TW202002235A - 具有抗偏折層之半導體裝置 - Google Patents

具有抗偏折層之半導體裝置 Download PDF

Info

Publication number
TW202002235A
TW202002235A TW108117349A TW108117349A TW202002235A TW 202002235 A TW202002235 A TW 202002235A TW 108117349 A TW108117349 A TW 108117349A TW 108117349 A TW108117349 A TW 108117349A TW 202002235 A TW202002235 A TW 202002235A
Authority
TW
Taiwan
Prior art keywords
layer
stretched
depositing
substrate
silicon nitride
Prior art date
Application number
TW108117349A
Other languages
English (en)
Other versions
TWI720487B (zh
Inventor
麥克 J 朗頓
安德魯 P 克拉克
喬治 格雷馬
Original Assignee
美商瑞西恩公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商瑞西恩公司 filed Critical 美商瑞西恩公司
Publication of TW202002235A publication Critical patent/TW202002235A/zh
Application granted granted Critical
Publication of TWI720487B publication Critical patent/TWI720487B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

半導體裝置具有基板,以及沉積覆蓋在裝置之單一主表面(面)上之壓縮層及拉伸層。拉伸層可直接沉積在裝置之基板上,壓縮層覆蓋在拉伸層上。過渡材料可位於拉伸層與壓縮層之間。過渡材料可為包括拉伸層及壓縮層中之一或二者之組分之化合物。在特定具體實例中,拉伸材料可為氮化矽,壓縮層可為氧化矽,並且過渡材料可為氮氧化矽,其可藉由氧化拉伸氮化矽層之表面來形成。藉由在裝置之同一面上沉積拉伸層及壓縮層,相對的主表面(面)可自由加工。

Description

具有抗偏折層之半導體裝置
本發明係屬於半導體裝置領域,其具有防止偏折之機構。
在半導體裝置中,意欲保持裝置不彎曲。防止彎曲之一種方法係在半導體晶圓之兩個相對側(主表面)上沉積材料。例如,在前後主表面上沉積壓縮應力材料可平衡應力,防止彎曲。然而,在兩個主表面上沉積材料並非總是所欲的或實際的。
半導體裝置具有在基板面上之中性偏折雙層,以及拉伸層及壓縮層。
半導體裝置具有在基板面上之氮化矽拉伸層,以及在氮化矽層之經氧化之表面上之氧化矽壓縮層。
根據本發明之一個態樣,一種半導體裝置,其包括:基板;覆蓋在基板之主表面上之拉伸層;及覆蓋在主表面上之壓縮層。拉伸層及壓縮層皆將力施加至基板上,從而防止基板彎曲。
根據本發明內容中任一段之具體實例,該裝置包括在拉伸層與壓縮層之間之中間層。
根據本發明內容中任一段之具體實例,中間層在拉伸層與壓縮層之間傳遞應力。
根據本發明內容中任一段之具體實例,中間層比壓縮層及拉伸層薄。
根據本發明內容中任一段之具體實例,中間層為壓縮層或拉伸層之經氧化之表面。
根據本發明內容中任一段之具體實例,拉伸層比壓縮層更靠近基板。
根據本發明內容中任一段之具體實例,拉伸層為氮化矽層。
根據本發明內容中任一段之具體實例,壓縮層為氧化矽層。
根據本發明內容中任一段之具體實例,中間層為氮氧化矽層。
根據本發明內容中任一段之具體實例,拉伸層之拉力平衡壓縮層之壓縮力。
根據本發明之另一個態樣,一種製造半導體裝置之方法,其包括以下步驟:將拉伸層沉積覆蓋在裝置之基板之主面上;及將壓縮層沉積覆蓋在主面上。拉伸層及壓縮層皆將力施加至基板上,從而防止基板彎曲。
根據本發明內容中任一段之具體實例,沉積拉伸層發生在沉積壓縮層之前,壓縮層沉積覆蓋在拉伸層上。
根據本發明內容中任一段之具體實例,該方法包括形成位於拉伸層與壓縮層之間之中間層。
根據本發明內容中任一段之具體實例,在沉積拉伸層之後及在沉積壓縮層之前形成中間層。
根據本發明內容中任一段之具體實例,藉由氧化拉伸層之表面來形成中間層。
根據本發明內容中任一段之具體實例,沉積拉伸層包括沉積氮化矽。
根據本發明內容中任一段之具體實例,沉積氮化矽包括藉由物理氣相沉積來沉積氮化矽。
根據本發明內容中任一段之具體實例,沉積氮化矽包括氮化矽之柱狀沉積。
根據本發明內容中任一段之具體實例,形成中間層包括氧化氮化矽之表面,以形成氮氧化矽。
根據本發明內容中任一段之具體實例,氧化包括將氮化矽之表面暴露於空氣。
根據本發明內容中任一段之具體實例,沉積壓縮層包括在氧氮化矽上沉積氧化矽。
根據本發明內容中任一段之具體實例,沉積氧化矽包括藉由物理氣相沉積來沉積氧化矽。
為了實現前述及相關目的,本發明包含在下文中充分描述並且在申請專利範圍中特別指出之特徵。以下描述及隨附圖式詳細闡述了本發明之某些例示性具體實例。然而,此等具體實例僅指示可採用本發明原理之各種方式中之一些方式。當結合圖式考慮本發明之以下詳細描述時,本發明之其他目的、優點及新穎特徵將變得顯而易見。
半導體裝置具有基板,以及沉積覆蓋在裝置之單一主表面(正面)上之壓縮層及拉伸層。拉伸層可直接沉積在裝置之基板上,壓縮層覆蓋在拉伸層上。過渡材料(中間層)可位於拉伸層與壓縮層之間。過渡材料可為包括拉伸層及壓縮層中之一或二者之組分之化合物。在特定具體實例中,拉伸材料可為氮化矽,壓縮層可為氧化矽,並且過渡材料可為氮氧化矽,其可藉由氧化拉伸氮化矽層之表面來形成。可使用物理氣相沉積來沉積材料。可控制氣相沉積之條件以實現拉伸層及壓縮層所需之生長速率及/或特性。藉由在裝置之同一面上沉積拉伸層及壓縮層,相對的主表面(面)可自由加工。
圖1顯示半導體裝置10,其包括基板12,覆蓋基板12之主表面(正面)16上之拉伸層14,以及覆蓋拉伸層14及正面16二者上之壓縮層18。在拉伸層14與壓縮層16之間亦可存在中間層(或過渡層)22。如下更詳細地說明,中間層22將應力自壓縮層18傳遞通過至拉伸層14及基板12。中間層22可為一種化合物,其包括在拉伸層14及/或壓縮層16中之一或多種組分。或者,中間層22可藉由化學混合拉伸層14之表面,例如藉由在拉伸層14之表面上形成氧化物層來形成。
中間層22可用於促進覆蓋在拉伸層14上之壓縮層18之沉積。就能夠防止基板12彎曲而言,中間層22可使裝置10之性能更加一致。根據該目的,中間層22可促進自壓縮層18至拉伸層14之應力及/或應力傳遞一致。然而,此等可能性不為確定或徹底的,並且中間層22可能為裝置10提供不同或額外的益處。
覆蓋正面16之拉伸層14及壓縮層18之形成允許在基板12之背面(主表面)26上進行操作。例如,可能根據需要藉由沿著背面26移除材料以減少裝置10之厚度。或者保持背側26可用於其他目的,諸如用於放置敏感裝置(組件),或者用於黏合至其他結構以用於堆疊晶圓或半導體裝置,可為重要的。
在一個具體實例中,拉伸層14為氮化矽,壓縮層18為氧化矽,並且中間層22為氮氧化矽。此等僅為實例材料,其他合適的材料亦可能作為替代物。可形成具有以便在基板12上施加所需之應力之組成及厚度之層,以防止基板12彎曲。
氮化矽拉伸層14可具有0.1 μm至1 μm之厚度,例如具有0.6±0.02 μm之厚度。氧化矽壓縮層18可具有小於1 μm之厚度,諸如0.5±0.02 μm。氮氧化矽中間層22可具有約200Å(200埃)之厚度,諸如200±50Å(200±50埃)。此等值為實例,不應被解釋為限制。例如,可使用各種其他層厚度,諸如在保持層厚度之一般比例時。例如,將氮化矽與氧化矽厚度之比例保持在6:5將使得對於0.1-10 μm量級之薄膜彎曲度接近零。
作為替代,可使用化學計量之氮化鉭及鉭,以及亞化學計量之氮化鉭之中間過渡層。氮化鉭為壓縮的,鉭為拉伸的,且亞化學計量之氮化鉭允許鉭隨著拉伸應力而生長。另一種替代的可能性為使用氮化鉭及銅之雙層,以及氮氧化鉭之中間層,其可藉由將氮化鉭膜暴露於大氣以氧化來產生。
圖2顯示加工之後期階段之裝置10之視圖,其中電子組件40已放置在例如接合基板12上之導電跡線及/或通孔之正面16上。可諸如藉由選擇性蝕刻移除部分層14、18及22,以便將組件40形成或放置在基板12上。在其他具體實例中,層14、18及22可沉積在現有的組件及結構上或周圍。應當理解,可僅在某些離散位置處移除層14、18及22,將層14、18及22之其餘部分留作正面16之過大部分之連續層。
通常意欲將電子組件40彼此電隔離。因此,意欲層14、18及22中所用之材料為介電質(電絕緣的)。在本發明之一個具體實例中所用之氧化矽、氮化矽及氮氧化矽材料滿足該條件。此外,氮化矽具有強烈黏附於用於電子裝置之大多數基板之特性。
裝置10最初可具有用於其基板之晶圓,其中晶圓被細分為單獨裝置。單獨裝置可用於多種產品中之任一者,並且可具有任何各種組件,諸如導電跡線、開關、電容器等。諸如裝置10之裝置可作為更大的電子裝置之一部分來堆疊,例如用於3D晶圓堆疊。
現在參考圖3,其顯示用於製造裝置10(圖1)之方法100之步驟。圖3所示及以下描述之步驟僅為用於形成最終裝置之數個步驟,所示步驟係針對防止彎曲或其他偏折之製程。
在步驟102中,將拉伸層14(圖1)沉積覆蓋在基板12之主表面(正面)16上。沉積可藉由物理氣相沉積(physical vapor deposition;PVD),其為與通常用於沉積此種材料之電漿增強化學氣相沉積(plasma enhanced chemical vapor deposition;PECVD)不同的製程。PVD之優點包括促進盒式晶圓加工,提供更短的循環時間及更高的產量,低的材料消耗率及低的污染風險。
PVD製程係在密封腔室中進行,其中氣態源材料處於壓力控制之氛圍中。已發現,隨著腔室壓力增加,沉積層(拉伸層14(圖1))之拉伸膜應力增加,但沉積速率下降。因此,需要在沉積材料之所欲拉伸應力與更快的沉積速率之間達成某種平衡。此外,可選擇腔室壓力,以便產生具有與壓縮層18(圖1)之材料相似的應力大小之沉積材料,從而最小化(或減少)需要沉積之拉伸材料之量。較少量之沉積係較佳的,因為其使沉積製程進行得更快並且成本更低。此外,經沉積之氮化矽可能為壓縮的或拉伸的,此取決於其為如何沉積的。對於拉伸層14,當然需要拉伸氮化矽。
步驟102中之PVD製程之腔室壓力可為約3 mTorr,例如為3.1±0.1 mTorr,以給出非限制性實例值。腔室壓力之主要來源可為惰性氣體,諸如氬氣。可控制氮氣流以防止中毒,其中用於沉積之靶上之材料累積的比濺射製程發生更快。可控制腔室中之溫度,及/或可控制加工時間,以防止損壞濺射靶,及/或避免對基板(晶圓)12及/或沉積材料之有害影響。
腔室中壓力之增加致使柱狀結構中氮化矽之生長,此產生更多孔及拉伸之膜。儘管可用於拉伸層14之多孔柱狀形式亦可具有相同的化學計量之氮化矽,但柱狀晶粒之間之間隔產生比典型的化學計量之氮化矽(Si3 N4 )更低的折射率。
已發現,對於拉伸層14之每1 μm厚度,氮化矽產生-49 μm之晶圓彎曲,以給出單一非限制性實例值。可選擇層14及18之厚度來平衡基板12上之拉伸力及壓縮力。
在步驟104中,形成中間層22(圖1)。中間層22可藉由氧化拉伸層14之頂部,例如氧化氮化矽之表面以形成氮氧化物來形成。此可藉由將氮化矽暴露於空氣足夠的時間以形成氧化氮化矽之頂層,以產生中間層22來完成。此形成自氮化矽拉伸層14至中間層22之氮氧化矽之膜梯度。此形成了用於隨後形成氧化矽壓縮層18之固體基底。
氮化矽可在室溫及大氣壓力下氧化而形成表面層,諸如厚度為100±50埃之氮氧化矽。氮化矽之頂部單層在空氣暴露之前5-10分鐘內氧化。
直接在氮化矽上沉積氧化矽可能產生非所欲及/或無法預測的結果。氧化矽應力係受生長其之表面影響。據信當氧化矽直接沉積(生長)在氮化矽上時,多孔氮化矽會引起氧化矽中之柱狀生長。此當所需之氧化矽為壓縮的時,可產生例如每1 μm沉積具有-33 μm彎曲之拉伸氧化矽,以在基板12上提供抵消底層14拉伸力之力。然而,當氮化矽表面首先被氧化時,頂部經氧化之單層形成緻密的膜表面,其允許氧化矽形式緻密地生長,產生壓縮膜。例如,對於每1 μm之氧化矽厚度,氧化矽可具有+85 μm之晶圓彎曲。此允許形成抵消來自氮化矽之拉伸力之壓縮層。
上述機制為觀察到具有中間層22之裝置之有利性能之猜想。應當理解,材料生長之實際機制可能與上述不同。
最後,在步驟106中,壓縮層18(圖1)沉積覆蓋在拉伸層14上。更具體而言,中間層22可用於促進壓縮層18沉積在拉伸層14上。壓縮層18可藉由PVD或其他合適的沉積或形成製程沉積。當使用PVD時,壓縮薄膜在0.1-2 mTorr量級之低壓下形成。例如,為了平衡在3 mTorr下沉積之拉伸氮化矽膜之偏折,可在0.6 mTorr下沉積綜合二氧化矽膜。或者,可使用電子束蒸發來沉積壓縮介電膜(例如氧化矽及氮化矽)。可使用電鍍來沉積其他材料組之壓縮膜(典型地為金屬)。圖4顯示半導體裝置210之替代配置,其具有覆蓋在基板212之正面216上之壓縮層218。拉伸層214覆蓋在壓縮層218上,在層214與218之間具有中間層222。裝置210可具有與裝置10(圖1)在抵抗彎曲或變形方面上相似的作用。某些材料組(例如氮化鉭及銅)允許首先沉積壓縮膜(氮化鉭)並且將拉伸膜沉積在頂部上(銅)。在一些情況下,可在氮化鉭層與銅層之間使用鉭之中間層以促進銅黏附。
圖5顯示半導體裝置310之另一個替代方案,其在基板312之正面316上具有拉伸層314,並且壓縮層318直接形成在拉伸層314上。在此具體實例中省略了插入層22(圖1)。儘管中間層具有優點,但如上所述,在某些情況下,諸如當使用某些材料時,可省略中間層。例如,拉伸銅可直接沉積在壓縮氮化鉭上以形成平衡的膜堆疊。此二膜具有互補的、可在沒有中間膜之幫助下抵消的偏折。
雖然已就某(些)較佳具體實例而展示並描述本發明,但顯而易見的是,在閱讀並理解本說明書及隨附圖式之後,所屬技術領域中之其他熟習此項技術者將想至等效更改及修飾。尤其對由上文所描述之元件(組件(分)(component)、組合件(assembly)、裝置(device)、組成物(composition)等)執行的各種功能而言,除非另外指明,否則用於描述此等元件之術語(包括提至「手段(mean)」)意欲對應於執行所描述元件之指定功能的任何元件(亦即,在功能上等效),即使在結構上不等效於所揭示結構,其執行本文中說明的本發明之例示性具體實例或具體實例中之功能。另外,雖然上文可能已就數個說明性具體實例中之一或多者而描述本發明之特定特徵,但若對任何給定或特定應用而言係需要且有利的,則此等特徵可與其他具體實例之一或多個其他特徵組合。
10、210、310‧‧‧半導體裝置 100‧‧‧方法 102、104、106‧‧‧步驟 12、212、312‧‧‧基板 14、214、314‧‧‧拉伸層 16、216、316‧‧‧正面 18、218、318‧‧‧壓縮層 22、222‧‧‧中間層(過渡層) 26‧‧‧背面 40‧‧‧電子組件
隨附圖式顯示了本發明之各種態樣。
圖1為根據本發明具體實例之半導體裝置之側剖視圖。
圖2為圖1之半導體裝置之側剖視圖,其中安裝有額外的組件。
圖3為根據本發明具體實例之製造半導體裝置之方法之高級流程圖。
圖4為根據本發明另一個具體實例之半導體裝置之側剖視圖。
圖5為根據本發明又另一個具體實例之半導體裝置之側剖視圖。
10‧‧‧半導體裝置
12‧‧‧基板
14‧‧‧拉伸層
16‧‧‧正面
18‧‧‧壓縮層
22‧‧‧中間層(過渡層)
26‧‧‧背面

Claims (20)

  1. 一種半導體裝置,其包含: 基板; 覆蓋在該基板之主表面上之拉伸層;及 覆蓋在該主表面上之壓縮層; 其中該拉伸層及該壓縮層皆將力施加至該基板上,從而防止該基板彎曲。
  2. 如請求項1所述之半導體裝置, 其進一步包含在該拉伸層與該壓縮層之間之中間層; 其中該中間層在該拉伸層與該壓縮層之間傳遞應力。
  3. 如請求項2所述之半導體裝置,其中該中間層比該壓縮層及該拉伸層薄。
  4. 如請求項2所述之半導體裝置,其中該中間層為該壓縮層或該拉伸層之經氧化之表面。
  5. 如請求項1至4中任一項所述之半導體裝置,其中該拉伸層比該壓縮層更靠近該基板。
  6. 如請求項1至4中任一項所述之半導體裝置, 其中該拉伸層為氮化矽層;且 其中該壓縮層為氧化矽層。
  7. 如請求項6所述之半導體裝置, 其進一步包含在該拉伸層與該壓縮層之間之中間層; 其中該中間層為氮氧化矽層。
  8. 如請求項1至4中任一項所述之半導體裝置,其中該拉伸層之拉力平衡該壓縮層之壓縮力。
  9. 一種製造半導體裝置之方法,該方法包含: 將拉伸層沉積覆蓋在該裝置之基板之主面上;及 將壓縮層沉積覆蓋在該主面上; 其中該拉伸層及該壓縮層皆將力施加至該基板上,從而防止該基板彎曲。
  10. 如請求項9所述之方法,其中沉積該拉伸層發生在沉積該壓縮層之前,該壓縮層沉積覆蓋在該拉伸層上。
  11. 如請求項9至10中任一項所述之方法,其進一步包含形成位於該拉伸層與該壓縮層之間之中間層。
  12. 如請求項11所述之方法,其中在沉積該拉伸層之後及在沉積該壓縮層之前形成該中間層。
  13. 如請求項12所述之方法,其中藉由氧化該拉伸層之表面來形成該中間層。
  14. 如請求項9至10中任一項所述之方法,其中沉積該拉伸層包括沉積氮化矽。
  15. 如請求項14所述之方法,其中沉積該氮化矽包括藉由物理氣相沉積來沉積該氮化矽。
  16. 如請求項14所述之方法,其中沉積該氮化矽包括該氮化矽之柱狀沉積。
  17. 如請求項14所述之方法,其中形成該中間層包括氧化該氮化矽之表面,以形成氮氧化矽。
  18. 如請求項17所述之方法,其中氧化包括將該氮化矽之表面暴露於空氣。
  19. 如請求項17所述之方法,其中沉積該壓縮層包括在該氧氮化矽上沉積氧化矽。
  20. 如請求項19所述之方法,其中沉積該氧化矽包括藉由物理氣相沉積來沉積該氧化矽。
TW108117349A 2018-06-18 2019-05-20 具有抗偏折層之半導體裝置 TWI720487B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/010,571 2018-06-18
US16/010,571 US10515905B1 (en) 2018-06-18 2018-06-18 Semiconductor device with anti-deflection layers

Publications (2)

Publication Number Publication Date
TW202002235A true TW202002235A (zh) 2020-01-01
TWI720487B TWI720487B (zh) 2021-03-01

Family

ID=66625281

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108117349A TWI720487B (zh) 2018-06-18 2019-05-20 具有抗偏折層之半導體裝置

Country Status (10)

Country Link
US (1) US10515905B1 (zh)
EP (1) EP3807928A1 (zh)
JP (1) JP7072121B2 (zh)
KR (1) KR102478822B1 (zh)
CN (1) CN112640092A (zh)
CA (1) CA3104245C (zh)
IL (1) IL276506B (zh)
SG (1) SG11202012678WA (zh)
TW (1) TWI720487B (zh)
WO (1) WO2019245660A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10896821B2 (en) * 2018-09-28 2021-01-19 Lam Research Corporation Asymmetric wafer bow compensation by physical vapor deposition
US11410937B2 (en) * 2020-03-06 2022-08-09 Raytheon Company Semiconductor device with aluminum nitride anti-deflection layer
JP7076490B2 (ja) 2020-03-24 2022-05-27 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
US11569134B2 (en) * 2020-04-14 2023-01-31 International Business Machines Corporation Wafer backside engineering for wafer stress control
US12002773B2 (en) 2021-03-03 2024-06-04 Raytheon Company Hybrid pocket post and tailored via dielectric for 3D-integrated electrical device
US11894477B2 (en) 2021-05-17 2024-02-06 Raytheon Company Electrical device with stress buffer layer and stress compensation layer
US11851785B2 (en) 2021-05-21 2023-12-26 Raytheon Company Aluminum nitride passivation layer for mercury cadmium telluride in an electrical device
US20220384290A1 (en) * 2021-06-01 2022-12-01 Wolfspeed, Inc. Multilayer encapsulation for humidity robustness and highly accelerated stress tests and related fabrication methods
US20220384366A1 (en) * 2021-06-01 2022-12-01 Cree, Inc. Multilayer encapsulation for humidity robustness and related fabrication methods

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151637A (ja) * 1989-11-09 1991-06-27 Kowa Kurieitaa:Kk 半導体装置の製造方法及びプラズマcvd装置
JP2822656B2 (ja) 1990-10-17 1998-11-11 株式会社デンソー 半導体装置およびその製造方法
JP3632256B2 (ja) 1994-09-30 2005-03-23 株式会社デンソー 窒化シリコン膜を有する半導体装置の製造方法
JP2002076336A (ja) 2000-09-01 2002-03-15 Mitsubishi Electric Corp 半導体装置およびsoi基板
JP2002158213A (ja) * 2000-11-21 2002-05-31 Sharp Corp 半導体装置の製造方法
US7115954B2 (en) 2000-11-22 2006-10-03 Renesas Technology Corp. Semiconductor device including stress inducing films formed over n-channel and p-channel field effect transistors and a method of manufacturing the same
US6984892B2 (en) * 2001-03-28 2006-01-10 Lam Research Corporation Semiconductor structure implementing low-K dielectric materials and supporting stubs
US6548422B1 (en) 2001-09-27 2003-04-15 Agere Systems, Inc. Method and structure for oxide/silicon nitride interface substructure improvements
CN1244144C (zh) * 2002-04-09 2006-03-01 台湾积体电路制造股份有限公司 形成低介电常数介电层的方法及导电内连线结构
US20060024879A1 (en) * 2004-07-31 2006-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Selectively strained MOSFETs to improve drive current
US8138104B2 (en) * 2005-05-26 2012-03-20 Applied Materials, Inc. Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure
KR100761361B1 (ko) 2006-05-02 2007-09-27 주식회사 하이닉스반도체 반도체 소자 및 그 제조방법
US7834399B2 (en) * 2007-06-05 2010-11-16 International Business Machines Corporation Dual stress memorization technique for CMOS application
US7998800B2 (en) * 2007-07-06 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7741168B2 (en) * 2007-07-25 2010-06-22 Sematech, Inc. Systems and methods for fabricating nanometric-scale semiconductor devices with dual-stress layers using double-stress oxide/nitride stacks
JP2009076605A (ja) * 2007-09-19 2009-04-09 Fujitsu Microelectronics Ltd 半導体装置の製造方法
US7982250B2 (en) * 2007-09-21 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20090159958A1 (en) 2007-12-20 2009-06-25 Spansion Llc Electronic device including a silicon nitride layer and a process of forming the same
US7807586B2 (en) 2008-03-28 2010-10-05 Tokyo Electron Limited Method of forming a stressed passivation film using a non-ionizing electromagnetic radiation-assisted oxidation process
US9082857B2 (en) * 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
JP5478166B2 (ja) * 2008-09-11 2014-04-23 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5384291B2 (ja) 2008-11-26 2014-01-08 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
KR20180014255A (ko) * 2009-11-13 2018-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 이 표시 장치를 구비한 전자 기기
US8076250B1 (en) 2010-10-06 2011-12-13 Applied Materials, Inc. PECVD oxide-nitride and oxide-silicon stacks for 3D memory application
JP5867814B2 (ja) * 2012-01-13 2016-02-24 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
CN107611012B (zh) 2017-08-31 2020-10-02 长江存储科技有限责任公司 一种预制背面薄膜的应力控制方法及结构

Also Published As

Publication number Publication date
CN112640092A (zh) 2021-04-09
CA3104245C (en) 2023-03-28
CA3104245A1 (en) 2019-12-26
EP3807928A1 (en) 2021-04-21
US10515905B1 (en) 2019-12-24
IL276506A (en) 2020-09-30
US20190385954A1 (en) 2019-12-19
JP2021526318A (ja) 2021-09-30
KR20200111244A (ko) 2020-09-28
IL276506B (en) 2021-04-29
JP7072121B2 (ja) 2022-05-19
SG11202012678WA (en) 2021-01-28
TWI720487B (zh) 2021-03-01
WO2019245660A1 (en) 2019-12-26
KR102478822B1 (ko) 2022-12-16

Similar Documents

Publication Publication Date Title
TWI720487B (zh) 具有抗偏折層之半導體裝置
US8563076B2 (en) Substrate structure and method of forming the same
JPH1174224A (ja) 銅用の改善されたタンタル含有バリア層
JPS595629A (ja) 二重層表面安定化方法
TW201900914A (zh) 用於沉積低介電常數膜的方法與設備
JPH08306658A (ja) 酸化物のエッチング方法
KR100827528B1 (ko) sp3 분율이 높은 비정질 탄소를 하드마스크로 이용하는반도체 소자의 제조방법
CN109928357A (zh) 一种mems桥梁结构及其形成方法
CN112760615A (zh) 一种二氧化硅薄膜及其低温制备方法
JP2002158226A (ja) 窒化シリコン固体表面保護膜及びその製造方法とホール素子
JP2009141230A (ja) 半導体装置の製造方法および半導体装置製造用スパッタ装置
TW202136566A (zh) 無氫二氧化矽
JP2004327844A (ja) 窒化シリコン膜、およびその製造方法、ならびに機能デバイス
JPH1012614A (ja) 半導体装置用配線およびその製造方法
US8748260B2 (en) Method for manufacturing nano-crystalline silicon material for semiconductor integrated circuits
JP2007180394A (ja) キャパシタ
US10978414B2 (en) Semiconductor device and method of manufacturing a semiconductor device
US7053001B2 (en) Selective etching processes for In2O3 thin films in FeRAM device applications
KR20090128133A (ko) 반도체 소자의 제조 방법
JPH0193117A (ja) 膜の製造方法
Klimovich et al. Electrophysical properties of TiAlN coatings prepared using controlled reactive magnetron sputtering
JPH0629282A (ja) 半導体装置の製造方法
CN113506721A (zh) 非晶硅薄膜形成方法
JPH04158519A (ja) 半導体装置の製造方法
JPH07150346A (ja) 薄膜の堆積方法