ,則控制電路33輸 出貝料Dk = 1至錯誤校正器區段1 3 ;若輸出信號su及8乙指
10467pif. ptd 第16頁 589782 五、發明說明(14) 〜 ^ 示-DVR/4 $Vi $DVR/4 ,則控制電路33輸出資料“训 誤校正器區段13 ;且若輪出信號SU及SL指示Vi< dvr 飞 則控制電路33輸出資料Dh-l至錯誤校正器區段13。 , 其次,於第5圖中,子數位類比轉換器22 $括關〇8命 晶體〇1至〇6;算術單元233包括關〇3電晶體〇11至〇14盥= 谷feCl 1及C] 2 ;並且算術單元ub包括NM〇s ”包 Q24與電容器Γ21及C22。電容器⑴、⑴、⑶曰曰以 J相同電容。放大器2及3形成虛擬差動放大器敌 =器2及3之開關SW1及^2根據内部時脈產生器敌 輻出之内部時脈信號c K 1 〇執行切換。 汀 於=數位類比轉換器22中,由子類比數位轉換哭21 =入控制信號Sp至NMOS電晶體以及㈣之閘極;由子&比 位轉換益21輸入控制信號Sz至關⑽電晶體Q2及之 極,並且由子類比數位轉換器2 1 p & & Μ p # 甲 電晶體Q3M6之閘極。由“1^ = !^號^至刚8 考電壓vrP至NM0S電晶體Qr及考Q: \產、#生"區段14施加參 時,施力…電壓VrP至單4元J導通,S電晶體Qi ^M0S電晶體Q4時,施加參考=之笔容器^ ;當導 電容器C 2 2。 兒土 v r p至昇術早兀2 3 b之 由參考電壓產生器區段14竑 ^ 電晶體Q2_。當導通= 2壓^⑽至_8 芩考電壓Vc⑽至算術單元23 ^ 日守二分別施加 晶體Q3 1電容器C22。同樣地,由參考=二fC12及算術單元23b 考電壓VrM至NMOS電晶體q3及㈣,二產生益區段14施加爹 。當導通NMOS電
589782 五、發明說明(15) 時’施加參考電壓VrM至算術單元23a之電容器C12 ;當導 通NMOS電aa體Q6時’施加爹考電壓至算術單元23b之 電容器C22 。 其次’於算術單元2 3 a中,由内部時脈產生器區段】5 輸入内部時脈信號CK1至NMOS電晶體Q1 !之閘極;由内部 時脈產生器區段15輸入内部時脈信號CK2至_〇8電晶體 Q 1 2之閘極◦此外,倒置内部時脈信號C{(2之信號aa旦 知之反相信號CK2B被輸入至NMOS電晶體qi 3及qi 4夕問 極。當導通NMOS電晶體Q13及Q14時,施加正向輪 j v^p至電容器C11及C12。此時,導通NM〇s電晶體Qi^壓 斤開N Μ 0 S電晶體Q 1 2,因而短路放大器2,並以 亚且
電壓ViP充電電容器C11及C12,且執;;正向輸入本向輪入 之取樣。當執行正向輸入電壓Vlp之取樣時,將^壓Vi P 态2 ,因而放大器2不需要一個大的放大係數。、因足路放大 大器2藉由内部時脈信號CK丨0導通第1 此,放 s W 2並且短路反相放大器A J及A 2。 f '、幵關S W 1及 其次’放大器2導通NMOS電晶體Qn 、〇1 ? LV 並藉由導通NMOS電晶體Q12使電容哭cn連接至复戈Q14 , 由’二為:A器2需要—個*的放大係數'本所身。 大叩2耩由内部日寸脈信號CK丨〇斷 所以放 轉換器21之控制電路33輸出控 、 類 :通NM0S電晶體Q1、Q2以及Q3之;::所 體,因而施加參考電壓VrP、Vc〇m以及Μ之中電 比數位 並 SW2,並使反相放大器“及八2運作。此回時,不由子汗關SW1及
曰曰 個且唯
589782 五、發明說明(16) 二一倘至電容器C 1 2。以此方法,算術單元2 3 a執行預定 ,術運算,且放大器2執行預定放大,因而能夠得到正向 輸出電壓VoP 。 ° q 2 /脈產生器區段1 5輸入内部時脈信號C K 2至N Μ 0 S電晶體 ^q2之間極。此外,輸入反相信號CK2B至NM0S電晶體q2;^ %人4之問極。當導通NM0S電晶體Q23及Q24時,施加 Q2i 、電壓ViM至電容器C21及C22。此時,導通NM0S電 1 5 \同樣地,於算術單元2 3 b中,由内部時脈產生器區段 部$ ^内部時脈信號CK1至NM0S電晶體Q21之閘極;由内又 負向 晶體 教且
Tg及斷開NM〇S電晶體Q22 ,因而短路放大器3。因此, Θ輪、=輸入電壓ViM充電電容器C21及C22 ,並且執行負 時,= 之取樣。當執行負向輸入電壓ViM之取樣、 係麩。,路放大器3,因而放大器3不需要一個大的放大 气來之pHwf«大器3藉由内部時脈信號CKl〇導通第1圖 其$關S W 1及s w 2並且短路反相放大器A i及A 2。 f轉由ί、δ5η1器3導通NM〇S電晶體Q21、Q23以及Q24, 叱例t H電晶體Q22使電容器⑶連接至其本身。 ^ ^ 3 Μ 、放大器3需要一個大的放大係數,所1;2访 SW2 ’ i :内部時脈信號CKl0斷開第1圖所示之開關swi及 轉:使反相放大器A1 M2運作。之開關W = 墙、态2 1之抻制帝私0。 田卞痛比數位 ν Α路33輸出控制信號SP、Sz以及Sm -rf 鳆、1NM0S電晶體Q4 加π 亚 因而# a失土 Q5以及Q6之中一個所選擇之電晶 〜〜個$ 乡考電壓VrP、Vcoin以及VrM之中一個κ 私合^22。以此方法,算術單元23b執行預定
Dtd 第19頁 589782 五、發明說明U7) 算術運算,且放大器3執行預定放大,因而能夠得到負向 輸出電壓Vo Μ 。 以此方法,可使用第1圖所示之虛擬差動放大器電路 1於平行管道類比數位轉換器1 0當中類比數位轉換器電路 AD1至ADm之每一算術電路25。藉此方法,可達成平行管 道類比數位轉換器1 0之低耗電量及低電壓操作。 另一方面,若如以上所述使用於虛擬差動放大器電 路1之放大器2及3之特性不同,則共模電壓(即正向輸出 電壓V ο P與負向輸出電壓V ο Μ之平均值)可能波動。當類比 數位轉換器A D 1至A D m之數目m變大時,這些波動將變大, 因而平行管道類比數位轉換器1 0之效能變差。 因此,在類比數位轉換器電路AD1至ADm當中每隔預 定位置(例如,每隔三個位置或四個位置)就有一個類比 數位轉換器電路可能使用如第7圖所示以普通差動放大器 電路4 1取代虛擬差動放大器電路1之類比數位轉換器電路 4 0 。例如,可能使用第1 0圖所示之差動放大器電路1 0 0作 為差動放大器電路4 1 。以此方法,可以移除在類比數位 轉換器電路4 0之中所產生的共模電壓波動,並且可避免 平行管道類比數位轉換器1 0之效能變差。因此,縱使放 大器2及3之特性不同,也能夠達成平行管道類比數位轉 換器1 0之低耗電量及低電壓操作而不致於效能變差。 迄今所述,本發明第一實施例之虛擬差動放大器電 路利用一對同樣地放大一對輸入信號之放大器2及3而非 利用一訊差對來形成虛擬差動放大器電路1 。藉此方法,
10467pif.ptd 第20頁 589782 五、發明說明(18) 我們已經得到一種具有差動放大之功能並且達成在低電 壓操作同時也減少耗電量之電路。此外,我們已經使用 此種虛擬差動放大器電路1於平行管道類比數位轉換器1 0 之每一類比數位轉換器電路A D1至ADm之算術電路25。藉 此方法,我們已經達成對於類比數位轉換器減少耗電量 以及在低電壓操作。 於上述第一實施例中,當虛擬差動放大器電路1之放 大器2及3之特性變為不同時,可能會發生共模電壓波 動。然而,可安裝一種校正共模電壓波動之電路於上述 虛擬差動放大器電路。這種狀況將於下列第二實施例中 參照第8圖予以說明。 第二實施例 第8圖是本發明第二實施例之虛擬差動放大器電路之 繪圖。於第8圖中,與第1圖相同的元件將以相同的數字 表示,因此將省略其說明,而只說明與第1圖不同的部 分。第8圖與第1圖不同的地方在於虛擬差動放大器電路 5 〇具有電容器C 5 1至C 5 4、緩衝器電路5 5以及開關5 6。開 關5 6形成一開關區段。 於第8圖中,虛擬差動放大器電路5 0包括放大器2及 3、電容器C 5 1至C 5 4、作為源極輸出器之緩衝器電路5 5、 以及開關5 6 。串聯電容器C 5 1及C 5 2在放大器2輸出端與放 大器3輸出端之間。串聯電容器C 5 3及C 5 4在放大器2輸入 端與放大器3輸入端之間。連接緩衝器電路5 5之輸入端至
10467pif.pld 第21頁 589782 五、發明說明(19) 電谷為C 5 1及C 5 2之間的接點,而連接緩衝器電路5 5之輸 出立而至電谷為C 5 3及C 5 4之間的接點。經由開關$ 6施加參 考電壓Vcom至電容器C51及C52之間的接點。 乡 於此種結構中,電容器C51及C52之電容相同。當導 通開關56並且施加參考電壓Vcom至電容器C51及C52時, 笔谷為C 5 1及C 5 2將分別纟己憶參考電壓v c ◦ m與放大器2 '所輸 出之正向輸出電壓及放大器3所輪出之負向輸出電壓的平 均值(V ο P + V ο Μ ) / 2之間的差異值。其次,當斷開開關5 6並 且產生截止狀態時,將經由緩衝器電路5 5施加電容哭c 5 i 及C52所記憶之電壓差異至電容器C53及〇54 ,因而改σ變放 大器2及3之輸入電壓。 例如,當放大器2之輸出電壓V〇P與放大器3之輸出電 壓V〇M之平均值(VoP + V〇M)/2變成大於參考電壓Vc〇m時, 緩衝為電路5 5之輸入電壓V i B也將變成大於參考電壓 V c 〇 m。這個改變被傳送至緩衝器電路5 5之輸出端,並且 升高施加至電容器C5 3及C 54之電壓,因而傳送與所升高 之電壓等效之電荷至電容器C53 &C54。極性此時是位於 同時降低放大器2及3之輸入電壓之方向。亦即,虛擬差 =放大裔電路5 〇以能夠抑制正向輸出電壓與負向輸出電 I之平均值波動之方式操作。放大器2之輸出電壓v 〇 p與 放大器3之輸出電壓ν〇Μ之平均值(v〇p + v〇M)/2變成小於、參 考電壓Vc〇m之情況類似於平均值變大之情況,因而將省/ 略其說明。 其次,將參照第9圖說明使用第8圖所示之虛擬差動
l〇467pif.ptd 第22頁
發明說明(20) 效 :夏與第5圖相同的元件將:;;】=例子。於第9圖 5〇::日!。尤其’下文將詳細說明Λ予標示,因此將省 <操作。 兄明虛k差動放大器電路 :第9士圖中,開關56根據 術办°卩%脈信號c κ 1執行切換。如黛、產生器區段1 5所輸 电路25取樣正向輸入電壓Vi ρ α ^實施例所述,算 t[_門放大以使其電壓加倍。此外' 曾°輪入電壓V i Μ並將 數位轉換器2 1之控制信號將所電路2 5根據子類 <VrP、Vcoii]以及vrM之一。 電壓減去參考電 因此,算術電路2 5有兩個 电路25取樣正向輸入電壓Vip至又 土第一階段,算術 及C12並且取樣負向輸入電壓Vi/相^兩個電容器C11 C21及C22。在第二階段,算術電路25 ^ 兩個電容器 器電路當中所取樣之正向輪入 大虛/疑差動放大 VU以使其電壓加倍。算術電路25 ^負:向輸入電壓 行此兩階段操作。 ’ ^日守脈週期重複執 在取樣正向輸入電壓V i p及負向 段,NMOS電晶體Q1 ! *放大器2的輸入端及电輸土出m產 生一短路’而NMOS電晶體Q21在放大器3的輸入端及輸出 端之間產生一短路。此時,導通虛擬差動放大器電路5 〇 之開關5 6,以形成導電狀態,並且施加參考電壓v c 〇 m至 緩衝器電路5 5之輸入端與電容器C 5 1及C 5 2。此時,以下 列方程式(7)所定義之電壓Vcl充電電容器C51 ,並且以下
10467pif. ptd 第23頁 589782 五、發明說明(21) 列方程式(8)所定義之電壓Vc2充電電容器C52。
Vc1二Vc〇m-V〇S, (7 )
Vc2-Vcom-VoS, (8) 其中V c 1是電容器C 5 1端點之間的電壓,而V c 2是電容 器C 5 2端點之間的電壓,V 〇 S是短路放大器2之輸入端與輸 出端所得之正向輸出電壓V ο P,以及短路放大器3之輸入 端與輸出端所得之負向輸出電壓V〇Μ。 其次,斷開開關5 6而產生戴止狀態,在緩衝器電路5 5 輸入端之電荷Q將由方程式(9 )所定義,其中C是電容器 C51及C52之電容。 Q=C Vcl+Vc2) (9) 其次,斷開NMOS電晶體Q1 1及Q21而形成截止狀態。然 後由放大器2之輸出端輸出上述方程式(5 )所定義之正向 輸出電壓VoP,並且由放大器3之輸出端輸出上述方程式 (6 )所定義之負向輸出電壓V ο Μ。若此時在緩衝器電路5 5 輸入端之電壓為V 1 ,則電荷Q將由方程式(1 0 )所定義,這 是因為保持在緩衝器電路5 5輸入端的能量守恒。 Q二C Vl-VoP)+ C Vl-VoM) (10) 並且,上述方程式(7 )至(1 0 )意含下列方程式(1 1 )。 V卜Vc〇m二(V〇P + V〇M)/2-V〇S (11) 方程式(11)表示若正向輸出電壓VoP與負向輸出電壓 V〇Μ之平均值自V 〇 S變動,則V 1將以此變化量自上述參考 電壓變動。V 1經由緩衝器電路5 5被傳送至電容器C 5 3及 C 5 4之任一個之一端。
1 0467pif. ptd 第24頁 589782 五、發明說明(22) 其次,下文將說明斷開NMOS電晶體Ql 1及Q2 1以形成截 止狀態的情況。假設正向輸出電壓V ο P與負向輸出電壓 V〇Μ的平均值受到某個影響(例如,將一共同偏壓加至正 向輸入電壓ViP及負向輸入電壓ViM)而變成大於VoS。在 這種情況下,V 1以上述變化量大於參考電壓V c ◦ m,此變 化將被傳送至緩衝器電路5 5之輸出端,而升高施加至電 容器C53及C54之電壓。然後,與所上升之電壓等效之電 荷將被傳送至電容器Cl 1及C21 ,因而降低放大器2及3之 輸出電壓。 因此,於每一類比數位轉換器電路A D 1至A D m中,當正向 輸出電壓VoP與負向輸出電壓V〇M之平均值即將自VoS變動 時,能夠抑制此變動,而使得正向輸出電壓V ο P與負向輸 出電壓V ο Μ之平均值維持在預定參考電壓V c 〇 m。因此,使 用習知差動放大器電路之類比數位轉換器電路4 0對於類 比數位轉換器電路AD1至ADm而言並不需要,因而可獲得 能夠達到高效能及低耗電量之平行管道類比數位轉換 器。 以此方法,本發明第二實施例之虛擬差動放大器電路 使電容器C 5 1及C 5 2記憶參考電壓V c 〇 m與放大器2輸出電壓 V ο P及放大器3輸出電壓V ο Μ的平均值之間的電壓差異值, 並經由緩衝器電路5 5施加此電壓差異至電容器C 5 3及 C 5 4,且改變放大器2及3之輸入電壓以便消除此電壓差 異。藉此方法,可得到一種具有高效能、低耗電量以及 低電壓操作之虛擬差動放大器電路。
10467pif. ptd 第25頁 589782 五、發明說明(23) 上述第一實施例之開關s W 1及SW 2與上述第二實施例之 開關5 6皆繪示為電性元件所形成之開關。然而,這些開 關也可能是具有機械接觸點之開關。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。
10467pif.ptd 第26頁 589782 圖式簡單說明 第1圖是本發明第一實施例之虛擬差動放大器電路之 電路圖。 第2圖是一種使用第1圖之虛擬差動放大器電路1之管 道類比數位轉換器之方塊圖。 第3圖是第2圖之類比數位轉換器A D k之内部結構之方 塊圖。 第4圖是第2圖之子類比數位轉換器2 1之結構圖。 第5圖是第2圖之算術電路2 5之電路圖。 第6圖是第4圖及第5圖之子類比數位轉換器2 1及算術 電路2 5所輸入之每一内部時脈信號之時態圖。 第7圖是利用一普通差動放大器電路取代第5圖之虛 擬差動放大器電路1之繪圖。 第8圖是本發明第二實施例之虛擬差動放大器電路之 繪圖。 第9圖是將第8圖之虛擬差動放大器電路50使用在第5 圖之算術電路2 5之圖示。 第1 0圖是使用於管道類比數位轉換器之先前差動放 大器電路之電路圖。 圖式標記說明· 1 虛擬差動放大器電路 2 (單端)放大器 3 (單端)放大器 10 平行管道類比數位轉換器
10467pif.ptd 第27頁 589782 圖式簡單說明 1 1 S / Η 區段(取樣及保持電路) 12 類比數位轉換器區段 1 3 錯誤校正器區段 14 參考電壓產生器區段 15 内部時脈產生器區段 2 1 子類比數位轉換器 22 子數位類比轉換器 2 3 a 算術單元 2 3 b 算術單元 2 5 算術電路 3 1 比較器 3 2 比較器 33 控制電路 4 0 類比數位轉換器電路 4 1 (普通)差動放大器電路 5 0 虛擬差動放大器電路 55 緩衝器電路 56 開關 1 0 0 差動放大器電路
10467pif.ptd 第28頁

Claims (1)

  1. 589782 案號91133814 上〇〇U年Λ月 ^ • hi/'.坤 六、申請專利範圍 1. 一種虛 一第一放 一第二放 號相反 該 特性, 以輸出 2. 之一第 些第一 並且能 所得之 如申請 擬差動放大器電路,包括: 大器,用以放大一第一輸入信號;以及 大1§,用以放大其信號準位與該第一輸入信 二輸入信號, 及第一放大态具有相同電路結構,具有相同 夠對該些第一及第二輸入信號執行虛擬放大 信號。 專利範圍第1項所述之虛擬差動放大器電 路,更包括: 一第一及一第二電容,器,串聯在該些第一及第二放大器輸 出端之間; 一第三及一第四電容器,串聯在該些第一及第二放大器輸 入端之 間; 一緩衝器區段 的電壓至該些 一開關區段’ 器之間接點並 3.如申請 路,其中當由 ,用以傳 第三及第 用以施加 且根據所 專利範圍 該開關區 二電容器時,該些第一 一及第二放大器所輸出 經由該緩衝器區段施加 器 送該些第一及第二電容器之間接點 四電容器之間接點;以及 一預定電壓至該些第一及第二電容 輸入之控制信號來控制該電壓。 第2項所述之虛擬差動放大器電 段施加一預定電壓至該些第一及第 及第二電容器記憶該電壓與該些第 之電壓平均值之間的差異值,並且 該電壓差異至該些第三及第四電容 4 ·如申請專利範圍第1項、第2項或第3項所述之虛擬差動
    10467pifl.ptc 第29頁 589782 修正 曰 案號91133814 厶〇〇U年i月 六、申請專利範圍 放^态電路,其中該些第一及第二放大器為單端放大器。 .一種類比數位轉換器,該類比數位轉換器具有一個用以 j J及保持-對具有相反電壓準位之類比信號之取樣及保 ΐ f路以及複數個類比數位轉換器電路,每一該類比數位 轉換益電路將類比數位轉換由該取樣及保持電路所輸出之 二ΐ ί出:"虎並且以一預定方式對該#已類比數位轉換之 »〜行异術運异以輸出作為下一級類比數位轉換器電路 之一對輸入電壓,每一該類比數位轉換器電路包括: 子類比數位轉換器,用以類比數位轉換一對輸入電壓; ::ί ί f比轉換器1以數位類比轉換由該子類比數位 轉換裔所類比數位轉換之資料; 一 ί Ϊ早^用由該子數位類比轉換器所數位類比轉換 之電壓對於該對輸入電壓執行預定算術運算;以及 、 节^擬^ 5放ί為電路’包括一對放大器並且對於由該算 術早70所侍之母一電壓執行虛擬差動放大,該些放大器且 有相同電路結構及相同特性。 ° 6敗:ΐ Ϊ ϊ ί位轉換器,該類比數位轉換器具有-個用以 持電路以及:f具有相反電壓準位之類比信號之取樣及保 2 類比數位轉換器電⑬,每-該類比數位 轉比數位轉換由該取樣及保持電路所輸出之 jί : 以一預定方式對該些已類比數位轉換之 ==?算以輸出作為下一級類比數位轉換器電路 個包括: 得俠益電路之中至少有一 10467pifl.ptc 第30頁 589782 一案號91133814 >〇〇认年ι月ι曰
    六、申請專利範圍 一子類比數位轉換器,用以類比數位轉換一對輸入 一子數位類比轉換器,用以數位類比轉換由該 =, 轉換器所類比數位轉換之資料; 、 位 一算術單元,利用由該子數位類比轉換器所數位類 之電壓對於該對輸入電壓執行預定算術運算;以及 、 一虛擬差動放大器電路,包括一對放大器並且對於 術單元所得之每一電壓執行虛擬差動放大,該些放=: 有相同電路結構及相同特性。 ” 7·如申請專利範圍第6項所述之類比數位轉換器,豆 些類比數位轉換器電路之其他類比數位每X 個包括·· 电峪怠母一 -員比數位轉換器,謂員比數位轉換一對 類比轉換器,帛以數位類比轉換由該子類比數位 轉換器所類比數位轉換之資料; =元,由該子數位類比轉換器所數位類比轉換 之電壓對於該對輸入電壓執行預定算術運算;以及 、 一差動放大器電路,用以對於由該管 壓執行差動放大。 由及#術早凡所仔之每一電 8·如申請專利範圍第5項、第6項戋第7 TS私、f夕相u私 絲格-只次第7項所述之類比數位 轉換裔,其中该虛擬差動放大器電路 一第一及一第二電容器,串聯在兮 · 出端之間; n玄些第一及第二放大器輸 一第三及一第四電容器,串聯. 入端之間; n玄些第-及第二放大器輸
    l〇467pifl.ptc 第31頁 589782 __案號91133814 年工月v _g___修正__ 六、申請專利範圍 一緩衝器區段,用以傳送該些第一及第二電容器之間接點 的電壓至該些第三及第四電容器之間接點;以及 一開關區段,用以施加〆預定電壓至該些第一及第二電容 器之間接點並且根據所輸入之控制# 5虎來控制該電壓。 9.如申請專利範圍第8項所述之類比數位轉換器,其中當 由该開關區段施加_預定電壓至該些第一及第二電容器 時,該些第一及第二電容器記憶該電壓與該些第一及第二 放大裔所輸出之電壓平均值之間的差異值,並且經由該缓 衝器區段施加該電壓差異至該些第三及第四電容器。 I 0 ·如申請專利範圍第5項、第6項、第7項或第9項所述之 類比數位轉換器,其中該虛擬差動放大器電路之該些第〆 及第二放大器為單端放大器。 II ·如申請專利範圍第8項所述之類比數位轉換器,其中該 虛擬差動放大器電路之該些第〆及第二放大器為單端放夂 器。 一 1 2 ·如申請專利範圍第8 之類比數位轉換器,其 中該虛擬差動放大器電路、第一及第二放大器為草端 放大器。 又邊>
TW091133814A 2001-11-21 2002-11-20 Pseudo-differential amplifier and analog-to-digital converter using the same TW589782B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356074A JP3597812B2 (ja) 2001-11-21 2001-11-21 擬似差動増幅回路及び擬似差動増幅回路を使用したa/d変換器

Publications (2)

Publication Number Publication Date
TW200300630A TW200300630A (en) 2003-06-01
TW589782B true TW589782B (en) 2004-06-01

Family

ID=19167662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091133814A TW589782B (en) 2001-11-21 2002-11-20 Pseudo-differential amplifier and analog-to-digital converter using the same

Country Status (6)

Country Link
US (1) US6756928B2 (zh)
EP (1) EP1315290B1 (zh)
JP (1) JP3597812B2 (zh)
KR (1) KR100459086B1 (zh)
DE (1) DE60229032D1 (zh)
TW (1) TW589782B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749879B (zh) * 2020-11-19 2021-12-11 瑞昱半導體股份有限公司 導管式類比數位轉換器之控制電路

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033304A (ja) * 2004-07-15 2006-02-02 Daio Denki Kk スイッチトキャパシタ回路及びパイプラインa/d変換器
JP4372111B2 (ja) * 2005-03-04 2009-11-25 三洋電機株式会社 アナログデジタル変換器
US20060206744A1 (en) * 2005-03-08 2006-09-14 Nec Laboratories America, Inc. Low-power high-throughput streaming computations
JP4445995B2 (ja) 2007-12-10 2010-04-07 株式会社半導体理工学研究センター パイプライン型a/d変換装置
JP5238303B2 (ja) * 2008-03-12 2013-07-17 株式会社フジクラ 光受信装置
JP4505027B2 (ja) * 2008-05-08 2010-07-14 株式会社半導体理工学研究センター サンプルホールド回路及びa/d変換装置
JP4564558B2 (ja) 2008-09-19 2010-10-20 株式会社半導体理工学研究センター 差動演算増幅回路とそれを用いたパイプライン型a/d変換装置
US7847720B2 (en) * 2009-01-16 2010-12-07 Mediatek Inc. Pipelined analog-to-digital converter
JP2011015056A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 容量アレイ回路、およびアナログデジタル変換器
JP2011229128A (ja) * 2010-03-31 2011-11-10 Asahi Kasei Electronics Co Ltd パイプライン型a/dコンバータ
US20110254569A1 (en) 2010-04-15 2011-10-20 Peter Bogner Measurement apparatus
CN106374924B (zh) * 2015-07-22 2021-05-25 三星电子株式会社 使用模数转换器执行共模电压补偿的半导体器件
US11545989B2 (en) * 2017-12-22 2023-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Time-interleaved analog-to-digital converter
CN110324043B (zh) 2019-04-24 2023-06-30 矽力杰半导体技术(杭州)有限公司 伪差分模数转换器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340280B2 (ja) * 1995-05-25 2002-11-05 三菱電機株式会社 パイプライン型a/dコンバータ
JP3641523B2 (ja) * 1996-04-05 2005-04-20 株式会社ルネサステクノロジ パイプライン型a/dコンバータ
US5739781A (en) * 1996-10-08 1998-04-14 National Semiconductor Corporation Sub-ranging analog-to-digital converter with open-loop differential amplifiers
US6304206B1 (en) * 1997-09-04 2001-10-16 Sanyo Electric Co., Ltd. Voltage comparator, operational amplifier and analog-to-digital conversion circuit employing the same
US6172629B1 (en) * 1998-02-19 2001-01-09 Lucent Technologies Inc. Multistage analog-to-digital converter employing dither
US6249240B1 (en) * 1998-08-28 2001-06-19 Texas Instruments Incorporated Switched-capacitor circuitry with reduced loading upon reference voltages
US6288575B1 (en) * 1999-08-24 2001-09-11 Micron Technology, Inc. Pseudo-differential current sense amplifier with hysteresis
US6396429B2 (en) * 2000-01-07 2002-05-28 Analog Devices, Inc. Front-end sampling for analog-to-digital conversion
US6380806B1 (en) * 2000-09-01 2002-04-30 Advanced Micro Devices, Inc. Differential telescopic operational amplifier having switched capacitor common mode feedback circuit portion
US6489904B1 (en) * 2001-07-27 2002-12-03 Fairchild Semiconductor Corporation Pipeline analog-to-digital converter with on-chip digital calibration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749879B (zh) * 2020-11-19 2021-12-11 瑞昱半導體股份有限公司 導管式類比數位轉換器之控制電路

Also Published As

Publication number Publication date
DE60229032D1 (de) 2008-11-06
KR20030041847A (ko) 2003-05-27
EP1315290B1 (en) 2008-09-24
JP2003158434A (ja) 2003-05-30
TW200300630A (en) 2003-06-01
EP1315290A1 (en) 2003-05-28
KR100459086B1 (ko) 2004-12-03
JP3597812B2 (ja) 2004-12-08
US20030117308A1 (en) 2003-06-26
US6756928B2 (en) 2004-06-29

Similar Documents

Publication Publication Date Title
TW589782B (en) Pseudo-differential amplifier and analog-to-digital converter using the same
JP3737346B2 (ja) サンプルホールド増幅回路とそれを用いたパイプライン型ad変換器およびパイプライン型da変換器
US6909391B2 (en) Fully differential reference driver for pipeline analog to digital converter
US6879277B1 (en) Differential pipelined analog to digital converter with successive approximation register subconverter stages
JP4564558B2 (ja) 差動演算増幅回路とそれを用いたパイプライン型a/d変換装置
US6337651B1 (en) Pipeline analog to digital (A/D) converter with relaxed accuracy requirement for sample and hold stage
TWI344274B (en) Comparator and ad conversion circuit having hysteresis circuit
US7868810B2 (en) Amplifier circuit and A/D converter
CN110324042B (zh) 模拟数字转换器与方法
JP2006303671A (ja) 積分器およびそれを使用する巡回型ad変換装置
US10298216B2 (en) Semiconductor device
JP2017157939A (ja) スイッチドキャパシタ入力回路及びスイッチドキャパシタアンプ及びスイッチドキャパシタ電圧比較器
US6295016B1 (en) Pipeline analog to digital (A/D) converter with relaxed accuracy requirement for sample and hold stage
US8674869B2 (en) A/D conversion circuit
US9106240B1 (en) Multiplying digital-to-analog converter and pipeline analog-to-digital converter using the same
TW201924227A (zh) 用於在sar adc中實現寬輸入共模範圍而無額外的主動電路系統之方法及設備
WO2008065771A1 (fr) Commutateur d'échantillonnage et convertisseur a/n de type pipeline
JP5609522B2 (ja) アナログデジタル変換器および信号処理システム
Kim et al. A 10-b 120-MS/s 45ánm CMOS ADC using a re-configurable three-stage switched amplifier
JP2004312556A (ja) 差動増幅器及び同差動増幅器を具備する2段増幅器並びに同2段増幅器を具備するアナログ/ディジタル変換器
CN112751537B (zh) 线性放大电路和包含该电路的模数转换装置
Min et al. A Low-Power 2nd-Order Delta-Sigma ADC with an Inverter-Based Zero-Crossing Detector
Rao et al. Optimizing the number of bits/stage in 10-Bit, 50Ms/Sec pipelined A/D converter considering area, speed, power and linearity
JP2010021918A (ja) パイプライン型a/dコンバータ
JP3446881B2 (ja) パイプラインa/d変換器

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees