TWI263279B - Semiconductor device processing - Google Patents

Semiconductor device processing Download PDF

Info

Publication number
TWI263279B
TWI263279B TW92126976A TW92126976A TWI263279B TW I263279 B TWI263279 B TW I263279B TW 92126976 A TW92126976 A TW 92126976A TW 92126976 A TW92126976 A TW 92126976A TW I263279 B TWI263279 B TW I263279B
Authority
TW
Taiwan
Prior art keywords
layer
region
entire entire
forming
channel
Prior art date
Application number
TW92126976A
Other languages
Chinese (zh)
Other versions
TW200414357A (en
Inventor
Ling Ma
Adam Amali
Siddharth Kiyawat
Ashita Mirchandani
Donald He
Original Assignee
Int Rectifier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Rectifier Corp filed Critical Int Rectifier Corp
Publication of TW200414357A publication Critical patent/TW200414357A/en
Application granted granted Critical
Publication of TWI263279B publication Critical patent/TWI263279B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A process for manufacturing a semiconductor device of the trench variety with reduced feature sizes and improved characteristics which process includes forming a termination structure having a field oxide disposed in a recess below the surface of the semiconductor die in which the active elements of the device are formed, and forming source regions after the major thermal steps have been performed.

Description

1263279 玫、發明說明: 相關申請案 本申請案是根據2002年九月30成案之美國臨時申請案 第60/415302號,標題為“具有光界定的接觸溝槽式金屬氧化 5 物半導體場效電晶體(Trench MOSFET)之自我排列的新近 源極,,和2003年一月29成案之美國臨時申請案第60/444.064 號,題為“用於直流電-直流電轉換器應用之溝槽式金屬氧 化物半導體場效電晶體(Trench MOSFET)技術”,並主張其 利益,其在此處做優先權之主張。 10 【發明所屬之^技術領域】 本發明係有關於半導體裝置處理方法。 I:先前技術3 發明背景 至今越來越多對於更有效的電力供應以及持續更長的 15 電池電力之電子裝置的需求在工程師最大的挑戰領域之一 的電力管理系統上已有更大的效率。因此,改善離散的電 力裝置,諸如被用於電力管理系統的電力驅動金屬氧化物 半導體場效電晶體,持續推動製造者生產具有較低導通阻 抗(ON-resistance)、較低的閘電荷和較咼的電流供給能力之 20 裝置。 一種依據本發明的方法會明顯地降低在電力裝置中該 些特徵的尺寸,因而導致降低導通路阻抗、降低閘電荷, 並且增加電流運載能力。結果,依據本發明製造的裝置, 諸如電力驅動金屬氧化物半導體場效電晶體,可以被使用 1263279 在回頻的應用,例如丨百萬赫茲,而沒有不當的熱量產生。 口此依據本發明製造的裝置在電力轉換上可以呈現改良 的特性。 依據本發明的一實施例製造的電力驅動金屬氧化物半 5導體場效電晶體是一溝槽變化的金屬氧化物半導體場效電 a曰體其中δ亥作用區域包括多數的溝槽,每一個都支撐一 問極結構,而且每—個都在生長於單石半導體(monolithic semiconductor)基材上之蠢晶層(epitaxiai iayer)中形成。配 置在I置之该作用區域周圍的是一終端結構。該終端結構 10是形成在作用區域周圍的凹口,並且包括一沈積在該凹口 的表面上之場氧化物層、一沈積在該場氧化物上的導電 層,而且有一低溫氧化物形成在該導電層上方。一接觸層 可形成在該低溫氧化物上方,並且通過該低溫氧化物而被 連接到該終端結構之導電層。 15 该終端結構可顯著地降低群集在該終端處之電場,因 而消除植入沒有包含該裝置之擊穿電壓(breakd0 wn voltage) 和強固之導環。在一DPAK中之晶粒而言,對於此終端結構 測仔的一般雪朋能量(aValanChe energy)是1焦耳(J)。 在該終端結構中的場氧化物,舉例來說,是在該終端 20凹口已經被蝕刻之後使用局部氧化隔離(LOCOS)程序生 長。因為该場氧化物是在該晶粒的頂端表現下面,在活化 溝槽微影階段的晶圓平整性被大幅地改善。在溝槽微影階 段中許多改良的晶圓表慢平整性使溝槽寬度可能進一步減 v夕達2G%。舉例來說’此-在尺寸上的縮小可能增加該 1263279 些溝槽的密度,因而增加通道密度同時保持低閘電荷,尤 其是Qgd和Qswitch。為增加該裝置的效能,該些通道的深 度可能也被減少。 一種依據本發明的程序包括在已經進行高溫步驟之後 5形成源極區域。結果,源極區域的尺寸能被縮減到最小, 其使得該通道區域的深度縮減是可能的,因而縮短該裝置 中之通道。該些較短的通道依次改善該裝置之導通阻抗。 除此之外,與先前技藝之裝置比較,較短的通道需要一個 比較薄的磊晶層,因而減少該裝置的成本,也進一步藉由 10縮短該裝置之共同的傳導區域而降低該導通阻抗。 一種依據本發明的程序包括下列的特徵:利用氮化物 硬遮罩定義該終端凹口與活化區域溝槽;透過一隔板氧化 物將該通道摻雜物植入該磊晶層中;在該些活化區域溝槽 b的底部形成厚氧化物;以及在該結獅成之後形成源極。1263279 玫,发明说明: Related Applications This application is based on U.S. Provisional Application Serial No. 60/415,302, filed on Sep. 30, 2002, entitled <RTI ID=0.0> A recent source of self-alignment of crystals (Trench MOSFETs), and U.S. Provisional Application No. 60/444.064, dated January 29, 2003, entitled "Traffated Metal Oxides for DC-DC Converter Applications Semiconductor field effect transistor (Trench MOSFET) technology, and advocates its interests, which is claimed herein. [Technical Field] The present invention relates to a semiconductor device processing method. 3 BACKGROUND OF THE INVENTION More and more demand for more efficient power supplies and electronic devices that last longer than 15 battery power has become more efficient in power management systems, one of the engineers' greatest challenge areas. Discrete power devices, such as electrically driven metal-oxide-semiconductor field-effect transistors used in power management systems, continue to drive manufacturers 20 device with lower ON-resistance, lower thyristor charge and lower current supply capability. A method according to the invention significantly reduces the size of the features in the electrical device, thus resulting in a reduction Conducting path impedance, reducing gate charge, and increasing current carrying capability. As a result, devices fabricated in accordance with the present invention, such as electrically driven metal oxide semiconductor field effect transistors, can be used in 1263279 in back frequency applications, such as 丨 million hertz There is no undue heat generation. The device manufactured according to the present invention can exhibit improved characteristics in power conversion. The electrically driven metal oxide half-conductor field effect transistor fabricated in accordance with an embodiment of the present invention is a trench. The trench-changing metal oxide semiconductor field effect device has a plurality of trenches, each of which supports a gate structure, and each of which is grown on a monolithic semiconductor substrate. Formed in the epitaxiai iayer. The terminal structure is disposed around the active area of the I-position. The termination structure 10 is a recess formed around the active area and includes a field oxide layer deposited on the surface of the recess, a conductive layer deposited on the field oxide, and a low temperature oxide formation Above the conductive layer, a contact layer may be formed over the low temperature oxide and connected to the conductive layer of the termination structure by the low temperature oxide. 15 The termination structure can significantly reduce the electric field clustered at the terminal Therefore, the implantation does not include the breakdown voltage of the device and the strong guide ring. In the case of a die in a DPAK, the general snow energy (aValanChe energy) for the terminal structure is 1 joule (J). The field oxide in the termination structure, for example, is grown using a local oxidation isolation (LOCOS) program after the terminal 20 recess has been etched. Since the field oxide is represented below the top of the die, wafer flatness during the activation trench lithography stage is greatly improved. Many improved wafer surface slow flatness in the trench lithography stage can further reduce the trench width by as much as 2 G%. For example, the reduction in size may increase the density of the 1263279 trenches, thereby increasing the channel density while maintaining a low gate charge, especially Qgd and Qswitch. To increase the performance of the device, the depth of the channels may also be reduced. A procedure in accordance with the present invention includes forming a source region after the high temperature step has been performed. As a result, the size of the source region can be minimized, which makes it possible to reduce the depth of the channel region, thereby shortening the channel in the device. These shorter channels in turn improve the on-resistance of the device. In addition, compared to prior art devices, shorter channels require a relatively thin epitaxial layer, thereby reducing the cost of the device, and further reducing the on-resistance by shortening the common conduction region of the device by 10. . A program in accordance with the present invention includes the feature of defining a terminal recess and an active region trench with a nitride hard mask; implanting the channel dopant into the epitaxial layer through a spacer oxide; The bottom of the active region trenches b form a thick oxide; and a source is formed after the lion is formed.

本务明之其他特徵與優點由下列本發明之說明及參考 該些伴隨圖式而將變得顯而易見。 t 明内容J 本發明係有關於一種用於製造半導體裝置的方法, 含: )Q . • 提供一具有第一傳導性之通道接收層之半導電性材料 的半導體晶粒; 在該通道接收層之上,形成一氧化阻劑材料層; 在該通道接收層的一個區域中之該通道接收層内,形 成溝槽; 1263279 在該些溝槽周圍形成一終端凹口,該終端凹口具有半 導電性材料的暴露表面; 在該各溝槽之側壁與底部上形成另一氧化阻劑材料 層;和 5 在該終端凹口之暴露表面上生長一氧化物層。 本發明係有關於一種用於製造金屬氧化物半導體閘控 的半導體轉換裝置的方法,包含: 提供一具有第一傳導性之通道接收區域的半導體晶粒; 在該通道接收區域中形成第二傳導性之通道區域; 10 在延伸通過該通道區域之該半導體晶粒中形成至少一 個溝槽; 在該至少一個溝槽中形成一閘極結構;和形成該閘極 結構之後,在該通道區域中鄰接該溝槽的每一邊形成一個 該第一傳導性之導電區域。 15 圖式簡單說明 第la圖顯示依據本發明之半導體裝置的一部份之截面 圖示。 第lb圖顯示依據本發明之半導體裝置的另一實施例的 一部份之截面圖示。 20 第2a-2u圖說明一種依據本發明的程序。 第3a-3h圖說明一種依據本發明的另一實施例的程序。 L實施方式3 較佳實施例之詳細說明 參考第la圖,一種依據本發明之半導體裝置被形成在 1263279 包括第一導電型式的沒極區咖與輕微摻雜導電型式盘汲 極區卿相反的摻雜物之通道區域12的石夕晶教巧。依據本 發明之半導體裳置包括多數由該晶粒5上表面延伸至汲極 5 10 15 區域1〇的溝槽14。溝槽14在其中沈積諸如摻雜的多晶系之 導電材料以形成閑極電極16。閑極電極16藉由氧化物_ 通道區糾錢絕緣。氧化㈣生成在每—溝仙的該些 側壁上。應该注意的是厚氧化物15是被形成在每一溝槽的 底部。依據本發明之半導體裝置也包括自我排列的源極區 域20 ’其配置在每_溝槽14的相對側,並且延展至小於通 道區域12的深度之預定深度。自我排列的源極區域20是以 與汲極區域1__傳導性之摻雜物捧雜。 每一間極電極16已在其上表面上配置閘絕緣層22。配 置在每-閉絕緣層22上表面上的是—低溫絕緣材料24層。 由通逼區域12之±表面延伸至較好小於相鄰的源極區域 的珠度:相鄰的每一源極區域2〇,是一具有與在通道區域 L亦隹物相同傳導性之振雜物摻雜的高播雜接觸區域 =高摻雜接觸區域26是形成在晶粒5的上表面上之凹地的 底部。—般是由鋁合金組成之源極接觸層28被配置在該晶 ;勺上表面上方,與源極區域2〇和接觸區域26歐姆接觸, 藉此短路源極區域2G和接觸區域26。可能是由三金屬或一 二其他適合焊接的接觸金屬組成之汲極接觸層30被配置在 該晶粒上面對源極接觸層28之自由表面,並且與汲極區域 10歐姆接觸。 在依據該第二實施例之半導體中,如第lb圖所示,高 20 Ϊ263279 裕雜接觸區域26被形成在晶粒5的上表面。 第la和lb圖只顯示依據本發明製造之半導體装置的一 部份。熟悉該技藝者會瞭解在一實際的半導體裝置中,該 /舌化區域會包含許多數目的溝槽14。 5 第1a*lb圖顯示的半導體裝置是溝槽變化。溝槽型式 的I置是藉由將電壓施加它的閘極電極16,以反轉該些緊 鄰氧化物18的區域,如此電氣連接其源極區域2〇與其汲極 區域10來運作。第^和让圖顯示的半導體裝置是义通道裝 置。藉由反轉在每一區域中之該些摻雜物的極性,可以在 10 每一情況中獲得P-通道裝置。 在較佳實施例中之晶粒5是由單石矽基材2組成,其有 ^/成在匕的上表面上方之蠢晶層。如上面說明的溝槽Μ 疋在磊晶層中形成。此處說明瘩汲極區域10是指被配置在 基材2與通道區域12之間的飄移區域14。熟悉該技藝者應該 15瞭解到沒有偏離本發明之其他材料或結構的半導體晶粒可 以被使用。 第13圖顯示的半導體裝置是依據下列的程序製造。 首先參考第2a圖,最初墊氧化物32是在該有第一傳導 性型式之摻雜物摻雜的矽晶粒5的上方磊晶層3形成。在顯 20示之該實施例中,該第—傳導性型式之摻雜物n型換雜物。 然後導電型式與該第-導電型式(P型)相反之摻雜物被植入 遍佈墊氧化物32,以形成將變成通道區域12 (第頂)之通 道植入區域34,將於稍後說明。 然後參考第沈圖,氣化物層%被沈積在墊氧化物32頂 工263279 。一包含被沈積在大部分的氮化物層36上方,只留終端 區域被暴露出來的作用遮罩。然後,如第2c圖所示,使用 光阻38做為遮罩,舉例來說,終端凹口是藉由傳統已知的 乾1 虫刻技術或一些其他合適的刻蝕方法而形成。然後光阻 5 38被移除’且在該淺通道植入區域34中之該些摻雜物在一 擴散運動中被驅動以形成如第2d圖顯示之通道區域12。應 5亥>主意的是雖然沒有顯示,終端凹口 42是配置在該裝置之 作用區域周圍。Other features and advantages of the present invention will become apparent from the following description of the invention and the accompanying drawings. The present invention relates to a method for fabricating a semiconductor device comprising: • Q. • a semiconductor die providing a semiconducting material having a first conductive channel receiving layer; a receiving layer in the channel Forming a layer of an oxidant resist material; forming a trench in the channel receiving layer in a region of the channel receiving layer; 1263279 forming a terminal recess around the trenches, the terminal recess having a half An exposed surface of the electrically conductive material; a further layer of oxidizing resist material is formed on the sidewalls and the bottom of the trenches; and 5 an oxide layer is grown on the exposed surface of the terminal recess. The present invention relates to a method for fabricating a metal oxide semiconductor gated semiconductor conversion device, comprising: providing a semiconductor die having a first conductivity channel receiving region; forming a second conduction in the channel receiving region a channel region; 10 forming at least one trench in the semiconductor die extending through the channel region; forming a gate structure in the at least one trench; and forming the gate structure in the channel region A first conductive conductive region is formed adjacent each side of the trench. BRIEF DESCRIPTION OF THE DRAWINGS Figure la is a cross-sectional view showing a portion of a semiconductor device in accordance with the present invention. Figure lb shows a cross-sectional illustration of a portion of another embodiment of a semiconductor device in accordance with the present invention. 20 Figures 2a-2u illustrate a procedure in accordance with the present invention. Figures 3a-3h illustrate a procedure in accordance with another embodiment of the present invention. L. Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1a, a semiconductor device according to the present invention is formed at 1263279, which includes a first conductivity type of a non-polar region and a lightly doped conductive pattern. Shi Xijing's teachings of the channel region 12 of the dopant. The semiconductor skirt according to the present invention includes a plurality of trenches 14 extending from the upper surface of the die 5 to the drain region 10 10 15 . The trench 14 has a conductive material such as a doped polycrystalline layer deposited therein to form the idle electrode 16. The idle electrode 16 is insulated by the oxide-channel region. Oxidation (4) is formed on the side walls of each of the grooves. It should be noted that thick oxide 15 is formed at the bottom of each trench. The semiconductor device in accordance with the present invention also includes a self-aligned source region 20' disposed on the opposite side of each trench 14 and extending to a predetermined depth less than the depth of the channel region 12. The self-aligned source region 20 is doped with the dopant of the drain region 1__. Each of the electrode electrodes 16 has a gate insulating layer 22 disposed on its upper surface. Disposed on the upper surface of each of the closed insulating layers 22 is a layer of low temperature insulating material 24. Extending from the ± surface of the pass region 12 to a bead that is preferably smaller than the adjacent source region: each adjacent source region 2〇 is a vibration having the same conductivity as the material in the channel region L The high-doped impurity contact region of the impurity doping = the highly doped contact region 26 is the bottom of the concave land formed on the upper surface of the crystal grain 5. A source contact layer 28, typically composed of an aluminum alloy, is disposed over the upper surface of the wafer, in ohmic contact with the source region 2A and the contact region 26, thereby shorting the source region 2G and the contact region 26. A drain contact layer 30, possibly composed of a trimetal or two other contact metal suitable for soldering, is disposed over the die to the free surface of the source contact layer 28 and is in ohmic contact with the drain region 10. In the semiconductor according to the second embodiment, as shown in Fig. 1b, a high 20 Ϊ 263279 impurity contact region 26 is formed on the upper surface of the crystal grain 5. The first and fifth figures show only a portion of a semiconductor device fabricated in accordance with the present invention. Those skilled in the art will appreciate that in an actual semiconductor device, the/tongue region will contain a number of grooves 14. 5 The semiconductor device shown in Figure 1a*lb is a trench variation. The I-position of the trench pattern is operated by applying a voltage to its gate electrode 16 to invert the regions of the adjacent oxide 18 such that it is electrically connected to its source region 2 and its drain region 10. The semiconductor device shown in the figure and the figure is a channel device. By inverting the polarity of the dopants in each region, a P-channel device can be obtained in each of the cases. The die 5 in the preferred embodiment is comprised of a single stone substrate 2 having a stray layer over the upper surface of the crucible. The trench Μ as described above is formed in the epitaxial layer. Here, the description of the drain region 10 means a drift region 14 disposed between the substrate 2 and the channel region 12. It will be appreciated by those skilled in the art that semiconductor dies that do not deviate from other materials or structures of the present invention can be used. The semiconductor device shown in Fig. 13 is manufactured in accordance with the following procedure. Referring first to Figure 2a, initially the pad oxide 32 is formed over the epitaxial layer 3 of the first conductivity type dopant doped germanium die 5. In the embodiment shown in Fig. 20, the first conductivity type dopant n-type dopant. A dopant having a conductivity pattern opposite that of the first conductivity type (P-type) is then implanted throughout the pad oxide 32 to form a channel implant region 34 that will become the channel region 12 (top), as will be described later. . Referring then to the sinker map, the vapor layer % is deposited on the pad oxide 32 top 263279. A protective mask is deposited which is deposited over most of the nitride layer 36 leaving only the termination regions exposed. Then, as shown in Fig. 2c, the photoresist 38 is used as a mask. For example, the terminal recess is formed by a conventionally known dry etching technique or some other suitable etching method. The photoresist 5 38 is then removed' and the dopants in the shallow channel implant region 34 are driven in a diffusion motion to form the channel region 12 as shown in Figure 2d. It should be 5 Hai's idea that although not shown, the terminal recess 42 is disposed around the active area of the device.

然後參考第2e圖,場氧化物44在終端凹口 42中形成, 1〇藉此提供一凹陷的場氧化物終端結構。 接下去參考第2f圖,溝槽遮罩46被放置在氮化物36和 場氧化物44的上方。溝槽遮罩46包含開孔48以確定將被形 成在晶粒5中之溝槽14(第1圖)的位置。然後,溝槽14被形成 在曰曰粒5本體中與開孔48—致的位置,如第2g圖所示。溝槽 15 14是藉由乾蝕刻形成,並且由晶粒5的上表面延伸通過通道Referring then to Figure 2e, field oxide 44 is formed in terminal recess 42 to thereby provide a recessed field oxide termination structure. Referring next to Figure 2f, trench mask 46 is placed over nitride 36 and field oxide 44. The trench mask 46 includes openings 48 to define the locations of the trenches 14 (Fig. 1) that will be formed in the die 5. Then, the groove 14 is formed in the body of the granule 5 in a position coincident with the opening 48 as shown in Fig. 2g. The trench 15 14 is formed by dry etching and extends through the channel from the upper surface of the die 5

區域12而至飄移區域4的預定深度。應該注意的是它也可能 使溝槽14在飄移區域4下面延伸。也應該注意的是溝槽14可 能是平行條狀物的形式、六角形的或一些其他的形狀,雖 然條狀物是較好的,其中條狀物可以進一步降低導通阻抗。 20 在溝槽14形成之後,一犧牲的氧化物層生長在溝槽14 的側壁與底部,然後被蝕刻。其後溝槽遮罩46被移除。接 下來’墊氧化物被形成在溝槽14内,如第2h圖所示。 再一次參考第2h圖,藉由氮化物層沈積,使氮化物層 在溝槽14内的墊氧化物32上方延伸。 11 1263279 八,與m之後配置在每-溝槽14底部之氮化物部 卞一牛0來。兄’藉由乾飯刻而被移除,並且厚氧化物15在 母一溝槽14底部生長。配置在每一溝槽14之該些側壁上的 5乳化物36是-氧化阻劑,其避免氧化物在溝槽14的側壁上 々 同$允卉厚的氧化物在每一溝槽的底部生長。結果, 每一溝槽的該些側壁可以被非常薄的氧化物層覆蓋Γ同時 因為厚氧化物15,其底部將被完全絕緣。 ’、、;、後如第2j圖所示,覆蓋溝槽Μ的側壁之氮化物% 口P刀’舉例來說’透過濕蝕刻而被移除,而且閘氧化物層 10 18生長在每一溝槽工4的内部。然後多晶石夕層被沈積,使得 溝槽14充滿多晶矽。 然後參考第2k圖,多晶石夕遮罩52被形成,以至少覆蓋 该終端區域40。然後,形成閘極電極16,多晶矽層5〇被蝕 刻以使得每一溝槽14内部有在其底部與通道部分12上方的 15位置之間延伸之多晶石夕本體。結果,在多晶石夕遮罩52下之 多晶矽層50將被留下,然後其將變成該裝置之終端結構的 一部份,如第21圖所示。 接著參考第2m圖,在每一溝槽μ中的閘極電極16上表 面被氧化,例如熱氧化,而形成絕緣層22。然後,實質上 20所有的氮化物36是藉由,舉例來說,濕蝕刻移除,只留下 小部分接近該半導體裝置的終端結構之氮化物36,如第2n 圖所示。 隨著氮化物36之實質的移除,用於源極區域2〇之形成 的摻雜物被植入,以形成源極植入區域54,如第2〇圖所示。 12 1263279 源極植入區域54的形成之後接著是在晶粒的整個上表面上 沈積-低溫氧化物層24,如第2p圖所示。應該注意的是源 極植入區域5 4是在該多晶石夕熱氧化形成絕緣層2 2之後被形 成。在熱氧化程序之後,藉由植入源極掺雜物,該源極區 5域2⑽最終深度能夠保持在一最小值。結果,通道區域η 2冰度’以及蟲晶層3的厚度也能夠能減到最小,藉此在該 衣置中奸置之利用縮短該些通道以及減少該飄移區域4 的厚度’而降低導通阻抗。 10 15 20 :、、、:後’源極接觸輕56在低溫氧化物24上形成,如 2q圖所示。源極接觸輕%是藉由在已知方式下使光阻 產生圖案以包含職58而被產生。開孔58首纽使用於 形姓刻低溫氧化物層24的部分,使得祕刻的區域在該 極接觸料56下側岐伸,而且«延伸至小於低溫氧, 物24厚度的深度。'㈣,使时源極接觸麵56中的開: 持續垂直_以產生延伸至源極植人區域μ以下的 深度之凹地25,如第蝴所示。—旦該源極接觸被形成 该初始的錐形蝕刻會改善步階覆蓋。 …然後’源極接觸料56被移除,而且使在該源極植/ 區域54中之祕娜物崎舰勒以形成源極區域, 如f 2順料。該源極擴散勒之後,高摻雜制區域26 如弟2t圖所不’透過—植人步驟,使用低溫氧化物織為 遮罩,接著進行擴散運動,而被形成在源極區域20之間。 然後’低溫氡化物24可以被㈣掉以暴露在晶粒5之上表面 的源極區域2〇部分。The region 12 is to a predetermined depth of the drift region 4. It should be noted that it is also possible to extend the groove 14 below the drift region 4. It should also be noted that the grooves 14 may be in the form of parallel strips, hexagonal or some other shape, although strips are preferred, wherein the strips may further reduce the on-resistance. After the trench 14 is formed, a sacrificial oxide layer is grown on the sidewalls and bottom of the trench 14 and then etched. Thereafter the trench mask 46 is removed. Next, the pad oxide is formed in the trench 14, as shown in Figure 2h. Referring again to Figure 2h, the nitride layer is extended over the pad oxide 32 in the trench 14 by nitride layer deposition. 11 1263279 Eight, with the nitride part at the bottom of each groove 14 after m. The brother's were removed by dry cooking, and the thick oxide 15 grew at the bottom of the mother-groove 14. The 5 emulsion 36 disposed on the sidewalls of each trench 14 is an oxidizing resistor that prevents the oxide from growing on the sidewalls of the trench 14 at the bottom of each trench. . As a result, the sidewalls of each trench can be covered by a very thin oxide layer while the bottom of the trench will be completely insulated. ',,; and then as shown in Fig. 2j, the nitride % of the sidewall covering the trench PP' is 'removed' by wet etching, and the gate oxide layer 10 18 is grown in each The interior of the trencher 4. The polycrystalline layer is then deposited such that the trench 14 is filled with polysilicon. Referring then to Figure 2k, a polycrystalline stone mask 52 is formed to cover at least the termination region 40. Then, a gate electrode 16 is formed, and the polysilicon layer 5 is etched such that each trench 14 has a polycrystalline whisker body extending between its bottom portion and the 15 position above the channel portion 12. As a result, the polysilicon layer 50 under the polycrystalline litter mask 52 will be left and then it will become part of the termination structure of the device, as shown in FIG. Next, referring to Fig. 2m, the surface of the gate electrode 16 in each trench μ is oxidized, for example, thermally oxidized, to form the insulating layer 22. Then, substantially all of the nitride 36 is removed by wet etching, for example, leaving only a small portion of the nitride 36 adjacent to the termination structure of the semiconductor device, as shown in Figure 2n. As the nitride 36 is substantially removed, dopants for the formation of the source regions 2 are implanted to form the source implant regions 54, as shown in FIG. 12 1263279 The formation of the source implant region 54 is followed by deposition of a low temperature oxide layer 24 over the entire upper surface of the die, as shown in Figure 2p. It should be noted that the source implant region 54 is formed after the polycrystalline stone is thermally oxidized to form the insulating layer 2 2 . After the thermal oxidation process, the source region 5 (10) final depth can be maintained at a minimum by implanting the source dopant. As a result, the channel region η 2 iceness 'and the thickness of the worm layer 3 can also be minimized, whereby the use of smuggling in the garment shortens the channels and reduces the thickness of the drift region 4 to reduce conduction. impedance. 10 15 20 :, , , : The rear 'source contact light 56 is formed on the low temperature oxide 24 as shown in Fig. 2q. The source contact light % is produced by patterning the photoresist to include the job 58 in a known manner. The opening 58 is used to shape the portion of the low temperature oxide layer 24 such that the secreted region is stretched on the underside of the pole contact material 56 and extends to a depth less than the thickness of the low temperature oxygen, material 24. '(d), making the opening in the source contact surface 56: continuing vertical _ to create a recess 25 extending to a depth below the source implanted area μ, as shown by the butterfly. Once the source contact is formed, the initial tapered etch will improve the step coverage. ... then the source contact material 56 is removed and the source material in the source implant/area 54 is pulled to form a source region, such as f2. After the source diffusion, the highly doped region 26 is etched into a mask using a low temperature oxide as a mask, followed by a diffusion motion, and is formed between the source regions 20, as shown in FIG. . Then, the low temperature telluride 24 can be (4) dropped to expose the source region 2〇 portion of the upper surface of the crystal grain 5.

13 1263279 U後,源極接觸28被配置在晶粒5之上表面上,而且没 極接觸30被形成在晶粒5的下表面,如第2u圖所示。除了該 些先前的步驟之外,在源極接觸28形成之前或之後,可以 進行傳統已知的步驟,以在晶粒5的上表面上形成一閘接觸 5結構(未顯示)。 具有如第lb圖所示之自我排列的源極區域之半導體裝 置可以依據下列各項而被處理。 芩考第3a圖,在參照第2a圖說明的通道植入步驟之 後’氮化物36被形成在晶粒5的上表面之上。然後,一低溫 1〇氧化物層24被形成在氮化物層36之上。可能是約5〇〇人厚, 而且低溫氧化物24可能是大約3〇〇〇 A厚。 接著苓考第3b圖’溝槽遮罩46被配置在低溫氧化物24 之上,而且溝槽14被形成在晶粒5中,如稍早參考第2f和2g 圖說明的。依據本發明的一個觀點,由溝槽14的邊緣蝕刻 15掉低溫氧化物24,而暴露被放置在溝槽14的邊緣與低溫氧 化物24層之間的氮化物36之上表面部分。 接著參考第3c圖,溝槽遮罩46被移除,然後墊氧化物 34被形成在晶粒5之上,包含溝槽14的側壁與底部。墊氧化 物34可能是約24〇A。然後,氮化物36被沈積在墊氧化物34 2〇 之上。氮化物36可能是約2〇〇人厚。 接著參考第3d圖’然後藉由蝕刻由低溫氧化物24之上 表面與該些溝槽14的底部移除氮化物36。然後,每一溝槽 14的底部被氧化,而且閘極電極16和閘隔絕層被形成, 如先前麥考第2i-2m圖說明的,以獲得第3e圖中顯示的結 14 1263279 構。應該注意的是由於上面參考第3b圖說明之該蝕刻,緊 鄰每一溝槽14的上邊緣有肩狀物被形成。使用在低溫氧化 物24中之開孔做為遮罩,摻雜物被植入遍及相鄰於溝槽14 的上邊緣之肩狀物,以形成源極植入區域54。然後,然後 5在源極植入區域54中之該些摻雜物在擴散運動中被驅動以 形成源極區域20,如第3f圖所示。其後,另外的低溫氧化 物24層可以被形成在晶粒5的上表面之上。 接著參考第3g圖,源極接觸遮罩58放置在晶粒5的上表 面之上源極接觸遮罩58是藉由,舉例來說,光微影與|虫 10刻而形成,以提供與源極接觸28(參見第關)和晶粒5之間 用於電氣接觸之位置一致的開孔。在接觸遮罩58中每一開 孔的底部之低溫氧化物24層被#刻,以暴露在晶粒5之上 表面上的接觸區域,然後高度摻雜與該些通道區域12之摻 4物有相同極性之摻雜物。然後該些摻雜物在擴散運動中 15被驅動以形成高度摻雜的接觸區域26。該高度摻雜接觸區 域2邮成之後接著是低溫氧化物^的餘刻,以暴露源極區 域2〇在接觸遮罩%之下的低溫氧化物^之頂端部分也被 蝕刻如第3g圖所不。其後,源極接觸%被沈積在晶粒$的 上表面之上,而舆源極區域2〇和高換雜的接觸區域%電氣 20 接觸’如第3h圖所示。 二<1如眾所周知的,沒極接觸被形成在晶粒$的背 面:除了該些前述步驟之外,在該源極接觸28形成之前或 之後’可以進行傳統已知的步驟,以在晶粒5的上表面形成 一閘接觸結構(未顯示)。 15 1263279 雖然本發明已經說明其相關的特別實施例,但是許多 其他的變化和修正與其他用途對於熟悉該技藝者將變得顯 而易見。因此,本發明較好不限制於此處之特定說明,而 是僅受該些附錄的申請專利範圍所限。 5 【圊式簡單說明】 第la圖顯示依據本發明之半導體裝置的一部份之截面 圖示。After 13 1263279 U, the source contact 28 is disposed on the upper surface of the die 5, and the gate contact 30 is formed on the lower surface of the die 5 as shown in Fig. 2u. In addition to these previous steps, conventionally known steps may be performed to form a gate contact 5 structure (not shown) on the upper surface of the die 5 before or after the source contact 28 is formed. A semiconductor device having a self-aligned source region as shown in Fig. 1b can be processed in accordance with the following. Referring to Figure 3a, nitride 36 is formed over the upper surface of the die 5 after the channel implantation step illustrated with reference to Figure 2a. Then, a low temperature 1 〇 oxide layer 24 is formed over the nitride layer 36. It may be about 5 inches thick, and the low temperature oxide 24 may be about 3 〇〇〇 A thick. Referring next to Figure 3b, the trench mask 46 is disposed over the low temperature oxide 24, and the trenches 14 are formed in the die 5 as previously described with reference to Figures 2f and 2g. In accordance with one aspect of the present invention, the low temperature oxide 24 is etched 15 away from the edge of the trench 14 while exposing the surface portion of the nitride 36 disposed between the edge of the trench 14 and the layer of low temperature oxide 24. Referring next to Figure 3c, trench mask 46 is removed and pad oxide 34 is formed over die 5, including the sidewalls and bottom of trench 14. The pad oxide 34 may be about 24 〇A. Nitride 36 is then deposited over the pad oxide 34 2〇. Nitride 36 may be about 2 inches thick. Next, referring to Fig. 3d', the nitride 36 is removed from the upper surface of the low temperature oxide 24 and the bottom of the trenches 14 by etching. Then, the bottom of each trench 14 is oxidized, and the gate electrode 16 and the gate insulating layer are formed as previously described in the Maiko 2i-2m diagram to obtain the junction 14 1263279 shown in Fig. 3e. It should be noted that due to the etching described above with reference to Figure 3b, a shoulder is formed adjacent the upper edge of each of the grooves 14. Using the openings in the low temperature oxide 24 as a mask, dopants are implanted throughout the shoulder adjacent the upper edge of the trench 14 to form the source implant region 54. Then, the dopants in the source implant region 54 are then driven in a diffusion motion to form the source region 20, as shown in Figure 3f. Thereafter, another layer of low temperature oxide 24 may be formed on the upper surface of the crystal grains 5. Referring next to FIG. 3g, the source contact mask 58 is placed over the upper surface of the die 5 and the source contact mask 58 is formed by, for example, photolithography and worming to provide The source contact 28 (see the second) and the die 5 have the same position for electrical contact. The layer of low temperature oxide 24 at the bottom of each opening in the contact mask 58 is engraved to expose the contact area on the upper surface of the die 5, and then highly doped with the channel region 12 Dopings of the same polarity. The dopants are then driven during the diffusion motion 15 to form a highly doped contact region 26. The highly doped contact region 2 is then followed by a low temperature oxide, so that the top portion of the low temperature oxide that exposes the source region 2 〇 below the contact mask is also etched as in FIG. 3g. Do not. Thereafter, the source contact % is deposited on the upper surface of the die $, and the germanium source region 2〇 and the highly alternating contact region % are electrically contacted as shown in Fig. 3h. II <1 As is well known, the immersion contact is formed on the back side of the die $: in addition to the foregoing steps, before or after the source contact 28 is formed, a conventionally known step can be performed to The upper surface of the pellet 5 forms a gate contact structure (not shown). Although the present invention has been described in connection with the specific embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. Therefore, the invention is preferably not limited to the specific description herein, but is limited only by the scope of the application of the appendices. 5 [Simple description of the cymbal] Fig. 1a is a cross-sectional view showing a part of the semiconductor device according to the present invention.

第lb圖顯示依據本發明之半導體裝置的另一實施例的 一部份之截面圖示。 10 第2a-2u圖說明一種依據本發明的程序。 第3a-3h圖說明一種 【圖式之主要元件代表符號表】Figure lb shows a cross-sectional illustration of a portion of another embodiment of a semiconductor device in accordance with the present invention. 10 Figures 2a-2u illustrate a procedure in accordance with the present invention. Figure 3a-3h illustrates a [representative symbol table of the main components of the figure]

2···早石秒基材 28…源極接觸區域 3···蠢晶層 30···汲極接觸區域 4…飄移區域 32…墊氧化物 5···$夕晶粒 34···通道植入區域 10及極區域 36…氮化物層 12···通道區域 38···光阻 14…溝槽 40···終端區域 15…厚的氧化物 42···終端凹口 16…閘極電極 44···場氧化物 18…氧化物 46···溝槽遮罩 20···自我排列的源極區域 48···開孔 22···閘極絕緣層 50···多晶石夕層 24…低溫絕緣材料/低溫氧化物 52…多晶矽遮罩 26…接觸區域 54…源極植入區域 16 1263279 56···源極接觸遮罩 58···開孔/接觸遮罩2···Early Stone Second Substrate 28...Source Contact Area 3···Stupid Layer 30···Button Contact Area 4...Floating Area 32...Material Oxide 5···$夕晶34·· Channel implant region 10 and pole region 36... nitride layer 12···channel region 38··· photoresist 14... trench 40···terminal region 15... thick oxide 42···terminal recess 16 ...gate electrode 44··· field oxide 18...oxide 46···trench mask 20···self-aligned source region 48···opening 22···gate insulating layer 50·· · Polycrystalline layer 24... Low temperature insulating material / low temperature oxide 52... Polycrystalline germanium mask 26... Contact area 54... Source implanted area 16 1263279 56 · · Source contact mask 58 · · · Opening / contact Mask

1717

Claims (1)

1263279 94.1.10 第92126976號專利申請案申請專利範圍修正本 拾、申請專利範圍: 1. 一種用於製造半導體裝置的方法,包含: 提供一具有一第一傳導性之通道接收層之半導電 性材料的半導體晶粒; 5 在該通道接收層之上,形成一氧化阻劑材料層; 在該通道接收層的一個區域中之該通道接收層 内,形成溝槽;1263279 94.1.10 Patent Application Serial No. 92,126,976, the entire disclosure of which is incorporated herein by reference in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire a semiconductor crystal grain of the material; 5 forming a layer of an oxidant resist material over the channel receiving layer; forming a trench in the channel receiving layer in a region of the channel receiving layer; 在該些溝槽周圍,形成一終端凹口,該終端凹口具 有半導電性材料的暴露表面, 10 在該各溝槽之側壁與底部上,形成另一氧化阻劑材 料層;以及 在該終端凹口之暴露表面上,生長一氧化物層。 2. 如申請專利範圍第1項的方法,其又包含··在形成該氧 化阻劑材料層之前,在該通道接收層中植入具一第二傳 15 導性之通道摻雜物;以及在形成該氧化阻劑材料層之Forming a terminal recess around the trenches, the terminal recess having an exposed surface of a semiconducting material, 10 forming a further layer of an oxide resist material on the sidewalls and the bottom of the trenches; An oxide layer is grown on the exposed surface of the terminal recess. 2. The method of claim 1, further comprising: implanting a second passivity 15 channel dopant in the channel receiving layer prior to forming the layer of the oxidant resist material; Forming the layer of the oxidant resist material 後,擴散該通道摻雜物,以形成一通道區域。 3. 如申請專利範圍第2項的方法,其又包含:由該等溝槽 的底部去除該氧化阻劑材料,並留下該等溝槽之該等側 壁上的氧化阻劑材料;在該等溝槽之該底部,形成一底 20 部氧化物層;由該等溝槽之該等側壁去除該氧化阻劑材 料;以及在該些溝槽之該些側壁上,形成一閘氧化物 層;其中該底部氧化物層比該閘氧化物層更厚。 4. 如申請專利範圍第3項的方法,其又包含:在該每一個 溝槽中,形成一閘極電極;在該閘極電極之上,形成一 18 1263279 絕緣層;以及在該通道區域中,植入具該第一傳導性之 摻雜物。 5. 如申請專利範圍第4項的方法,其中該些閘極電極的形 成是:藉由沈積一層閘極電極材料到至少填滿該等凹槽 5 並且延伸於該終端凹口中的該氧化物層之上;去除該閘 極電極材料,只留下在該等溝槽内部中之閘極電極材 料,沒有去除沈積在該終端凹口上的閘極電極材料。Thereafter, the channel dopant is diffused to form a channel region. 3. The method of claim 2, further comprising: removing the oxidant resist material from the bottom of the trenches and leaving the oxidant resist material on the sidewalls of the trenches; a bottom portion of the trench, forming a bottom 20 oxide layer; removing the oxide resist material from the sidewalls of the trench; and forming a gate oxide layer on the sidewalls of the trench Wherein the bottom oxide layer is thicker than the gate oxide layer. 4. The method of claim 3, further comprising: forming a gate electrode in each of the trenches; forming an 18 1263279 insulating layer over the gate electrode; and in the channel region The implant having the first conductivity is implanted. 5. The method of claim 4, wherein the gate electrodes are formed by depositing a layer of gate electrode material to at least fill the recesses 5 and extend the oxide in the terminal recess Above the layer; the gate electrode material is removed leaving only the gate electrode material in the interior of the trenches without removing the gate electrode material deposited on the terminal recess. 6. 如申請專利範圍第4項的方法,其又包含:在該等溝槽 以及該終端凹口之上,形成一低溫氧化物層;圖案化該 10 低溫氧化物層,該低溫氧化物層係具有延伸至該半導體 晶粒之開孔,並且留下在該等閘極電極之上的低溫氧化 物;以及驅動該具該第一傳導性之該摻雜物,以形成鄰 接該等溝槽之具該第一傳導性的導電區域。 7. 如申請專利範圍第6項的方法,其中該圖案化包括在該 15 低溫氧化物之上,形成一具有遮罩開孔之遮罩,以確認6. The method of claim 4, further comprising: forming a low temperature oxide layer over the trenches and the terminal recess; patterning the 10 low temperature oxide layer, the low temperature oxide layer a low temperature oxide extending to the opening of the semiconductor die and remaining over the gate electrodes; and driving the dopant having the first conductivity to form adjacent trenches The first conductive conductive region. 7. The method of claim 6, wherein the patterning comprises forming a mask having a masking opening over the 15 low temperature oxide to confirm 在該低溫氧化物中將被移除而在該低溫氧化物中形成 開孔的區域;以及包含側向移除在該遮罩開孔以下部分 之該低溫氧化物,然後垂直移除該低溫氧化物,以形成 該等開孔,藉此在該低溫氧化物中之該等開孔將更狹小 20 的鄰接該半導體晶粒。 8. 如申請專利範圍第6項的方法,其又包含形成一接觸 層,該接觸層係延伸至具該第一傳導性的該導電區域, 且該接觸層係鄰接該等溝槽而與具該第一傳導性的該 導電區域電氣接觸。 19 U63279 •如申請專利範圍第6項的 通道區域。 、々方法,其中該些開孔係暴露該 1〇·如申請專利範圍第9項 5 10 15 20 孔所暴露之該通道區域中,植二又包含在藉由該等開 摻雜物ft植人具該第二傳導性型式之 U如申W 二傳導性型式之摻雜物的濃度。 •的Ι:;ΓΓ第9項的方法’其又包含在該每一開孔 區二一部分之半導體晶粒’以產生暴露該通道a region in the low temperature oxide that will be removed to form an opening in the low temperature oxide; and a portion comprising the low temperature oxide laterally removed below the opening of the mask, and then vertically removing the low temperature oxide And forming the openings, whereby the openings in the low temperature oxide will be narrower 20 adjacent to the semiconductor die. 8. The method of claim 6, further comprising forming a contact layer extending to the conductive region having the first conductivity, and the contact layer is adjacent to the trench The first conductive conductive region is in electrical contact. 19 U63279 • The access area as in item 6 of the patent application. And a method of sputum, wherein the openings are exposed to the channel region as disclosed in the ninth item of the patent application scope 5 10 15 15 20, and the phytosan is further included in the opening dopant The concentration of the dopant of the second conductivity type of the human such as the W conductivity type. • Ι: ΓΓ the method of item 9 which in turn includes semiconductor dies in two portions of each of the opening regions to create an exposed channel 12.如申請專利範圍第叫的方法,其又包含在藉由該 孔所暴露之該通道區域中 /、汗 … 中植入具該第二傳導性型式之 13 L叫加§㈣二傳導性型式之摻雜物之濃度。 4專利範圍第1項的方法,其中該氧化阻劑材料是 氮化物。 •如=專利範圍第1項的方法,其中該通道接收層是一 …亥弟-傳導性的蠢晶層,該具第—傳導性的蠢晶層係 形成於具該第-料性的-單石基材之上。12. The method of claim 1, wherein the method further comprises implanting a second conductivity pattern in the region of the channel exposed by the aperture, wherein the third conductivity type is 13 Å plus (four) two conductivity The concentration of the type of dopant. The method of claim 1, wherein the oxidant resist material is a nitride. The method of claim 1, wherein the channel receiving layer is a silicon-conducting stupid layer, and the first conductive layer is formed in the first nature- Above the monolithic substrate. 15·如:請專利範圍第丄項的方法,其中該半導體裝置是金 蜀氧化物半導體場效電晶體(m〇sfet)。 種用於製造金屬氧化物半導體(MOS)問控的半導體 轉換裝置之方法,包含: 且 提供-具有-第-傳導性之通道接收區域的 體晶粒; ' 在該通道接收區域中,形成一具第二傳導性之通道 區域; 20 a^63279 在延伸通過該通道區域之該半導體晶粒中, 少一溝槽; 在該至少一個溝槽中,形成一閘極結構;以及 …在形成該閘極結構之後,在該通道區域中形成一具 該第一傳導性之導電區域鄰接該溝槽的每-邊。^ 10 15 20 17.^申請專利範圍第16項的方法,其中該形成該導電區域 :包含在該通道區域中,植人具㈣—料性之換雜 :,施加於形成—金屬接觸之接觸料於該半導體 上!,以作為該導電輯的外部連接;使用該遮 亥1 一貫穿該導電區域而到達該通道區域的凹地;在 __底部’植人該第二傳導性之摻雜物,並且在_ 擴散驅動中擴散具該第一 等導電區域。 之雜㈣’以形成該 18.如申請柄範圍第16項的方法,其又包含在該至少一溝 等側壁上,形成一氧化阻劑材料層,並且在該溝 才曰的底部,形成一厚的氧化物。 19·如申請專利範圍第μ項 粒中m欠山&amp; 、方法,其又包含在該半導體晶 粒中形成一終端結構,今炊 體晶粒中的凹口。 “構包含-形成在該半導 20_如申請專利範圍第16項 -閘極電極,該閘極電極’、㈣極結構係包括 側壁絕緣,其中在形成4:二絕緣層而與該等溝槽 由熱氧化卿成。域之前,該絕緣層是藉 2115. The method of claim 2, wherein the semiconductor device is a gold oxide semiconductor field effect transistor (m〇sfet). A method for fabricating a metal oxide semiconductor (MOS)-controlled semiconductor conversion device, comprising: providing a body grain having a channel-receiving region having a first conductivity; 'in the channel receiving region, forming a a second conductive channel region; 20 a^63279 in the semiconductor die extending through the channel region, one less trench; in the at least one trench, forming a gate structure; and After the gate structure, a conductive region having the first conductivity is formed in the channel region adjacent to each side of the trench. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; On the semiconductor, as an external connection of the conductive package; using the opaque 1 to penetrate the conductive region to reach the concave region of the channel region; at the bottom of the __ implant the second conductive dopant And diffusing the first conductive region in the diffusion drive. The method of forming the handle of claim 18, which is further included in the sidewall of the at least one groove, forming a layer of an oxidant resist material, and forming a layer at the bottom of the groove Thick oxides. 19. The scope of the patent application, in the granules, in the granules, further comprises forming a terminal structure in the semiconductor crystal grains, the notches in the ruthenium grains. "Construction comprises - formed in the semiconductor 20 - as in the scope of claim 16 - gate electrode, the gate electrode ', (four) pole structure comprises sidewall insulation, wherein 4: two insulating layers are formed and the trenches The groove is formed by thermal oxidation. Before the domain, the insulation layer is borrowed 21
TW92126976A 2002-09-30 2003-09-30 Semiconductor device processing TWI263279B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41530202P 2002-09-30 2002-09-30
US44406403P 2003-01-29 2003-01-29

Publications (2)

Publication Number Publication Date
TW200414357A TW200414357A (en) 2004-08-01
TWI263279B true TWI263279B (en) 2006-10-01

Family

ID=37966317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92126976A TWI263279B (en) 2002-09-30 2003-09-30 Semiconductor device processing

Country Status (1)

Country Link
TW (1) TWI263279B (en)

Also Published As

Publication number Publication date
TW200414357A (en) 2004-08-01

Similar Documents

Publication Publication Date Title
US6921699B2 (en) Method for manufacturing a semiconductor device with a trench termination
US7361555B2 (en) Trench-gate transistors and their manufacture
US7518185B2 (en) Semiconductor component and method of manufacturing
JP2004522319A (en) Manufacturing of semiconductor devices with Schottky barrier
US7524726B2 (en) Method for fabricating a semiconductor device
JP2004538648A (en) MIS device having trench gate electrode and method of manufacturing the same
JP2008543046A (en) Trench-type metal oxide semiconductor field effect transistor
JP4216189B2 (en) Manufacturing method of semiconductor device having edge structure
JP2004538626A (en) Output MOSFET with deep injection junction
JPH0521450A (en) Semiconductor device and its manufacture
JP2003518748A (en) Self-aligned silicon carbide LMOSFET
KR100272051B1 (en) Process for manufacture of a p-channel mos gated device with base implant through the contact window
JP4139408B2 (en) Trench MOSFET technology for use with DC-DC converters
US7385273B2 (en) Power semiconductor device
US20040108547A1 (en) Power switching transistor with low drain to gate capacitance
JPH11274173A (en) Manufacture of silicon carbide semiconductor device
TWI236090B (en) Trench power MOSFET and method for fabricating the same
JP4075150B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2006510216A (en) Manufacturing method of trench gate type semiconductor device
TWI803288B (en) Integrated planar-trench gate power mosfet
TW586232B (en) Trench MIS device with active trench corners and thick bottom oxide and method of making the same
TW201032277A (en) Method for forming semiconductor device
TWI263279B (en) Semiconductor device processing
JPH0897410A (en) Manufacture of lateral type dmos transistor that self conforms
JPH0426139A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees