TW201947665A - 熱處理方法及熱處理裝置 - Google Patents

熱處理方法及熱處理裝置 Download PDF

Info

Publication number
TW201947665A
TW201947665A TW108136572A TW108136572A TW201947665A TW 201947665 A TW201947665 A TW 201947665A TW 108136572 A TW108136572 A TW 108136572A TW 108136572 A TW108136572 A TW 108136572A TW 201947665 A TW201947665 A TW 201947665A
Authority
TW
Taiwan
Prior art keywords
temperature
semiconductor wafer
flash
substrate
heating
Prior art date
Application number
TW108136572A
Other languages
English (en)
Other versions
TWI698936B (zh
Inventor
青山敬幸
Original Assignee
日商思可林集團股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商思可林集團股份有限公司 filed Critical 日商思可林集團股份有限公司
Publication of TW201947665A publication Critical patent/TW201947665A/zh
Application granted granted Critical
Publication of TWI698936B publication Critical patent/TWI698936B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本發明提供一種不管基板之表面狀態如何均能以簡易之構成測定基板之表面溫度的熱處理方法及熱處理裝置。
自利用鹵素燈之預加熱階段至藉由閃光燈進行閃光照射時,利用放射溫度計測定半導體晶圓之背面之溫度,並求出於照射閃光時半導體晶圓之背面自預加熱溫度升溫之上升溫度ΔT。由於半導體晶圓之比熱為預設值,上升溫度ΔT與藉由閃光照射而賦予至半導體晶圓之表面之能量的大小成比例,故可根據閃光照射時之半導體晶圓之背面的上升溫度ΔT計算半導體晶圓之表面達到溫度。

Description

熱處理方法及熱處理裝置
本發明係關於一種藉由對半導體晶圓等薄板狀精密電子基板(以下,簡稱為「基板」)照射閃光而將該基板加熱之熱處理方法及熱處理裝置。
於半導體元件之製程中,雜質導入係用以於半導體晶圓內形成pn接面所必需之步驟。目前,雜質導入一般而言係藉由離子澆灌法及其後之退火法而進行。離子澆灌法係使硼(B)、砷(As)、磷(P)等雜質元素離子化並以高加速電壓使其碰撞至半導體晶圓而物理性地進行雜質注入之技術。所注入之雜質藉由退火處理而被活化。此時,若退火時間為數秒程度以上,則有如下擔憂:所澆灌之雜質藉由熱而深度擴散,其結果,接面深度相較於要求變得過深而對良好之元件形成產生障礙。
因此,作為在極短時間內將半導體晶圓加熱之退火技術,近年來閃光燈退火(FLA,flash lamp anneal)受到關注。閃光燈退火係藉由使用氙閃光燈(以下,於僅設為「閃光燈」時意指氙閃光燈)對半導體晶圓之表面照射閃光而僅使被注入有雜質之半導體晶圓之表面在極短時間(數毫秒以下)內升溫之熱處理技術。
氙閃光燈之放射分光分佈係自紫外線區域至近紅外區,波長較先前之鹵素燈短,與矽之半導體晶圓之基礎吸收帶大致一致。由此,於自氙閃光燈對半導體晶圓照射閃光時,透過光較少而能夠使半導體晶圓迅速升溫。又,亦判明若為數毫秒以下之極短時間之閃光照射,則能夠選擇性地僅使半導體晶圓之表面附近升溫。因此,若為利用氙閃光燈之極短時間之升溫,則能夠在不使雜質深度擴散之情況下僅執行雜質活化。
並不限於閃光加熱,於熱處理中,恰當地管理半導體晶圓之溫度較為重要,為此必須準確地測定熱處理中之半導體晶圓之溫度。典型而言,於半導體晶圓之熱處理中,藉由非接觸之放射溫度計進行溫度測定。為了利用放射溫度計準確地進行溫度測定,必須獲知被測定物體之放射率。然而,已知半導體晶圓之放射率根據形成於表面之圖案或膜而存在較大差異,若放射率不確定則無法利用放射溫度計進行溫度測定。
因此,於專利文獻1中提出有如下方法:於閃光照射時,當半導體晶圓之表面溫度與背面溫度變為相等後,根據利用背面側之放射溫度計所測定之晶圓溫度及於表面側所測定之光強度計算晶圓表面之放射率,使用該所計算出之放射率計算閃光照射時之半導體晶圓之表面溫度。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利特開2012-238779號公報
[發明所欲解決之問題]
然而,於專利文獻1所揭示之技術中,必須於半導體晶圓之表面側及背面側之兩者設置感測器進行測定,故機構及計算之運算法變得複雜。又,近年來,各式各樣的材料被用於半導體用途,亦迫切期望簡便地測定例如像於矽之基材上形成有鍺之磊晶膜的基板般放射率之測定非常難之基板之表面溫度。
本發明係鑒於上述問題而完成者,其目的在於提供一種不管基板之表面狀態如何均能以簡易之構成測定基板之表面溫度的熱處理方法及熱處理裝置。
[解決問題之技術手段]
為了解決上述問題,技術方案1之發明係一種熱處理方法,其係藉由對基板照射閃光而將該基板加熱者,其特徵在於包括:預加熱步驟,其係於閃光照射前使基板升溫至特定之預加熱溫度而進行預加熱;閃光加熱步驟,其係對升溫至上述預加熱溫度之上述基板之表面照射閃光而進行加熱;上升溫度測定步驟,其係測定於照射閃光時上述基板之背面自上述預加熱溫度升溫之上升溫度;及表面溫度計算步驟,其係基於上述上升溫度計算閃光照射時之上述基板之表面達到溫度。
又,技術方案2之發明係如技術方案1之發明之熱處理方法,其特徵在於:於上述表面溫度計算步驟中,根據上述上升溫度之積分值計算上述表面達到溫度。
又,技術方案3之發明係如技術方案1之發明之熱處理方法,其特徵在於:進而包括求出上述上升溫度與上述表面達到溫度之相關關係之步驟,且於上述表面溫度計算步驟中,基於上述相關關係計算上述表面達到溫度。
又,技術方案4之發明係如技術方案1之發明之熱處理方法,其特徵在於:上述表面溫度計算步驟進而包括根據上述基板之比熱修正所算出之上述表面達到溫度的修正步驟。
又,技術方案5之發明係如技術方案1至4中任一項之發明之熱處理方法,其特徵在於:進而包括顯示上述表面達到溫度之顯示步驟。
又,技術方案6之發明係一種熱處理裝置,其係藉由對基板照射閃光而將該基板加熱者,其特徵在於包括:腔室,其收容基板;保持部,其於上述腔室內保持基板;閃光燈,其對保持於上述保持部之基板之表面照射閃光;預加熱部,其於自上述閃光燈照射閃光之前使上述基板升溫至特定之預加熱溫度;背面溫度測定部,其測定保持於上述保持部之上述基板之背面的溫度;及表面溫度計算部,其基於自上述閃光燈照射閃光時由上述背面溫度測定部所測定之上述基板之背面的自上述預加熱溫度之上升溫度,計算閃光照射時之上述基板之表面達到溫度。
又,技術方案7之發明係如技術方案6之發明之熱處理裝置,其特徵在於:上述表面溫度計算部係根據上述上升溫度之積分值計算上述表面達到溫度。
又,技術方案8之發明係如技術方案6之發明之熱處理裝置,其特徵在於:進而包括儲存上述上升溫度與上述表面達到溫度之相關關係之記憶部,且上述表面溫度計算部基於上述相關關係計算上述表面達到溫度。
又,技術方案9之發明係如技術方案6之發明之熱處理裝置,其特徵在於:進而包括溫度修正部,該溫度修正部根據上述基板之比熱修正由上述表面溫度計算部算出之上述表面達到溫度。
又,技術方案10之發明係如技術方案6至9中任一項之發明之熱處理裝置,其特徵在於:進而包括顯示上述表面達到溫度之顯示部。
[發明之效果]
根據技術方案1至技術方案5之發明,由於基於照射閃光時基板之背面自預加熱溫度升溫之上升溫度計算閃光照射時之基板之表面達到溫度,故能夠藉由僅測定基板背面之溫度而求出基板之表面達到溫度,不管基板之表面狀態如何均能以簡易之構成測定基板之表面溫度。
尤其是,根據技術方案2之發明,由於根據上升溫度之積分值計算表面達到溫度,故能夠使測定精度提高。
根據技術方案6至技術方案10之發明,由於基於照射閃光時所測定之基板之背面自預加熱溫度的上升溫度計算閃光照射時之基板之表面達到溫度,故能夠藉由僅測定基板背面之溫度而求出基板之表面達到溫度,不管基板之表面狀態如何均能以簡易之構成測定基板之表面溫度。
尤其是,根據技術方案7之發明,由於根據上升溫度之積分值計算表面達到溫度,故能夠使測定精度提高。
以下,一面參照圖式一面對本發明之實施形態進行詳細說明。
圖1係表示本發明之熱處理裝置1之構成之縱截面圖。本實施形態之熱處理裝置1係藉由對作為基板之圓板形狀之半導體晶圓W進行閃光照射而將該半導體晶圓W加熱之閃光燈退火裝置。成為處理對象之半導體晶圓W之尺寸並無特別限定,例如為300 mm或450 mm。於被搬入至熱處理裝置1之前之半導體晶圓W中注入有雜質,藉由利用熱處理裝置1進行之加熱處理執行所注入之雜質之活化處理。再者,於圖1及以後之各圖中,為了容易理解,而視需要對各部分之尺寸及數量進行誇大或簡化描繪。
熱處理裝置1包括收容半導體晶圓W之腔室6、內置複數個閃光燈FL之閃光加熱部5、及內置複數個鹵素燈HL之鹵素加熱部4。於腔室6之上側設置閃光加熱部5,並且於下側設置有鹵素加熱部4。又,熱處理裝置1於腔室6之內部具備將半導體晶圓W以水平姿勢保持之保持部7、及在保持部7與裝置外部之間進行半導體晶圓W之交接之移載機構10。進而,熱處理裝置1包括控制部3,該控制部3控制設置於鹵素加熱部4、閃光加熱部5及腔室6之各動作機構使其等執行半導體晶圓W之熱處理。
腔室6係於筒狀之腔室側部61之上下安裝石英製之腔室窗而構成。腔室側部61具有上下開口之大致筒形狀,於上側開口安裝上側腔室窗63而將其封閉,於下側開口安裝下側腔室窗64而將其封閉。構成腔室6之頂壁之上側腔室窗63係由石英形成之圓板形狀構件,作為使自閃光加熱部5出射之閃光透過至腔室6內的石英窗而發揮功能。又,構成腔室6之地板部之下側腔室窗64亦係由石英形成之圓板形狀構件,作為使來自鹵素加熱部4之光透過至腔室6內之石英窗而發揮功能。
又,於腔室側部61之內側之壁面的上部安裝有反射環68,於下部安裝有反射環69。反射環68、69均形成為圓環狀。上側之反射環68係藉由自腔室側部61之上側嵌入而安裝。另一方面,下側之反射環69係藉由自腔室側部61之下側嵌入並利用省略圖示之螺釘予以固定而安裝。即,反射環68、69均係裝卸自由地安裝於腔室側部61者。腔室6之內側空間、即由上側腔室窗63、下側腔室窗64、腔室側部61及反射環68、69包圍之空間被規定為熱處理空間65。
藉由在腔室側部61安裝反射環68、69,而於腔室6之內壁面形成凹部62。即,形成由腔室側部61之內壁面中未安裝反射環68、69之中央部分、反射環68之下端面、及反射環69之上端面所包圍之凹部62。凹部62於腔室6之內壁面沿水平方向形成為圓環狀,且圍繞保持半導體晶圓W之保持部7。
腔室側部61及反射環68、69由強度及耐熱性優異之金屬材料(例如不鏽鋼)形成。又,反射環68、69之內周面藉由電解鍍鎳而被製成鏡面。
又,於腔室側部61,形成設置有用以對腔室6進行半導體晶圓W之搬入及搬出之搬送開口部(爐口)66。搬送開口部66係設為可藉由閘閥185而開啟及關閉。搬送開口部66連通連接於凹部62之外圓面。因此,於閘閥185將搬送開口部66打開時,可自搬送開口部66經過凹部62進行半導體晶圓W向熱處理空間65之搬入及半導體晶圓W自熱處理空間65之搬出。又,若閘閥185將搬送開口部66堵塞,則腔室6內之熱處理空間65被作為密閉空間。
又,於腔室6之內壁上部形成設置有向熱處理空間65供給處理氣體(於本實施形態中為氮氣(N2 ))之氣體供給孔81。氣體供給孔81形成設置於較凹部62更上側位置,亦可設置於反射環68。氣體供給孔81經由呈圓環狀形成於腔室6之側壁內部之緩衝空間82而連通連接於氣體供給管83。氣體供給管83連接於氮氣供給源85。又,於氣體供給管83之路徑中途介插有閥84。若閥84被打開,則將氮氣自氮氣供給源85輸送至緩衝空間82。流入至緩衝空間82之氮氣係以於流體阻力較氣體供給孔81小之緩衝空間82內擴展之方式流動,而自氣體供給孔81供給至熱處理空間65內。再者,處理氣體並不限定於氮氣,亦可為氬氣(Ar)、氦氣(He)等惰性氣體、或氧氣(O2 )、氫氣(H2 )、氯氣(Cl2 )、氯化氫(HCl)、臭氧(O3 )、氨氣(NH3 )等反應性氣體。
另一方面,於腔室6之內壁下部形成設置有將熱處理空間65內之氣體排出之氣體排出孔86。氣體排出孔86形成設置於較凹部62更下側位置,亦可設置於反射環69。氣體排出孔86經由呈圓環狀形成於腔室6之側壁內部之緩衝空間87而連通連接於氣體排出管88。氣體排出管88連接於排氣部190。又,於氣體排出管88之路徑中途介插有閥89。若閥89被打開,則熱處理空間65之氣體自氣體排出孔86經由緩衝空間87而排出至氣體排出管88。再者,氣體供給孔81及氣體排出孔86亦可沿腔室6之圓周方向設置有複數個,亦可為狹縫狀者。又,氮氣供給源85及排氣部190可為設置於熱處理裝置1之機構,亦可為設置熱處理裝置1之工廠之實體。
又,於搬送開口部66之前端亦連接有將熱處理空間65內之氣體排出之氣體排出管191。氣體排出管191經由閥192而連接於排氣部190。藉由將閥192打開,而經由搬送開口部66排出腔室6內之氣體。
圖2係表示保持部7之整體外觀之立體圖。又,圖3係自上表面觀察保持部7之俯視圖,圖4係自側方觀察保持部7之側視圖。保持部7係包括基台環71、連結部72及承受器74而構成。基台環71、連結部72及承受器74中之任一者均由石英形成。即,保持部7之整體由石英形成。
基台環71係圓環形狀之石英構件。基台環71係藉由載置於凹部62之底面而被支持於腔室6之壁面(參照圖1)。於具有圓環形狀之基台環71之上表面,沿其圓周方向立設有複數個連結部72(於本實施形態中為4個)。連結部72亦為石英之構件,藉由焊接而固著於基台環71。再者,基台環71之形狀亦可為自圓環形狀缺漏一部分而成之圓弧狀。
平板狀之承受器74由設置於基台環71之4個連結部72支持。承受器74係由石英形成之大致圓形之平板狀構件。承受器74之直徑大於半導體晶圓W之直徑。即,承受器74具有較半導體晶圓W大之平面尺寸。於承受器74之上表面立設有複數個(於本實施形態中為5個)導銷76。5個導銷76係沿與承受器74之外周圓為同心圓之圓周上而設置。配置有5個導銷76之圓之直徑稍大於半導體晶圓W之直徑。各導銷76亦由石英形成。再者,導銷76可與承受器74一體地由石英錠加工,亦可將他途加工者藉由焊接等安裝於承受器74。
立設於基台環71之4個連結部72與承受器74之周緣部之下表面藉由焊接而固著。即,承受器74與基台環71係藉由連結部72而固定地連結,從而保持部7成為石英之一體成形構件。藉由將此種保持部7之基台環71支持於腔室6之壁面,而將保持部7安裝於腔室6。於將保持部7安裝於腔室6之狀態下,大致圓板形狀之承受器74成為水平姿勢(法線與鉛垂方向一致之姿勢)。被搬入至腔室6之半導體晶圓W係以水平姿勢載置並保持於安裝在腔室6之保持部7之承受器74上。半導體晶圓W係藉由被載置於由5個導銷76所形成之圓之內側,而防止水平方向之位置偏移。再者,導銷76之個數並不限定於5個,只要為能夠防止半導體晶圓W之位置偏移之數量即可。
又,如圖2及圖3所示,於承受器74,上下貫通地形成有開口部78及切口部77。切口部77係為了使利用熱電偶之接觸式溫度計130之探針前端部通過而設置。另一方面,開口部78係為了使放射溫度計120接收自保持於承受器74之半導體晶圓W之下表面放射之放射光(紅外光)而設置。放射溫度計120及接觸式溫度計130均設置於保持在保持部7之半導體晶圓W之背面側。放射溫度計120係例如使用高溫計而構成,接收自保持於保持部7之半導體晶圓W之背面放射之放射光而測定該背面之溫度。進而,於承受器74穿設有4個貫通孔79,該4個貫通孔79係為了半導體晶圓W之交接而供下述移載機構10之頂起銷12貫通。
圖5係移載機構10之俯視圖。又,圖6係移載機構10之側視圖。移載機構10具備2條移載臂11。移載臂11係設為如沿大致圓環狀之凹部62之圓弧形狀。於各個移載臂11立設有2個頂起銷12。各移載臂11係設為藉由水平移動機構13而能夠旋動。水平移動機構13使一對移載臂11在相對於保持部7進行半導體晶圓W之移載之移載動作位置(圖5之實線位置)與在俯視時不和保持於保持部7之半導體晶圓W重疊之退避位置(圖5之二點鏈線位置)之間水平移動。作為水平移動機構13,可為藉由個別馬達使各移載臂11分別旋動者,亦可為使用連桿機構而藉由1個馬達使一對移載臂11連動地旋動者。
又,一對移載臂11藉由升降機構14而與水平移動機構13一併進行升降移動。若升降機構14使一對移載臂11於移載動作位置上升,則共計4個頂起銷12通過穿設於承受器74之貫通孔79(參照圖2、3),頂起銷12之上端自承受器74之上表面突出。另一方面,若升降機構14使一對移載臂11於移載動作位置下降而使頂起銷12自貫通孔79抽出,且水平移動機構13使一對移載臂11以分開之方式移動,則各移載臂11移動至退避位置。一對移載臂11之退避位置為保持部7之基台環71之正上方。由於基台環71載置於凹部62之底面,故移載臂11之退避位置成為凹部62之內側。再者,於設置有移載機構10之驅動部(水平移動機構13及升降機構14)之部位的附近亦設置有省略圖示之排氣機構,以將移載機構10之驅動部周邊之環境氣體排出至腔室6之外部之方式構成。
返回至圖1,設置於腔室6之上方之閃光加熱部5係於殼體51之內側具備包含複數個(於本實施形態中為30個)氙閃光燈FL之光源、及以覆蓋該光源之上方之方式設置之反射器52而構成。又,於閃光加熱部5之殼體51之底部安裝有燈光放射窗53。構成閃光加熱部5之地板部之燈光放射窗53係由石英形成之板狀之石英窗。藉由將閃光加熱部5設置於腔室6之上方,從而燈光放射窗53與上側腔室窗63相對向。閃光燈FL自腔室6之上方將閃光經由燈光放射窗53及上側腔室窗63而照射至熱處理空間65。
複數個閃光燈FL係分別具有長條之圓筒形狀之棒狀燈,以各自之長度方向沿保持於保持部7之半導體晶圓W之主面(亦即沿水平方向)相互平行之方式排列成平面狀。由此,藉由閃光燈FL之排列而形成之平面亦為水平面。
氙閃光燈FL包括:棒狀之玻璃管(放電管),其係於其內部封入氙氣且於其兩端部配設有連接於電容器之陽極及陰極;以及觸發電極,其附設於該玻璃管之外圓面上。由於氙氣為電性絕緣體,故即便於電容器中累積有電荷,於通常之狀態下亦不會在玻璃管內流通電。然而,於對觸發電極施加高電壓而破壊絕緣之情形時,蓄積於電容器之電瞬時流至玻璃管內,藉由此時之氙原子或分子之激發而發射光。於此種氙閃光燈FL中,具有如下特徵:由於預先將蓄積於電容器之靜電能量轉換為0.1毫秒至100毫秒之極短光脈衝,故與如鹵素燈HL般連續點亮之光源相比能夠照射極強之光。即,閃光燈FL係於未達1秒之極短時間內瞬間發光之脈衝發光燈。再者,閃光燈FL之發光時間可根據對閃光燈FL進行電力供給之燈電源之線圈常數進行調整。
又,反射器52係於複數個閃光燈FL之上方以覆蓋其等整體之方式設置。反射器52之基本功能係將自複數個閃光燈FL出射之閃光反射至熱處理空間65側。反射器52由鋁合金板形成,其表面(面向閃光燈FL之側之面)藉由噴砂處理而被實施有粗面化加工。
設置於腔室6之下方之鹵素加熱部4於殼體41之內側內置有複數個(於本實施形態中為40個)鹵素燈HL。鹵素加熱部4係藉由複數個鹵素燈HL自腔室6之下方經由下側腔室窗64進行對熱處理空間65之光照射而將半導體晶圓W加熱的光照射部。
圖7係表示複數個鹵素燈HL之配置之俯視圖。40個鹵素燈HL被分為上下2段配置。於靠近保持部7之上段配設有20個鹵素燈HL,並且於較上段遠離保持部7之下段亦配設有20個鹵素燈HL。各鹵素燈HL係具有長條之圓筒形狀之棒狀燈。在上段、下段,20個鹵素燈HL均係以各自之長度方向沿保持於保持部7之半導體晶圓W之主面(亦即沿水平方向)相互平行之方式排列。由此,在上段、下段藉由鹵素燈HL之排列而形成之平面均為水平面。
又,如圖7所示,在上段、下段,相較於與保持於保持部7之半導體晶圓W之中央部對向的區域,與周緣部對向之區域中之鹵素燈HL的配設密度均變大。即,於上下段,與燈排列之中央部相比,周緣部之鹵素燈HL之配設間距均更短。因此,於利用來自鹵素加熱部4之光照射進行加熱時,能夠對易產生溫度下降之半導體晶圓W之周緣部進行更多光量之照射。
又,包含上段之鹵素燈HL之燈群與包含下段之鹵素燈HL之燈群係以呈格子狀交叉之方式排列。即,以配置於上段之20個鹵素燈HL之長度方向與配置於下段之20個鹵素燈HL之長度方向相互正交之方式配設有共計40個鹵素燈HL。
鹵素燈HL係藉由對配設於玻璃管內部之燈絲通電而使燈絲白熱化從而使其發光之燈絲方式之光源。於玻璃管之內部,封入有向氮氣及氬氣等惰性氣體中導入有微量鹵素元素(碘、溴等)之氣體。藉由導入鹵素元素,能夠抑制燈絲之折損並且將燈絲之溫度設定為高溫。因此,鹵素燈HL具有與通常的白熾燈泡相比壽命長且能夠連續地照射較強之光之特性。即,鹵素燈HL係連續發光至少1秒以上之連續點亮燈。又,鹵素燈HL由於為棒狀燈,故壽命長,藉由使鹵素燈HL沿水平方向配置,而對上方之半導體晶圓W之放射效率優異。
又,於鹵素加熱部4之殼體41內,亦於2段之鹵素燈HL之下側設置有反射器43(圖1)。反射器43將自複數個鹵素燈HL出射之光反射至熱處理空間65側。
控制部3控制設置於熱處理裝置1之各種動作機構。圖8係表示控制部3之構成之方塊圖。作為控制部3之硬體之構成與普通之電腦相同。即,控制部3包括進行各種運算處理之電路即CPU(Central Processing Unit,中央處理單元)、記憶基本程式之讀出專用之記憶體即ROM(Read Only Memory,唯讀記憶體)、記憶各種資訊之讀寫自由之記憶體即RAM(Random Access Memory,隨機存取記憶體)、及預先記憶有控制用軟體或資料等之磁碟35。藉由控制部3之CPU執行特定之處理程式從而熱處理裝置1中之處理得以進行。
如圖8所示,控制部3包括表面溫度計算部31及溫度修正部32。表面溫度計算部31及溫度修正部32係藉由控制部3之CPU執行特定之處理程式而實現之功能處理部。關於表面溫度計算部31及溫度修正部32之處理內容,將於下文中進一步敍述。
又,於控制部3連接有顯示部33。顯示部33例如係設置於熱處理裝置1之外壁之液晶顯示器等顯示面板。作為顯示部33,亦可採用觸控面板。
除上述構成以外,為了防止於半導體晶圓W之熱處理時因自鹵素燈HL及閃光燈FL產生之熱能量所致的鹵素加熱部4、閃光加熱部5及腔室6之過度之溫度上升,熱處理裝置1還包括各種冷卻用之構造。例如,於腔室6之壁體設置有水冷管(省略圖示)。又,鹵素加熱部4及閃光加熱部5被製成於內部形成氣體流而排熱之氣冷構造。又,對上側腔室窗63與燈光放射窗53之間隙亦供給空氣,而將閃光加熱部5及上側腔室窗63冷卻。
其次,對熱處理裝置1中之半導體晶圓W之處理順序進行說明。此處成為處理對象之半導體晶圓W係藉由離子注入法而添加有雜質(離子)之矽(Si)半導體基板。藉由利用熱處理裝置1之閃光照射加熱處理(退火)而執行該所添加之雜質之活化。以下所說明之熱處理裝置1之處理順序係藉由控制部3控制熱處理裝置1之各動作機構而進行。
首先,打開用以供氣之閥84,並且打開排氣用之閥89、192,而開始對腔室6內供排氣。當打開閥84時,自氣體供給孔81向熱處理空間65供給氮氣。又,當打開閥89時,自氣體排出孔86排出腔室6內之氣體。藉此,自腔室6內之熱處理空間65之上部供給之氮氣流至下方,並自熱處理空間65之下部排出。
又,藉由打開閥192,亦自搬送開口部66排出腔室6內之氣體。進而,藉由省略圖示之排氣機構將移載機構10之驅動部周邊之環境氣體亦排出。再者,於熱處理裝置1中之半導體晶圓W之熱處理時,氮氣被繼續供給至熱處理空間65,其供給量根據處理步驟而適當變更。
繼而,打開閘閥185而搬送開口部66被打開,藉由裝置外部之搬送機器人將注入離子後之半導體晶圓W經由搬送開口部66搬入至腔室6內之熱處理空間65。藉由搬送機器人搬入之半導體晶圓W進入至保持部7之正上方位置後停止。然後,移載機構10之一對移載臂11自退避位置水平移動至移載動作位置並上升,藉此,頂起銷12通過貫通孔79自承受器74之上表面突出而接收半導體晶圓W。
於將半導體晶圓W載置於頂起銷12後,搬送機器人自熱處理空間65退出,藉由閘閥185將搬送開口部66堵塞。然後,藉由一對移載臂11下降,從而半導體晶圓W自移載機構10被交接至保持部7之承受器74且以水平姿勢自下方被保持。半導體晶圓W被實施圖案形成而將注入有雜質之表面作為上表面保持於保持部7。又,半導體晶圓W於承受器74之上表面保持於5個導銷76之內側。下降至承受器74之下方之一對移載臂11藉由水平移動機構13而退避至退避位置、即凹部62之內側。
於將半導體晶圓W利用由石英形成之保持部7以水平姿勢自下方保持後,鹵素加熱部4之40個鹵素燈HL同時點亮而開始預加熱(輔助加熱)。自鹵素燈HL出射之鹵素光透過由石英形成之下側腔室窗64及承受器74而自半導體晶圓W之背面照射。半導體晶圓W之背面係與表面為相反側之主面,一般而言於半導體晶圓W之背面未形成圖案。藉由受到來自鹵素燈HL之光照射,半導體晶圓W被預加熱而溫度上升。再者,移載機構10之移載臂11由於退避至凹部62之內側,故不會成為利用鹵素燈HL進行之加熱之障礙。
熱處理時之半導體晶圓W之溫度係由放射溫度計120測定。即,放射溫度計120接收自保持於保持部7之半導體晶圓W之背面放射並通過承受器74之開口部78的放射光而測定晶圓溫度。於藉由放射溫度計120進行溫度測定時,必需測定對象物之放射率,但典型而言於半導體晶圓W之背面未實施圖案形成或成膜而成為矽露出之狀態,故半導體晶圓W之背面之放射率為已知。又,根據處理目的,亦存在對半導體晶圓W之背面實施成膜處理之情況,但由於特定之膜均勻地成膜,故與上述同樣地半導體晶圓W之背面之放射率為已知。因此,只要放射溫度計120接收自半導體晶圓W之背面放射之放射光,則能夠以準確且良好之再現性進行溫度測定。
圖9係模式性地表示藉由放射溫度計120所測定之半導體晶圓W之溫度之變化的圖。於時刻t1開始利用鹵素燈HL進行預加熱而半導體晶圓W之溫度上升。嚴格而言,放射溫度計120雖測定半導體晶圓W之背面之溫度,但於預加熱之階段,由於半導體晶圓W之表面與背面之溫度差為可忽視之程度,故可視為測定半導體晶圓W整體之溫度者。所測定之半導體晶圓W之溫度被傳輸至控制部3。控制部3一面監控藉由來自鹵素燈HL之光照射而升溫之半導體晶圓W之溫度是否已達到特定之預加熱溫度T1,一面控制鹵素燈HL之輸出。即,控制部3基於放射溫度計120之測定值,以半導體晶圓W之溫度成為預加熱溫度T1之方式反饋控制鹵素燈HL之輸出。預加熱溫度T1係設為不存在添加至半導體晶圓W之雜質因熱而擴散之擔憂的200℃至800℃左右,較佳為350℃至600℃左右(於本實施形態中為600℃)。再者,由於亦存在於半導體晶圓W相對低溫期間利用放射溫度計120之溫度測定較為困難之情形,故亦可於預加熱階段併用利用接觸式溫度計130進行之溫度測定。
於時刻t2半導體晶圓W之溫度達到預加熱溫度T1後,控制部3使半導體晶圓W暫時維持於該預加熱溫度T1。具體而言,於藉由放射溫度計120所測定之半導體晶圓W之溫度達到預加熱溫度T1之時點,控制部3調整鹵素燈HL之輸出,使半導體晶圓W之溫度大致維持於預加熱溫度T1。
藉由進行此種利用鹵素燈HL之預加熱,而使半導體晶圓W之整體均勻地升溫至預加熱溫度T1。雖於利用鹵素燈HL進行之預加熱階段,有更易產生散熱之半導體晶圓W之周緣部之溫度較中央部下降之傾向,但鹵素燈室4中之鹵素燈HL之配設密度係相較於與半導體晶圓W之中央部對向之區域而言與周緣部對向之區域更高。因此,照射至易產生散熱之半導體晶圓W之周緣部的光量變多,從而能夠使預加熱階段中之半導體晶圓W之面內溫度分佈均勻。進而,由於安裝於腔室側部61之反射環69之內周面被製成鏡面,故藉由該反射環69之內周面使朝向半導體晶圓W之周緣部反射之光量變多,從而能夠使預加熱階段中之半導體晶圓W之面內溫度分佈更均勻。
於半導體晶圓W之溫度達到預加熱溫度T1並經過特定時間後之時刻t3,閃光燈FL對半導體晶圓W之表面進行閃光照射。此時,自閃光燈FL放射之閃光之一部分直接射向腔室6內,其他一部分暫時先被反射器52反射後再射向腔室6內,藉由該等閃光之照射而進行半導體晶圓W之閃光加熱。
由於閃光加熱係藉由來自閃光燈FL之閃光(flash light)照射而進行,故能夠使半導體晶圓W之表面溫度在短時間內上升。即,自閃光燈FL照射之閃光係將預先蓄積於電容器之靜電能量轉換為極短之光脈衝的照射時間為0.1毫秒以上且100毫秒以下程度之極短且強之閃光。然後,藉由來自閃光燈FL之閃光照射而被閃光加熱之半導體晶圓W之表面溫度瞬間上升至1000℃以上之處理溫度T2,注入至半導體晶圓W之雜質被活化後,表面溫度迅速下降。如此,能夠使半導體晶圓W之表面溫度在極短時間內升降,故能夠抑制注入至半導體晶圓W之雜質因熱而擴散,並且進行雜質之活化。又,由於在自閃光燈FL照射閃光之前藉由鹵素燈HL將半導體晶圓W預加熱至預加熱溫度T1,故可藉由極短時間之閃光照射使半導體晶圓W之表面升溫至1000℃以上之處理溫度T2。再者,由於雜質之活化所需之時間與其熱擴散所需之時間相比極短,故即便為0.1毫秒至100毫秒左右之不會產生擴散之短時間,亦可完成活化。
於自閃光燈FL照射閃光時,亦藉由放射溫度計120測定半導體晶圓W之背面之溫度。由於閃光照射在極短時間內將巨大之能量賦予至半導體晶圓W之表面,故於閃光照射時,半導體晶圓W之表面較背面先行迅速升溫。於圖9中,為了參照而以虛線表示半導體晶圓W表面之溫度,但其並非利用放射溫度計120所測定之實際測量之溫度。利用放射溫度計120所測定之溫度為圖9中以實線表示之半導體晶圓W之背面的溫度。
如圖9之虛線所示,於時刻t3,自閃光燈FL照射閃光之瞬間,半導體晶圓W之表面達到1000℃以上之處理溫度T2。另一方面,如圖9之實線所示,於閃光照射之瞬間,半導體晶圓W之背面幾乎未自預加熱溫度T1升溫。然後,於較照射閃光而半導體晶圓W之表面溫度上升之時刻t3稍遲之時刻t4,半導體晶圓W之背面之溫度稍微上升。即,半導體晶圓W之背面較先行迅速升溫之半導體晶圓W之表面稍遲些升溫。其原因在於,熱自藉由照射時間極短之閃光照射而瞬間升溫之半導體晶圓W之表面傳導至背面需要時間。例如,若半導體晶圓W之厚度為0.775 mm,則自表面向背面之熱傳導需要約20毫秒之時間。
如圖9所示,於時刻t4半導體晶圓W之背面所達到之溫度T3顯著低於在閃光照射之瞬間半導體晶圓W之表面所達到之處理溫度T2。亦即,半導體晶圓W之背面並未如表面程度般升溫。此意味著於閃光加熱中僅半導體晶圓W之表面附近選擇性地被升溫,適於實現較淺之接面。
於時刻t4半導體晶圓W之背面所達到之溫度T3由放射溫度計120準確地測定。藉由放射溫度計120所測定之背面之達到溫度T3被傳輸至控制部3。控制部3之表面溫度計算部31(圖8)根據放射溫度計120所測定之半導體晶圓W之背面之達到溫度T3計算表面之達到溫度即處理溫度T2。
具體而言,表面溫度計算部31首先求出於照射閃光時半導體晶圓W之背面自預加熱溫度T1升溫之上升溫度ΔT。即,表面溫度計算部31算出上升溫度ΔT=背面之達到溫度T3-預加熱溫度T1。
根據藉由來自閃光燈FL之閃光照射而賦予至半導體晶圓W之表面之能量的大小,規定自半導體晶圓W之表面傳遞至背面之熱量。而且,根據自半導體晶圓W之表面傳遞至背面之熱量規定半導體晶圓W之背面之上升溫度ΔT。即,閃光照射時之半導體晶圓W之背面之上升溫度ΔT與藉由閃光照射而賦予至半導體晶圓W之表面之能量的大小成比例。由於矽之半導體晶圓W之比熱為已知(大概為矽之比熱),故若能夠根據半導體晶圓W之背面之上升溫度ΔT求出賦予至半導體晶圓W之表面之能量的大小,則能夠計算半導體晶圓W之表面之上升溫度,若將其與預加熱溫度T1相加,則能夠計算表面之達到溫度即處理溫度T2。
基於此種原理而能夠根據半導體晶圓W之背面之上升溫度ΔT計算半導體晶圓W之表面之處理溫度T2,但於本實施形態中,為了更迅速地求出處理溫度T2,而預先求出上升溫度ΔT與表面達到溫度即處理溫度T2之相關關係,根據該相關關係計算處理溫度T2。
圖10係表示閃光照射時之半導體晶圓W之背面之上升溫度ΔT與表面之達到溫度之相關關係的圖。如該圖所示,在閃光照射時之半導體晶圓W之背面之上升溫度ΔT與表面達到溫度即處理溫度T2之間,存在如以下式(1)所示之線性關係。再者,於式(1)中a為係數。

如圖10所示之相關關係係預先藉由使用虛設之矽晶圓等之實驗或模擬而求出。而且,將如圖10所示之相關關係以相關表格之形式預先儲存於控制部3之磁碟35(參照圖8)。或者,亦可代替相關表格而使式(1)記憶於控制部3之磁碟35。
控制部3之表面溫度計算部31基於如圖10之相關表格或式(1)所示之半導體晶圓W之背面之上升溫度ΔT與表面達到溫度之相關關係,根據上升溫度ΔT計算閃光照射時之半導體晶圓W之表面達到溫度。控制部3將所計算出之半導體晶圓W之表面達到溫度顯示於顯示部33。
於閃光加熱處理結束後,於經過特定時間後之時刻t5,鹵素燈HL亦熄滅。藉此,半導體晶圓W自預加熱溫度T1迅速降溫。降溫中之半導體晶圓W之溫度係由接觸式溫度計130或放射溫度計120測定,其測定結果被傳輸至控制部3。控制部3根據測定結果監控半導體晶圓W之溫度是否已降溫至特定溫度。然後,於半導體晶圓W之溫度降溫至特定以下之後,移載機構10之一對移載臂11再次自退避位置水平移動至移載動作位置並上升,藉此,頂起銷12自承受器74之上表面突出而自承受器74接收熱處理後之半導體晶圓W。繼而,由閘閥185堵塞之搬送開口部66被打開,藉由裝置外部之搬送機器人將載置於頂起銷12上之半導體晶圓W搬出,從而熱處理裝置1中之半導體晶圓W之加熱處理完成。
於本實施形態中,自利用鹵素燈HL之預加熱階段至利用閃光燈FL之閃光照射,藉由放射溫度計120測定半導體晶圓W之背面之溫度,求出於照射閃光時半導體晶圓W之背面自預加熱溫度T1升溫之上升溫度ΔT。然後,控制部3之表面溫度計算部31基於上升溫度ΔT與表面達到溫度之相關關係,根據上升溫度ΔT計算閃光照射時之半導體晶圓W之表面達到溫度。即,藉由放射溫度計120僅測定半導體晶圓W之背面之溫度,根據其測定結果而計算半導體晶圓W之表面達到溫度。
由於在半導體晶圓W之表面實施有圖案形成,故其放射率不明確,而且於表面整個面不均勻。相對於此,由於在半導體晶圓W之背面未實施圖案形成且未成膜而矽露出,或均勻地成膜有特定之膜,故其放射率為已知。由此,即便為非接觸之放射溫度計120,亦能夠以準確且良好之再現性測定半導體晶圓W之背面之溫度。而且,於照射閃光時半導體晶圓W之背面自預加熱溫度T1升溫之上升溫度ΔT係不管形成於半導體晶圓W之表面之圖案之內容如何(亦即,與表面之放射率無關),均與藉由閃光照射而賦予至半導體晶圓W之表面之能量的大小成比例。因此,若藉由放射溫度計120測定半導體晶圓W之背面之溫度,並準確地求出自預加熱溫度T1之上升溫度ΔT,則能夠計算閃光照射時之半導體晶圓W之表面達到溫度即處理溫度T2。
又,即便不設置測定來自半導體晶圓W之表面之放射光之強度的感測器,僅藉由設置接收來自半導體晶圓W之背面之放射光而進行溫度測定之放射溫度計120,便能夠計算半導體晶圓W之表面達到溫度。即,根據本發明,不管半導體晶圓W之表面狀態如何均能以簡易之構成測定半導體晶圓W之表面溫度。
以上,對本發明之實施形態進行了說明,但本發明可於不脫離其主旨之範圍內在上述內容以外進行各種變更。例如,於上述實施形態中,成為處理對象之半導體晶圓W僅由矽形成(雖添加有極微量之雜質但對半導體晶圓W之比熱造成之影響為可忽視之程度),但並不限定於此,即便為具有不同材料之積層構造之半導體基板,亦能夠使用本發明之技術進行溫度測定。例如,能夠利用與上述實施形態相同之方法,藉由放射溫度計120測定使鍺(Ge)於矽之基材上磊晶成長而成之半導體基板之背面的溫度,求出閃光照射時之上升溫度ΔT,並根據該上升溫度ΔT計算該基板之表面達到溫度。即便為於表面形成有鍺之磊晶膜之基板,由於其背面矽露出,故放射率已知,放射溫度計120亦能夠準確地測定背面之溫度。
但是,於在矽之基材上形成有與矽為不同材料之膜之基板之情形時,基板表面附近之比熱與僅由矽形成之基板不同。於進行此種具有與矽為不同材料之積層構造之基板的溫度測定時,控制部3之溫度修正部32(圖8)基於構成基板之材料之比熱,對表面溫度計算部31所計算出之表面達到溫度(利用矽之比熱而計算出之溫度)進行修正。例如,若為於上述矽之基材上形成有鍺之磊晶膜之基板,則溫度修正部32基於矽與鍺之比熱之差,將表面溫度計算部31所計算出之表面達到溫度降低3%左右,藉此,能夠計算該基板之表面達到溫度。
若為如於矽之基材上形成有鍺之磊晶膜之基板般具有積層構造之基板,則測定表面之放射率非常困難,但若如上述般處理,則能夠簡便地測定基板表面之達到溫度。即,本發明之技術尤其適於測定此種具有積層構造而難以測定表面之放射率的基板之表面達到溫度。
又,於上述實施形態中,根據閃光照射時之半導體晶圓W之背面之上升溫度ΔT計算半導體晶圓W之表面達到溫度,但亦可代替該方法而根據上升溫度ΔT之積分值計算半導體晶圓W之表面達到溫度。更詳細而言,表面溫度計算部31根據將照射閃光時半導體晶圓W之背面自預加熱溫度T1升溫之上升溫度ΔT以時間進行積分所得之積分值(亦即圖9之斜線部之面積),而計算半導體晶圓W之表面達到溫度。
於照射時間極短之閃光照射中,半導體晶圓W之背面之溫度自預加熱溫度T1上升之時間亦極短。另一方面,由於縮短放射溫度計120之採樣時間方面有限度,故亦存在於圖9之時刻t4之時間點放射溫度計120無法測定半導體晶圓W之背面所達到之溫度T3的情況。其結果,亦有閃光照射時之半導體晶圓W之背面之上升溫度ΔT中含有誤差之虞。若根據上升溫度ΔT之積分值計算半導體晶圓W之表面達到溫度,則可減少由放射溫度計120之採樣時間引起之上升溫度ΔT之測定誤差,從而提高半導體晶圓W之表面達到溫度之計算精度。
又,於上述實施形態中,於閃光加熱部5具備30個閃光燈FL,但並不限定於此,閃光燈FL之個數可設為任意之數量。又,閃光燈FL並不限定於氙閃光燈,亦可為氪閃光燈。又,鹵素加熱部4所具備之鹵素燈HL之個數亦並不限定於40個,可設為任意之數量。
又,於上述實施形態中,藉由來自鹵素燈HL之鹵素光照射對半導體晶圓W進行預加熱,但預加熱之方法並不限定於此,亦可藉由載置於加熱板而對半導體晶圓W進行預加熱。
1‧‧‧熱處理裝置
3‧‧‧控制部
4‧‧‧鹵素加熱部
5‧‧‧閃光加熱部
6‧‧‧腔室
7‧‧‧保持部
10‧‧‧移載機構
11‧‧‧移載臂
12‧‧‧頂起銷
13‧‧‧水平移動機構
14‧‧‧升降機構
31‧‧‧表面溫度計算部
32‧‧‧溫度修正部
33‧‧‧顯示部
35‧‧‧磁碟
41‧‧‧殼體
43‧‧‧反射器
51‧‧‧殼體
52‧‧‧反射器
53‧‧‧燈光放射窗
61‧‧‧腔室側部
62‧‧‧凹部
63‧‧‧上側腔室窗
64‧‧‧下側腔室窗
65‧‧‧熱處理空間
66‧‧‧搬送開口部(爐口)
68‧‧‧反射環
69‧‧‧反射環
71‧‧‧基台環
72‧‧‧連結部
74‧‧‧承受器
76‧‧‧導銷
77‧‧‧切口部
78‧‧‧開口部
79‧‧‧貫通孔
81‧‧‧氣體供給孔
82‧‧‧緩衝空間
83‧‧‧氣體供給管
84‧‧‧閥
85‧‧‧氮氣供給源
86‧‧‧氣體排出孔
87‧‧‧緩衝空間
88‧‧‧氣體排出管
89‧‧‧閥
120‧‧‧放射溫度計
130‧‧‧接觸式溫度計
185‧‧‧閘閥
190‧‧‧排氣部
191‧‧‧氣體排出管
192‧‧‧閥
FL‧‧‧閃光燈
HL‧‧‧鹵素燈
W‧‧‧半導體晶圓
t1‧‧‧時刻
t2‧‧‧時刻
t3‧‧‧時刻
t4‧‧‧時刻
t5‧‧‧時刻
T1‧‧‧預加熱溫度
T2‧‧‧處理溫度
T3‧‧‧背面達到溫度
ΔT‧‧‧上升溫度
圖1係表示本發明之熱處理裝置之構成之縱截面圖。
圖2係表示保持部之整體外觀之立體圖。
圖3係自上表面觀察保持部之俯視圖。
圖4係自側方觀察保持部之側視圖。
圖5係移載機構之俯視圖。
圖6係移載機構之側視圖。
圖7係表示複數個鹵素燈之配置之俯視圖。
圖8係表示控制部之構成之方塊圖。
圖9係模式性地表示藉由放射溫度計所測定之半導體晶圓之溫度變化的圖。
圖10係表示閃光照射時之半導體晶圓之背面之上升溫度與表面之達到溫度之相關關係的圖。

Claims (1)

  1. 一種熱處理方法,其特徵在於:其係藉由對基板照射閃光而將該基板加熱者;且包括: 預加熱步驟,其係於閃光照射前使基板升溫至特定之預加熱溫度而進行預加熱; 閃光加熱步驟,其係對升溫至上述預加熱溫度之上述基板之表面照射閃光而進行加熱; 差分溫度測定步驟,其係測定照射閃光時上述基板之背面自上述預加熱溫度升溫而達到的背面達到溫度與上述預加熱溫度間之差分溫度;及 表面溫度計算步驟,其係基於上述差分溫度計算閃光照射時之上述基板之表面達到溫度。
TW108136572A 2015-08-17 2016-07-07 熱處理方法及熱處理裝置 TWI698936B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160420A JP6654374B2 (ja) 2015-08-17 2015-08-17 熱処理方法および熱処理装置
JP2015-160420 2015-08-17

Publications (2)

Publication Number Publication Date
TW201947665A true TW201947665A (zh) 2019-12-16
TWI698936B TWI698936B (zh) 2020-07-11

Family

ID=58157813

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108136572A TWI698936B (zh) 2015-08-17 2016-07-07 熱處理方法及熱處理裝置
TW105121619A TWI682463B (zh) 2015-08-17 2016-07-07 熱處理方法及熱處理裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105121619A TWI682463B (zh) 2015-08-17 2016-07-07 熱處理方法及熱處理裝置

Country Status (4)

Country Link
US (2) US10453715B2 (zh)
JP (1) JP6654374B2 (zh)
CN (1) CN106469649B (zh)
TW (2) TWI698936B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847610B2 (ja) * 2016-09-14 2021-03-24 株式会社Screenホールディングス 熱処理装置
JP6837871B2 (ja) * 2017-03-09 2021-03-03 株式会社Screenホールディングス 熱処理方法
JP6944347B2 (ja) * 2017-11-07 2021-10-06 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP6960344B2 (ja) * 2018-01-26 2021-11-05 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP7048351B2 (ja) * 2018-02-28 2022-04-05 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP7080145B2 (ja) * 2018-09-20 2022-06-03 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP7133424B2 (ja) * 2018-10-05 2022-09-08 東京エレクトロン株式会社 基板処理装置、及び基板処理方法、及び記憶媒体
TWI822903B (zh) * 2018-12-12 2023-11-21 日商斯庫林集團股份有限公司 熱處理方法及熱處理裝置
JP7372066B2 (ja) 2019-07-17 2023-10-31 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP7372074B2 (ja) * 2019-08-07 2023-10-31 株式会社Screenホールディングス 熱処理方法
JP7370763B2 (ja) * 2019-08-22 2023-10-30 株式会社Screenホールディングス 熱処理方法および熱処理装置
US11908703B2 (en) * 2020-07-31 2024-02-20 SCREEN Holdings Co., Ltd. Light irradiation type heat treatment method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501637A (en) * 1993-08-10 1996-03-26 Texas Instruments Incorporated Temperature sensor and method
US6056434A (en) * 1998-03-12 2000-05-02 Steag Rtp Systems, Inc. Apparatus and method for determining the temperature of objects in thermal processing chambers
DE10297622B4 (de) 2001-12-26 2018-06-14 Mattson Technology Inc. Temperaturmessung sowie Verfahren und Systeme zur Wärmebehandlung
JP4618705B2 (ja) * 2003-09-18 2011-01-26 大日本スクリーン製造株式会社 熱処理装置
US7283734B2 (en) * 2004-08-24 2007-10-16 Fujitsu Limited Rapid thermal processing apparatus and method of manufacture of semiconductor device
JP2006135126A (ja) * 2004-11-08 2006-05-25 Sumco Corp 半導体基板の熱処理方法
JP4816634B2 (ja) * 2007-12-28 2011-11-16 ウシオ電機株式会社 基板加熱装置及び基板加熱方法
JP5356725B2 (ja) * 2008-05-13 2013-12-04 大日本スクリーン製造株式会社 熱処理装置
US8129284B2 (en) * 2009-04-28 2012-03-06 Dainippon Screen Mfg. Co., Ltd. Heat treatment method and heat treatment apparatus for heating substrate by light irradiation
JP5606852B2 (ja) * 2010-09-27 2014-10-15 大日本スクリーン製造株式会社 熱処理装置および熱処理方法
JP2012074430A (ja) * 2010-09-28 2012-04-12 Dainippon Screen Mfg Co Ltd 熱処理装置および熱処理方法
CN102487101A (zh) 2010-12-02 2012-06-06 理想能源设备有限公司 预处理装置及其预处理方法
JP5855353B2 (ja) * 2011-05-13 2016-02-09 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP5819633B2 (ja) * 2011-05-13 2015-11-24 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP6026090B2 (ja) * 2011-09-26 2016-11-16 株式会社Screenホールディングス 熱処理方法
JP5955658B2 (ja) * 2012-06-15 2016-07-20 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP5996409B2 (ja) * 2012-12-12 2016-09-21 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP6184697B2 (ja) * 2013-01-24 2017-08-23 株式会社Screenホールディングス 熱処理装置および熱処理方法

Also Published As

Publication number Publication date
TWI682463B (zh) 2020-01-11
JP2017041468A (ja) 2017-02-23
US20170053818A1 (en) 2017-02-23
CN106469649A (zh) 2017-03-01
JP6654374B2 (ja) 2020-02-26
TWI698936B (zh) 2020-07-11
US10453715B2 (en) 2019-10-22
TW201709337A (zh) 2017-03-01
US20190371632A1 (en) 2019-12-05
US11335574B2 (en) 2022-05-17
CN106469649B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
TWI698936B (zh) 熱處理方法及熱處理裝置
TWI676215B (zh) 熱處理裝置及放射溫度計之測定位置調整方法
TWI663655B (zh) 熱處理裝置及熱處理方法
JP5855353B2 (ja) 熱処理装置および熱処理方法
TWI688993B (zh) 熱處理方法及熱處理裝置
TWI660409B (zh) 熱處理方法及熱處理裝置
TWI668763B (zh) 熱處理方法
TWI699834B (zh) 熱處理裝置及熱處理方法
JP5964630B2 (ja) 熱処理装置
TWI642136B (zh) 熱處理裝置
TWI761848B (zh) 熱處理方法
JP6574344B2 (ja) 熱処理装置および熱処理方法
TW201933489A (zh) 熱處理裝置及熱處理方法
TW202301518A (zh) 熱處理方法及熱處理裝置
JP6618336B2 (ja) 基板の温度分布調整方法
JP2018044915A (ja) 温度測定方法および熱処理装置
JP2022131413A (ja) 温度測定方法