TW586232B - Trench MIS device with active trench corners and thick bottom oxide and method of making the same - Google Patents

Trench MIS device with active trench corners and thick bottom oxide and method of making the same Download PDF

Info

Publication number
TW586232B
TW586232B TW091117605A TW91117605A TW586232B TW 586232 B TW586232 B TW 586232B TW 091117605 A TW091117605 A TW 091117605A TW 91117605 A TW91117605 A TW 91117605A TW 586232 B TW586232 B TW 586232B
Authority
TW
Taiwan
Prior art keywords
trench
region
layer
insulating layer
substrate
Prior art date
Application number
TW091117605A
Other languages
English (en)
Inventor
Mohamed N Darwish
Christiana Yue
Frederick P Giles
Kam Hong Lui
Kuo-In Chen
Original Assignee
Siliconix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/927,143 external-priority patent/US6849898B2/en
Application filed by Siliconix Inc filed Critical Siliconix Inc
Application granted granted Critical
Publication of TW586232B publication Critical patent/TW586232B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

586232
發明領域 且特 晶體 背景 本發明係有關溝槽MIS(金屬-絕緣體—半導體)元件, 別有關適合南頻操作的溝槽金屬氧化物半導體場效電 某些金屬—絕緣體—半導體元件包括一位於自半導體基 如矽)表面向下延伸之溝槽中的閘。該元件中之電流係 要$垂直流動,所以胞元可被更緊密地填封。所有它者 均相等,此增加電流的承載能力且降低元件的接通電阻 (〇n〜resistance)。包含於金屬—絕緣體-半導體元件一般 員目中的元件,係包括金屬氧化物半導體場效電晶體 (MOSFETs)、絕緣閘二極電晶體(iGBTs)及金屬氧化物半導 體閘流體(M0S-gated thyristors)。 例如,溝槽金屬氧化物半導體場效電晶體可以對最適 線性信號放大及轉換而言很重要的高跨導(gm max)及低特定 接通電阻(RQn )。然而,高頻操作最重要的議題之一,係為 金屬氧化物半導體場效電晶體内電容的降低。該内電容包 括閘極對汲極電容(Cgd ),其亦被稱為回授電容()、輸 入電容(ciss)及輸出電容(cQSS)。第一圖為傳統n一型溝槽金 屬氧化物半導體場效電晶體1 〇的橫斷面圖。金屬氧化物半 導體場效電晶體10中,通常被生長於…基板上(&圖示) η-型外延(” N-ep i ”)層1 3係為為汲極。η—型外延層丨3可為 些許攙雜層,也就是Ν-層。Ρ-型主體區12可將η—型外延層 1 3與Ν+源極區域11隔開。電流沿溝槽丨9側壁垂直地流過通
586232 五、發明說明(2) 道(以虛線表示)。溝槽1 9之側壁及底部係被排列著薄閘絕 緣體1 5 (如二氧化矽)。溝槽1 9被填充可形成閘1 4之如攙雜 多晶矽的傳導物質。包含閘1 4之溝槽1 9係被覆蓋可為冊磷 石夕酸鹽玻璃(BPSG)的絕緣層16。與源極區域丨丨及主體區域 12做電子接觸者,係以通常為金屬或合金的導體I?來達 成。閘1 4被接觸於第一圖平面外側的第三因次。 金屬氧化物半導體場效電晶體1 〇的顯著優點,係為被 形成於閘14及η-型外延層13之間的一大重疊區域18 其促 使部份薄閘絕緣體1 5在汲極工作電壓下。大重疊限制了金 屬氧化物半導體場效電晶體10的汲極電壓定額,呈現長期 可靠度產出給薄閘絕緣體15,且大量增加金屬氧化物半導 體場效電晶體ίο的閘極對汲極電容(Cgd)。溝槽結構中,其 】:對;^極電容大於傳統側向元件者,會限制金屬氧化物 導體場效電晶體1 〇的轉換速度及其於高頻應用的使用。 提出此優點的一可能方法,係被說明於上述泉考申姓 = 09/59 1,179號中且被描繪於第二圖。第二圖為具有: 導體j u m一無攙雜多晶矽栓22之溝槽金屬氧化物半 -琢效電日日體20的橫斷面圖。除了被氧化層21隔離 仆ί:及被氧化層23隔離閘14之多晶矽栓22之外,金屬‘ 體場效均類似第一圖的金屬氧化物半導 層二;層多晶石夕栓22及氧化層23的夾 H L: 型外延層13之間之間的距離,藉此降低 閘極對汲極電容。 秸此降低 然而,某些情形下,其可較佳具有較溝槽19底部之無 586232 五、發明說明(3) 纔雜多晶矽甚至更多絕緣性的物質,以最小化閘極 電容甩於高頻應用。 T & 1 提出此議題的一可能方法,係被說明於上述彖 案第0 9/9 2 7, 320號中且被描繪於第三圖。第三圖為且^ 近溝槽19底部之一厚絕緣層31之溝槽金屬氧化物半導體 效電晶體30的橫斷面圖。金屬氧化物半導體場效電曰曰 -圖的金屬氧化物半導體場效電晶體1〇及第:圖的 金屬乳化物半導體場效電晶體2〇。然而,僅溝槽19之 被排列著薄閑絕緣體15(如二氧化石夕)。不像第_ 氧化物半導體場效電晶體10,厚絕緣層3 二 矽^ =於第三圖之金屬氧化物半導體場效電晶體:化= 。厚絕緣層31可隔離閉“及η_型外延層13。= 圖之僅薄閘絕緣體15隔離閘14及0_ ,所產生的問題。厚絕緣層31提供如第二卜二 有效達成的絕緣體。#第二圖的金屬氧化:半 ==電晶體20相較下,#絕緣層31減低了金 丰導體场效電晶體30的閘極對沒極電容。 屬虱化物 門的^圖!1解決之道係具有主體11域12及厚絕緣声31之 曰 1的一溥閘氧化區域24。此因主體 品、曰之 3!上緣並不自行校準1主體區= 厚絕緣層 金屬氧化物半導體場效層31 阻。η及问臨界電壓。因為該校準難以 门通電 Τ法限度可產生薄閘氧化區域24中“=:所以充分 登。薄閘區域2 4亦存在於第-_ > + 、巧極對汲極重 於第-圖之主體區域12及多晶矽栓 586232 五、發明說明(4) 一 22之間的金屬氧化物半導體場效電晶體2〇中。因此,閘極 對汲極電容對高頻應用而言仍為一項問題。於是,一具有 · 被降低閘極對汲極電容(Cgd)及較高頻效能的溝槽金屬氧化 物半導體場效電晶體是令人期待的。 v 概要 依據本發明,一種金屬—絕緣體—半導體(MIS)元件,包括-; 具有從該基板表面延伸入該基板之一溝槽的一半導體基 .„ 板。第一傳導型的一源極區域,係鄰接該溝槽側壁及該基 板表面。相對於該第一傳導型之第二傳導型的一主體區 域,係鄰接該源極區域及該溝槽之該側壁及底面的第一部 份。該第一傳導型之一汲極區域,係鄰接該主體區域及該 溝槽底面的第二部份。該溝槽被排列著至少沿鄰接該主體 區域之該側壁及沿鄰接該主體區域底面之該第一部份的第 一絕緣層’該溝槽亦被排列著沿該溝槽底面之第二部份的 第二絕緣層。該第二絕緣層被耦合至該第一絕緣層,且該 第二絕緣層較該第一絕緣層為厚。 該金屬-絕緣體-半導體元件之製造方法的實施例中,包括 一側壁、一角隅面及一中央底面之一溝槽係被形成於一基 板中。一厚絕緣層係被沉積於中央底面。一薄絕緣層係被f 形成於側壁及角隅面上。一閘係被形成於薄絕緣層附近及 以上,且鄰近該溝槽中之薄絕緣層,以形成沿至少一部份. 角隅面的一活性角隅區域。 · 一實施例中’厚絕緣層係使用被沉積及蝕刻藉以暴露該溝 ·
第12頁 586232 五、發明說明(5) : 槽之底面之中央部份的幕罩層而被沉積。該厚絕緣層係被 沉積及蝕刻以形成一暴露部分幕罩層於側壁上,留下一部 份厚絕緣層於該溝槽底面的中央部份上。該幕罩層被移 除,暴露該溝槽之側壁及角隅面,而留下部份厚絕緣層於 該溝槽底面的中央部份上。 該厚絕緣層可將溝槽閘與隔離該溝槽底部的汲極傳導區 域,,,性角隅區域可使閘極對汲極於薄閘絕緣體區域中 的重豐最小化。此產生被減低的閘極對汲極電容,使金屬 -絕緣體-半導體元件符合本發明,如溝槽金屬氧化物半導 體場效電晶體,適用於高頻應用。 $代實施例中,該溝槽被排列著一氧化層。該氧化層包括 一第一區段,一第二區段,及一位於該第一及第二區域之 間的轉換區域。該第一區段鄰接至少部份該元件之汲極區 ,,且該第二區段鄰接至少部份該元件之主體區域。該第 區#又中之該氧化層的厚度大於該第二區段中之該氧化層 =厚度。該轉換區域中之該氧化層的厚度從該第一區段丄 =第二區段逐漸降低。該主體區域及該汲極區域之間的pN 妾面終止於鄰接該氧化層之該轉換區域的該溝槽處。 發明說明 電曰^,為一依據本發明之溝槽金屬氧化物半導體場效 電:ii—實施例的橫斷面圖。金屬氧化物半導體場效 "外延^epi")層】3係為為汲極。卜型主體區m 586232 五、發明說明(6) η-型外延層1 3與N+源極區域11隔開。主體區域丨2被擴散沿 溝槽1 9側壁,通過角隅區域2 5及部份沿溝槽丨9底部。電流 沿溝槽19側壁及角隅區域25周圍垂直地流過通道(以虛線 表示)。
溝槽1 9之側壁及角隅區域2 5係被排列著薄閘絕緣體丨5 (如 二氧化矽)。氧化栓33被放置溝槽1 9底部中央。溝槽19被 填充可形成閘1 4之如攙雜多晶矽的傳導物質。閘丨4延伸入 氧化栓33及閘絕緣體15間之溝槽19的角隅區域25。在此包 括閘1 4及氧化栓3 3的溝槽1 9係被覆蓋可為蝴填矽酸鹽玻璃 (BPSG)的絕緣層16。與源極區域丨丨及主體區域12做電子接 觸者,係以通常為金屬或合金的導體丨7來達成。閘丨4被接 觸於第四圖平面外側的第三因次。
第四圖的溝槽金屬氧化物半導體場效電晶體係使用氧化栓 33將閘14與η_型外延層13隔離,藉此降低閘極對汲極電容 (Cgd)因為主體區域1 2的擴散可被極佳控制通過角隅區域 25,所以促使通道沿角隅區域25周圍延伸至溝槽19底部, ^排除薄閘氧化區域中之明顯閘極對汲極重疊(也就是見 第三圖中之薄閘氧化區域24)。因為橫向擴散較垂直擴散 慢六到十倍,所以主體區域12及n-型外延層13之間的叩接 面可與薄閘絕緣體15及氧化栓33之間的轉換一致。因此, 氧化栓33及活性角隅區域25可以接通電阻R〇n最小影響來最 小化角隅區域25,使溝槽金屬氧化物半導體場效電晶體4〇 可用於高頻應用。 第五圖A-P為描繪依據本發明用於製造如第四圖之溝槽金
586232
屬氧化物半導體場效電晶體40之溝槽金屬氧化物半導體場 效電晶體之方法之一實施例的橫斷面圖。如第五圖A所 示,該方法係以被生長於高度攙雜N+基板上(無圖示)的低 度攙雜η-型外延層41 3( —般約8毫微米厚)。塾氧化物 450 (如1 00-20 0Α)係以攝氏950度之乾氧化作用1〇分鐘被熱 生長於η_型外延層413上。如第五圖Β所示,氮化層452 (如 20 0-300 A )係以化學汽相沉積(CVD)被沉積於墊氧化物45〇 上。,如第五圖C所示,氮化層452及墊氧化物450被模製藉 以形成溝槽41 9將被放置的一開口 4 5 3。溝槽4 1 9通常使用 如反應離子蝕刻(RIE)之乾電漿蝕刻被蝕刻穿透開口 453。 溝槽41 9可為約〇 · 5 -1 · 2宅微米寬及約1 - 2毫微米深。 如第五圖D所示,第二墊氧化物454 (如1〇〇_2〇〇A)係被熱 生長於溝槽4 1 9的側壁及底部。如第五圖e所示,厚氮化層 4 5 6 (如1 〇 〇 〇 - 2 0 0 0 A )係以化學汽相沉積被保角沉積於溝槽 419側壁及底部及氮化層452上部。氮化.層456係利用如使 用具氮化層4 5 6高選擇性之蝕刻劑的反應離子蝕刻之定向 乾電漿钱刻而被蝕刻於墊氧化物45 〇上。如第五圖F所示, 氮化飯刻使氮化層4 5 6沿溝槽4 1 9側壁留下間隔,而暴露墊 氧化物454於溝槽419的中央底部部份。氮化層456可能被 過度敍刻至氮化層4 5 2從墊氧化物4 5 0上部被移除的程度。 如第五圖G所示’厚絕緣層433 (如2-4毫微米)接著被沉 積。该沉積方法係依據如化學汽相沉積之傳統沉積技術而 被選擇為非保角、填充溝槽419及溢流於^型外延層413 上。例如’厚絕緣層433可為低溫氧化物(LTO)、磷矽酸鹽
第15頁 586232 五、發明說明(8) 玻璃(PSG)、领碟矽酸鹽玻璃(BpsG)或另一絕緣物質。 絕緣層433通常藉由執行使用絕緣層433對氮化層456具高 選擇性之餘刻劑的乾蝕刻而被蝕刻回原狀。如第五圖Η所 示’絕緣層433被敍刻回溝槽419直到僅約〇·卜〇· 2毫微米 維持於溝槽419中。 氣化層456通常藉由執行使用氮化層456對絕緣層433具高 選擇性之蝕刻劑的溼蝕刻而被移除。墊氧化物4 5 〇亦通常 藉由屋钱刻而被移除。此溼蝕刻可移除小但明顯部份的絕 緣層433,而留下如如第五圖I所示的結構。
某些實施例中,約5 〇 〇 Α之虧本的閘氧化物(無圖示)可藉 由約攝氏1 0 5 0度之乾氧化被熱生長2 〇分鐘,且被溼蝕刻移 除以清除溝槽4 1 9的側壁。該虧本閘氧化物的溼蝕刻係被 保持最小藉以最小化絕緣層4 3 3的餘刻。 如第五圖J所示,薄閘絕緣體41 5(如約30 0-1 〇〇〇 A厚)接著 被形成於溝槽419側壁及n-型外延層413上表面上。例如, 薄閘絕緣體415可為使用攝氏1〇50度之乾氧化被熱生長2〇 分鐘的矽氧化層。
如第五圖Κ所示,傳導物質4 5 6係藉由可能為低壓化學汽相 >儿積(LPCVD)之化學汽相沉積而被沉積,藉以填充溝槽419 並溢流通過薄閘絕緣體415最上表面。例如,傳導物質456 可為在原位被攙雜的多晶矽,或被隨後植入及退火的未被 攙雜的多晶矽層或替代傳導物質。如第五圖L所示,傳導 物質4 5 6通常使用反應離子蝕刻來蝕刻,直到物質4 5 6的上 表面約與n—型外延層413上表面同處相同位準,藉此形成
第16頁 586232 五、發明說明(9) 閘4 1 4。例如,n—型金屬氧化物半導體場效電晶體中,閘 4 1 4可為具1 〇2〇 /立方公分之攙雜濃度的多晶矽層。某些實 施例中,傳導物質456可被蝕刻通過溝槽419上部,藉此使 閘4 1 4凹陷以最小化閘極對源極重疊電容。 使用已知的植入及擴散方法,p—型主體區域4丨2係被形成 如如第五圖Μ所示的η-型外延層413。主體區域4 12被擴散 使Ρ-型主體區域41 2及η-型外延層4 1 3剩餘物之間的ΡΝ接面 係被放置於厚絕緣層433及薄閘絕緣體415之間的介面附 近。此介面產生於沿溝槽41 9底部的位置,其主體區域41 2 的擴散係被溝槽41 9下之橫向擴散較垂直擴散更深入η 一型 外延層4 1 3所掌握,使得控制主體區域4 1 2的擴散更容易 些° 如第五圖Ν所示,使用已知的植入及擴散方法,Ν+源極區 域411係被形成於η-型外延層413。 如第五圖0所示,可能為硼磷矽酸鹽玻璃之絕緣層4丨6係被 化學汽相沉積方式沉積於η-型外延層4 1 3及閘4 1 4上。如第 五圖Ρ所示,絕緣層4 1 6係通常使用乾蝕刻被餃.刻藉以暴露 Ρ-型主體區域412及Ν+源極區域411。與主體區域丨2及源極 區域11做電子接觸者,係以通常為被沉積(如藉由物理汽 相沉積)之金屬或合金的導體417來達成。閘14被電子接觸 於第五圖Ρ平面外側的第三因次。與汲極(無圖示)做電子 接觸者’係被達成於η-型外延層4 1 3被生長之Ν+基板(無圖 示)的對面。 此方法促使被放置溝槽419底部之厚絕緣層433的合併,藉
第17頁 586232 五、發明說明(ίο) 以降低具最小非預期效應或生產考量的閘極對汲極電容。 例如,來自生長一厚氧化物於溝槽4丨9凹陷底部之應力, 係可藉由沉沒該氧化物而非熱生長它來避免。此外,藉由 保持角隅區域2 5的活性(也就是金屬氧化物半導體場效電 晶體通道之部份),則金屬氧化物半導體場效電晶體3〇之 薄閘氧化物區域24中的閘極對汲極重疊區域係可被避免。 此使閘極對沒極電容最小化。
第/、圖為一依據本發明之溝槽金屬氧化物半導體場效電晶 體6 0之替代實施例的橫斷面圖。金屬氧化物半導體場效電 晶體60與第四圖之金屬氧化物半導體場效電晶體4〇具有許 多相似之處。特別是,溝槽1 9之側壁及角隅區域2 5係被排 列著薄閘絕緣體1 5,而氧化物栓3 3被中央放置於溝槽1 9底 部。然而於第六圖中’主體區域12及η-型外延層13之間的 ΡΝ接面係被放置氧化物栓33及薄閘絕緣體1 5之間介面不如 第四圖之金屬氧化物半導體場效電晶體40般的近。事實 上,主體區域1 2及η-型外延層1 3間之ΡΝ接面的位置可有所 不同。如以上參考第五圖Μ所討論者,主體區域1 2係利用 已知植入及擴散技術來形成。第六圖之溝槽金屬氧化物半 導體場效電晶體60的結構可藉由改變與主體區域12有關之 擴散情況使該擴散於主體區域1 2抵達氧化物栓33之前停止 來製造。 與第一圖之溝槽金屬氧化物半導體場效電晶體1 0、第二圖 之溝槽金屬氧化物半導體場效電晶體20及第三圖之溝槽金 屬氧化物半導體場效電晶體3〇相較,第六圖之溝槽金屬氧
第18頁 586232
=物半導體場效電晶體60呈現被降低的閘極對汲極電容。 第一圖之溝槽金屬氧化物半導體場效電晶體丨〇因遍佈^最 區域18之薄閘絕緣體15而具有大的閘極對汲極電容。$ 區域24因垂直擴散之快速特性而較大,所以第二圖之溝样 金屬氧化物半導體場效電晶體20及第三圖之溝槽金屬氧^ 物半導體場效電晶體30因遍佈薄閘氧化區域24之薄閘絕緣 體1 5而具有大的閘極對汲極電容。然而,因為薄閘氧化區 域24之主體區域12的擴散可被溝槽19下之橫向擴散而非^ 深入η-型外延層丨3之垂直擴散所掌握,所以第六圖之溝槽
金屬氧化物半導體場效電晶體6〇中之薄閘氧化區域24的範 圍可被最小化。
第七圖為一依據本發明之溝槽金屬氧化物半導體場效電晶 體7 0之替代貫施例的橫斷面圖。金屬氧化物半導體場效電 晶體70與第四圖之金屬氧化物半導體場效電晶體4〇具有許 多相似之處。特別是,溝槽1 9之側壁及角隅區域2 5係被排 列著薄閘絕緣體1 5,而氧化物栓3 3被中央放置於溝槽1 9底 部。第四圖之金屬氧化物半導體場效電晶體4 〇中,氧化物 栓3 3因溝槽1 9底部之累積層中之伸展電阻的增加,而可增 加金屬氧化物半導體場效電晶體4 〇的接通電阻。然而,第 七圖之金屬氧化物半導體場效電晶體7〇係包括位於溝槽! 9 底部之咼攙雜區域7 3,藉以更有效地伸展電流及最小化微 量的主體區域1 2。第五圖Μ所示之擴散方法期間,高攙雜 區域73亦有助於自我校準ρ—型主體區域12及n—型外延層13 之間的Ρ Ν接面對齊厚絕緣層4 3 3的邊緣。如第五圖C所示之
第19頁 586232 五、發明說明(12) 溝槽1 9破為^ a丨+ & 之後,r =j之後’如第五圖D所示之墊氧化物454被形成 她L 或如第五圖F所示之氮化物層4 5 6被蝕刻之後’高攙 雜區域73可, ^ 稽田植入如砷或磷的η-型攙雜物來創造。因 ^化物检3 3可最小化閘極對汲極電容,而高攙雜區域 私T、#小化接通電阻’產生適合高頻應用的溝槽金屬氧化 物半導體場效電晶體7〇。 # 如^述為主體區域於橫向擴散地較垂直方向為慢,所 ^置問氧化物層之厚及薄區段間之轉換區域於溝槽底 4 :係有利於校準主體區域及n_型外延層間之pN接面及轉 換區域。依據本發明之另一變異中,此校準更進一步藉由 形成閘氧化物層之厚及薄區段間的一轉換區域來改善。 。亥方法可相等於經由上述被描繪於第五圖F之步驟,其氮 化姓刻沿溝槽419側壁留下氮化幕罩層456之間隔,而暴露 溝槽41 9中央底部份的墊氧化物4 5 4。然而,下一步驟中, 厚氧化物層係藉由熱方法而非藉由如化學汽相沉積來生 長。當此被達成時,熱氧化物消耗部份矽且將氮化物層邊 緣下部切除,促使氮化物層”脫除,,溝槽表面。此形成類似 通常被用來創造場氧化物區域於半導體裝置上表面上之傳 統LOCOS(矽的局部氧化)方法中的”鳥嘴”。
第八圖顯示熱氧化物層8 2被生長於溝槽4 1 9底部之後的結 構。该結構係被詳細顯示於第九圖A。熱氧化物層8 2的邊 緣已推擠氮化物層4 5 6之下結果變傾斜或逐漸變小。 改變氮化物層的厚度可促使吾人放置氧化物層之邊緣於不 同的位置。第九圖A顯示一相對較厚的氮化物層456,及氧
第20頁 586232 五、發明說明(13) 化物層82之邊緣被放置於溝槽419底部。第九圖8顯示一較 薄的氮化物層84,及被實際放置於溝槽419角隅之氧化物 層82的邊緣。第九圖C顯示更薄的氮化物層86,及被放置 於溝槽4 1 9側壁之氧化物層8 2的邊緣。 類似方式中’氧化物層之邊緣藉由改變氮化物層的厚度而 被放置於各種中間點。氮化物層的厚度與溝槽4丨9的寬产 或深度無關。例如,若氮化物層的厚度範圍為15〇〇至X 2 0 0 0,則氧化物層82之邊緣最可能被放置於溝槽419底 部。若氮化物層為500或更薄,則氧化物層82之邊緣通 被放置於溝槽41 9側壁。 ㈣82可藉由攝氏1 000度至1 200度溫度範圍加 熱石夕、洁構2 0分鐘至一小時來生長。 ί in ϊί長後’氮化物層可藉由氮化蝕刻劑之蝕刻 來移除。為確保所有氮化物均被 1 0 0 0度被執行5-10分鐘,Μ以4务^ f退火了以攝氏 除氧化物㈣㈣顯部份乳化㈣減i化物而不移 可被生長,溝槽可被填充如多晶石夕之間物 失者笛$被描繪於第五圖1 -ρ的其他步驟可被執行。 /12及:々,卜型攙雜物的擴散係被控制,使Ρ-型主體 漸降:之"^ ί層「區:413之間的ΡΝ接面與氧化物層厚度逐 定鳥:。區域内的溝槽交錯。因此,接面不需被 本發明Λ實施例來製造的金属氧化物半導 曰曰_ 0。金屬氧化物半導體場效電晶體1 〇 〇包括
第21頁 586232 五、發明說明(14) ' ' 被放置溝槽104中之被排列著一氧化物層的一閘極1〇2。問 極1 0 2上表面被凹陷入溝槽1 〇 4。該氧化物層包括一依據本 發明被形成且大致被放置溝槽104底部之厚區段1〇6,及鄰 接溝槽104側壁的相對較薄區段11〇。厚區段1〇6及薄區段 11 0之間係為轉換區域1 〇 8,其氧化物層厚度從厚區段1 〇 6 至薄區段110逐漸降低。金屬氧化物半導體場效電晶體1〇Q 亦包括形成具有η-型外延層區域116iPN接面114的?—型主 體區域112 οΡΝ接面114與轉換區域1〇8中之溝槽1〇4交錯。 如上述,轉換區域108的位置可藉由製造金屬氧化物半導 體場效電晶體1 0 0期間改變氮化物層的厚度來改變。 金屬氧化物半導體場效電晶體100亦包括一N+源極區域 118、一覆蓋閘極102的厚氧化物層12〇及一與p-型主體區 域112及N+源極區域118做電子接觸的金屬層122。如虛線 所示,金屬氧化物半導體場效電晶體丨〇〇可包含一位於溝 槽104底部的高攙雜區域7 3。如第五圖c所示之溝槽被形成 之後,如第五圖D所示之墊氧化物被形成之後,或如第五 圖F所不之氮化物層被蝕刻之後,高攙雜區域73可藉由植 入如砷或磷的η-型攙雜物來創造。 依據本實施例製造之元件會造成放置ρΝ接面於ρ_型主體區 域及η-型外延層之間較大的誤差邊際。例如,與第四圖所 不的金屬氧化物半導體場效電晶體4〇相較,主體_汲極接 面不需被精確地放置於氧化物栓33的銳利邊緣。此外,因 為溝槽角隅處之氧化物的厚度可在不需增加通道區域附近 之閘氧化物的厚度下而被增加且提升臨界電壓,所以金屬
第22頁 586232 五、發明說明(15) 氧化物半導體場效電晶體的崩潰特性係被增強 上述實施例被預期為描述例且不限於本發明的 許多額外的實施例對熟練技術人士均可理解。 明的結構及方法可使用預期形成〉冓槽閘及溝槽 之絕緣層的任何類型之金屬-絕緣體—半導體元 極對汲極重疊區域最小。同時,各種適當的絕 質均可被使用,且本發明亦可應用至p_型 體場效電晶體。太恭日日作:- i ^ 努双电曰曰篮本發明僅受以下申請專利範圍 概括原則。 例如,本發 外側區域間 件,而使閘 緣或傳導物 氧化物半導 的限制。
第23頁 586232
第25頁

Claims (1)

  1. 586232 92. 9. 29 _案號91117605 P年?月 日 修正_ 六、申請專利範圍 1. 一種金屬-絕緣體-半導體元件,包括: 一半導體基板,包括從該基板表面延伸入該基板的一溝 槽; 第一傳導型的一源極區域,鄰接該溝槽之側壁及該表面; 相對於該第一傳導型之第二傳導型的一主體區域,鄰接該 源極區域及該溝槽之該側壁及底面的第一部份;及 該第一傳導型之一汲極區域,鄰接該主體區域及該溝槽之 該底面的第二部份, 其中該溝槽被排列著至少沿鄰接該主體區域之該側壁及沿 鄰接該主體區域之該底面之該第一部份的第一絕緣層,且 其中該溝槽被排列著至少沿該溝槽之該底面之該第二部份 的第二絕緣層,該第二絕緣層被耦合至該第一絕緣層,且 該第二絕緣層較該第一絕緣層為厚。 2. 如申請專利範圍第1項的元件,進一步包括一被耦合至 該第一絕緣層的閘極區域,且該第二絕緣層位於該溝槽之 内。 3. 如申請專利範圍第2項的元件,其中該閘極區域包括多 晶碎。 4. 如申請專利範圍第1項的元件,進一步包括該第一傳導 型之一高傳導區域,其被形成於鄰接至少該溝槽之該底面 之該第二部份的該汲極區域中。 5. 如申.請專利範圍第1項的元件,其中該第一絕緣層延伸 至該底面之該第一部份及該底面之該第二部份之間的介 面0
    第26頁 1 _1 號 —修JL 曰 六、申請專利範圍 6. 如申請專利範圍第5項的元件,复 該底面之該第一部份及該底面之节第二^ :區域延伸至 7. 如申請專利範圍第5項的元 ^弟^—卩伤之間的介面 沿該溝槽之該底面之該第一,〃、中該主體區域延伸至 8. 如申請專利範圍第】項弟的元;^ 一氧化物。 /、中δ亥弟一絶緣層包括 其中該第二絕緣層包括 其中5亥弟一絕緣層包括 其中該金屬-絕緣體—半 9. 如申請專利範圍第〗項的元件 一氧化物。 10. 如申請專利範圍第丨項的元件 一複數層絕緣層。 1」.如申請專利範圍第lJM的元件 22 μ、# ^ 、,屬乳化物半導體場效電晶體。 槽t㈣基板’包括從該基板表面延伸人該基板;^· 第一傳導型的一源極區域, 相對於該第一傳導型之第二溝槽之側壁及該表面; 槽之該側壁及底面的周圍部份;及 ;;底面的沒極區域’鄰接該主體區域及該溝槽之 列著至少沿鄰接該主體區域之該側壁及沿 苴中;溝ϊ ,ΐ底面之該周圍部份的第-絕緣層,且 的第二絕緣芦,“二=槽之該底面之該中央部份 Μ第一、、、巴緣層被耦合至該第一絕緣層,且 第27頁 586232 曰 修正 號 91117fif)5 六、申請專利範圍 该第二絕緣層較該第一絕緣層為厚·及 = = 絕緣層及該第二絕緣層而位於該溝槽之内 氧化物半導體 其被形成於鄰;至型之-高傳導區域, 極區域中。 溝槽之s亥底面之該中央部份的該汲 1 5.如申請專利範圍 場效電晶體,其中=貝的溝槽閉化金屬氧化物半導體 份及該底面之該中::2 2 5伸至該底面之該周圍部 16.如申請專利範圍央二伤之間的介面。 場效電晶體,J:中項的溝槽閉化金屬氧化物半導體 及該底面之該Ϊ央;5 域延伸至該底面之該周圍部份 η•如申請專利二之間的介面。 場效電晶體,其中#項的溝槽閘化金屬氧化物半導體 該周圍部份的第—=離體區域延伸至沿該溝槽之該底面之 1 8.如申請專利範圍 場效電晶體,1中)項的溝槽問化金屬氧化物半導體 19•如申請專利範圍乂 —絕緣層包括—氧化物。 場效電晶體,i中項的溝槽閘化金屬氧化物半導體 20.如申請專利、二上二絕緣層包括一氧化物。 場效電晶體,#中Λ12項的溝槽問化金屬氧化物半導體 弟一絕緣層包括一複數層絕緣層。
    586232 2^\,一胃種溝槽閘化金屬氧化物半導體場效電晶體,包括: 二:導體基板,包括從該基板第一表面延伸入該基板的一 ^曰,該溝槽包括一側壁、一角隅面及一中央底面·, ,一傳導型的一源極區域,鄰接該溝槽之該侧壁及該第一 表面; 相對於該第一傳導创 > 黛-眉i丨 哥令生之弟一傳V型的一主體區域,鄰接該 源,區域及該溝槽之該侧壁及該角隅面;及 ^,傳導型之-汲極區域,鄰接該主體區域及該溝 该中央底面, y = g #被㈣著至少沿鄰接該主體區域之該側壁及沿 1μ ,域,該角隅面的第一絕緣層,且其中該溝槽 [|者至少沿該溝槽之該中央底面的第二絕緣層,該第 一::巴ϊ:ί耦合至該第一絕緣層,且該第二絕緣層較該第 一絶緣層為厚;及 被耦合至㈣-絕緣層及該第二絕緣層而位於該溝槽之内 的閘極區域’以形成沿至少部份該角隅面的活 區。 2 2 ·如申凊專利範圍第2!項的溝槽閘化金屬氧化物半導體 場效電晶體,it-步包括該第—傳導型之—高傳導區域, ^被形成於鄰接至少該溝槽之該中央底面的該波極區域 2 3.如申凊專利範圍第2 1項的溝槽閘化金屬氧化物半導體 場效電晶體,|中該第―絕緣層延伸至該角隅面及該中央 底面之間的介面。 ' 586232 _案號91117605_年?月 曰 修正_ 六、申請專利範圍 2 4.如申請專利範圍第23項的溝槽閘化金屬氧化物半導體 場效電晶體,其中該主體區域延伸至該角隅面及該中央底 面之間的介面。 2 5.如申請專利範圍第2 3項的溝槽閘化金屬氧化物半導體 場效電晶體,其中該主體區域延伸至沿該溝槽之該角隅面 的第一距離。 2 6. —種製造一金屬-絕緣體-半導體元件的方法,包括: 提供一半導體基板; 形成一溝槽於該基板中,該溝槽包括一侧壁及一底面; 沉積一幕罩層於該侧壁及該底面上; 餘刻該幕罩層以暴露該溝槽之該底面的中央部份; 沉積一厚絕緣層於該溝槽中; 蝕刻該厚絕緣層以形成該幕罩層之暴露部份於該側壁上, 而留下部份該厚絕緣層於該溝槽之該底面的該中央部份 上; 移除該幕罩層以暴露該溝槽之該側壁及該底面的周圍部 份,而留下該厚絕緣層之該部份於該溝槽之該底面的該中 央部份上; 形成薄絕緣層於該側壁及該底面之該周圍部份上;及 形成一閘於該薄絕緣層之該部份周圍及之上,該閘鄰接該 溝槽中之該薄絕緣層。 2 7.如申請專利範圍第2 6項的方法,其中該形成一薄絕緣 層係包括熱氧化該側壁及該底面之該周圍部份。 2 8.如申請專利範圍第27項的方法,進一步包括:
    586232 _案號91117605_U年1月 曰 修正_ 六、申請專利範圍 在形成一薄絕緣層之前,形成一薄犧牲氧化層於該側壁及 該底面之該周圍部份;及 在該形成一薄絕緣層之前,移除該薄犧牲氧化層。 2 9.如申請專利範圍第2 6項的方法,其中該形成一閘係包 括: 沉積攙雜多晶矽於該溝槽中;及 蝕刻該攙雜多晶矽留下約等該基板之該表面之位準者。 3 0.如申請專利範圍第2 6項的方法,進一步包括在沉積幕 罩層之前,生長一薄絕緣層於該側壁及該底面上。 3 1.如申請專利範圍第2 6項的方法,進一步包括: 形成一主體區域於該基板中,該主體區域鄰接該溝槽之該 側壁及該底面的該周圍部份;及 形成一源極區域於該主體區域中,該源極區域鄰接該基板 之該側壁及上表面。 3 2.如申請專利範圍第2 6項的方法,進一步包括形成鄰接 至少該溝槽之該底面之該中央部份的該基板中之高傳導區 域。 3 3. —種製造一金屬-絕緣體-半導體元件的方法,包括: 提供一半導體基板; 形成一溝槽於該基板中,該溝槽包括一側壁、一角隅面及 一中央底面; 沉積一,絕緣層於該中央底面上; 形成一薄絕緣層於該側壁及該角隅面上;及 形成一閘於該薄絕緣層周圍及之上,該閘鄰接該溝槽中之
    第31頁 586232
    該薄絕緣層以形成沿至少部 3 4 ·如申請專利範圍第3 3 77遠角隅面的活性角隅區域。 層係包括: 、勺方法,其中該沉積一厚絕緣 沉積一幕罩層於該側壁、 蝕刻該幕軍層以暴露該溝;;:::及該中央底面上; 沉積一厚絕緣層於該溝槽^ 中央底面; 餘刻該厚絕緣層以形成哕宝 而留下部份該厚絕緣層;;之暴露部份於該側壁上, 移除該幕罩層以暴露該溝;3 =中央底面上;
    該厚絕緣層之該部份於該二及該角隅面,*留下 35.如申請專利範圍第33項屢的槽方之该中進央底:^ ^ 形成一主體區祕於钤U 方進一步包括: 側壁及該角二‘丨‘ 土反中,該主體區域鄰接該溝槽之該 之^側】^ :::該主體區域中,該源極區域鄰接該基板 至+贫申:專利^圍第3 3項的方法,* -步包括形成鄰接 溝槽之該中央底面之該基板中之高傳導區域。 一 ·。、胃種金屬—絕緣體-半導體元件,包括: 半V體基板’包括從該基板表面延伸入該基板的一 才日,
    第:傳導型的一汲極區域;及 W目Γ於该第一傳導型之第二傳導型的一主體區域,鄰接至 ^、部份該溝槽的側壁; 甘· 中 ^ /、該溝槽被排列著一氧化層,該氧化層包括一第一區
    第32頁 曰 586232 案號 91117605 六、申請專利範圍 段,一第二區段,及_位於該第一及第 區域,該第一區段被鄰接至少部份該汲 段被鄰接至少部份該主體區域,該第一 =厚度大於該第二區段中之該氧:層的 宁之该虱化層的厚度從該第一區段至該 低,該主體區域及該汲極區域之間的Μ 虱化層之該轉換區域的該溝槽處。 :士如申明專利^圍第3 7項的金屬-絕緣 、中該轉換區域位於鄰接該溝槽的底面 二如申請專利範圍第37項的金屬—絕緣 /、中邊轉換區域位於鄰接該溝槽的側壁 4』.如申請專利範圍第37項的金屬—絕緣 ^中邊轉換區域位於鄰接該溝槽的角隅 H申請專利範圍第37項的金屬一絕緣 1ST包括一位於鄰接上表面、該溝槽 極區域。 申請專利範圍第37項的金屬-絕緣 °玄主體區域為Ρ型而該汲極區域為Ν 如申請專利範圍第3?項的金屬—絕緣 舌一鄰接該溝槽底部之該第一傳 $ ’該高度攙雜區域具有大於該 44. 一種半導體元件,包括: m -半導體基板’包括一從該基板表面延 彳雷, 修正 -區域之間的轉換 極區域,該第二區 區段中之該氧化層 厚度,該轉換區域 第二區段逐漸降 接面終止於鄰接該 體-半導體元件, 0 體-半導體元件, 0 體-半導體元件, 0 體-半導體元件, 及該主體區域的源 體-半導體元件, 型。 體-半導體元件, 型的高度攙雜區 雜濃度的濃度。 伸入該基板的溝
    第33頁 586232 一案號 91117605 六、申請專利範圍 區域,其鄰接至少”分該溝槽底部; 第一傳導型的一第 及 相:於該第一傳導型之第二傳導髮的—第二區 少部份該溝槽的側壁;及 要至 其中該溝槽被排列著一氧化層,該氧化層包括一第一區 f二一第二區段,及一位於該第一及第二區域之間的轉換 區域,該第一區段被鄰接至少部份該半導體的該第一區 域,該第二區段被鄰接至少部份該半導體的該第二區域, 該第一區段中之該氧化層的厚度大於該第二區段中之該氧 度,該轉換區域中之該氧化層的厚度從該第一區 段至μ弟一區段逐漸降低,該第一區域及該第二區域之間 的ΡΝ接面終止於鄰接該氧化層之該轉換區域的該溝槽處。 種衣仏一金屬—絕緣體—半導體元件的方法,包括: 提供一半導體基板; 形成一溝槽於該基板中; 沉積一氮化層於該溝槽中; 姓刻該氮化層以形成位於該溝槽底部的.暴露區域;及 加熱該基板藉此生長-氧化層於該暴露區域中。 46.如申請專利範圍第45項的方》,進一步包括: 移除該氣化層; 586232 ΛΜ 91117605 修正 月 a 六、申請專利範園 括/申晴專利範圍第4 6項的方法,其中形成一閘係包 ’几積携雜多晶矽於該溝槽申; 48 I ^由纔雜多晶矽至约等於該基板表面的位準。 包括·清專利範圍第46項的方法,其中移除該氮化層係 ,除部份該氮化層; 2 ί該氮化層之剩餘部份以形成氧化氮;及 移除该氧化氮。 49如申請專利範圍第45項的方法,其中生長一氧化 已括使部份該氮化層自該溝槽表面去除。 曰’、 50如”申請專利範圍第45項的方法,其中沉積一氮化 匕括〉儿積一氮化層5 0 0埃或更薄。 、 9 51·如申請專利範圍第45項的方法,其中沉 匕括》儿積一 1 5 0 0至20 00埃厚度範圍的氮化層。 曰糸 52. 如申請專利範圍第45項的方法,其中生 扣 包括創造一轉換區域,其中氧化層厚度逐、乳曰係 暴露區域方向。 斤降低於離開該 53. 如申請專利範圍第52項的方法,其中該基 傳導型,该方法進一步包括添入該基板之 值、”、、 散攙雜物,該攙雜物可以該基板剩餘 :傳導型的擴 54. 如申請專利範圍第53項的方法,其中該形-成PN接面。 擴散攙雜物係包括控制該PN接面之擴散,Λ ▲—傳導型的 轉換區域中的該溝槽交叉。 ’、月’使該ρΝ接面與該 第35頁 586232
    第36頁
TW091117605A 2001-08-10 2002-08-05 Trench MIS device with active trench corners and thick bottom oxide and method of making the same TW586232B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/927,143 US6849898B2 (en) 2001-08-10 2001-08-10 Trench MIS device with active trench corners and thick bottom oxide
US10/106,896 US6875657B2 (en) 2001-08-10 2002-03-26 Method of fabricating trench MIS device with graduated gate oxide layer
US10/106,812 US6903412B2 (en) 2001-08-10 2002-03-26 Trench MIS device with graduated gate oxide layer

Publications (1)

Publication Number Publication Date
TW586232B true TW586232B (en) 2004-05-01

Family

ID=27380197

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091117605A TW586232B (en) 2001-08-10 2002-08-05 Trench MIS device with active trench corners and thick bottom oxide and method of making the same

Country Status (6)

Country Link
EP (1) EP1435115B1 (zh)
JP (1) JP4299665B2 (zh)
CN (1) CN1303699C (zh)
AU (1) AU2002355547A1 (zh)
TW (1) TW586232B (zh)
WO (1) WO2003015180A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882000B2 (en) * 2001-08-10 2005-04-19 Siliconix Incorporated Trench MIS device with reduced gate-to-drain capacitance
JP2004342863A (ja) * 2003-05-16 2004-12-02 Shindengen Electric Mfg Co Ltd 半導体装置
JP2008084995A (ja) * 2006-09-26 2008-04-10 Sharp Corp 高耐圧トレンチmosトランジスタ及びその製造方法
US20120028425A1 (en) * 2010-08-02 2012-02-02 Hamilton Lu Methods for fabricating trench metal oxide semiconductor field effect transistors
CN103137690B (zh) * 2011-11-29 2016-10-26 上海华虹宏力半导体制造有限公司 一种沟槽型绝缘栅场效应管及其制造方法
JP6112700B2 (ja) * 2012-08-17 2017-04-12 ローム株式会社 半導体装置
TW201419532A (zh) * 2012-11-08 2014-05-16 Anpec Electronics Corp 具有低米勒電容之金氧半場效電晶體元件及其製作方法
CN110190128B (zh) * 2019-05-29 2024-03-19 西安电子科技大学芜湖研究院 一种碳化硅双侧深l形基区结构的mosfet器件及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647884B2 (ja) * 1988-01-27 1997-08-27 株式会社日立製作所 半導体装置の製造方法
JPH03211885A (ja) * 1990-01-17 1991-09-17 Matsushita Electron Corp 半導体装置及びその製造方法
US5424231A (en) * 1994-08-09 1995-06-13 United Microelectronics Corp. Method for manufacturing a VDMOS transistor
US5770878A (en) * 1996-04-10 1998-06-23 Harris Corporation Trench MOS gate device
JP3052918B2 (ja) * 1997-11-27 2000-06-19 日本電気株式会社 半導体装置
EP1162665A3 (en) * 2000-06-08 2002-10-09 Siliconix Incorporated Trench gate MIS device and method of fabricating the same
US6882000B2 (en) * 2001-08-10 2005-04-19 Siliconix Incorporated Trench MIS device with reduced gate-to-drain capacitance

Also Published As

Publication number Publication date
EP1435115A2 (en) 2004-07-07
CN1541417A (zh) 2004-10-27
WO2003015180A3 (en) 2003-11-06
EP1435115B1 (en) 2017-10-04
JP2004538649A (ja) 2004-12-24
CN1303699C (zh) 2007-03-07
WO2003015180A2 (en) 2003-02-20
AU2002355547A1 (en) 2003-02-24
JP4299665B2 (ja) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5500898B2 (ja) トレンチゲート電極を有する金属−絶縁体−半導体デバイスの製造方法
TWI593108B (zh) 帶有保護遮罩氧化物的分裂柵溝槽功率金屬氧化物半導體場效應電晶體
US6903412B2 (en) Trench MIS device with graduated gate oxide layer
JP5649597B2 (ja) トレンチmisデバイスの終端領域の作製プロセスおよび、misデバイスを含む半導体ダイとその形成方法
US7416947B2 (en) Method of fabricating trench MIS device with thick oxide layer in bottom of trench
EP1376675B1 (en) Method of fabricating a trench MOSFET
TWI325158B (en) Split-gate metal-oxide-semiconductor device
TWI518907B (zh) 用於在溝槽功率mosfets中優化端接設計的不對稱多晶矽閘極的製備方法
TW201034194A (en) Trench shielding structure for semiconductor device and method
TW201133642A (en) Fabrication of trench DMOS device having thick bottom shielding oxide
TW201528386A (zh) 使用氧化物填充溝槽之雙氧化物溝槽閘極功率mosfet
TWI421951B (zh) 以不對稱間隔物作為閘極之橫向擴散金屬氧化物半導體(ldmos)電晶體
WO2004061975A1 (en) Trench mis device having implanted drain-drift region and thick bottom oxide and process for manufacturing the same
TW201532281A (zh) 半導體基板中的半導體元件及其製備方法
US20070063272A1 (en) Semiconductor power device with insulated gate formed in a trench, and manufacturing process thereof
TW201032278A (en) Trench device structure and fabrication
US8928082B2 (en) JLT (junction-less transistor) device and method for fabricating the same
TW586232B (en) Trench MIS device with active trench corners and thick bottom oxide and method of making the same
TW560066B (en) Method of manufacturing MOSEFT and structure thereof
JP2023545549A (ja) スプリットゲート構造の半導体デバイス及びその製造方法
JP2000507394A (ja) SiCの電界制御型半導体デバイスおよびその生産方法
JP5266738B2 (ja) トレンチゲート型半導体装置の製造方法
TW476111B (en) Manufacture method of high voltage metal oxide semiconductor (HVMOS) transistor
TWI263279B (en) Semiconductor device processing

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent