TW565843B - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
TW565843B
TW565843B TW091120024A TW91120024A TW565843B TW 565843 B TW565843 B TW 565843B TW 091120024 A TW091120024 A TW 091120024A TW 91120024 A TW91120024 A TW 91120024A TW 565843 B TW565843 B TW 565843B
Authority
TW
Taiwan
Prior art keywords
signal
aforementioned
circuit
output
period
Prior art date
Application number
TW091120024A
Other languages
English (en)
Inventor
Takuya Ariki
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of TW565843B publication Critical patent/TW565843B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50012Marginal testing, e.g. race, voltage or current testing of timing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Tests Of Electronic Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

565843 五、發明說明(1) 【發明之背景】 【發明之領域】 本發明係關於一種與基準週期訊號同步而進行 出輸入之半導體記憶裝置’特別a,本發明係關於二:輸 藏用以測定在内部所產生之週期訊號之週期之 3 體記憶裝置。 略的半導 【背景技術之說明】 成為習知半導體記憶裝置之SDRAM(Synchr⑽叫s Dynamic Random Access Mem 電路。接著,SDRAM係與由外部所輸入之 j守 之半導體記憶體,因此,在每一個一定卜之:PAM,揮發性 再新動作,在成ASDRAM夕宜加丄必須進行 Π “成為SDRAM某一個功能之自再新動作中, 進订再新動作之時間係根據由中 而決定。 1 了电格所輸出之週期訊號 ^、樣’週期訊號係決定SDRAM中之再新動 因此’成為對於動作用雷、、六望、庄 守3 ’ 參數。 勁作用電-專造成影響之非常重要之一個 行半導體記憶裝",必須進 號之週期成為既i:由所内藏之計時電路而輸出之週期訊 =示在曰本特開平 Μ —進位计數益而計數在一定時間所輸
五、發明說明(2) __ 訊號2時=唬藉由其計數值和輸出成為4# 參昭圖1 fi B,而測定週期訊號之週期之C :數對本之週期 …、圖1 6,計數器係 =之方法。也就是說, ,輸出之週期訊號之 仃设,並計數由振盪器 數),在時間t2,Λ Λ ........Sn、i、sn(n為自然 而決定週期訊號之:It之時間T間所計數之計數值, $外’利用進行SDRAM之 方式,使用計數用摆斜望* ^動乍τ動作用電流變大的 之電流,以冑於決定爯^ ff用不波器來監視再新動作時 期訊號同步之時門 4動作之間隔。再新動作係在與週 週,,號之;:間進仃’因此,將所決定之間隔決定成; 作時,藉= =週期的方法中,於再新動 有所Κίί:声Γ於決定週期訊號之週期,因此^ :不谷易精度良好地決定週期之問題發生。 法中,由:ϊίίΓ本特開平9 — 1 7 1 68 2號公報所揭示之方 所谓不容易精度良好地決定週期 U f也會有 成為進行計數動作之期間是說’ 時::/ 取得同步,因此,在以進行計數動作之 寺間了而除以計數值來算出週期之 好地決定週期。 小谷易精度良 【發明之概要】 C:\2D-CODE\91·]1\91120024.ptd $ 6頁 565843 五、發明說明(3) 定=昧ί!明…係提供一種内藏用以精度良靡 憶裝置。’ ^所輪出之週期訊號之週期之電路的半導體記 期:ί 31本發明的話’則半導體記憶裝置,係與基準週 期:ί =而對:己憶體單ί進行資料之輸出輸入,並與週 有:二二:乂 ?仃記憶體單兀之再新動作者,其係具備 路、盥I、、隹记憶體單元、產生週期訊號之週期訊號產生電 r次^ 土'週期訊號同步而對複數個記憶體單元之各個進 :二二之輸出輸入並且與來自週期訊號產生電路之週期訊 v f進行再新動作之週邊電路、以及使用具有比週期 士 =之第1週期更紐之第2週期的基準週期訊號以測定週期 訊號之週期的週期測定電路。 苴,,具有週期更短於週期訊號之週期的訊號,以測定週 广::ϋ期。因*匕,如果藉由本發明的話,則能夠精度 二ή s ’貝1疋在半導體記憶裝置之内部中所生成之週期訊號 的週期。 【較佳實施形態之說明】 ,照圖式詳細說明本發明之實施形態。此外,在圖式中 =:同或相當之部分上,附加相同之元件編號,不重複其 况明。 [實施形態1 ] (1參照/圖1,藉由本發明之實施形態1之半導體記憶裝置 ’係具備·控制訊號緩衝器10、控制訊號閂鎖電路. 、指令解碼器30、自計時器40、週期測定電路50、行控
第7頁 565843 五、發明說明(4) 制電路60 :行位址預解碼器7〇、行位址解碼器/哭 、位址綾衝器90、位址閂鎖電路n〇、 雷。 120、列位址計數器〗3。、列控制電路14。、列路 1/0、列位—址預解碼器160、列位址解碼器/驅動器、 记憶體早兀陣列180、資料匯流排181和輸出電路 控制訊號緩衝器1()係對於由控制訊號接聊所輸人 =選通訊唬/CAS、列位址選通訊號/RAS、寫入 <WE和測試模式訊號TM等之控制訊號,進行緩衝,而將: d 通訊號/CAS等之控制訊號,輪出至控、制 几號閃鎖電路20。此外,測試模式訊號^係用以 圮憶裝置1 〇 〇轉移至測試模式之訊號,通常在行位址 訊號/CAS等之控制訊號之邏輯位準和位址之邏輯位 為既定之組合時,半導體記憶裝置丨〇 〇係轉移至測試模 式,但是,在本發明中,係歸納使半導體記憶裴置丨0 0轉 移至測試模式用之控制訊號和位址之邏輯位 為測試模式訊號TM。 千]、,且口以作 控制訊號閂鎖電路2 0係對於由控制訊號緩衝器丨〇所輸入 之行位址選通訊號/CAS等之控制訊號進行閂鎖,將琴問 鎖之行位址選通訊號/CAS等之控制訊號輸出至指令^碼 器30。 指令解碼器3 0係對於由控制訊號閂鎖電路2 〇所輸入之行 位址選通訊號/ C A S等之控制訊號進行解碼。接著,指令 解碼器3 0係分別將解碼之各種指令訊號輸出至需要之^^制 電路群。此外’ L令解碼器3 0係在輸入η位準之測試模式 C:\2D-CODE\91-11\91120024.ptd 第8頁 565843
訊號TM時’生位準之開關訊 ! =在輸入L位準之測試模式訊號tm輪出,至輸,電路 開關汛唬SW並輸出至輸出電路i 9〇。 成L位準之 容易看到圖式’而省略由指令解碼器3。卜’在圖』中,為了 訊號線。 至輸出電路1 9 0之 自計時器40係環形振盪器而構成。 產生具有一定週期之脈衝訊號PHY,將其所產/時器40係 號MY ’輸出至週期測定電路5。和自再新 =訊 週期測定電路5〇係接受由自計時器mi20。 pm和來自外部接腳之時脈訊 Κ /Λ 訊號PHY相鄰接之二個成分間之時脈 汛唬CLI(之成为個數,其計數結果成為n(n為自然數)位元 之計數值Q<〇 :N>輸出至輸出電路19〇。
Awt Ϊ I Ϊ 係對於由位址接腳所輸入之位址訊號A0〜
Ak(k為自然數)進行緩衝,將其緩衝之位址訊號a〇〜μ輸 出至位址閂鎖電路π 0。 位址閂鎖電路1 1 〇係對於由位址緩衝器9〇所輸入之位址 訊號A0〜Ak進行閃鎖,其閃鎖之位址訊號剝〜赴成為行位 址A d d < j > ( j為自然數),^輸出至行位址預解碼器7 〇, 位址訊號A0〜Ak成為列位址Add<i >(1為自然數)並輸出 至列位址開關1 5 0。 自再新控制電路1 2 0,係在由指令解碼器3 〇輸入自再新 活性化说號時’與由自計時器4 〇所輸入之脈衝訊號pHY同 步而使彳寸列位址計數器1 3 0成為活性化,同時,將用以進
C:\2D-O0DE\9Ml\91120024.ptd 565843 五、發明說明(6) ___ ^包含在記憶體單元陣列180中之記憶體單 私不訊號輸出至列控制電路。 目冉新之 =址”器130係在藉由自再新控制電 侧位址,並將其計數之列位址輸出至^ 自』新時也/广說,列位址計數器13()係在記憶體單元Ϊ ^ '產生列位址並輸出至列位址開關1 5 0。 列控制電路“。係根據由指令解碼 :5° :於而控制位址開關15。,以便於選擇由上 入扣-ώ 1 1 >,在由自再新控制電路120而於 ^日不自再新動作之指*訊號日夺, =輸 :於選擇由列位址計數器13。所輸入之列:立:二關5〇以 二制電路1 4 0係使得列位 卜,列 驅動器η。成為活性化。 “160和列位址解碼器/ ,位址開關1 50係根據來自列 擇由位址閂鎖電路11〇所p屮> 电硌i4(J之控制,而選 位址計數器13〇所二列位址Add<1>或者由列 至列位址預解碼器列位址’將其選擇之列位址輸出 列位址預解碼器丨6〇係在藉由 化時’對於由列位址開關15〇所輸而成為活性 碼,將其預解碼之列位χ 之列位址進仃預解 址解碼器/驅動器17〇。 Q (Q為自然數)輸出至列位 列位址解碼器/驅動# 為活性化時,對於由j 糟由列控制電路140而成
<q >進行解碼Λy =解碼咖列位址X 精由其解碼之列位址而使得所指定之字 第10頁 C:\2D-CODE\91-11 \91120024.ptd 565843
第11頁 565843 五、發明說明(8) 解碼器30、行控制電路6〇 碼器/驅動器80、位址緩播哭Qn址預解碼器7〇、行位址解 控制電路140、列位址開關15:、列電路11。、 位址解碼器/驅動器〗7〇 址預解碼器1 60和列 中之所包含之記憶體單元進行 子於記憶體單元陣列1 80 憶體單元之自再新動作的「週邊^輸出輸入同時進行記 參照圖2,週期測定電路5〇係包」刑 相器 502 〜504、50 6、NAND 閘 _Ti 正反益501、反 τ型正反器5〇1係接受二 m,根#其所接受之脈 pD ^出之脈衝訊號 ^ ^ ^ u ^ ^ 衡汛號PHY與脈衝訊號PHY之邏輯 #之上升同步以輸出轉換邏輯位準之訊號QP。
Qd反Ϊ Γ〇2二5〇4係使得由丁型正反器501所輸出之訊號 Qp,延遲一疋k間,而輸出至NAND閘5〇5之另一邊 ΝΑΟ閘5 0 5係在某-邊端子,接受由工型正反器5〇1所輸 出,訊號Qy,在另一邊端子,接受來自反相器5〇4之輸出 成唬,演算其接受之二個訊號之邏輯加,反轉其演算結果 而輸出至反相器5 0 6。反相器506係反轉NAND閘5 05之輸出 訊號,以其反轉之訊號作為重設訊號並輸出至二進 器 5 07。 像這樣,反相器5 0 2〜5 04、5 0 6和NAND閘5 0 5,係構成根 據由T型正反器5 〇 1所輸出之訊號QP而生成重設訊號之重設 訊號生成電路。 二進制計數器50 7,係在CLK端子接受由外部接腳所輪入 之時脈訊號CLK,在CLKEN端子接受由T型正反器501所輸出
1 C:\2D-CODE\91-ll\9ll20024.ptd 第12頁 ^65843
號。,在咖口端子接受由反相器50 6所輸出之重設訊
QpU成為Η位準—時If數數在^^在叫龍端子所接受之訊號 成分個數以直計數Λ H 受之時脈訊號CLK之 行輸出。此外,:η乍為n位元之計數值Q<° :0>進 重設1隹Γ制計數器507係在RESET端子所接受之 ° ° 位準時重設計數值Q <0 : n >。 ρ 4卜f泊述中,用以生成重設訊號之反相器係成為三 ^,但疋,並不僅限定於此,一般也可以是奇數段。 乡,圖3,就週期測定電路5〇之動作進行說明。在由自 2時器4〇而輸出脈衝訊號PHY時,T型正反器50 1係接受脈 =號phy,在脈衝訊號ΡΗΥ之邏輯位準由^立準而切ς=Η ^準之時間’也就是與上升同步而輸出切換邏輯位準之訊 Qp^l接著,由反相器502〜504、50 6和NAND閘50 5所構成 ,重e又汛號生成電路,係根據由τ型正反器5 〇}所輸出之訊 號Qp ’而生成同步於訊號Qp上升之重設訊號“丁。 進制計數器50 7,係在同步於訊號叶之上升而輸入重 叹汛#URST時進行重設,然後,在訊號如成為H位準之期 間,计數由CLK端子所輸入之時脈訊號CLK之成分,並將其 計數結果當作計數值q < 〇 : η >而進行輸出。 八 在該狀態下,訊號qp係在由脈衝訊號ρΗγ之成分ριη之上 升=始而一直到成分ΡΗ2之上升為止之期間,或者是在由 成分3之上升開始而一直到成分ρΗ4之上升為止之期間保持 3位準。接著,二進制計數器5 0 7,係在重設訊號RST成為Η 位準時停止計數動作並重設計數值,因此,訊號Qp係在由
C: \2D-OODE\9M ] \91120024 .ptd 第13頁 565843 五、發明說明(10) f =位準之期間而扣除重設訊號RST成為Η位準之期間之 :間Τ1(或顺,計數時脈訊號CLK之成分個; 個計數存 成刀間(成刀ΡΗ1和成分ρΗ2間或成分ΡΗ :=」之成分個數。此外,準之訊號㈣ 預先知道由外部接腳所輸入之時脈訊號CLK之週期,因 此如果在由輸出輸入端子DQ所輸出之計數值Q〈 〇 : n > 而乘以時脈訊號CLK之週期的話,則能夠得到脈衝訊發ρΗτ 之週期。因此,計數存在於脈衝訊號ρΗγ相鄰接之二個 =間之時脈訊號CLK之成分個數,係相當於測定脈衝訊 尸Η 1之週期。 像這樣,在本發明中,其特徵為:藉由計數具有週期更 口紐於脈衝訊號ΡΗΤ之週期之時脈訊號CLK之成分個數,而 f定脈衝訊號PHT之週期。接著,本發明係具有這樣之特 徵,結果,能夠精度良好地測定脈衝訊號pHT之週期。 f照圖4,輸出電路19〇係包含:反相器19〇1、p通道 電晶體1 9 0 2、1 904、N通道MOS電晶體1 90 3、1 905和輸出緩 衝器1 9 0 6。 反相器1901係反轉由指令解碼器3〇所輸入之開關訊號 SW ’而輸出至p通道M〇s電晶體19〇2 通道M〇s電晶體19〇5 之2極端子。p通道M0S電晶體19〇2,係在閘極端子接受反 相裔1 901之輸出訊號。N通道MOS電晶體1 903,係在閘極端 子接受來自指令解碼器30之開關訊號sw。p通道M〇s電晶體
第〗4頁 565843 五、發明說明(11) 1 9 0 2 ’係將其源極端子連接N通道M0S電晶體1 9 03之源極端 子’而將其汲極端子連接Ν通道MOS電晶體1 90 3之汲極端 子。接著’Ρ通道MOS電晶體1902和Ν通道MOS電晶體1903係 構成傳輸閘。Ρ通道MOS電晶體1 90 2和Ν通道MOS電晶體 1 9 0 3,係在源極端子接受二進制計數器5 〇 7之計數值^ < 〇 · η >’在由才曰令解碼裔3 0而輸入Η位準之開關訊號s界 時’將計數值Q < 0 ·· η >輸出至輸出緩衝器j 9 〇 6。 Ρ通道MOS電晶體1 9 04,係在閘極端子接受來自指令解碼 器30之開關訊號SW。Ν通道MOS電晶體1 90 5,係在閘極端^ 接受反相器1 901之輸出訊號。ρ通道m〇s電晶體1 9〇4,係將 其源極端子連接Ν通道MOS電晶體1 9 0 5之源極端子,而將其 沒極端子連接Ν通道MOS電晶體1 90 5之汲極端子。接著,ρ、 通道MOS電晶體1 9 04和Ν通道MOS電晶體1 9 0 5係構成傳輸 閘。Ρ通道MOS電晶體1 904和Ν通道MOS電晶體1 9 0 5,係&在源 極端子接受來自資料匯流排丨8 1之讀出資料〇 < 〇 : η >,^ 由指令解碼器3 0而輸入L位準之開關訊號sw時,將讀出資 料D <0 : η >輸出至輸出緩衝器19〇6。輸出緩衝器19〇6, 係對於計數值Q < 〇 ·· η >或讀出資料D < 〇 ·· η >進行緩衝, 並將其緩衝之計數值Q < 〇 : η >或讀出資料1) < 〇 : η 至輸出入端子DQ。 在半導體記憶裝置1 〇〇轉移至測試模式時,Η位準之 拉式訊號ΤΜ係輸入至半導體記憶裝置丨〇 〇,因此,指令" 碼器30係根據Η位準之測試模式訊號ΤΜ而生成Η位曰\ 訊號SW並輸出至輸出電路19〇。接著,在輸出電路19〇 4 =
c:\2D-C0DE\91-ll\91120024.ptd
第15頁 565843
據Η位準之開關讯^sw而使得p通道觀電晶體1⑽2和n通道 MOS電晶體1 9 0 3成為導通,p通道M〇s電晶體i9〇4*n通道 MOS電晶體1905成為截止狀能 4士里 , 乂巧戳止狀悲。結果,由二進制計數器507 所輸出之計數值Q<0 :n>,係透過13通道M〇s電晶體19〇2 和N通道MOS電晶體1 9 0 3,而輸入至輸出緩衝器19〇6,由輸 出緩衝為'1906而輸出至輸出入端子dq。 在通常動作時,L位準之測試模式訊號^係輸入至半導 ^記憶裝置1GG,因此,指令解碼器3()係根據L位準之測試 杈式訊號TM,而生成l位準之開關訊號sw並輸出至輸出電 路190。接著’在輸出電路19〇,根據[位準之開關訊號 SW,而使得P通道M0S電晶體19〇^〇n通道M〇s電晶體^“成 為截止狀態,P通道MOS電晶體丨9 04 通道M〇s電晶體19〇5 成為導通。結果,資料匯流排181上之讀出資料D<〇 :n >,係透過P通道MOS電晶體1 904和N通道MOS電晶體1 905, 而輸入至輸出缓衝器19〇6並由輸出緩衝器19〇6而輸出至輸 出入端子DQ。 像這樣,輪出電路190,係在半導體記憶裝置1QQ轉移至 測試模式時,將由二進制計數器5〇7所輸出之計數值〇< 〇 · η >輸出至輸出入端子DQ,在半導體記憶裴置工〇〇之通 常動作時,將由記憶體單元所讀出之讀出資料〇 < 〇 ·· η > 輸出至輸出入端子D Q。 再一次地參照圖1,就半導體記憶裝置100中之各種動作 進行說明。在對於包含在記憶體單元陣〇 單元寫入資料之狀態下,L位準之行位址選通訊號二-
565843 五、發明說明(13) 、L位準之寫入致能訊號/ ίο。。像:m 係輸入至半導體記憶裝置 係對於行位址選通訊號 號八ASi=進行緩衝,將其緩衝之行位址選通訊 著°,栌制 工制讯7虎輸出至控制訊號閂鎖電路20。接 等之路20,係閃鎖行位址選通訊號部 σ,將其閂鎖之行位址選通訊辦/ ρ Α ς笙 k 制訊號輸出至指令解碼器3〇。 …唬/CAS寻之栓 ,私:Ϊ Γ益3 〇係解碼行位址選通訊號/CAS等之控制訊 號之一部分輸出至行控制電路:將其 示),將其解碼之訊號 輸出至自再新控制電^ 解碼之訊號之一部分 味m 生成^立準之開關訊號sw,將其 ^ '之開關讯號SW,輸出至輸出電路1 90。八 一接著,位址緩衝器9〇係對於所輸入之位址訊號a〇〜隹 =緩衝,將其緩衝之位址訊。〜Ak輸 為订位址Add<j >和列位址Add<i >,並分別輸出 址預解碼器7 0和列位址開關〗5 〇。 订 像這樣,自再新控制電路〗2〇,係接受 訊號phy,使得用以不進行記憶體 之"R y 號,與脈衝訊號m同步而輸出至列控制電=之 第17頁 C:\2D-OODE\91-ll\9I]20024.ptd 565843 五、發明說明(14) 列位址計數器130成為非活性化。 係接夸凌白4匕八w 列徑制電路1 4 0, σ。要耒自礼々解碼器30之指令訊號,使得列 广1 60和列位址解碼器/驅動器1 70成為活性化,並栌制列 位址開關1 5 0以便於接受來自自 並&制列 號,έ ;自自再新控制電路1 2〇之指示訊 拉ί ί 閃鎖電路110之列位址_<ί>。 制,:、S搂t t開關1 50 ’係根據來自列控制電路1 40之控 :=來自位址閃鎖電路u。之列位址Add<i〉,將 ,、k擇之列位址Add < j >於ψ 5石I丨a , :==二 一預解碼之列位址X < q〉輸出至列位址 1 7 0。列位址解碼器 / ^ ^ ^ ^ ·’、、°σ ·,、、動淼 尸益士甘姑庄’态/驅動裔170係解碼列位址X <q >,使 :、解碼$列位址所指定之字元線成為活性化。 令訊號方:r : 5制電路6〇係接受來自指令解碼器3°之指 〇n唬使付仃位址預解碼器70和行位址解碼哭/驅動哭 8 0成為活性化。 胛3时/驅動态 行位址預解碼器7〇係對於所輸入 預解碼’將其預解碼之行位W<p> 了 杰/驅動益80仃位址解碼器,驅動器8 Y < P >進行解碼,使撂拉由並銥m + y 了趴仃位址 擇線,成為活性化。接J,::屮位址所指定之行選 資料,係透過輸入電H干U 2 :dq所輸入之寫入 包格〈禾圚不)冩入至資料藤声姑]Q ] 透過資料匯流排181,蕻A s 4 /匯机排181 ^ ^ ^ ^ ^ ,藉由呈/性化之行選擇線和字元線 0 S 。己憶體單元中。藉此而結束對於q ,f«體 單元之資料寫入動作。 不对於》己匕μ
565843 五、發明說明(15) 態下’指令解碼器3〇係將用以 訊號輸出至輸出電路19〇,, 0唬之扣令 輸出緩衝器簡係成為非活性化。=在輸出電=中之 係並無輸出資料至輸出入 、出電路190, 係根據由自計時器4〇所^ ^ 1 ^外,週期測定電路50 所輸入之時脈訊號CLK所輪正出Λ 號m和由外部接腳 CLk,將其計數值Q<0 數時脈訊號 τ、丄、 n>輸出至輪出電路190,伯s 〇刖敘述,輸出緩衝器1 9 0 6係成為非活性化一疋, 並;r;:Q<°:n^出至輸出入^ 接者,就由記憶體單元而讀出 憶裝置100之動作進行說明。 了下之+導體記 /CAS、L位準之列位址選,1準之行位址選通訊號 置1〇°開始而-直到藉由行位址所指定之;If己憶裝 列位址所指定之字元線成為活:二广線和藉由 前述動作。此外,在該妝能 2止之動作,係相同於 準之測試模式訊謂,解碼㈣係根據L位 所生成之L i > μ ^ 生成L位準之開關訊號SW,將其 V;;V ;06; ^ ^1 由錯由成為活性化之行選擇線和 單元而讀出之讀出資料,係透 =線所扎疋之記憶體 出至資料匯流排181,並由資料匯?二對和感測放大器輸 路190。在輪出電路】90 、’ £抓排181而輸出至輸出電
㈣出電路】9。’根據由指令解碼器3〇所輸入之L 565843 五、發明說明(16) 位準之開關訊號SW,將讀出資料D < 〇 : η >輸入至輪出緩 衝為1 9 0 6輸出緩衝器1 9 0 6係將讀出資料D < 0 : η >輪出至 輪出入端子DQ。藉此而使得由記憶體單元所讀出之讀出資 料輪出至輸出入端子DQ。在該狀態下,週期測定電路5〇係 也正如前面敘述,將計數值q < 〇 ·· η >輸出至輸出電路’、 1 9 0,但是,在輸出電路丨9 〇,根據乙位準之開關訊號μ, 而使得Ρ通道MOS電晶體1 902和Ν通道MOS電晶體1 903成為截 止狀態,因此,並無將計數值Q < 〇 : η〉輸出至輸出入、、 子DQ。 炎而 就在半導體圮憶裝置1 〇 〇進行自再新時之動作進行說 明。在該狀態下,由既定之邏輯位準之組合而組成之 新活性化訊號係輸入至半導體記憶裝置1〇〇。像這樣,再 2讯唬緩衝器1 〇、控制訊號閂鎖電路2〇和指令解工 相同於前述動作之動作。接著,行控制電路6。;3: 使得行位址預解碼器7°和行位址解碼器父Ϊ 為8 0成為非活性化。 / .¾動 Γ Ϊ面、,自再新控制電路120係接受來自指令解碼哭 ρ 新活性化訊號和來自自計時器4 0之脈衝訊號、°° 性化Λ列位址^數器1 3〇同步於脈衝訊號取^成為活 訊?卢ΡΗγ5而日於,屮使付用以進行自再新之指示訊號同步於、脈衝 Λ唬ΡΗΥ而輸出至列控制電路14〇。 少於脈衝 像這樣,列控制電路丨4 〇, 址預解碼器160和列位址解碼哭二々號而使得列位 同時,根據來自自驅動器170成為活性化, 康末自自再新控制電路120之指示訊號,而控制
C:\2D-CODE\9Ml\9H20024.ptd 第20頁 咖843 五、發明說明(17) 址。止開關1 5 〇以便於選擇來自列位址計數器1 3 0之列位 位2 2出口 5址計數器1 30係計數列位址,將其計數之列 控制電路I4f/i位址開關15〇。列位址開關150係根據來自列 址,將苴、堡挥控制’選擇來自列位址計數器130之列位 後,按二^ Ϊ之列位址輸出至列位址預解碼器1 60。然 為活性:I進ί 而使得藉由列位址所指定之字元線成 輪入電路(並未仃圖再1動作。在該狀態了’輸出電路19〇和 於半導體2,^^ 成為非活性化,因此,並無進行對 裳置_之資料之輸入輸出。 模式訊號以;至測試模式時’ H位準之㈣ 測試握々技主- + ¥肢記憶裝置1 〇 〇。在本發明中, PHY°i而收示:測定由自計時器40所輸出之脈衝訊號 行對於$情e :輪出至輸出入端子DQ;並非表示進 丁 H。己隐體早凡之資料之輸入輸出之測試。 30得1诚^輸入H位準之測試模式訊號以時,指令解碼器 號SW,輪A 式矾號ΤΜ,而生成11位準之開關訊 輸出至輸出電路190。 個::〔:疋1路5〇係計數存在於脈衝訊號PHY相鄰接之二 >輸1二日:Ϊ訊號CLK之成分個數’將其計數值Q<0 :n 位準之門h Ϊ路190 °像這樣’在輸出電路190,根據Η 二;ΪΓ選擇計數值Q<〇:…透過輸出緩 = <。、出至輪出入端侧。接著,根據所輸出之 n ’而精度良好地決定脈衝訊號PHY之週
565843
此外,在前面敘述中,雖鈇 訊號緩衝器1 〇、控制訊_ 二φ .、、、、,提到,但是,控制 控制電糊、行位二指令解㈣ 80、位址緩衝器90、位址閃鎖電路址广碼益/驅動器 列位址開關1 5 0、别办上 列控制電路1 4 0、 “立址開關150、列位址預解碼器以 :器170,係同步於由外部所輪入之時脈二== 作。也就是說,對於包含在唬cu而進灯動 邮留- #次u 3在5己丨思體早兀陣列1 8 0中之記佾 =…料之輸入輸出動作,係同步於時脈訊號CL 乂 時(由具實有的話’則半導體記憶褒置具備使用 號之週期^ 4赵户产加小於由自計時器所輸出之脈衝訊 I"週^而计數存在於脈衝訊號相鄰接之二個成分間之 日寸脈訊號之成分個數的週期測 好地決定脈衝訊號之週期。 此夠精度良 [實施形態2 ] “參照圖5,藉由實施形態2之半導體記憶裝置丨〇 },係將 半導體記憶裝置1〇〇之週期測定電路5〇取代成為週期測定 電路51 ’其他係相同於半導體記憶裝置丨〇 〇。 參照圖6,週期測定電路5丨係包含:τ型正反器5 〇 1、二 進制 δ十數裔 507、反相 |§ 511 〜514、517、518、NOR 閘 515 和NAND閘516。就T型正反器501而言,係正如前面敘述。
反相器511〜513係使得由T型正反器501所輸出之訊號Qp 延遲一定時間’而輸出至NAND閘516之某一邊端子。NAND
C:\2D-OODE\91-ll\91120024.ptd 第22頁 565843 五、發明說明(19) 閘5 1 6係在另一邊端子接受由τ型正反器5 0 1所輸出之訊號 Q p ’演算訊號q p和來自反相器5 1 3之輸出訊號間之邏輯 加’並反轉其演算結果而輸出至反相器5〗8。接著,反相 器5 18係反轉nAND閘516之輸出訊號,將重設訊號RST輸出 至二進制計數器507之RESET端子。因此,反相器51 1〜 513、518和NAND閘516,係構成用以生成重設訊號之重設 訊號生成電路。 反相器5 1 4係反轉反相器5 1 3之輸出訊號而輸出至NOR閘 515之另一邊端子。n〇r閘515係在某一邊端子,接受由T型 正反器501所輸出之訊號Qp,演算訊號Qp和來自反相器51 4 之輸出訊號間之邏輯或,並反轉其演算結果而輸出至反相 器51 7。接著,反相器517係反轉N〇R閘515之輸出訊號並輸 出至二進制計數器5 0 7之CLKEN端子。 二進制計數器507係在由反相器5 1 7所接受之訊號成為Η 位準之期間’計數由外部接腳所輸入之時脈訊號CLK,將 計數值Q<〇 :1!>輸出至輸出電路,在由反相器518所 接文之重設訊號成為Η位準之期間,停止計數動作,而重 设计數值Q < 〇 : η >。 參照圖7 ’就週期測定電路5丨中之動作進行說明。τ型正 反器5 0 1係根據由自計時器4 〇所輸入之脈衝訊號ρΗγ,正如 前面敛述’生成訊號qp並將其生成之訊號Qp輸出至N〇R閘 515之某一邊端子、反相·5η *NAND閘516之其他邊端 子。反相器5 1 1〜5 1 3係使得訊號Qp,延遲一定時間而輸出 至NAND閘516之某一邊端子。NAND閘51^系演算來自反相器
565843
513之輸出訊號和訊號Qp間之邏輯加,並反轉其演管結果 而輸出至反相5 1 8。接著,反相哭c; 1 β c 、 七认t ^ 久相為518係反轉NAND閘516 之輸出訊號,將重設訊號RST,輸出5 …,a nr7 RESET端子。 翰出至一進制計數器507之
另一方面,反相器514係反轉反相器513之輸出訊., NOR閘51 5係演算來自反相器514之輪出訊號和由丁型正°反哭 501所輸出之訊號Qp間之邏輯或,並反轉其演算結果而輸° 出至反相器517。接著,反相器517係反轉肋^閘515之輸出 訊號,將訊號CLKEN,輸出至二進制計數器5〇7之以](口端 子。在該狀態下,NOR閘515係演算訊號Qp和訊號Qp延遲一 定時間之訊號間之邏輯或’因此,訊號CLKEN,係在期間 更加長於訊號Qp成為Η位準之期間保持η位準,在期間更加 短於訊號Qp成為L位準之期間保持L位準。 ' S 像這樣,二進制計數器5〇7,係在訊號以}(_成為L位準 並且重設訊號RST成為L·位準之期間,計數時脈訊號CLK之 成为個數’將δ十數值Q<〇 ·η>輸出至輸出電路“ο。 由於反相器514係反轉及輸出藉由3個之反相器511〜513 而進行延遲之訊號Qp,因此,NOR閘515係藉由邏輯或之演 算,而得到使得訊號Qp成為Η位準之期間僅延長由於反相 器5 11〜5 1 3所造成之延遲時間之訊號。此外,藉由反相器 5 11〜5 1 3而進行延遲之訊號Q ρ ’係使用在重設訊號r $ τ之 生成上,由於反相器5 11〜5 1 3所造成之延遲時間係相當於 重設訊號RST成為Η位準之期間。因此,NOR閘5 1 5係藉由邏 輯或之演算,而得到使得訊號Qp成為Η位準之期間僅9延長
C:\2D-00DE\91-ll\91120024.ptd 第24頁 565843 五、發明說明(21) 重設訊號RST成為Η位準之期間之訊號。 成為Η位準之期間僅延長重設訊號‘成: ==之訊號咖,輸出至二進制計數謂之 訊號Qp係在相當於脈衝訊號ΡΗγ週期 準,訊號CLKEN係使得訊號Qp成為Η位準期^僅延 ^ ^ ^ ^ ^st ^ ;L ,λ 間Τ3 (或Τ4 ),計數時脈訊飢κ之成分個數。因 :,二進制計數器507係在相當於 間,進行時脈訊細之計數動作。結果,可以藉由Λ 為計數動作之期間可進之計數之期間,成 週期。 更力正確地測定脈衝訊號ΡΗΥ之 之此^clken係指檢測窗訊號」。此外,使得延 遲-定時間之反相器係不限定Α」_使:,唬⑽八 數段。 疋為二#又式,一般也可以是奇 其他係相同於實施形態1。 實施形態2的話’則半導體記憶裝置係且備: 電路所輪出之脈衝訊號之週期之期間,進 正確地測定脈衝訊號期測定電路;因此’能夠更加 [實施形態3 ] 565843 五、發明說明(22) 參照圖8,藉由實施形態3之半導體記憶裝置102,係將 半導體記憶裝置1 0 0之週期測定電路5 〇,取代成為週期測 定電路5 2,其他係相同於半導體記憶裝置1 〇 〇。 參照圖9,週期測定電路5 2係包含:T型正反器5 0 1、反 相器502 〜504 、 506 、 521 〜523 、 525 、 526 、 529 〜531 、 NAND閘505、二進制計數器5 0 7、NOR閘524、P通道MOS電晶 體527和N通道MOS電晶體528。就T型正反器501而言,係正 如前面敘述。此外,反相器5 0 2〜5 0 4、5 0 6和NAND閘5 0 5係 正如在實施形態1所說明的,構成用以生成重設訊號之 重設訊號生成電路。 反相器521〜523係使得由T型正反器501所輸出之訊號 Qp,延遲一定時間,而輸出至NOR閘524之另一邊端子。 NOR閘524係在某一邊端子,接受來自T型正反器501之訊號 Qp,演算訊號Qp和反相器5 2 3之輸出訊號間之邏輯或,並 反轉其演算結果。反相器52 5係反轉NOR閘524之輸出訊 ϊ虎’使付其反轉之訊號成為訊號/ L A T E,而輸出至反相器 502、526、NAND閘505之某一邊端子和P通道m〇s電晶體527 之閘極端子。反相器5 26係將反轉訊號/LATE之訊號 LATE,輸出至N通道M0S電晶體5 28之閘極端子。 反相器5 0 2〜5 0 4、5 0 6和N A N D閘5 0 5,係根據訊號/ LATE,按照在實施形態1所說明之動作,生成重設訊號 RST,將其生成之重設訊號RST,輸出至二進制計數器507 之RESET端子。 二進制計數器50 7係在由T型正反器501所輸出之訊號qp
C:\2D-C0DE\9l-ll\91120024.ptd
第26頁 565843
成為Η位準之期間,計數由外部接腳所輸入之時脈訊號πκ =成分/固數以輸出計數值Q < 〇 ·· η >。此外,二進制計數 裔5 07係在由反相器5〇6所輸入之重設訊號rst成為η位準之 期間重設計數值Q < 〇 : η >。 曰Ρ通道MOS電晶體527,係將其源極端子連接Ν通道仰3電 ,體528之源極端子,而將其汲極端子係連接Ν通道m〇s電 晶體528之汲極端子。接著,p通道M〇s電晶體527係在閘極 端子接受來自反相器525之訊號/UTE,N通道M〇s電晶體 528係在閘極端子接受來自反相器5 2 6之訊號/late通
道MOS電晶體5 2 7和N通道MOS電晶體528係構成傳輸閘,在 訊號LATE成為Η位準(訊號/LATE成為L位準)之期間,將由 二進制計數器5 0 7所輸出之計數值<3 <〇 ·· n >輸出至反相器 5 2 9。 σσ 反相器5 2 9、5 3 0係構成閂鎖電路,對於透過ρ通道μ 〇 $電 晶體527和Ν通道MOS電晶體528所輸入之計數值(5<〇 : η> 進行閂鎖,而輸出至反相器5 3 j。反相器5 3 j係反轉反相器 531之輸出成號,將計數值q<〇 :〇>輸出至輸出 190 〇 參照圖1 0 ’就週期測定電路52之動作進行說明。Τ型正 反器5 0 1係根據由自計時器4 〇所輸入之脈衝訊號ρΗγ,正如 前面敘述,生成訊號Qp,將其生成之訊號qp,輪出至二進 制計數器50 7之CLKEN端子、反相器521和NOR閘524之另一 邊知子。反相為5 2 1〜5 2 3係使得訊號Q p,延遲一定時間, 而輸出至NOR閘524之某一邊端子。N0R閘524係演算來自反
565843 五、發明說明(24) 相器52 3之輸出訊號和訊號QP間之邏輯或’並反轉其演算 結果而輸出至反相器5 2 5。接著,反相器5 2 5係反轉N閘 5 24之輸出訊號,並將訊號/LATE ’而輸出至反相器502、 526、NAND閘50 5之某一邊端子和P通道M0S電晶體5 2 7之閘 極端子。此外,反相器5 2 6係反轉反相器5 2 5之輸出訊號, 並將訊號LATE輸出至N通道M0S電晶體528之閘極端子。 藉由NOR閘5 24演算使得訊號Qp延遲一定時間之訊號和訊 號Qp間之邏輯或,以便於生成訊號/LATE,因此,在上升 訊號Qp之邏輯位準之時間,並無切換邏輯位準,而與降低 訊號Qp之邏輯位準之時間同步以使邏輯位準由Η位準切換 成為L位準。訊號LATE係反轉訊號/LATE之訊號,因此, 在相同於訊號/LATE之時間切換邏輯位準。 反相器5 0 2〜5 04、5 0 6和NAND閘505,係按照前述動作, 根據訊號/LATE而生成重設訊號“了,並將其生成之重設 訊號RST輸出至二進制計數器5〇7 2RESET端子。也就是 說,反相器5 0 2〜5 04、5 0 6和NAND閘50 5,係生成使得訊號 /LATE僅延遲由於反相器5〇2〜5〇4所造成之延遲量之重設 訊號RST。接著’二進制計數器5〇7係在由τ型正反器5〇ι所 輸入之訊號Qp成為Η位準之期間,計數由外部接腳所輸入 之呀脈訊號CLK之成分個數,將計數值Q〈 〇 : η >輸出至ρ 通道^電晶體如和㈣道職電晶體似之源極端子。 別ϊ ϊ 二通電晶體527㈣通道M0S電晶體528係分 之時;。:位準之訊號/LATE和11位準之訊號LATE 夺 進制計數器507所輸出之計數值Q<〇 :n>
C:\2D-C0DE\91-ll\91120024.ptd 第28頁 565843
輸出至反相為' 5 2 9。反相器5 2 9、5 3 0係在閃鎖計數值q < Ο · η >而保存一定時間後,將計數值儿<〇 :11>輸出至反 相器531。接著,反相器531係反轉計數值QL : η >,將 計數值QL<0 :η>輸出至輸出電路190。 。正如前面敘述,訊號LATE、/LATE係與降低訊號qp之邏 輯位準之時間同步而切換邏輯位準(成分L a 1、[ a 2、/ LAI、/LA2),重設訊號係延遲訊號/LATE而生成,因 此’重設訊號RST係必定在訊號Qp成為L位準之期間中,具 有成為Η位準之成分RST1、RST2。也就是說,在訊號Qp成' 為Η位準之期間呈結束後,重設訊號RST係成為η位準。結 果’二進制計數器5 〇 7係在訊號Qp由L位準切換成為η位準 時’同時開始進行時脈訊號CLK之計數,並與訊號Qp由η位 準切換成為L位準之時間同步而停止時脈訊號之計數, 以將計數值Q <0 : η >輸出至Ρ通道MOS電晶體527和Ν通道 MOS電晶體528之源極端子。接著,二進制計數器5〇7係在 輸出計數值Q < 0 : η >後,接受Η位準之重設訊號Τ,以 重設計數值Q < 0 : η >。因此,二進制計數器5 〇 7係可以在 相當於脈衝訊號ΡΗΥ週期之期間Τ5(或Τ6),進行時脈訊號 CLK之計數動作。 化 此外,P通道MOS電晶體527和N通道MOS電晶體528係在二 進制計數器5 0 7結束時脈訊號CLK之計數而輸出計數值^ < 〇 ·η〉時,藉由訊號/ LATE、LATE而成為導通,將計數值 Q<〇 :n>輸出至反相器529。 像這樣’週期測定電路5 2係在相當於脈衝訊號ρ η γ週期
C: \2D-C0DE\91 -11 \91120024.ptd "" 第 29 頁 *"" " ----* 565843 五、發明說明(26) 之期間進行時脈訊號CL1(夕& Λ 數德,益± 计數’在結束時脈訊號CLK之計 b士 μ认l广土入 對於計數值Q < 〇 : n〉,保存一定 ::輸出至輪出電路190,同時,重設計數值Q<0 :η>。 少^以除去由於二進制計數器5 0 7中之重設動作所造 在相當於脈衝訊號PHY週期之期間進行時脈訊 就C L K之計數。 $外,使付訊號Qp延遲一定時間之反相器係不限定為三 又,,一般也可以是奇數段。此外,使得訊號/LATE延 f -定時間之反相器係不限定為三段式,一般也可 數段。 其他係相同於實施形態1。 如果藉由實施形態3的話,則半導體記憶裝置係具備: 在相當於由計時電路所輸出之脈衝訊號之週期之期間,進 行計數作而輸出計數值的週期測定電路;因此,能夠更加 正確地測定脈衝訊號之週期。 [實施形態4 ] 參照圖11,藉由實施形態4之半導體記憶裝置〗〇 3,係將 半導體記憶裝置1 0 0之週期測定電路5 0,取代成為週期測 定電路5 3,其他係相同於半導體記憶裝置1 〇 〇。 參照圖1 2,週期測定電路5 3係包含:T型正反器5 0 1、二 進制計數器507、反相器531〜534、540〜545、NAND閘 535、53 6、538、53 9、547 〜549 和 NOR 閘 537、546。就丁型 正反器5 0 1而言,係正如前面敘述。 反相器5 3 1〜5 3 3,反相器5 11〜5 1 3係使得由T型正反器
C:\2D-C0DE\91-ll\91120024.ptd
565843 五、發明說明(27) 50 1所輸出之訊號Qp,延遲一定時間,而輸出至反相器 5 34、NAND閘53 6之另一邊端子和NOR閘537之某一邊端子。 NOR閘537係演算藉由反相器531〜5 33而延遲一定時間之訊 號Qp和由T型正反器501所輸出之訊號Qp間之邏輯或,並反 轉其演算結果而輸出至反相器542。接著,反相器542係反 轉NOR閘53 7之輸出訊號,將訊號/C0R輸出至NAND閘549之 另一邊端子。 反相器5 34係反轉反相器533之輸出訊號,輸出至NAND閘 535之另一邊端子。NAND閘5 3 5係演算反相器534之輸出訊 號和由T型正反器5 0 1所輸出之訊號QP間之邏輯加,並反轉 其演算結果而輸出至反相器54 1。接著,反相器54 1係反轉 NAND閘53 5之輸出訊號,並將訊號⑶^;輸出至NAND閘547之 另一邊端子。 N A N D閘5 3 6係演算藉由反相器5 3 1〜5 3 3而延遲一定時間 之訊號Qp和由T型正反器501所輸出之訊號Qp間之邏輯加, 並反轉其演算結果而輸出至NAND閘539之另一邊端子。 反相器54 3〜545係在由二進制計數器507所輸出之計數 值Q < 0 · η >中,使得最上階位元q n延遲一定時間並輸出 至NOR閘5 4 6之另一邊端子。n〇R閘5 4 6係演算藉由反相器 543〜545而進行延遲之最上階位元Qn和由二進制計數器 5 0 7所輸出之最上階位元如間之邏輯或,並反轉其演算結 果而輸出至NAND閘547之某一邊端子。ΝΑ〇閘547係演算 NpR閘546之輸出訊號和由反相器541所輸出之訊號c〇E之邏 輯加,並反轉其演算結果而將訊號/c〇s輸出至NAND閘548
C:\2D-C0DE\91-ll\91120024.ptd 第31頁 565843 五、發明說明(28) 之某一邊端子。 NAND閘548、549係構成正反器,輸入由naND閘547所輸 出之號/ C 0 S和由反相器5 4 2所輸出之訊號/ (; 〇 r,將訊 號/C0輸出至NAND閘538之另一邊端子和NAND閘539之某一 邊端子。 NAND閘538係演算由T型正反器501所輸出之訊號qp和訊 號/CO間之邏輯加,並反轉其演算結果,而輸出至反相器 540。接著,反相器540係反轉NAND閘538之輸出訊號,輸 出至二進制計數器5 0 7之CLKEN端子。NAND閘53 9 #演瞀 麵閉536之輸出訊號和訊號趣,之邏 演算結果而將重設訊號RST輸出至二進制計數器5〇7之 :進制計數器507係在由反相器54〇所輸入之訊號成為h ϋ 計數由外部接腳所輸入之時脈訊號CLK之成 :=將計數_<0:η>輸出至輪出電㈣ ΝΑΪ= ρΛ 子°此外,二進制計數11507係在由 NAND閘5 3 9所輸入之重設訊號RST成 計數值。此外,在該實施形J,成改 =二之期間,重設 之時脈訊號CLK之頻率,二進制計數器。^接腳所輸入 能計數之頻率之時脈訊號CLK時成Α ^ ,仏⑥入具有不 成為「〇」之計數_<〇:η>。成為溢位’輪出全部位元 參照圖1 3,就週期測定電路53 進制計數器5 07係在開始計數動動作,進行說明。二 乍則’輸出由全部位元成
565843 五、發明說明(29) m所組ΐ之計數值'〈° :n>,因此,間546係輸 位準之訊號,.〇閘547係不限於訊號coe之邏輯位 =J出Η位準之訊號/C0S。接著,τ型正反器5〇1係根據 ^自計”40戶斤輸入之脈衝訊號ΡΗγ而輸出訊號如,反 1 31二533係使得訊號Qp延遲一定時間’而輸出至n〇r 37之某一邊端子。N〇R閑537係演算延遲一定時間之訊號 Qp和讯唬Qp間之邏輯或,反轉其演算結果,因此,盥 =號Qp之邏輯位準之時間同步而輪出由L位準切換成為^立 準之訊號COR ^接著,反相器542係將反轉訊號c〇R之訊號 /COR,輸出至NAND閘549之另一邊端子。 接者,由NAND閘548、549所構成之正反器,係根據訊號 /COS和訊號/COR,而將訊號/⑶輸出至難〇閘538之另 一邊端子和NAND閘53 9之某一邊端子。在動作之初期,由 於訊號/COS、/C0R係成為Η位準,因此,由NAND閘548、 5 4 9所構成之正反裔,係輸出η位準之訊號/ [ 〇。 因此,NAND閘538係輸出配合由τ型正反器5〇][所輸入之 訊號Qp之邏輯位準之訊號至反相器54〇,反相器54〇係反轉 N A N D間5 3 8之輸出訊號而將訊號c l K E N輸出至二進制計數器 5 0 7 之CLKEN 端子。 u ^ 此外,NAND閘536係演算由τ型正反器501所輸入之訊號 Qp和藉由反相器531〜533而延遲一定時間之訊號Qp間之邏 輯加,將反轉其演算結果之訊號,輸出sNAND閘539之另 一邊端子。NAND閘539係演算由NAND閘53 6所輸入之訊號和 訊號/C0間之邏輯加’將反轉其演算結果之重設訊號
第33頁 565843 五、發明說明(30) RS;L +輪出-至二進制計數器50 7 2RESET端子。 AH # 1,一進制計數器50 7係同步於訊號Qp由L位準切^ 間重設計數值,在重設訊_由《 成為L位準時,開始進行 +切換 之計數。接著,二進制 ° 7 )之成分個數 器507係在正常地計數時脈訊號cV二 H ,中,輸出成為計數值Q < 0 : η >最上階位_ 之最上階位元Qn。接著,在時m3而使得二進^ 叶數器5 0 7發咮%仞眭 1丁一運制 L位準。 m 、’最上階位元Qn係由Η位準切換成為 f ^ ^ ^ ^ ^ i ^ itQn ^ ^ ^ ^ /畏白立兀如間之邏輯或,反轉其演算結果,因^, 在最上階位元Q n之邏輯位準 NOR閘546之輸出訊沪,传由I仂m /刀換成為L位準時, mu 虎係由1^位準而切換成為H位準。訊辦 Γ而Λ 延遲—定時間之職QP和訊·ρ間之邏輯u : 成,因此,在開始二進制計數器507中之計數動作 ^蛭Γ ΪΗ位準。像這樣,NAND開547係不限於訊號C0E之 ^位準,按謂U 546之輸出訊號,而輸出切換邏輯位 ίΪΓίΑ〇δ。目此,在時間士3,NAND閘547係輸出由Η 位準切換成為L位準之訊號/c〇s。在最上階位元如由“立 準切換成為L位準後,於僅經過由於反相器543〜545所造 成之延遲時間時,N0R閘546係接受L位準之最上階位元如 和Η位準之訊號,因此,輸出L位準之訊號,“肋閘547係 輸出Η位準之訊號/c〇S。 C:\2D-CODE\9Ml\91120024.ptd 第34頁 565843 五、發明說明(31) NA: ^’:”二時㈣之二進制計數器…發生溢位之 此,反相器54;〜545H位二 ==D準之訊號八。S。因 ^ ^,, , 507 t . ::Γ;:ΓΛ54: " ^ " 吼號/COR係藉由演算透過3個之 -定時間之訊號Qp和並無延遲之二°;531二533 :延^ 的,因此,訊號QP之邏輯位準係由;1QP隹間之邏輯或來生成 +,权## 係由H位準切換成為L位準為 J "NAND"548 夂σσ係在時間13,將由Η位準切換,. ^ C〇,輸出至NAND閘538、539。接著、,WAMn準之/號/ 準之訊號/C0和H位準之訊號qd, 閘538係根據L位 相器540係輸出位準之訊號〜至二進/出11位準之訊號,反 子。此外,麵問539係根據心:==7之麵端 準之重設訊號RST,輸出至-谁制4 4〜/C0,而將Η位 德:I 7 ? 係停止計數動作。 像廷樣,在糟由實施形態4之週 制計數器50 7係在發生溢位時止1+ =電路53中,二進 值。 T止计數動作並重設計數 在實施形態4中,時脈訊號cu係 成為高頻率,由外部接腳輸入至蘧ς,率由低頻率改變 著,在提高時脈訊號CLK之頻率昉-5己憶裝置1 03。接 生溢位,正如前面敘述,停止計’ 一進制計數器507係發 計數器5 0 7係透過輸出電路丨9 〇, 2像這樣,二進制 之計數值Q<0 :η>,輸出至輸夺王^由1位準所組成 出入、子DQ,因此,測試
I 第35頁 C:\2D-C0DE\91-ll\91120024.ptd 565843 五、發明說明(32) 裝置m者’係可以知道發生溢位之時脈訊號 :夕卜於測試半導體記憶裝置1〇3者,係預先 號CLK之頻率,因此’將不引起溢位 二入至半導體記憶裝置103,測定脈衝訊號 P己Λϋηΐί樣,將頻率高之時脈訊號CLK輸入至半導 且。己U竑置1 03者,係由於可以隨著頻率變高而使得 週期變短,能夠縮短用以測定脈衝訊號PHY週期 ^ 4長度,因此,週期之測定精度變高之緣故。 其他係相同於實施形態1。 計施形態4的話’則半導體記憶裳置係具備在 ΐ ΐit 時而停止計數動作的週期測定電路,因 i: 寻知計數動作呈溢位之時脈訊號之頻率。結 果此夠使用具有計數動作不發生溢位之頻率中之最 「率_之時脈:訊號,精度良好地測定脈衝訊號之週期。 [貫施形態5 ] 半ί=,藉由實施,態5之半導體記憶裝置m,係將 m裳置100之自計時器40,取代成為自計時器 41,其他係相同於半導體記憶裝置1〇〇。此 =置10二中’指令解碼器3。係輪出開關訊綱至輸出 電路190,輸出開關訊號SW2至自計時器41。 參照圖15,自計時器41係包含:計時電路41()、411 ==' p at道廳電晶體413 ' 415 w通道M〇s電晶體 414 、 416 〇
565843
五、發明說明(33) 計時電路41 0係生成脈衝訊號phy 1,輸出至p通道jjQs電 晶體4 1 3和N通道MOS電晶體4 1 4。計時電路4 11係生成具有 週期不同於脈衝訊號PHY1週期之脈衝訊號PHY2,輸出至p 通道MOS電晶體415和N通道MOS電晶體416。 反相器4 1 2係由指令解碼器3 〇,接受開關訊號SW2,反轉 其接受之開關訊號SW2,輸出至p通道m〇s電晶體41 3和N通 道MOS電晶體416之閘極端子。 P通道MOS電晶體413、其源極端子係連接N通道M〇s電晶 體414之源極端子,其汲極端子係連接1^通道|^〇3電晶體 之汲極端子。N通道MOS電晶體414係在閘極端子,接受來 自指令解碼器30之開關訊號SW2。p通道M〇s電晶體4i3 通賴S電晶體4U係構成傳輸閘,在由指令解碼器3〇 Η位準之開關訊號SW2輸入至自計時器41時,將由叶時電路 410所輸出之脈衝訊號ΡΗΥ1,輸出至週期測定電路5〇 正反器501。 1 此外’P通道MOS電晶體415、其源極端子係連接n通道 M0S電晶體41 6之源極端子,其汲極端子係 晶體41 6之沒極端子。P通道職電晶體4 15係在閑極^子^ 接受來自指令解碼器30之開關訊號SW2。p 415*N通道M0S電晶體416係構成傳輪開, $ 30而將L位準之開關訊號SW2輸入至自計時器41時^由\ 時電路411所輸出之脈衝訊號ΡΗΥ2,輸出 路 5 0之Τ型正反器5 0 1。 成I疋電路 像這樣’在實施形態5中’自計時器“係呈選擇性地輸
:\2D-CODE\91-ll\91120024.ptd
第37頁 565843 五、發明說明(34) 出不同週期之二個週期訊號至週期測定電路Μ。 電路5〇係按照前述動作而測定由自計時器4】=剛定 訊號ΡΗΥ1或ΡΗΥ2之週期。 出之脈衝 計時電路410係生成成為基準之脈衝訊號ρΗγι。 週期測定電路50係呈選擇性地測定脈衝訊號ρΗ 11 , 脈衝訊號ΡΗΥ2之週期,透過輸出電路 之週期和 週期’輸出至輸出人端子DQ。結果,可^定之 41 1所輸出之脈衝訊號ρΗγ2之週吏"所^電路 而m:述::包含二個計時電路,作為自計時器41, 個計時電路,以便於 细也了 =包含複數 號。 风及叛出不同週期之複數個週期訊 路二 = = 也可以使用前述週期測定電 其他:系相同W二來取代週期測定電路5〇。 如果糟由實施形態5的話, 備:生成不同週期 牛導體圯fe裝置,係具 出之自計時器以及測一 J =期:號而呈選擇性地進行輪 期之週期測定電路,^ ,時器所輸出之週期訊號之週 個週期訊號,成為其1^、’能夠進行調整,以便於決定一 之週期,符合成為:本訊號,使得其他之週期訊號 應該認為:這-欠所:週期矾號之週期。 斤揭不之實施形態僅是例舉而非 C:\2D-roDE\9Ml\91120024.ptd 第38頁 565843 五、發明說明(35) 意思是說本發明之範圍係並非前述實施形態之說明,而是 藉由申請專利範圍所揭示,其涵蓋相同於申請專利範圍之 意義以及在範圍内之全部變更。 【元件編號之說明】 A0 〜Ak 位址訊號 Add<j> 列位址 Add 行位址 BLr 位元線對 /CAS 行位址選通訊號 CLK 時脈訊號 CO 訊號 COE 訊號 COR 訊號 COS 訊號 D 讀出資料 DQ 輸出入端子 LAI 成分 LA2 成分 LATE 訊號 PHI 成分 PH2 成分 PH3 成分 PH4 成分 PHY 脈衝訊號
C:\2D-C0DE\91-11\91120024.ptd 第39頁 565843
五、發明說明(36) PHY1 脈 衝 訊 號 PHY2 脈 衝 訊 號 Q 計 數 值 QL 計 數 值 Qn 最 上 階 位 元 Qp 訊 號 /RAS 列 位 址 選 通 訊 號 RST 重 設 訊 號 RST1 成 分 RST2 成 分 SI 週 期 訊 號 之 成 分 Sn 週 期 訊 號 之 成 分 Sn_ 1 週 期 訊 號 之 成 分 SW 開 關 訊 號 SW2 開 關 訊 號 T 時 間 TO 週 期 訊 號 之 週 期 T1 期 間 T2 期 間 T3 期 間 丁 4 期 間 T5 期 間 T6 期 間 tl 時 間 C:\2D-O0DE\9Ml\91120024.ptd 第40頁 565843 五、發明說明(37) t2 時間 TM 測試模式訊號 /WE 寫入致能訊號 X 列位址 Y 行位址 10 控制訊號緩衝器 20 控制訊號閂鎖電路 30 指令解碼器 40 自計時器 41 自計時器 50 週期測定電路 51 週期測定電路 52 週期測定電路 53 週期測定電路 60 行控制電路 70 行位址預解碼器 80 行位址解碼器/驅動器 90 位址緩衝器 100 半導體記憶裝置 101 半導體記憶裝置 102 半導體記憶裝置 103 半導體記憶裝置 104 半導體記憶裝置 110 位址問鎖電路 ill 第41頁 C:\2D-C0DE\91-ll\91120024.ptd 565843 五、發明說明< 〔38) 120 自再新控 制 電 路 130 列位址計 數 器 140 列控制電 路 150 列位址開 關 160 列位址預 解 碼 器 170 列位址解 碼 器 /驅動器 180 記憶體早 元 陣 列 181 貧料匯流 排 190 輸出電路 410 計時電路 411 計時電路 412 反相器 413 ^ 415 P通道MOS 電 晶 體 414 、416 N通道MOS 電 晶 體 501 T型正反器 502 〜5 0 4 〜506〜521〜523 ^ 525 ^ 526 〜529 〜534 、 540 〜545 505 NAND 閘 507 二進制計 數 器 511 〜514 、517 、 518 515 NOR閘 516 NAND 閘 524 NOR閘 527 P通道M0S 電 晶 體 反相器 反相器
C:\2D-C0DE\91-ll\91120024.ptd 第42頁 565843 五、發明說明(39) 5 28 N通道MOS電晶體 535 、 536 、 538 、 539 、547 〜549 NAND 閘 537 、 546 NOR 閘 1901 反相器 1 9 0 2 P通道M0S電晶體 1 9 0 3 N通道M0S電晶體 1 9 0 4 P通道M0S電晶體 1 9 0 5 N通道M0S電晶體 1 9 0 6 輸出緩衝器
C:\2D-CODE\91-ll\91120024.ptd 第43頁 565843
圖式簡單說明 圖1係藉由本發明實施形態1 概略方塊圖。 之半導體記憶裝置的 圖2係圖1所示之週期測定電路之 圖3係用以說明圖2所示週期:則〜電路圖。 序。 …、叱電路之動作訊號的時 圖4係圖1所示之輸出電路之電路 圖5係藉由實施形態2所構成之半邋 塊圖。 豆e己憶裝置的概略方 圖6係圖5所示之週期测定電路之 __ _ v 电 圖。 圖7係用以說明圖6所示之週期測 序圖。 逼路之動作訊號的時 圖8係藉由實施形態3所構成之半 塊圖。 肢°己隐破置的概略方 圖9係圖8所示之週期測定電路之電路圖。 圖1 0係用以說明圖9所示之週期测 時序圖。 j疋電路之動作訊號的 圖11係藉由實施形態4所構成之半導體 方塊圖。 導體记憶裝置的概略 圖1 2係圖1 1所示之週期測定電路之電路固 圖13係用以說明圖12所示之週期測定電二動作訊號的 時序圖。 圖14係藉由實施形態5所構成之半導體記憶裝置的概略 方塊圖。 路圖 圖1 5係圖1 4所示之週期測定電路之電
C:\2D-00DE\91-11\91120024.ptd 第44頁 565843
C:\2D-CX)DE\9Ml\91120024.ptd 第45頁

Claims (1)

  1. 565843
    六、申請專利範圍 1 · 一種半導體記憶裝置, 憶體單元進行資料之輸出輸 前述記憶體單元之再新動作 複數個記憶體單元; 係與基準週期訊號同步而對記 入’亚與週期訊號同步以進行 者’其具備: 週期訊號產生電路 %上q ㉝朋til缺 · 週邊電路,與前述基準週期 儿, 單元之各個進行前述眘袓★ ^ v而對前述複數個記 憶體單元之各個進行前述資料 ^ Z步而對前述複數個記 週期訊號產生電路之前述週期=出輸入,並與來自前述 作;以及 迥期^虎同步以進行前述再新動 週期測定電路,使用具有 短之第2週期的前述基準调 迷週期訊號之第1週期更 週期。 ° Λ戒以測定前述週期訊號之 2·如申請專利範圍第!項之半 備; 千导肢兄憶裝置,其更具 輸出入端子;以及 輸出電路,將由前述週 號的週期輸出至前述輪出/ 1疋電路所測定之前述週期訊 3.如申請專利範圍第1項之而:: 述週期測定電路,係藉由:牛¥脰記憶裝置,其中,前 之二個成分間之前述^準2數存在於前述週期訊號相鄰接 週期訊號之週期。 °期訊號的成分個數以測定前述 4 ·如申請專利範圍第3 “、 述週期測定電路,係包人、之半導體記憶裝置,其中,前 檢測訊號生成電路^ 3姑 \象來自前述週期訊號產生電路之
    565843 六、申請專利範圍 前述週期訊號,而生成 接之二個成分間之前述美〗知測存在於前述週期訊號相鄰 訊號;以及 】土準週期訊號之成分個數的檢測窗 計數電路,按照前述檢“ 輸出其計數結果。 、崮矾號計數前述成分個數,並 5 ·如申晴專利範圊坌q 述週期測定電路,係盼、之半導體記憶裝置,其中,前 的重設動作所造成之二塑重設前述成分個數之計數結果 6.如申請專利範圍’之後計數前述成分個數。 述週期測定電路,係、之半導體記憶裝置,其中,前 前述成分個數之計數。充進行前述重設動作之期間以進行 7 ·如申請專利簕圖楚β 、 述週期測定電路,係包含工、之半導體記憶褒置,其中,前 第1才双/則訊號生成電 , a 之前述週期訊號 且、末自刖述週期机號產生電路 ^ ^ ^ ^ ^ ^ ^ 並且,生成具有相當於前述週期訊 Ϊ: 幅幅寬的預備檢測窗訊號; 并 ^生成電路,與前述預備檢測窗訊號之邏輯位準 咕· 生成具有既定之振幅幅寬的重設訊 就, 位^2之\測:^虎半生成電路,與前述預備檢測窗訊號之邏輯 μ >、+、 5 乂 ’並且,生成將前述重設訊號之振幅幅寬 加上前述預備檢測窑—… m ^r 的檢測窗訊號Jr之振幅幅寬的幅宽當作振幅幅寬 計數電路,按照前述檢測窗訊號計數前述成分個數,ϋ
    第47頁 565843
    申請專利範圍 2以:计數結果’同時,按照前述重設訊號重設前述計數 诫8周:申專利範圍第5項之半導體記憶裝置,其中,^ 述週J測定電路,#^ m 重設動作。 係在則述成分個數之非計數中進行前述 述迥期二:ί利乾圍第8項之半導體記憶裝置,其中 述週期測定電路,係包含: /、τ,前 計數電路,計數前述成分個數; 保持電路,在一定期間保 結果;以及 于卫輸出别述計數電路之計數 重設訊號生成電路,在前沭 後,生成用以重設前述計數輪出前述計數結果 計數電路。 重6又訊號並輪出5 ^ 10·如申請專利範圍第3項之 述週期測定電路,係使用具有=租記憶裝置,其中,前 數動作呈溢位之前述基準週期=小於前述成分個數之計 來計數前述成分個數。 ° ^之頻率的基準週期訊號 11 ·如申請專利範圍第丨〇項之 前述週期測定電路,係在前述千¥體記憶裝置,其中, 於重δ又值之值以作為前述計數纟士果乍呈溢位時輪出相同 1 2·如中請專利範圍第J J項之° °邮二 前述週期測定電路,係包含: 體記憶裝置,其中, 計數電路,計數前述成分個數· 溢位檢測電路’檢測前述計數動 呈凌位情形;以及
    C:\2D-roDE\9Ml\9ll20024.ptd 第48頁 565843 六、申請專利範圍 重設訊號生成電路,按照來自前述溢位檢測電路之溢位 檢測訊號,生成用以重設前述計數電路之重設訊號,並將 其生成之重設訊號輸出至前述計數電路。 1 3.如申請專利範圍第1項之半導體記憶裝置,其中,前 述週期訊號產生電路,係選擇性地將具有第1週期之第1週 期訊號、和具有不同於前述第1週期之第2週期的第2週期 訊號輸出至前述週期測定電路。 1 4.如申請專利範圍第1 3項之半導體記憶裝置,其中, 前述週期訊號產生電路,係包含: 第1產生電路,產生前述第1週期訊號; 第2產生電路,產生前述第2週期訊號;以及 閘電路,選擇性地輸出前述第1和第2週期訊號。 1 5.如申請專利範圍第1 4項之半導體記憶裝置,其中,前 述第2週期訊號之週期,係根據由前述週期測定電路所測 定之前述第1週期訊號之週期,而進行調整。
    C:\2D-CODE\91-ll\91120024.ptd 第49頁
TW091120024A 2002-01-08 2002-09-03 Semiconductor memory device TW565843B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001693A JP2003203497A (ja) 2002-01-08 2002-01-08 半導体記憶装置

Publications (1)

Publication Number Publication Date
TW565843B true TW565843B (en) 2003-12-11

Family

ID=19190645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091120024A TW565843B (en) 2002-01-08 2002-09-03 Semiconductor memory device

Country Status (5)

Country Link
US (1) US20030128613A1 (zh)
JP (1) JP2003203497A (zh)
KR (1) KR20030060750A (zh)
DE (1) DE10240077A1 (zh)
TW (1) TW565843B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529033B1 (ko) * 2003-05-23 2005-11-17 주식회사 하이닉스반도체 동기식 반도체 메모리 소자
KR20100128045A (ko) 2009-05-27 2010-12-07 삼성전자주식회사 반도체 메모리 장치의 셀프 리프레시 주기 측정 방법
WO2016021413A1 (ja) * 2014-08-06 2016-02-11 ソニー株式会社 固体撮像素子および固体撮像装置
KR20160041318A (ko) * 2014-10-07 2016-04-18 에스케이하이닉스 주식회사 스트로브 신호 인터벌 검출 회로 및 이를 이용한 메모리 시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001342B2 (ja) * 1993-02-10 2000-01-24 日本電気株式会社 記憶装置
US5757705A (en) * 1997-01-22 1998-05-26 Micron Technology, Inc. SDRAM clocking test mode
JP3333429B2 (ja) * 1997-06-30 2002-10-15 株式会社東芝 半導体集積回路
KR19990080938A (ko) * 1998-04-23 1999-11-15 윤종용 셀프 리프레쉬 주기 측정부를 구비하는 디램 및이의 셀프 리프레쉬 주기 측정 방법
KR100364128B1 (ko) * 1999-04-08 2002-12-11 주식회사 하이닉스반도체 셀프리프레쉬 발진주기 측정장치
KR100808578B1 (ko) * 2001-12-20 2008-02-28 주식회사 하이닉스반도체 셀프 리프레쉬 모드를 갖는 반도체 메모리 장치

Also Published As

Publication number Publication date
US20030128613A1 (en) 2003-07-10
DE10240077A1 (de) 2003-07-24
KR20030060750A (ko) 2003-07-16
JP2003203497A (ja) 2003-07-18

Similar Documents

Publication Publication Date Title
TWI235375B (en) Semiconductor memory device and control method thereof
TWI488163B (zh) 移位暫存器、使用該移位暫存器之閘極驅動電路與顯示裝置
CN102113206A (zh) 具有时间-数字转换器的电路以及相位测量方法
KR0159074B1 (ko) 동기형 디램 장치의 데이터 출력 버퍼용 클럭 발생 회로
US7843743B2 (en) Data output circuit for semiconductor memory apparatus
TW582038B (en) Semiconductor memory device
TW565843B (en) Semiconductor memory device
JPH05307882A (ja) リフレッシュ要求回路
WO2023178805A1 (zh) 一种信号采样电路以及半导体存储器
JP3880641B2 (ja) Dramのリフレッシュコントロール回路及びリフレッシュコントロール方法
TW413761B (en) Clock controlling circuit
JP4767462B2 (ja) カラムアドレスバッファ装置
JP3185568B2 (ja) 半導体記憶装置
US6204711B1 (en) Reduced error asynchronous clock
JP2000049595A (ja) Dll回路
JPH0133052B2 (zh)
KR20210079122A (ko) 반도체장치
TWI326876B (en) Memory access circuit
SU951402A1 (ru) Устройство дл сдвига информации
TW494634B (en) Digital low-pass filter for digital signals and method to process a digital signal
JP2000315381A (ja) ポインタ発生回路及びポインタ発生方法
KR100641914B1 (ko) 내부 컬럼 어드레스 발생장치
TW202338803A (zh) 一種信號取樣電路以及半導體記憶體
JPS601644B2 (ja) タイミングパルス発生回路
KR20000031255A (ko) 동기형 메모리 장치의 어드레스 버퍼 및 제어 회로