TW541599B - Single c-axis PGO thin film electrodes having good surface smoothness and uniformity and methods for making the same - Google Patents

Single c-axis PGO thin film electrodes having good surface smoothness and uniformity and methods for making the same Download PDF

Info

Publication number
TW541599B
TW541599B TW091105726A TW91105726A TW541599B TW 541599 B TW541599 B TW 541599B TW 091105726 A TW091105726 A TW 091105726A TW 91105726 A TW91105726 A TW 91105726A TW 541599 B TW541599 B TW 541599B
Authority
TW
Taiwan
Prior art keywords
electrode
group
thin film
item
patent application
Prior art date
Application number
TW091105726A
Other languages
English (en)
Inventor
Fengyan Zhang
Jer-Shen Maa
Wei-Wei Zhuang
Sheng-Teng Hsu
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Application granted granted Critical
Publication of TW541599B publication Critical patent/TW541599B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Description

541599 A7 B7 五、發明説明( 發明領域 本發明有關FeRAM與DRAM積體電路,更明確地說,有 關具有 Ir-Ta-〇、Ir-Ti-0、Ir-Nb-0、Ir-Al-0、Ir-Hf-〇、 Ir-V-〇或Ir-Zr-0作為底電極,以及位於在此等電極上面的 PGO薄膜以供應用之結構。 發明背景 PGO薄膜係指鐵電相。雖然c^^pG〇經常顯示 層狀微結構,但是於沈積過程,其很難形成具有非常平滑 與均勻表面的單相c-軸PG〇薄膜。其原因之一係,該pG〇 相是多晶相。不過,有許多鉛鍺氧化物化合物,其在組成 與形成溫度兩方面都非常接近朴…以…々,而且其更容 易於相似條件下形成。若同時在底電極表面上形成具有不 同微結構的多相鍺酸鉛,則很難製得平滑且均勻之c-軸 PGO薄膜。有許多因素影響該單相レ軸pGo薄膜的形成, 其中之一係該底電極的表面狀態。晶袼常數相配是形成層 狀c-軸PGO薄膜的重要因素。該pG〇相之微結構是六邊形 結構,其晶格常數為a= 1〇·251 A,而c=l0.685 A。至於純 銀(Ir)與翻(Pt)底電極,其係面心立方(17(:(::)結構,晶格常 數分別為a=3.83 A與a=3.92 A。理論上,很難在這兩種電 極上製得該c-軸PGO單相。然而,雖然對鉑基板而言如此 ,但是在銥基板上較容易形成(:_軸1>(}〇膜。這可能是 薄層的緣故,該薄層於沈積與退火過程,在Ir表面上於原 位形成,而且可促進該c-軸PG〇核晶作用與晶粒生長。 Ir02 的晶格常數係 a=4.498 A,c = 3.154A。
裝 訂
線 -6- 541599 A7 B7
該底電極定向對於該PGO薄膜的相形成也非常重要。已 發現,非晶相與多晶相基板有助於形成平滑與均勻pG〇薄 膜。具有不相配晶格常數的強定向基板容易促使形成具有 其他第一相之多晶相鐵電PGO薄膜,其中該膜顯示粗輪表 面0 圖1表不藉由MOCVD在一形成圖案基板上形成PG〇薄膜 。圖la的焭區係經磨光鉑基板區,而較暗區是§丨〇2基板。 這兩種基板均經磨光與平面化。圖115表示在鉑(左)與Si〇2 (右)基板上形成之PGO薄膜的結晶結構。很清楚地看出, 在該鉑基板上形成的PGO薄膜係多晶相,而且顯示粗糙表 面。在該Si〇2基板上形成的pg〇薄膜顯示出層狀單相結構 。在該Si〇2基板上形成的PG0薄膜係單相^轴?〇〇薄膜。 為了形成均勻單相c-軸PGO薄膜,該電極的熱安定性亦 很重要。已發現,鉑與銥二者可能於高溫退火(例如高於 500 C )期間形成小丘,其會影響pg〇薄膜的核晶作用與定 向。不過,即使在氧環境中以非常高溫退火,^複合物電 極仍然很安定。 該底部氧化物電極中存在的氧亦扮演一重要角色。由於 該PGO與電極二者均是金屬氧化物,介於該界面處氧化物 之間的有利結合條件可以提高核晶密度,有助於形成平滑 c-轴PGO薄膜。
Fengyan Zhang、Tingkai Li、Douglas J. Tweet與 Sheng
Teng Hsu之以金屬有機化學氣相沈積法沈積之鍺酸鉛薄膜 的相與数結填分析(Pfjase and rnicrostructure analysis of lead 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) 541599 A7 B7 五、發明説明(3 ) germanate thin film deposited by metalorganic chemical vapor deposition), Jpn. J. Appl. Phys. Vol. 38,pp59-61 1999,討論形成薄膜之鍺酸鉛的各種相。
Fengyan Zhang、Jer-shen Maa、Sheng Teng Hsu、Shigeo Ohnish與Wendong Zhen之以Ir-Ta-0作為高溫安定電極材 料之研究及其作為鐵電Si:Bi2Ta209薄膜沈積之應用(A以 of Ir-Ta-O as high temperature stable electrode Material and its application for ferroelectric SrBi2Ta2〇9 thin film deposition), Jpn. J. Appl. Phys. Vol. 38, ppl447-1449, 1999,描述使用一種Ta障層與一種Ir-Ta-0電極。
Fengyan Zhang、Tingkai Li、Tue Nguyen、Sheng Teng Hsu之鐵電鍺酸鉛薄膜之MOCVD法及底電極效用(MOCFD process of ferroelectric lead germanate thin films and bottom electrode effects), Mat. Res. Soc. Symp. Proc. Vol· 541, pp549-554,1998,描述c-軸PGO薄膜之生長。 發明總論 一種形成電極與其上之鐵電薄膜的方法,包括:製備一 基板;在該基板上沈積一電極,其中該電極係由一種選自 由銥與銥複合物所組成的材料群組的材料形成;以及於其 上形成一單相c-軸PGO鐵電薄膜,其中該鐵電薄膜顯示表 面平滑度與均勻厚度。一種積體電路,其包括一基板;在 該基板上沈積之電極’其中電極係由一種選自由錶與銀複 合物所組成的材料群組的材料形成,其中該銥複合物係選 自由 Ir02 ' Ir-Ta-0、Ir-Ti-〇、ir-Nb-0、Ir-Al-0、ir-Hf-〇 • 8 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 裝 訂
-線 541599 A7 B7 五、發明説明(4 )
Ir-V-Ο、1]>21>〇與Ir-〇組成之複合物群組;以及在該電 極上形成的單相軸PG〇鐵電薄膜,其中該鐵電薄膜顯示 表面平滑度與均勻厚度。 本發明目的係在一金屬電極上提供一層均句單相心軸 PGO薄膜。 本發明另一目的係提供一銀複合物電極,諸如卜〇2、
Ir-Ta-0、Ir-Ti-0、Ir-Nb-0、Ir-A卜0、Ir-Hf-0、ir-V-Ο、
Ir-Zr-0或Ir-〇,作為FeRAM與DRAM應用之底電極。 本發明另一目的係提供一種在金屬電極上形成PG〇薄膜 之方法,該PGO薄膜可用於積體電路,諸如電容器、熱電 紅外線感應器、光學顯示器、光學開關、壓電轉換器與表 面聲波裝置。 ^ 本發明另外目的係提供一種沈積PG〇薄膜之方法,其係 藉由化學溶液沈積(CSD)、濺鍍、MOCVD或其他薄膜沈積 方法進行,其會顯示製造積體電路中所需要的平滑度與均 一性0 本發明另一目的係提供一種銥複合物電極,以改善PG〇 薄膜之表面特徵與晶格結構。 本發明總論與目的係用以快速理解本發明性質。參考下 列本發明較佳具體實施例與圖式,可以更完整理解本發明。 圖太簡i本 圖la係沈積PGO薄膜前之基板SEM相片。 圖lb係上面形成PGO薄膜之圖ia基板的SEM相片。 圖2a至2f係顯示在叙、銀與ir-Ta—Q基板上形成之pG〇薄 -9 _ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公爱) ----- 541599 A7 B7 五、發明説明( 膜的表面形態之SEM相片,其係俯視圖與橫切面圖。 圖3係在一 PG0上旋轉iXRD光譜,其中該p(}〇係沈積 於一 Ir-Ta-Ο底電極上,並於氧氣團中以8〇〇。〇退火十分鐘。 圖4係一 SEM相片,其顯示以m〇CVD沈積在ΙΓ〇2上之 PGO薄膜形態。 敫jj:具體實施例詳細說明 本發明提供一種銥(Ir)複合物電極,其係由Ir〇2、Ir_Ta_〇 、Ir-Ti-〇、lr-Nb-〇、ΙΓ-Α1-〇、Ir-Hf-〇、lr-V-0、Ir-Zr-〇 或Ir 0中任何一者形成,以該電極作為製造積體電路的底 電極’此等積體電路係諸如FeRAM、DRAM應用,以及作 為電容器、熱電紅外線感應器、光學顯示器、光學開關、 壓電轉換器與表面聲波裝置。該PGO薄膜可由任何一種化 學溶液沈積(CSD)作用,包括旋壓沈積,或藉由濺鍍作用 、MOCVD或其他薄膜沈積方法形成。該銥複合物電極改 善所形成之PGO薄膜之表面粗糙度與厚度均一性,而且有 助於形成單相C-軸p GO薄膜。 供沈積PG0薄膜之銥複合物電極之優點說明如下:a)促 使核晶岔度提高;b)形成顯示平滑度與均勻厚度表面之 PG〇薄膜;c)形成純c-軸PGO薄膜;以及d)提供供沈積與 退火處理用之更安定基板。 蒼考圖2,說明沈積於各種基板上之PGO薄膜形態。如 圖2c與2f所示,由沈積於Ir_Ta_〇基板上之pG〇形成最平滑 表面。 該電極的處理條件包括在一基板(諸如矽、Si〇2、siGe -10- ^張尺度適用中®國家標規格(21Q X 297公釐)
線 、多晶矽、组、鈦、鈮、鋁、铪、鍅與任一者及其氮化物 或氧化物任一者之基板)上,藉由反應濺鍍作用沈積一 Ir-Ta-Ο電極。氬:氧的載體氣體/反應性氣體混合物為u ,其負景塵力約5 · 1 0托耳。該濺鍍塵力設於約1 〇毫托耳 。在約3 0 0瓦之功率下濺錢四英忖直徑鉉與麵乾材。所形 成之Ir-Ta-Ο電極之厚度在約1〇〇〇 A至5000 A範圍内。 為了在純金屬電極上製得與銥複合物電極相似之表面狀 態’可在諸如上述之基板上形成銀電極,並於其上沈積非 常薄之金屬或金屬氧化物層。該金屬或金屬氧化物的厚度 介於約1〇Α至300A間。該金屬可為欽、叙、錯、給、銳 、釩中任一者;該金屬氧化物可為Ti02、Ta205、Zr〇2、 Hf02、Nb205、V02、Ce02、Al2〇3與 Si02 中任一者。在沈 積PGO薄膜之前,必須於氧中進行後電極退火處理。較佳 之退火條件係於氧氣團中,介於約500 °C至1000。(:下進行 約十秒至三個小時。 圖3係藉由旋轉沈積於一 ir-Ta-Ο基板以及一經退火 Ir-Ta-Ο基板上之pg〇薄膜的XRD光譜。該Ir-Ta-Ο電極之 退火溫度係約800 °C約10分鐘。所使用之前趨體係醋酸鉛 三水合物、Pb(CH3C00)2.3H20與乙氧化鍺,以及Ge(OC2H5)4 ,其Pb/Ge之莫耳比為4-6:3,其中藉由蒸餾作用去除附在 Pb(CH3C00)2.3H20上之水。於約l〇〇°c至30〇°c之間烘烤 該膜,並於氧中以5〇〇°C結晶退火。在氧氣團中,以500°C 進行15分鐘退火處理之後,沈積在該剛沈積Ir-Ta-Ο電極 上的P G Ο薄膜為非晶相。於相同退火之後’沈積在5亥經退 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 541599 A7 -------B7 五、發明説明(7 ) ~ 火Ir-Ta-Ο電極上的PG0薄膜顯示出強c_車由pG〇尖峰。比較 違剛沈積與退火後之I卜Ta_〇電極之XRD光譜尖彳,發現該 強結晶Ir〇2與TaA尖峰存在該經退火Ιγ_τ&_〇電極中,而且 該純銥金屬強度變底。此意味著表面之在形 成平滑〇軸PGO薄膜時扮演重要角色。 亦觀察藉由MOC VD沈積在Ir〇2基板上之pG〇薄膜的相似 微結構。該PGO薄膜的膜表面亦非常光滑,如圖4所示。 形成Ir〇2基板的條件係在1:1比率之Ar/〇2氣團中反應濺鍍 ,濺鍍溫度介於約20(TC至3〇(rc。該四英吋銥靶材上的功 率約500瓦。該背景壓力也是約5.1〇·7托耳,而且該濺鍍壓 力約10笔托耳。用於MOCVD的前趨體係Pb(TMHD)2與 Ge(ETO)4 ’其莫耳比為5:3,汽化器溫度介於約15〇至18〇。〔 間,而基板溫度介於約45(TC至550°C。該室中之壓力為5 托耳。該氬載體氣體與氧反應載體的流速分別約4〇〇〇 sccm 與 2000 seem 〇 該銥複合物電極必須在沈積PG0薄膜之前於氧氣團中退 火。該退火溫度介於約500°C至1000°C,而退火時間介於 十私至二小%•’視該ir〇2膜的厚度而定。亦可藉由沈積一 層金屬或金屬氧化物薄層,然後於氧氣團中退火該結構, 在Ir基板上形成一具有優良表面平滑度與均一性之pG〇單 相c-軸薄膜。該金屬可為鈦、组、錯、給、銳、鈒中任_ 者,而該金屬氧化物可為Ti〇2、丁a205、Zr〇2、Hf〇2、 Hb2〇5、V〇2、Ce〇2、AI2O3與Si〇2中任一者由本發明方法 形成的電極可以改善PGO薄膜四表面粗彳造度,並且促進形 -12 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)
線 541599 A7 B7 五、發明説明(8 ) 成單c-軸PGO薄膜。 因此,已揭示一種具有優良表面平滑度與均一性之單相 c-轴PGO薄膜電極,以及彼之製造方法。應暸解在附錄申 請專利範圍所界定的本發明範圍内,可以製得另外之變化 與修正。 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)

Claims (1)

  1. 541599
    L一種形成電極與其上之鐵電薄膜之方法,包括: 製備一基板; 在該基板上沈積一電極,其中該電極係由一種選自包 括銀與銀之複合物組成的材料群組之材料所形成;以及 在其上形成一鐵電薄膜,其中該鐵電薄膜顯示表面平 滑度與均勻厚度。 2.根據申請專利範圍第丨項之方法,其中該沈積作用包括 沈積一銀複合物電極,其係選自由Ir〇2、Ir-Ta-〇、Ir-丁i 〇、Ir-Nb-0、Ir-Al-〇、Ir-Hf-0、Ir-V-0、Ir-Zr-0與 Ir-0所組成之複合物群組。 3 ·根據申請專利範圍第2項之方法,其中該沈積作用包括 使用氬:氧之比率為1:1的載體氣體/反應性氣體混合物 月景壓力約5 · 1 〇 7托耳,以沈積該電極,其中該濺鍍 壓力设為約1 0毫托耳,而且其中以約3〇〇瓦之功率濺鍍 該四英吋直徑銥與鈕靶材,而且其中形成的電極厚度介 於約1000 A與5000 A之間。 4·根據申請專利範圍第丨項之方法,其中該沈積作用包括 銀層’以及沈積一層材料,其厚度介於約1〇 A與3〇〇 a 之間’其中該材料係選自由丁丨、丁a、Zr、Hf、Nb、V、 Ti02、Ta205、Zr02、Hf02、Nb205、V02、Ce〇2、 Ah〇3與Si〇2所組成的材料群組,而且其另外包括於該 形成作用之前’於氧氣團中退火該結構。 5 ·根據申請專利範圍第4項之方法,其中該退火作用包括 在介於約500°C與1〇〇〇。〇間之溫度下,退火該結構約… -14- 本纸張尺歧财g g家㈣(CNS) A4規格Τ21〇Χ297公董) 541599 圍範利專 請中 A B c D 秒至3小時。 6.根據申請專利範圍第丨項之方法,其中該形成作用包括 以Pb/Ge莫耳比為4-6:3混合醋酸鉛三水合物前趨體與乙 氧化鍺,蒸餾該混合物以去除水;藉由化學溶液沈積作 用沈積PGO薄膜;以及在介於1〇〇。(:至3〇〇。(:之烘烤該枯 構;並於氧氣團中,以約500。〇之溫度結晶退火。 7·根據申請專利範圍第i項之方法,其中該沈積作用包括 沈積一 ΙΓ〇2電極,其係藉由在比率為1:1的氬:氧氣團 中進行反應性藏鑛而沈積,其錢錢溫度約2⑽π〜3⑼。^ ’該四英吋銥靶材上的功率約5〇〇瓦,背景壓力約51 〇_7 托耳,而且該濺鍍壓力約1 〇毫托耳。 8. 根據申請專利範圍第7項之方法,其中該形成作用包括 藉由MOCVD沈積一 PGO薄膜,其係使用Pb(TMHD)2與 Ge(ETO)4之前趨體,其莫耳比為5:3,汽化器溫度介於 約1 5 0至1 8 0 C間,而基板溫度介於約4 5 0。〇至5 5 0。〇;室 壓為5托耳;氬載體氣體的流速約40〇〇 sccm,而氧反應 載體的流速約2000 seem。 9. 一種形成電極與其上之鐵電薄膜的方法,包括·· 製備一基板; 在該基板上沈積一電極’其中該電極係由一種材料形 成,該材料係選自由銥與銥複合物所組成的群組,其中 該銀複合物係選自由Ir〇2、Ir-Ta-〇、ιΓ-τ卜〇、Ir-Nb、〇 、Ir-Al-〇、lr-Hf-〇、Ir-V-〇、Ir-Zr-0與 ir-〇所組成的 複合物群組;以及 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 541599
    申请專利範圍 在八上形成一 PG〇鐵電薄胺 #而丞、典由t #膜其中該鐵電薄膜顯示出 表面平滑度與均勾厚度。 i〇.根據申請專利範圍第9項 I; . ^ ^ ^ 、、方法’其中該沈積作用使用 氬·氧比率為1:1之載體裹轉 Ψ ^ # % 〃収反應性氣體混合物沈積該 電極,其背景壓力約5·1(Γ7 古k π 托耳’其中該濺鍍壓力約K 笔托耳,而且其中以约 、 瓦之功率錢鍍直徑四英叶之 銀與ί旦乾材,呈中所形# + /、〒所形成電極的厚度介於約1〇〇〇人與 5000 Α之間。 U.根據巾請專利範圍第9項之方法,#中該沈積作用包括 一銥層,以及沈積一層材料,其厚度介於約1〇人與3〇〇 A 之間’其中該材料係選自由丁丨、Ta、Zr、Hf、Nb、v、 Ti〇2、Ta205、Zr02、Hf〇2、Nb2〇5、v〇2、Ce〇2、 Al2〇3與Si〇2所組成的材料群組,而且其另外包括於該 形成作用之前,於氧氣團中退火該結構。 12·根據申請專利範圍第11項之方法,其中該退火作用包括 在介於約500°c與1000°c之溫度下退火該結構約10秒至 約3小時。 1 3·根據申請專利範圍第9項之方法,其中該形成作用包括 以Pb/Ge莫耳比為4-6:3混合醋酸鉛三水合物前趨體與乙 氧化錯’蒸館該混合物以去除水;以及在介於1 至 3 0 0 C之溫度烘烤該結構;並於氧氣團中,以約5 〇 〇之 溫度結晶退火。 14 ·根據申請專利範圍第9項之方法,其中該沈積作用包括 沈積一 Ir02電極,其係藉由在比率為1:1的氬:氧氣團 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) 541599 A B c D 申請專利範圍 中進行反應性濺鍍而沈積,其濺鍍溫度約2〇〇。〇至3〇〇。(: ’該四英吋銥靶材上的功率約5〇〇瓦,背景壓力約5 ·丨〇_·7 托耳’而且該濺鐘壓力約1 〇毫托耳。 15·根據申請專利範圍第14項之方法,其中該形成作用包括 藉由MOCVD沈積一 PG0薄膜,其係使用pb(TMHD)2與 Ge(ETO)4之前趨體,其莫耳比為4_6:3,汽化器溫度介 於約150°C至180°C間,而基板溫度介於約45〇。(:至55〇。〇 ;室壓為5托耳;氬載體氣體的流速約4〇〇〇 sccm,而氧 反應載體的流速約2000 sccm。 16.—種積體電路,其包括: 一基板; 一沈積於該基板之電極,其中該電極係由一種選自包 括銥與銀之複合物組成的材料群組之材料形成,其中該 銥複合物係選自由Ir〇2、Ir-Ta-〇、Ir 丁丨_〇、〇 ' ΙΓ-Α1-0、、Ir_v_0、匕2卜0與 Ir 〇所組成的複 合物群組;以及 —在該電極上形成單相C,PG〇鐵電薄膜,纟中該鐵電 薄膜顯示出表面平滑度與均勻厚度。 其中該電極厚^ 其中該電極包} 該材料層厚度 1 7·根據申請專利範圍第16項之積體電路 介於約1000 A與5000 A之間。 1 8.根據申請專利範圍第1 6項之積體電路 一層銥層與一種沈積於其上的材料層 於約10 A至300 A,其中該材料係選自由Ti、Ta、 Hf、Nb、V、Ti02、Ta205、Zr02、Hf〇2、Nb2〇5、v( Ce〇2、Al2〇3與Si〇2所組成的材料群組。 -17- 本紙張尺度適财國时鮮(CNS) A4規格Τ^ιοχ撕公釐)
TW091105726A 2001-03-28 2002-03-25 Single c-axis PGO thin film electrodes having good surface smoothness and uniformity and methods for making the same TW541599B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/820,078 US6586260B2 (en) 2001-03-28 2001-03-28 Single c-axis PGO thin film electrodes having good surface smoothness and uniformity and methods for making the same

Publications (1)

Publication Number Publication Date
TW541599B true TW541599B (en) 2003-07-11

Family

ID=25229822

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091105726A TW541599B (en) 2001-03-28 2002-03-25 Single c-axis PGO thin film electrodes having good surface smoothness and uniformity and methods for making the same

Country Status (4)

Country Link
US (2) US6586260B2 (zh)
JP (1) JP2003023139A (zh)
KR (1) KR100459018B1 (zh)
TW (1) TW541599B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086476A1 (ja) * 2003-03-25 2004-10-07 Fujitsu Limited 半導体装置の製造装置及び製造方法
US7101720B2 (en) * 2004-03-15 2006-09-05 Sharp Laboratories Of America, Inc. Mixed noble metal/noble metal oxide bottom electrode for enhanced PGO c-axis nucleation and growth
AU2007335239A1 (en) * 2006-12-18 2008-06-26 Commonwealth Scientific And Industrial Research Organisation Method of coating
KR101009323B1 (ko) * 2010-11-22 2011-01-18 주식회사 청우메디칼 고주파 전기치료기
CN112470257B (zh) * 2018-07-26 2024-03-29 东京毅力科创株式会社 形成用于半导体器件的晶体学稳定的铁电铪锆基膜的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027074A (en) * 1974-08-19 1977-05-31 Leco Corporation Process for producing ferroelectric crystalline material
JPH02133599A (ja) * 1988-11-11 1990-05-22 Agency Of Ind Science & Technol 酸化イリジウム膜の製造方法
US5225364A (en) * 1989-06-26 1993-07-06 Oki Electric Industry Co., Ltd. Method of fabricating a thin-film transistor matrix for an active matrix display panel
WO1995013562A1 (en) * 1993-11-12 1995-05-18 Ppg Industries, Inc. Iridium oxide film for electrochromic device
US6052271A (en) * 1994-01-13 2000-04-18 Rohm Co., Ltd. Ferroelectric capacitor including an iridium oxide layer in the lower electrode
JP2907322B2 (ja) * 1995-05-18 1999-06-21 日本電気株式会社 不揮発性半導体記憶装置
US5920453A (en) * 1996-08-20 1999-07-06 Ramtron International Corporation Completely encapsulated top electrode of a ferroelectric capacitor
US5731608A (en) * 1997-03-07 1998-03-24 Sharp Microelectronics Technology, Inc. One transistor ferroelectric memory cell and method of making the same
JP3159255B2 (ja) * 1998-09-16 2001-04-23 日本電気株式会社 強誘電体容量で用いる電極のスパッタ成長方法
US20010013637A1 (en) * 1999-03-05 2001-08-16 Fengyan Zhang Iridium conductive electrode/barrier structure and method for same
US6190925B1 (en) * 1999-04-28 2001-02-20 Sharp Laboratories Of America, Inc. Epitaxially grown lead germanate film and deposition method
US6410343B1 (en) * 1999-04-28 2002-06-25 Sharp Laboratories Of America, Inc. C-axis oriented lead germanate film and deposition method
US6420740B1 (en) * 1999-05-24 2002-07-16 Sharp Laboratories Of America, Inc. Lead germanate ferroelectric structure with multi-layered electrode

Also Published As

Publication number Publication date
KR20020077132A (ko) 2002-10-11
US6586260B2 (en) 2003-07-01
US20020142144A1 (en) 2002-10-03
KR100459018B1 (ko) 2004-12-03
US20030176012A1 (en) 2003-09-18
US6998661B2 (en) 2006-02-14
JP2003023139A (ja) 2003-01-24

Similar Documents

Publication Publication Date Title
JP4020364B2 (ja) 金属強誘電体絶縁体半導体電界効果トランジスタおよびその製造方法
JPH07202295A (ja) 強誘電体結晶薄膜被覆基板、その製造方法及び強誘電体結晶薄膜被覆基板を用いた強誘電体薄膜デバイス
TW541599B (en) Single c-axis PGO thin film electrodes having good surface smoothness and uniformity and methods for making the same
US7298018B2 (en) PLT/PZT ferroelectric structure
JP2015523705A (ja) 誘電体デバイス
Kuo et al. Growth and properties of titania and aluminum titanate thin films obtained by rf magnetron sputtering
JP2003086586A (ja) 配向性強誘電体薄膜素子及びその製造方法
JP3586870B2 (ja) 配向性薄膜形成基板およびその作製方法
JPH08111411A (ja) 強誘電体薄膜の製造方法
TWI233639B (en) Vapor phase growth method of oxide dielectric film
JP2003002648A (ja) ゾルゲル工程を用いたジルコン酸−チタン酸鉛厚膜の製造方法
JP3013418B2 (ja) 誘電体薄膜と薄膜デバイスとそれらの製造方法
JPH1084086A (ja) 白金薄膜形成方法、その方法により製造された基板、その基板を利用した電子素子及びその電子素子の製造方法
Wang et al. Microstructure and electrical properties of lanthanum nickel oxide thin films deposited by metallo-organic decomposition method
US6921671B1 (en) Buffer layers to enhance the C-axis growth of Bi4Ti3O12 thin film on high temperature iridium-composite electrode
JP2001332514A (ja) 配向性金属薄膜の成膜方法及び配向性金属薄膜を有する機能素子
JPH082998A (ja) 酸化物誘電体薄膜及びその製造方法
JPH088403A (ja) 強誘電体結晶薄膜被覆基板及び該基板を含む強誘電体薄膜素子及び該強誘電体薄膜素子の製造方法
JP4300765B2 (ja) 配向性強誘電体薄膜素子
JP6311179B2 (ja) 強誘電体セラミックス
JP4066518B2 (ja) 圧電結晶薄膜とその製造方法、および圧電体素子
JP3724049B2 (ja) 薄膜コンデンサの製造方法
JP2001172099A (ja) 誘電体薄膜の形成方法、誘電体薄膜および電子部品
Yang et al. Highly (1 0 0)-textured Pb (Zr0. 52Ti0. 48) O3 film derived from a modified sol–gel technique using inorganic zirconium precursor
Watanabe et al. Lanthanum‐modified lead titanate thin film formed by low‐temperature chemical vapor deposition and subsequent annealing

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees