TW339475B - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
TW339475B
TW339475B TW085110256A TW85110256A TW339475B TW 339475 B TW339475 B TW 339475B TW 085110256 A TW085110256 A TW 085110256A TW 85110256 A TW85110256 A TW 85110256A TW 339475 B TW339475 B TW 339475B
Authority
TW
Taiwan
Prior art keywords
area
conductor
type
belonging
transistor
Prior art date
Application number
TW085110256A
Other languages
English (en)
Inventor
Willem Ludikhuize Adrianus
Original Assignee
Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Electronics Nv filed Critical Philips Electronics Nv
Application granted granted Critical
Publication of TW339475B publication Critical patent/TW339475B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Memories (AREA)
TW085110256A 1995-07-19 1996-08-22 Semiconductor device TW339475B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95201989 1995-07-19

Publications (1)

Publication Number Publication Date
TW339475B true TW339475B (en) 1998-09-01

Family

ID=8220510

Family Applications (1)

Application Number Title Priority Date Filing Date
TW085110256A TW339475B (en) 1995-07-19 1996-08-22 Semiconductor device

Country Status (7)

Country Link
US (1) US5883413A (zh)
EP (1) EP0788660B1 (zh)
JP (1) JPH10506503A (zh)
KR (1) KR970706614A (zh)
DE (1) DE69616013T2 (zh)
TW (1) TW339475B (zh)
WO (1) WO1997004488A2 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049732A2 (en) * 1997-04-28 1998-11-05 Koninklijke Philips Electronics N.V. Lateral mos transistor device
JP2000516046A (ja) * 1997-05-23 2000-11-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ラテラルmosトランジスタ装置
US6870201B1 (en) * 1997-11-03 2005-03-22 Infineon Technologies Ag High voltage resistant edge structure for semiconductor components
DE19751566A1 (de) * 1997-11-20 1999-06-02 Siemens Ag Durch einen Elektromotor servounterstützte Positioniervorrichtung, insbesondere Servolenkung für ein Kraftfahrzeug
US6023078A (en) * 1998-04-28 2000-02-08 North Carolina State University Bidirectional silicon carbide power devices having voltage supporting regions therein for providing improved blocking voltage capability
KR100492981B1 (ko) * 1998-07-31 2005-09-02 페어차일드코리아반도체 주식회사 래터럴 이중확산 모스 트랜지스터 및 그 제조방법
US6435045B1 (en) * 1998-09-04 2002-08-20 Four Dimensions, Inc. Apparatus and method for automatically changing the probe head in a four-point probe system
EP1157426A1 (en) * 1999-12-20 2001-11-28 Koninklijke Philips Electronics N.V. Semiconductor device
WO2001075979A1 (de) * 2000-03-31 2001-10-11 Ihp Gmbh-Innovations For High Performance Microelectronics Cmos-kompatibler lateraler dmos-transistor und verfahren zur herstellung eines derartigen transistors
KR100374627B1 (ko) * 2000-08-04 2003-03-04 페어차일드코리아반도체 주식회사 고내압 아이솔레이션 영역을 갖는 고전압 반도체 소자
JP4447768B2 (ja) * 2000-12-01 2010-04-07 三菱電機株式会社 フィールドmosトランジスタおよびそれを含む半導体集積回路
US6552389B2 (en) * 2000-12-14 2003-04-22 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device
KR100393201B1 (ko) * 2001-04-16 2003-07-31 페어차일드코리아반도체 주식회사 낮은 온 저항과 높은 브레이크다운 전압을 갖는 고전압수평형 디모스 트랜지스터
JP2002353444A (ja) * 2001-05-28 2002-12-06 Fuji Electric Co Ltd 半導体装置
KR100425435B1 (ko) * 2002-02-08 2004-03-30 페어차일드코리아반도체 주식회사 감소된 표면 전계 구조를 갖는 수평형 디모스 트랜지스터및 그 제조방법
US8089129B2 (en) * 2002-08-14 2012-01-03 Advanced Analogic Technologies, Inc. Isolated CMOS transistors
US7825488B2 (en) * 2006-05-31 2010-11-02 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US7834421B2 (en) * 2002-08-14 2010-11-16 Advanced Analogic Technologies, Inc. Isolated diode
US7667268B2 (en) 2002-08-14 2010-02-23 Advanced Analogic Technologies, Inc. Isolated transistor
US7902630B2 (en) * 2002-08-14 2011-03-08 Advanced Analogic Technologies, Inc. Isolated bipolar transistor
US7812403B2 (en) * 2002-08-14 2010-10-12 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuit devices
US7956391B2 (en) 2002-08-14 2011-06-07 Advanced Analogic Technologies, Inc. Isolated junction field-effect transistor
US7939420B2 (en) * 2002-08-14 2011-05-10 Advanced Analogic Technologies, Inc. Processes for forming isolation structures for integrated circuit devices
US20080197408A1 (en) * 2002-08-14 2008-08-21 Advanced Analogic Technologies, Inc. Isolated quasi-vertical DMOS transistor
US8513087B2 (en) * 2002-08-14 2013-08-20 Advanced Analogic Technologies, Incorporated Processes for forming isolation structures for integrated circuit devices
JP4326835B2 (ja) * 2003-05-20 2009-09-09 三菱電機株式会社 半導体装置、半導体装置の製造方法及び半導体装置の製造プロセス評価方法
US6927453B2 (en) * 2003-09-30 2005-08-09 Agere Systems Inc. Metal-oxide-semiconductor device including a buried lightly-doped drain region
KR100722700B1 (ko) * 2004-03-26 2007-05-30 산켄덴키 가부시키가이샤 반도체장치
JP2006202810A (ja) 2005-01-18 2006-08-03 Sharp Corp 横型二重拡散型mosトランジスタおよびその製造方法
JP4927340B2 (ja) 2005-02-24 2012-05-09 オンセミコンダクター・トレーディング・リミテッド 半導体装置
JP2006237224A (ja) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd 半導体装置
JP4785113B2 (ja) * 2005-02-24 2011-10-05 オンセミコンダクター・トレーディング・リミテッド 半導体装置
KR100867977B1 (ko) 2006-10-11 2008-11-10 한국과학기술원 인도시아닌 그린 혈중 농도 역학을 이용한 조직 관류 분석장치 및 그를 이용한 조직 관류 분석방법
JP4616856B2 (ja) * 2007-03-27 2011-01-19 株式会社日立製作所 半導体装置、及び半導体装置の製造方法
US7737526B2 (en) * 2007-03-28 2010-06-15 Advanced Analogic Technologies, Inc. Isolated trench MOSFET in epi-less semiconductor sustrate
US7868414B2 (en) * 2007-03-28 2011-01-11 Advanced Analogic Technologies, Inc. Isolated bipolar transistor
US8669640B2 (en) 2009-07-14 2014-03-11 Freescale Semiconductor, Inc. Bipolar transistor
US8790966B2 (en) * 2011-10-18 2014-07-29 Globalfoundries Singapore Pte. Ltd. High voltage device
US8541862B2 (en) * 2011-11-30 2013-09-24 Freescale Semiconductor, Inc. Semiconductor device with self-biased isolation
US9461035B2 (en) * 2012-12-28 2016-10-04 Texas Instruments Incorporated High performance isolated vertical bipolar junction transistor and method for forming in a CMOS integrated circuit
CN104518023B (zh) * 2013-09-30 2017-12-15 无锡华润上华科技有限公司 高压ldmos器件
US9257420B2 (en) * 2014-02-04 2016-02-09 Stmicroelectronics (Tours) Sas Overvoltage protection device
JP6455169B2 (ja) * 2015-01-19 2019-01-23 株式会社豊田中央研究所 半導体装置
US10957792B2 (en) * 2018-08-14 2021-03-23 Infineon Technologies Ag Semiconductor device with latchup immunity
CN112289787B (zh) * 2020-09-17 2024-01-26 南京通华芯微电子有限公司 一种具有多种控制功能的mos器件
CN117317024B (zh) * 2023-11-27 2024-03-29 北京智芯微电子科技有限公司 高开关特性半导体器件、工艺、芯片及电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936515B1 (zh) * 1970-06-10 1974-10-01
US4300150A (en) * 1980-06-16 1981-11-10 North American Philips Corporation Lateral double-diffused MOS transistor device
GB2150746B (en) * 1983-12-02 1988-02-24 Habib Serag El Din El Sayed Mos transistor with surface accumulation region
US4989058A (en) * 1985-11-27 1991-01-29 North American Philips Corp. Fast switching lateral insulated gate transistors
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5306652A (en) * 1991-12-30 1994-04-26 Texas Instruments Incorporated Lateral double diffused insulated gate field effect transistor fabrication process
US5382536A (en) * 1993-03-15 1995-01-17 Texas Instruments Incorporated Method of fabricating lateral DMOS structure
US5369045A (en) * 1993-07-01 1994-11-29 Texas Instruments Incorporated Method for forming a self-aligned lateral DMOS transistor
BE1007283A3 (nl) * 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
JP3136885B2 (ja) * 1994-02-02 2001-02-19 日産自動車株式会社 パワーmosfet

Also Published As

Publication number Publication date
EP0788660B1 (en) 2001-10-17
US5883413A (en) 1999-03-16
WO1997004488A3 (en) 1997-04-24
KR970706614A (ko) 1997-11-03
JPH10506503A (ja) 1998-06-23
DE69616013D1 (de) 2001-11-22
DE69616013T2 (de) 2002-06-06
EP0788660A2 (en) 1997-08-13
WO1997004488A2 (en) 1997-02-06

Similar Documents

Publication Publication Date Title
TW339475B (en) Semiconductor device
US5338965A (en) High voltage structures with oxide isolated source and RESURF drift region in bulk silicon
TW335513B (en) Semiconductor component for high voltage
EP0335750A3 (en) Vertical power mosfet having high withstand voltage and high switching speed
SE8009091L (sv) Halvledaranordning
KR930703706A (ko) 통합형 전력 스위치 구조체
JPS55148464A (en) Mos semiconductor device and its manufacture
KR860008623A (ko) 금속 산화물 반도체 전계효과 트랜지스터
KR970008332A (ko) 완전-공핍 동작용 도핑 프로파일을 갖는 soi 트랜지스터
KR19990022793A (ko) 반도체 칩 연결 영역을 갖는 고전압 래터럴 금속 산화물 반도체전계 효과 트랜지스터 세마이콘덕터-온-인슐레이터 디바이스
KR940020576A (ko) 반도체트랜지스터구조(Metal oxide semiconductor transistors having a polysilicon gate electrode with nonuniform doping in source-drain direction)
TW334604B (en) Semiconductor component with linear current-to-voltage characteristics
KR100301917B1 (ko) 고전압전력트랜지스터
WO1996019831A3 (en) Circuit arrangement, and junction field effect transistor suitable for use in such a circuit arrangement
KR930015073A (ko) 반도체 장치
KR890013784A (ko) 바이폴라반도체 스윗칭장치와 그의 제조방법
WO2000028601A3 (en) Lateral thin-film silicon-on-insulator (soi) device having lateral depletion
JPS63224260A (ja) 導電変調型mosfet
AU8261498A (en) Power devices in wide bandgap semiconductor
TW200419798A (en) Bipolar transistor having a majority-carrier accumulation layer as subcollector
KR950012769A (ko) 반도체 소자
WO2000031776A3 (en) Lateral thin-film silicon-on-insulator (soi) device having multiple doping profile slopes in the drift region
US6441446B1 (en) Device with integrated bipolar and MOSFET transistors in an emitter switching configuration
KR860008625A (ko) 절연게이트 반도체 장치
KR970008577A (ko) Cmos 회로를 갖춘 집적 회로 및 cmos 회로의 격리된 활성 영역을 제조하기 위한 방법