JP2012074430A - 熱処理装置および熱処理方法 - Google Patents

熱処理装置および熱処理方法 Download PDF

Info

Publication number
JP2012074430A
JP2012074430A JP2010216393A JP2010216393A JP2012074430A JP 2012074430 A JP2012074430 A JP 2012074430A JP 2010216393 A JP2010216393 A JP 2010216393A JP 2010216393 A JP2010216393 A JP 2010216393A JP 2012074430 A JP2012074430 A JP 2012074430A
Authority
JP
Japan
Prior art keywords
substrate
heat treatment
photodiode
semiconductor wafer
flash lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010216393A
Other languages
English (en)
Inventor
Toru Kuroiwa
徹 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2010216393A priority Critical patent/JP2012074430A/ja
Priority to US13/177,705 priority patent/US9025943B2/en
Publication of JP2012074430A publication Critical patent/JP2012074430A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/18Arrangement of controlling, monitoring, alarm or like devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • G01J5/0007Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter of wafers or semiconductor substrates, e.g. using Rapid Thermal Processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】フラッシュ光照射時の基板の表面温度をリアルタイムに測定することができる熱処理装置および熱処理方法を提供する。
【解決手段】黒体輻射の理論値から求めた半導体ウェハーの放射エネルギーとフォトダイオード21の出力の実測結果とを対応付けて、それらの相関関係を示すテーブル32を取得して磁気ディスク31に格納しておく。処理対象となる半導体ウェハーにフラッシュランプからフラッシュ光を照射したときに、その半導体ウェハーから放射される放射光をフォトダイオード21にて受光する。制御部3は、取得したテーブル32に基づいて、フォトダイオード21の出力からフラッシュ光が照射された半導体ウェハーが放出する単位時間当たりの放射エネルギーを求める。さらに、制御部3は、求めた放射エネルギーから半導体ウェハーの表面温度を算定する。
【選択図】図7

Description

本発明は、半導体ウェハーや液晶表示装置用ガラス基板等の薄板状の精密電子基板(以下、単に「基板」と称する)に対してフラッシュ光を照射することによって該基板を加熱する熱処理装置および熱処理方法に関する。
半導体デバイスの製造プロセスにおいて、不純物導入は半導体ウェハー内にpn接合を形成するための必須の工程である。現在、不純物導入は、イオン打ち込み法とその後のアニール法によってなされるのが一般的である。イオン打ち込み法は、ボロン(B)、ヒ素(As)、リン(P)といった不純物の元素をイオン化させて高加速電圧で半導体ウェハーに衝突させて物理的に不純物注入を行う技術である。注入された不純物はアニール処理によって活性化される。この際に、アニール時間が数秒程度以上であると、打ち込まれた不純物が熱によって深く拡散し、その結果接合深さが要求よりも深くなり過ぎて良好なデバイス形成に支障が生じるおそれがある。
そこで、極めて短時間で半導体ウェハーを加熱するアニール技術として、近年フラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、不純物が注入された半導体ウェハーの表面のみを極めて短時間(数ミリセカンド以下)に昇温させる熱処理技術である。
キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。このため、キセノンフラッシュランプによる極短時間の昇温であれば、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。
また、特許文献1には、フラッシュランプアニール装置において、チャンバー本体の外部に配置されたカロリーメータ、チャンバー本体の内部に照射された光をカロリーメータへと導く光導出構造、および、カロリーメータからの出力に基づいて演算を行う演算部を備えた光測定部を設け、フラッシュランプからチャンバー本体内部に照射された光のエネルギーをカロリーメータを用いて測定する技術が開示されている。特許文献1には、カロリーメータにて測定したフラッシュ光のエネルギーに基づいて、基板の表面温度を演算によって求めることも開示されている。
特開2005−93750号公報
特許文献1に開示される技術は、1回のフラッシュ光照射の総エネルギー(熱量)を測定し、その総エネルギーから基板表面の最高到達温度を事後的(つまり、フラッシュ光照射後)に求めるものであった。すなわち、特許文献1に開示される技術では、フラッシュ光照射時に急速に昇温する基板の表面温度をリアルタイムに測定することはできなかった。また、特許文献1に開示される技術においては、フラッシュ光照射後に事後的に基板表面の温度を求めているため、その測定結果に基づいてフラッシュ光照射を制御することも不可能であった。
高精度なフラッシュランプアニールを実行するためには、フラッシュ光照射時に昇温する基板の温度をリアルタイムに測定することが求められる。また、その温度測定結果に基づいてフラッシュ光照射を制御することも望まれている。
本発明は、上記課題に鑑みてなされたものであり、フラッシュ光照射時の基板の表面温度をリアルタイムに測定することができる熱処理装置および熱処理方法を提供することを目的とする。
上記課題を解決するため、請求項1の発明は、基板に対してフラッシュ光を照射することによって該基板を加熱する熱処理装置において、基板を収容するチャンバーと、前記チャンバー内にて基板を保持する保持手段と、前記保持手段に保持された基板にフラッシュ光を照射するフラッシュランプと、前記保持手段に保持された基板から放射される放射光を受光するフォトダイオードと、基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを記憶する記憶手段と、前記テーブルに基づいて、前記フラッシュランプからフラッシュ光が照射された基板が放出する単位時間当たりの放射エネルギーを前記フォトダイオードの出力から求めるエネルギー算出部と、前記エネルギー算出部によって求められた基板の単位時間当たりの放射エネルギーから当該基板の表面温度を算定する温度算定部と、を備えることを特徴とする。
また、請求項2の発明は、請求項1の発明に係る熱処理装置において、前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタと、前記温度算定部によって算定された基板の表面温度が所定値に到達した時点で前記絶縁ゲートバイポーラトランジスタをオフ状態に切り替えるIGBT制御手段と、をさらに備えることを特徴とする。
また、請求項3の発明は、請求項1の発明に係る熱処理装置において、前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタと、前記エネルギー算出部によって求められた基板の単位時間当たりの放射エネルギーが所定値に到達した時点で前記絶縁ゲートバイポーラトランジスタをオフ状態に切り替えるIGBT制御手段と、をさらに備えることを特徴とする。
また、請求項4の発明は、請求項1の発明に係る熱処理装置において、前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタと、前記エネルギー算出部によって求められた基板の単位時間当たりの放射エネルギーから算定される総放射エネルギーが所定値に到達した時点で前記絶縁ゲートバイポーラトランジスタをオフ状態に切り替えるIGBT制御手段と、をさらに備えることを特徴とする。
また、請求項5の発明は、請求項1から請求項4のいずれかの発明に係る熱処理装置において、前記記憶手段は、黒体輻射のエネルギーの理論値と基板の放射率より求めた基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを記憶することを特徴とする。
また、請求項6の発明は、請求項1から請求項4のいずれかの発明に係る熱処理装置において、前記記憶手段は、パイロメータによって測定された基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを記憶することを特徴とする。
また、請求項7の発明は、請求項1から請求項6のいずれかの発明に係る熱処理装置において、前記フラッシュランプはキセノンフラッシュランプであり、前記フォトダイオードの測定波長は3μm以上であることを特徴とする。
また、請求項8の発明は、基板に対してフラッシュ光を照射することによって該基板を加熱する熱処理方法において、基板の単位時間当たりの放射エネルギーと当該基板から放射される放射光を受光するフォトダイオードの出力との相関関係を示すテーブルを取得するテーブル取得工程と、フラッシュランプから基板にフラッシュ光を照射するフラッシュ照射工程と、前記テーブルに基づいて、フラッシュ光が照射された基板が放出する単位時間当たりの放射エネルギーを前記フォトダイオードの出力から求めるエネルギー算出工程と、前記エネルギー算出工程にて求められた基板の単位時間当たりの放射エネルギーから当該基板の表面温度を算定する温度算定工程と、を備えることを特徴とする。
また、請求項9の発明は、請求項8の発明に係る熱処理方法において、前記温度算定工程にて算定された基板の表面温度が所定値に到達した時点で前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタをオフ状態に切り替えることを特徴とする。
また、請求項10の発明は、請求項8の発明に係る熱処理方法において、前記エネルギー算出工程にて求められた基板の単位時間当たりの放射エネルギーが所定値に到達した時点で前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタをオフ状態に切り替えることを特徴とする。
また、請求項11の発明は、請求項8の発明に係る熱処理方法において、前記エネルギー算出工程にて求められた基板の単位時間当たりの放射エネルギーから算定される総放射エネルギーが所定値に到達した時点で前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタをオフ状態に切り替えることを特徴とする。
また、請求項12の発明は、請求項8から請求項11のいずれかの発明に係る熱処理方法において、前記テーブル取得工程は、黒体輻射のエネルギーの理論値と基板の放射率より求めた基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを取得することを特徴とする。
また、請求項13の発明は、請求項8から請求項11のいずれかの発明に係る熱処理方法において、前記テーブル取得工程は、パイロメータによって測定された基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを取得することを特徴とする。
また、請求項14の発明は、請求項8から請求項13のいずれかの発明に係る熱処理方法において、前記フラッシュランプはキセノンフラッシュランプであり、前記フォトダイオードの測定波長は3μm以上であることを特徴とする。
請求項1から請求項7の発明によれば、基板の単位時間当たりの放射エネルギーとフォトダイオードの出力との相関関係を示すテーブルを予め記憶しておき、そのテーブルに基づいて、フラッシュランプからフラッシュ光が照射された基板が放出する単位時間当たりの放射エネルギーをフォトダイオードの出力から求め、さらに求められた基板の単位時間当たりの放射エネルギーから当該基板の表面温度を算定するため、フラッシュ光照射時には極めて応答時間の短いフォトダイオードから得られた出力を当該テーブルに照合して放射エネルギーを求めて表面温度を算定することとなり、フラッシュ光照射時の基板の表面温度をリアルタイムに測定することができる。
特に、請求項7の発明によれば、フォトダイオードの測定波長は3μm以上であるため、キセノンフラッシュランプのフラッシュ光が外乱光となるのを防止することができる。
また、請求項8から請求項14の発明によれば、基板の単位時間当たりの放射エネルギーと当該基板から放射される放射光を受光するフォトダイオードの出力との相関関係を示すテーブルを取得し、そのテーブルに基づいて、フラッシュ光が照射された基板が放出する単位時間当たりの放射エネルギーをフォトダイオードの出力から求め、さらに求められた基板の単位時間当たりの放射エネルギーから当該基板の表面温度を算定するため、フラッシュ光照射時には極めて応答時間の短いフォトダイオードから得られた出力を当該テーブルに照合して放射エネルギーを求めて表面温度を算定することとなり、フラッシュ光照射時の基板の表面温度をリアルタイムに測定することができる。
特に、請求項14の発明によれば、フォトダイオードの測定波長は3μm以上であるため、キセノンフラッシュランプのフラッシュ光が外乱光となるのを防止することができる。
本発明に係る熱処理装置の構成を示す縦断面図である。 図1の熱処理装置のガス路を示す断面図である。 保持部の構成を示す断面図である。 ホットプレートを示す平面図である。 図1の熱処理装置の構成を示す縦断面図である。 フラッシュランプの駆動回路を示す図である。 サンプリング部および制御部の構成を示すブロック図である。 図1の熱処理装置における処理手順を示すフローチャートである。 半導体ウェハーの単位時間当たりの放射エネルギーとフォトダイオードの出力との相関関係を示すテーブルの一例を示す図である。 予備加熱が開始されてからの半導体ウェハーの表面温度の変化を示す図である。 フラッシュ光を制御することによる半導体ウェハーの表面温度の変化を示す図である。
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
<第1実施形態>
まず、本発明に係る熱処理装置の全体構成について概説する。図1は、本発明に係る熱処理装置1の構成を示す縦断面図である。熱処理装置1は基板として略円形の半導体ウェハーWにフラッシュ光を照射してその半導体ウェハーWを加熱するフラッシュランプアニール装置である。
熱処理装置1は、半導体ウェハーWを収容する略円筒形状のチャンバー6と、複数のフラッシュランプFLを内蔵するランプハウス5と、を備える。また、熱処理装置1は、チャンバー6およびランプハウス5に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
チャンバー6は、ランプハウス5の下方に設けられており、略円筒状の内壁を有するチャンバー側部63、および、チャンバー側部63の下部を覆うチャンバー底部62によって構成される。また、チャンバー側部63およびチャンバー底部62によって囲まれる空間が熱処理空間65として規定される。熱処理空間65の上方は上部開口60とされており、上部開口60にはチャンバー窓61が装着されて閉塞されている。
チャンバー6の天井部を構成するチャンバー窓61は、石英により形成された円板形状部材であり、ランプハウス5から出射された光を熱処理空間65に透過する石英窓として機能する。チャンバー6の本体を構成するチャンバー底部62およびチャンバー側部63は、例えば、ステンレススチール等の強度と耐熱性に優れた金属材料にて形成されており、チャンバー側部63の内側面の上部のリング631は、光照射による劣化に対してステンレススチールより優れた耐久性を有するアルミニウム(Al)合金等で形成されている。
また、熱処理空間65の気密性を維持するために、チャンバー窓61とチャンバー側部63とはOリングによってシールされている。すなわち、チャンバー窓61の下面周縁部とチャンバー側部63との間にOリングを挟み込むとともに、クランプリング90をチャンバー窓61の上面周縁部に当接させ、そのクランプリング90をチャンバー側部63にネジ止めすることによって、チャンバー窓61をOリングに押し付けている。
チャンバー底部62には、保持部7を貫通して半導体ウェハーWをその下面(ランプハウス5からの光が照射される側とは反対側の面)から支持するための複数(本実施の形態では3本)の支持ピン70が立設されている。支持ピン70は、例えば石英により形成されており、チャンバー6の外部から固定されているため、容易に取り替えることができる。
チャンバー側部63は、半導体ウェハーWの搬入および搬出を行うための搬送開口部66を有し、搬送開口部66は、軸662を中心に回動するゲートバルブ185により開閉可能とされる。チャンバー側部63における搬送開口部66とは反対側の部位には熱処理空間65に処理ガス(例えば、窒素(N2)ガスやヘリウム(He)ガス、アルゴン(Ar)ガス等の不活性ガス、あるいは、酸素(O2)ガス等)を導入する導入路81が形成され、その一端は弁82を介して図示省略の給気機構に接続され、他端はチャンバー側部63の内部に形成されるガス導入バッファ83に接続される。また、搬送開口部66には熱処理空間65内の気体を排出する排出路86が形成され、弁87を介して図示省略の排気機構に接続される。
図2は、チャンバー6をガス導入バッファ83の位置にて水平面で切断した断面図である。図2に示すように、ガス導入バッファ83は、図1に示す搬送開口部66の反対側においてチャンバー側部63の内周の約1/3に亘って形成されており、導入路81を介してガス導入バッファ83に導かれた処理ガスは、複数のガス供給孔84から熱処理空間65内へと供給される。
また、熱処理装置1は、チャンバー6の内部において半導体ウェハーWを水平姿勢にて保持しつつフラッシュ光照射前にその保持する半導体ウェハーWの予備加熱を行う略円板状の保持部7と、保持部7をチャンバー6の底面であるチャンバー底部62に対して昇降させる保持部昇降機構4と、を備える。図1に示す保持部昇降機構4は、略円筒状のシャフト41、移動板42、ガイド部材43(本実施の形態ではシャフト41の周りに3本配置される)、固定板44、ボールネジ45、ナット46およびモータ40を有する。チャンバー6の下部であるチャンバー底部62には保持部7よりも小さい直径を有する略円形の下部開口64が形成されており、ステンレススチール製のシャフト41は、下部開口64を挿通して、保持部7(厳密には保持部7のホットプレート71)の下面に接続されて保持部7を支持する。
移動板42にはボールネジ45と螺合するナット46が固定されている。また、移動板42は、チャンバー底部62に固定されて下方へと伸びるガイド部材43により摺動自在に案内されて上下方向に移動可能とされる。また、移動板42は、シャフト41を介して保持部7に連結される。
モータ40は、ガイド部材43の下端部に取り付けられる固定板44に設置され、タイミングベルト401を介してボールネジ45に接続される。保持部昇降機構4により保持部7が昇降する際には、駆動部であるモータ40が制御部3の制御によりボールネジ45を回転し、ナット46が固定された移動板42がガイド部材43に沿って鉛直方向に移動する。この結果、移動板42に固定されたシャフト41が鉛直方向に沿って移動し、シャフト41に接続された保持部7が図1に示す半導体ウェハーWの受渡位置と図5に示す半導体ウェハーWの処理位置との間で滑らかに昇降する。
移動板42の上面には略半円筒状(円筒を長手方向に沿って半分に切断した形状)のメカストッパ451がボールネジ45に沿うように立設されており、仮に何らかの異常により移動板42が所定の上昇限界を超えて上昇しようとしても、メカストッパ451の上端がボールネジ45の端部に設けられた端板452に突き当たることによって移動板42の異常上昇が防止される。これにより、保持部7がチャンバー窓61の下方の所定位置以上に上昇することはなく、保持部7とチャンバー窓61との衝突が防止される。
また、保持部昇降機構4は、チャンバー6の内部のメンテナンスを行う際に保持部7を手動にて昇降させる手動昇降部49を有する。手動昇降部49はハンドル491および回転軸492を有し、ハンドル491を介して回転軸492を回転することより、タイミングベルト495を介して回転軸492に接続されるボールネジ45を回転して保持部7の昇降を行うことができる。
チャンバー底部62の下側には、シャフト41の周囲を囲み下方へと伸びる伸縮自在のベローズ47が設けられ、その上端はチャンバー底部62の下面に接続される。一方、ベローズ47の下端はベローズ下端板471に取り付けられている。べローズ下端板471は、鍔状部材411によってシャフト41にネジ止めされて取り付けられている。保持部昇降機構4により保持部7がチャンバー底部62に対して上昇する際にはベローズ47が収縮され、下降する際にはべローズ47が伸張される。そして、保持部7が昇降する際にも、ベローズ47が伸縮することによって熱処理空間65内の気密状態が維持される。
図3は、保持部7の構成を示す断面図である。保持部7は、半導体ウェハーWを予備加熱(いわゆるアシスト加熱)するホットプレート(加熱プレート)71、および、ホットプレート71の上面(保持部7が半導体ウェハーWを保持する側の面)に設置されるサセプタ72を有する。保持部7の下面には、既述のように保持部7を昇降するシャフト41が接続される。サセプタ72は石英(あるいは、窒化アルミニウム(AIN)等であってもよい)により形成され、その上面には半導体ウェハーWの位置ずれを防止するピン75が設けられる。サセプタ72は、その下面をホットプレート71の上面に面接触させてホットプレート71上に設置される。これにより、サセプタ72は、ホットプレート71からの熱エネルギーを拡散してサセプタ72上面に載置された半導体ウェハーWに伝達するとともに、メンテナンス時にはホットプレート71から取り外して洗浄可能とされる。
ホットプレート71は、ステンレススチール製の上部プレート73および下部プレート74にて構成される。上部プレート73と下部プレート74との間には、ホットプレート71を加熱するニクロム線等の抵抗加熱線76が配設され、導電性のニッケル(Ni)ロウが充填されて封止されている。また、上部プレート73および下部プレート74の端部はロウ付けにより接着されている。
図4は、ホットプレート71を示す平面図である。図4に示すように、ホットプレート71は、保持される半導体ウェハーWと対向する領域の中央部に同心円状に配置される円板状のゾーン711および円環状のゾーン712、並びに、ゾーン712の周囲の略円環状の領域を周方向に4等分割した4つのゾーン713〜716を備え、各ゾーン間には若干の間隙が形成されている。また、ホットプレート71には、支持ピン70が挿通される3つの貫通孔77が、ゾーン711とゾーン712との隙間の周上に120°毎に設けられる。
6つのゾーン711〜716のそれぞれには、相互に独立した抵抗加熱線76が周回するように配設されてヒータが個別に形成されており、各ゾーンに内蔵されたヒータにより各ゾーンが個別に加熱される。保持部7に保持された半導体ウェハーWは、6つのゾーン711〜716に内蔵されたヒータにより加熱される。また、ゾーン711〜716のそれぞれには、熱電対を用いて各ゾーンの温度を計測するセンサ710が設けられている。各センサ710は略円筒状のシャフト41の内部を通り制御部3に接続される。
ホットプレート71が加熱される際には、センサ710により計測される6つのゾーン711〜716のそれぞれの温度が予め設定された所定の温度になるように、各ゾーンに配設された抵抗加熱線76への電力供給量が制御部3により制御される。制御部3による各ゾーンの温度制御はPID(Proportional,Integral,Derivative)制御により行われる。ホットプレート71では、半導体ウェハーWの熱処理(複数の半導体ウェハーWを連続的に処理する場合は、全ての半導体ウェハーWの熱処理)が終了するまでゾーン711〜716のそれぞれの温度が継続的に計測され、各ゾーンに配設された抵抗加熱線76への電力供給量が個別に制御されて、すなわち、各ゾーンに内蔵されたヒータの温度が個別に制御されて各ゾーンの温度が設定温度に維持される。なお、各ゾーンの設定温度は、基準となる温度から個別に設定されたオフセット値だけ変更することが可能とされる。
6つのゾーン711〜716にそれぞれ配設される抵抗加熱線76は、シャフト41の内部を通る電力線を介して電力供給源(図示省略)に接続されている。電力供給源から各ゾーンに至る経路途中において、電力供給源からの電力線は、マグネシア(マグネシウム酸化物)等の絶縁体を充填したステンレスチューブの内部に互いに電気的に絶縁状態となるように配置される。なお、シャフト41の内部は大気開放されている。
また、チャンバー6内の熱処理空間65にはフォトダイオード21が設置されている。フォトダイオード21の設置位置は、図5に示す半導体ウェハーWの処理位置まで上昇した保持部7よりも上である。フォトダイオード21は、その先端が処理位置の保持部7に保持された半導体ウェハーWに向かうように傾斜して設けられており、処理位置の半導体ウェハーWの表面から放射された放射光を受光する。本実施形態においては、測定に使用する波長が3μm以上であるフォトダイオード21を用いている。
次に、ランプハウス5は、チャンバー6とは別体に設けられている。ランプハウス5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、ランプハウス5の筐体51の底部にはランプ光放射窓53が装着されている。ランプハウス5の床部を構成するランプ光放射窓53は、石英により形成された板状部材である。ランプハウス5がチャンバー6の上方に設置されることにより、ランプ光放射窓53がチャンバー窓61と相対向することとなる。ランプハウス5は、チャンバー6内にて保持部7に保持される半導体ウェハーWにランプ光放射窓53およびチャンバー窓61を介してフラッシュランプFLからフラッシュ光を照射することにより半導体ウェハーWを加熱する。
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
図6は、フラッシュランプFLの駆動回路を示す図である。同図に示すように、コンデンサ93と、コイル94と、フラッシュランプFLと、IGBT(絶縁ゲートバイポーラトランジスタ)96とが直列に接続されている。フラッシュランプFLは、その内部にキセノンガスが封入されその両端部に陽極および陰極が配設された棒状のガラス管(放電管)92と、該ガラス管92の外周面上に付設されたトリガー電極91とを備える。コンデンサ93には、電源ユニット95によって所定の電圧が印加され、その印加電圧に応じた電荷が充電される。また、トリガー電極91にはトリガー回路97から高電圧を印加することができる。トリガー回路97がトリガー電極91に電圧を印加するタイミングは制御部3によって制御される。
IGBT96は、ゲート部にMOSFET(Metal Oxide Semiconductor Field effect transistor)を組み込んだバイポーラトランジスタであり、大電力を取り扱うのに適したスイッチング素子である。IGBT96のゲートにはIGBT制御部98が接続されている。IGBT制御部98は、IGBT96のゲートに信号を印加してIGBT96を駆動する回路である。具体的には、IGBT制御部98がIGBT96のゲートに所定値以上の電圧(Hiの電圧)を印加するとIGBT96がオン状態となり、所定値未満の電圧(Lowの電圧)を印加するとIGBT96がオフ状態となる。このようにして、フラッシュランプFLを含む回路はIGBT96によってオンオフされる。IGBT96がオンオフすることによって、コンデンサ93からフラッシュランプFLに流れる電流が断続される。IGBT制御部98は、制御部3の制御によってIGBT96のオンオフを切り替える。
コンデンサ93が充電された状態でIGBT96がオン状態となってガラス管92の両端電極に高電圧が印加されたとしても、キセノンガスは電気的には絶縁体であることから、通常の状態ではガラス管92内に電気は流れない。しかしながら、トリガー回路97がトリガー電極91に高電圧を印加して絶縁を破壊した場合には両端電極間の放電によってガラス管92内に電流が瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。
図1のリフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射された光を保持部7の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されて梨地模様を呈する。このような粗面化加工を施しているのは、リフレクタ52の表面が完全な鏡面であると、複数のフラッシュランプFLからの反射光の強度に規則パターンが生じて半導体ウェハーWの表面温度分布の均一性が低下するためである。
図6に示すように、本実施形態の熱処理装置1は、フォトダイオード21からの出力信号をサンプリングして制御部3に伝達するサンプリング部20を備える。図7は、サンプリング部20および制御部3の構成を示すブロック図である。熱処理空間65に設置されたフォトダイオード21の先端には干渉フィルター22が設けられている。干渉フィルター22は、所定波長域の光だけを選択的に透過するフィルターである。第1実施形態では干渉フィルター22は波長3μmの光を選択的に透過する。
フォトダイオード21は、光起電力効果によって受光した光の強度に応じた光電流を発生する。フォトダイオード21は応答時間が極めて短いという特性を有する。フォトダイオード21はサンプリング部20と電気的に接続されており、受光に応答して生じた信号をサンプリング部20に伝達する。
サンプリング部20は、電流電圧変換回路23、増幅回路24、高速A/Dコンバータ25およびワンチップマイコン26を備える。電流電圧変換回路23は、フォトダイオード21にて発生した微弱な電流を取り扱いの容易な電圧の信号に変換する回路である。電流電圧変換回路23は、例えばオペアンプを用いて構成することができる。
増幅回路24は、電流電圧変換回路23から出力された電圧信号を増幅して高速A/Dコンバータ25に出力する。高速A/Dコンバータ25は、増幅回路24によって増幅された電圧信号をデジタル信号に変換する。ワンチップマイコン26は、マイクロコンピュータの一種であり、1つのICチップ上にCPU、メモリ、タイマなどを搭載した処理装置である。ワンチップマイコン26は、汎用処理を行うことはできないが、特定の処理を高速で行うことができる。本実施形態のワンチップマイコン26は、予め設定された処理プログラムを実行することによって、高速A/Dコンバータ25から出力されたデジタル信号を所定間隔でサンプリングしてチップ内のメモリに順次格納する。ワンチップマイコン26のサンプリング間隔は適宜設定することが可能であるが、最短2マイクロセカンド(μ秒)とすることができる。
サンプリング部20のワンチップマイコン26は制御部3と通信回線を介して接続されている。制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行うCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスク31を備えて構成される。また、制御部3はIGBT制御部98および表示部35と接続されており、IGBT制御部98の動作を制御するとともに、表示部35に演算結果等を表示することができる。表示部35は、例えば液晶ディスプレイ等を用いて構成すれば良い。
制御部3は、汎用処理を行うことが可能であるものの、ワンチップマイコン26ほど短時間間隔でサンプリングを行うことはできない。ワンチップマイコン26によってチップ内メモリに格納されたデジタルデータは制御部3に転送されて磁気ディスク31に記憶される。また、制御部3は、エネルギー算出部33および温度算定部34を備える。エネルギー算出部33および温度算定部34は、制御部3のCPUが所定の処理プログラムを実行することによって実現される機能処理部であり、その処理内容についてはさらに後述する。なお、ワンチップマイコン26と制御部3とを接続する通信回線は、シリアル通信であっても良いし、パラレル通信であっても良い。
上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にフラッシュランプFLおよびホットプレート71から発生する熱エネルギーによるチャンバー6およびランプハウス5の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6のチャンバー側部63およびチャンバー底部62には水冷管(図示省略)が設けられている。また、ランプハウス5は、内部に気体流を形成して排熱するための気体供給管55および排気管56が設けられて空冷構造とされている(図1,5参照)。また、チャンバー窓61とランプ光放射窓53との間隙にも空気が供給され、ランプハウス5およびチャンバー窓61を冷却する。
次に、上記の構成を有する熱処理装置1の動作について説明する。図8は、熱処理装置1における処理手順を示すフローチャートである。ここで処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置1によるフラッシュ光照射加熱処理(アニール)により実行される。
まず、熱処理装置1における処理に先立って、半導体ウェハーWの単位時間当たりの放射エネルギーとフォトダイオード21の出力との相関関係を示すテーブル32を取得しておく(ステップS1)。なお、本明細書において、単に「放射エネルギー」と記載するときには、単位時間当たりの放射エネルギーを意味するものとする。第1実施形態では、黒体輻射のエネルギーの理論値から半導体ウェハーWの放射エネルギーを求めている。
黒体輻射についてのプランクの法則によると、温度T(K)の黒体からの波長λ(m)の放射光の放射エネルギーW(λ・T)は次の式(1)のように表される。式(1)において、定数cは光速3×108(m/s)、kはボルツマン定数1.3807×10-23(J/K)、hはプランク定数6.626×10-34(J・s)である。なお、放射エネルギーW(λ・T)の単位はW/m2である。
Figure 2012074430
第1実施形態では、波長λをフォトダイオード21の測定に用いる3μmとし、温度Tを500℃から10℃ずつ加算して放射エネルギーW(λ・T)を順次算出する。これにより、黒体からの波長3μmの放射光の放射エネルギーが500℃から10℃刻みで算出されることとなる。ここで算出される黒体輻射の放射エネルギーはプランクの法則から求められた理論値である。
式(1)より求められた黒体輻射の放射エネルギーに半導体ウェハーWの放射率εを乗じると、半導体ウェハーWの放射エネルギーの理論値が算出される。第1実施形態では、半導体ウェハーWから放射される波長3μmの赤外光の放射エネルギーの理論値が500℃から10℃刻みで算出されることとなる。
一方、図5に示す処理位置まで上昇した保持部7に保持した半導体ウェハーWを保持部7のホットプレート71によって加熱し、その半導体ウェハーWから放射された放射光の強度をフォトダイオード21によって実際に測定する。この実測に際しては、上記した半導体ウェハーWの放射エネルギーの理論値の算出条件と同じ条件を用いる。すなわち、保持部7によって半導体ウェハーWを500℃から10℃刻みで加熱し、その都度フォトダイオード21によって受光された波長3μmの赤外光の強度を測定する。なお、半導体ウェハーWの温度は、センサ710の温度測定結果に基づいてホットプレート71の温調を行うことにより、正確に所定温度とされている。
半導体ウェハーWからの放射光の実測についてさらに説明する。保持部7に保持されて所定温度に加熱された半導体ウェハーWの表面からは、その表面温度に応じた強度の放射光が放射されている。半導体ウェハーWの表面から放射される放射光の一部はフォトダイオード21の先端に設けられた干渉フィルター22に入射する。第1実施形態では、干渉フィルター22が波長3μmの光を選択的に透過するため、フォトダイオード21には半導体ウェハーWから放射された放射光のうち波長3μmの赤外光が入射することとなる。
フォトダイオード21は、受光した波長3μmの赤外光の強度に応じた光電流を発生する。フォトダイオード21にて発生した電流は電流電圧変換回路23によって取り扱いの容易な電圧信号に変換される。電流電圧変換回路23から出力された電圧信号は、増幅回路24によって増幅された後、高速A/Dコンバータ25によってコンピュータが取り扱うのに適したデジタル信号に変換される。そして、高速A/Dコンバータ25から出力されるデジタル信号のレベルがワンチップマイコン26への入力電圧となり、これがフォトダイオード21の出力として取得される。
ワンチップマイコン26が取得したフォトダイオード21の出力は制御部3に伝達される。そして、制御部3は、伝達されたフォトダイオード21の出力値と上記の計算によって求められた半導体ウェハーWの放射エネルギーの理論値との相関関係を示すテーブル32を作成する。このときには、制御部3は同じ条件の理論値と実測値とを対応付けてテーブル32を作成する。例えば、500℃の半導体ウェハーWからの放射エネルギーとして計算された理論値と、保持部7にて500℃に加熱した半導体ウェハーWから放射された放射光を受光したフォトダイオード21の出力値とを対応付ける。同様の対応付けを510℃、520℃、・・・と他の温度についても行うことによって、半導体ウェハーWの放射エネルギーとフォトダイオード21の出力との相関関係を示すテーブル32を取得するのである。
図9は、半導体ウェハーWの単位時間当たりの放射エネルギーとフォトダイオード21の出力との相関関係を示すテーブル32の一例を示す図である。同図に示すように、半導体ウェハーWの放射エネルギーがフォトダイオード21の出力の関数としてテーブル化されており、このテーブル32を参照することによってフォトダイオード21の出力から半導体ウェハーWの放射エネルギーを求めることができる。
このような相関関係を示すテーブル32は、処理対象となる半導体ウェハーWの熱処理に先立って、予めダミーウェハーなどを用いて取得して制御部3の磁気ディスク31に格納しておく(図7参照)。そして、テーブル32が磁気ディスク31に記憶された状態にて、図8のステップS2以降の処理が行われる。以下に説明する熱処理装置1のステップS2以降の処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
まず、保持部7が図5に示す処理位置から図1に示す受渡位置に下降する。「処理位置」とは、フラッシュランプFLから半導体ウェハーWに光照射が行われるときの保持部7の位置であり、図5に示す保持部7のチャンバー6内における位置である。また、「受渡位置」とは、チャンバー6に半導体ウェハーWの搬出入が行われるときの保持部7の位置であり、図1に示す保持部7のチャンバー6内における位置である。熱処理装置1における保持部7の基準位置は処理位置であり、処理前にあっては保持部7は処理位置に位置しており、これが処理開始に際して受渡位置に下降するのである。図1に示すように、保持部7が受渡位置にまで下降するとチャンバー底部62に近接し、支持ピン70の先端が保持部7を貫通して保持部7の上方に突出する。
次に、保持部7が受渡位置に下降したときに、弁82および弁87が開かれてチャンバー6の熱処理空間65内に常温の窒素ガスが導入される。続いて、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して処理対象となる半導体ウェハーWがチャンバー6内に搬入され、複数の支持ピン70上に載置される。
半導体ウェハーWの搬入時におけるチャンバー6への窒素ガスのパージ量は約40リットル/分とされ、供給された窒素ガスはチャンバー6内においてガス導入バッファ83から図2中に示す矢印AR4の方向へと流れ、図1に示す排出路86および弁87を介してユーティリティ排気により排気される。また、チャンバー6に供給された窒素ガスの一部は、べローズ47の内側に設けられる排出口(図示省略)からも排出される。なお、以下で説明する各ステップにおいて、チャンバー6には常に窒素ガスが供給および排気され続けており、窒素ガスの供給量は半導体ウェハーWの処理工程に合わせて様々に変更される。
半導体ウェハーWがチャンバー6内に搬入されると、ゲートバルブ185により搬送開口部66が閉鎖される。そして、保持部昇降機構4により保持部7が受渡位置からチャンバー窓61に近接した処理位置にまで上昇する。保持部7が受渡位置から上昇する過程において、半導体ウェハーWは支持ピン70から保持部7のサセプタ72へと渡され、サセプタ72の上面に載置・保持される。保持部7が処理位置にまで上昇するとサセプタ72に保持された半導体ウェハーWも処理位置に保持されることとなる。
ホットプレート71の6つのゾーン711〜716のそれぞれは、各ゾーンの内部(上部プレート73と下部プレート74との間)に個別に内蔵されたヒータ(抵抗加熱線76)により所定の温度まで加熱されている。保持部7が処理位置まで上昇して半導体ウェハーWが保持部7と接触することにより、その半導体ウェハーWはホットプレート71に内蔵されたヒータによって予備加熱されて温度が次第に上昇する(ステップS2)。
図10は、予備加熱が開始されてからの半導体ウェハーWの表面温度の変化を示す図である。処理位置にて時間tpの予備加熱が行われ、半導体ウェハーWの温度が予め設定された予備加熱温度T1まで上昇する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、200℃ないし800℃程度、好ましくは350℃ないし600℃程度とされる(本実施の形態では500℃)。また、半導体ウェハーWの予備加熱を行う時間tpは、約3秒〜200秒とされる(本実施の形態では60秒)。なお、保持部7とチャンバー窓61との間の距離は、保持部昇降機構4のモータ40の回転量を制御することにより任意に調整することが可能とされている。
時間tpの予備加熱時間が経過した後、時刻Aにて保持部7が処理位置に位置したままフラッシュランプFLによる半導体ウェハーWのフラッシュ光照射加熱が開始される(ステップS3)。フラッシュランプFLからの光照射を行うに際しては、予め電源ユニット95によってコンデンサ93に電荷を蓄積しておく。そして、コンデンサ93に電荷が蓄積された状態にて、制御部3の制御によりIGBT制御部98がIGBT96をオン状態にするとともに、トリガー回路97がトリガー電極91に高電圧を印加する。
コンデンサ93に電荷が蓄積された状態にてIGBT96がオン状態となり、かつ、それと同期してトリガー電極91に高電圧が印加されると、コンデンサ93に蓄積された電荷がフラッシュランプFLのガラス管92内の両端電極間で放電して電流として流れ始め、そのときのキセノンの原子あるいは分子の励起によって光が放出される。すなわち、フラッシュランプFLが発光を開始し、フラッシュランプFLを流れる電流値は時間とともに増大する。フラッシュランプFLの発光強度は、フラッシュランプFLに流れる電流にほぼ比例する。従って、フラッシュランプFLの発光強度も時間とともに大きくなる。なお、フラッシュランプFLに流れる電流の波形自体はコイル94の定数によって規定される。
フラッシュランプFLからフラッシュ光が照射されることによって、処理位置の保持部7に保持された半導体ウェハーWの表面温度が予備加熱温度T1から上昇する。このときに、半導体ウェハーWの表面から放射された放射光の一部が干渉フィルター22を介してフォトダイオード21に入射する。第1実施形態では、干渉フィルター22が波長3μmの赤外光を選択的に透過するため、フォトダイオード21には半導体ウェハーWから放射された放射光のうち波長3μmの赤外光が入射する。
上述したように、フォトダイオード21に赤外光が入射すると光電流が発生し、電流電圧変換回路23にて電圧信号に変換される。その電圧信号は、増幅回路24によって増幅された後、高速A/Dコンバータ25によってデジタル信号に変換される。そして、高速A/Dコンバータ25から出力されるデジタル信号のレベルがワンチップマイコン26への入力電圧となり、これがフォトダイオード21の出力として取得される。ワンチップマイコン26が取得したフォトダイオード21の出力値は制御部3に伝達される。なお、フォトダイオード21が半導体ウェハーWからの放射光を受光するときにはフラッシュランプFLも発光しているが、キセノンフラッシュランプFLの発光波長域は紫外域から近赤外域(波長が約200nm〜2000nm)であり、波長3μm以上の赤外光はフラッシュ光にはほとんど含まれていない。本実施形態では波長3μmの赤外光をフォトダイオード21で受光して測定しているため、フラッシュ加熱時の半導体ウェハーWからの放射光強度を測定するときに、フラッシュ光自体が外乱光となることは防止される。
次に、制御部3のエネルギー算出部33が制御部3に入力されたフォトダイオード21の出力から半導体ウェハーWが放出する単位時間当たりの放射エネルギーを算出する(ステップS4)。エネルギー算出部33は、磁気ディスク31に記憶されている図9の如きテーブル32に基づいて、フラッシュランプFLからフラッシュ光が照射されて昇温されている半導体ウェハーWが放出する放射エネルギーをフォトダイオード21の出力から求める。
続いて、制御部3の温度算定部34が半導体ウェハーWの放射エネルギーから表面温度を算定する(ステップS5)。温度算定部34は、ステファン・ボルツマンの法則から導かれる次の式(2)に基づいて、エネルギー算出部33によって求められた半導体ウェハーWの単位時間当たりの放射エネルギーEwから半導体ウェハーWの表面温度Twを算定する。式(2)において、εは半導体ウェハーWの放射率であり、δはステファン=ボルツマン定数である。
Figure 2012074430
次に、制御部3は、温度算定部34によって算定された半導体ウェハーWの表面温度Twが予め設定された目標温度T2に到達したか否かを判定する(ステップS6)。求められた半導体ウェハーWの表面温度Twが目標温度T2に到達していない場合には、ステップS4に戻り、半導体ウェハーWの放射エネルギーの算出と表面温度の算定を繰り返す。すなわち、算定された半導体ウェハーWの表面温度Twが目標温度T2に到達するまでは、ステップS4からステップS6までの処理が繰り返されることとなる。
フラッシュ光が照射された半導体ウェハーWの表面は数ミリ秒の間に急速に昇温するのであるが、フォトダイオード21は応答時間が極めて短いため、短時間の間に強度が劇的に変化する半導体ウェハーWからの放射光にも追随することができる。その結果、ステップS4からステップS6までの1サイクルに要する時間、すなわち半導体ウェハーWの放射エネルギーと表面温度のサンプリング間隔を数10マイクロ秒とすることができ、フラッシュ光照射後によって急速に上昇する半導体ウェハーWの表面温度の履歴をも取得することができる。制御部3は、このようにして取得したフラッシュ光照射時における半導体ウェハーWの表面温度の履歴を表示部35に表示するようにしても良い。
一方、温度算定部34によって算定された半導体ウェハーWの表面温度Twが目標温度T2に到達した時点にて、制御部3の制御によりIGBT制御部98がIGBT96をオフ状態としてコンデンサ93からフラッシュランプFLに流れる電流を遮断する(ステップS7)。フラッシュランプFLへの通電が遮断されると、発光が停止し、フラッシュ光が照射されなくなった半導体ウェハーWの表面の温度は急速に低下する。
図11は、フラッシュ光を制御することによる半導体ウェハーWの表面温度の変化を示す図である。目標温度T2を”a”に設定していた場合には、フラッシュ光照射が開始されてから時間t1が経過した時点にてフラッシュランプFLへの通電が遮断され、その時点から半導体ウェハーWの表面温度が急速に低下する。また、目標温度T2を”b”に設定していた場合には、フラッシュ光照射が開始されてから時間t2が経過した時点にてフラッシュランプFLへの通電が遮断され、その時点から半導体ウェハーWの表面温度が低下する。なお、温度算定部34によって算定された半導体ウェハーWの表面温度Twが目標温度T2に到達しないまま低下したときにはエラーを発生させるようにしても良い。
このようにして、フラッシュランプFLからフラッシュ光照射後によって半導体ウェハーWの表面温度が目標温度T2にまで昇温され、注入された不純物が活性化された後、フラッシュランプFLへの通電が遮断されて表面温度が急速に下降する。フラッシュランプFLによるフラッシュ光照射加熱が終了した後、半導体ウェハーWが処理位置において約10秒間待機してから保持部7が保持部昇降機構4により再び図1に示す受渡位置まで下降し、半導体ウェハーWが保持部7から支持ピン70へと渡される。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、支持ピン70上に載置された半導体ウェハーWは装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWのフラッシュ光照射熱処理が完了する。
既述のように、熱処理装置1における半導体ウェハーWの熱処理時には窒素ガスがチャンバー6に継続的に供給されており、その供給量は、保持部7が処理位置に位置するときには約30リットル/分とされ、保持部7が処理位置以外の位置に位置するときには約40リットル/分とされる。
第1実施形態においては、黒体輻射の理論値から求めた半導体ウェハーWの放射エネルギーとフォトダイオード21の出力の実測結果とを対応付けて、それらの相関関係を示すテーブル32を取得している。そして、処理対象となる半導体ウェハーWにフラッシュランプFLからフラッシュ光を照射したときに、その半導体ウェハーWから放射される放射光をフォトダイオード21にて受光する。制御部3は、取得したテーブル32に基づいて、そのフォトダイオード21の出力からフラッシュ光が照射された半導体ウェハーWが放出する放射エネルギーを求める。さらに、制御部3は、求めた放射エネルギーから半導体ウェハーWの表面温度を算定している。
予め半導体ウェハーWの放射エネルギーとフォトダイオード21の出力との相関関係を示すテーブル32を取得しておき、フラッシュ光照射時には極めて応答時間の短いフォトダイオード21から得られた出力を当該テーブル32に照合して放射エネルギーを求めているため、フラッシュ光照射時の半導体ウェハーWの放射エネルギーをリアルタイムに求めることができる。その結果、第1実施形態の熱処理装置1は、フラッシュ光照射時の半導体ウェハーWの表面温度をリアルタイムに測定することができる。
また、フラッシュ光照射時における半導体ウェハーWの表面温度をリアルタイムに測定することができれば、その測定結果に基づいてフラッシュランプFLの発光を制御することもできる。フラッシュランプFLは発光回数を重ねるごとに発光エネルギーが低下するのであるが、このようにすればフラッシュランプFLの劣化に関係なくフラッシュ光照射時に半導体ウェハーWの表面温度を目標温度T2に正確に昇温することができる。
<第2実施形態>
次に、本発明の第2実施形態について説明する。第2実施形態の熱処理装置の構成は第1実施形態と同様である(図1〜図7参照)。また、第2実施形態における熱処理装置の動作手順も第1実施形態と概ね同じである(図8参照)。第1実施形態ではテーブル32を取得するに際して、黒体輻射の理論値から半導体ウェハーWの放射エネルギーを求めていたが、第2実施形態ではパイロメータによって半導体ウェハーWの放射エネルギーを実測している。
パイロメータは、非接触にて測定対象物の熱放射を感知して上記の式(2)よりその温度を測定する装置である。但し、パイロメータは、フォトダイオード21に比較して応答速度が遅いため、フラッシュ光照射時における半導体ウェハーWの表面温度の急激な変化に追随することは出来ない。第2実施形態では、テーブル32を取得するに際して、チャンバー6内の熱処理空間65にパイロメータを配置し、処理位置まで上昇した保持部7に保持した半導体ウェハーWを保持部7のホットプレート71によって加熱する。そして、その半導体ウェハーWから放射された放射光の強度をフォトダイオード21によって測定するとともに、放射エネルギーをパイロメータによって測定する。ホットプレート71によって均一に安定加熱される半導体ウェハーWの放射エネルギーであれば応答速度の遅いパイロメータであっても測定可能である。なお、第1実施形態と同様に、半導体ウェハーWの温度は、センサ710の温度測定結果に基づいてホットプレート71の温調を行うことにより、正確に所定温度とされている。また、テーブル32を取得するための測定は、ダミーウェハーなどを用いて行うのが好ましい。
フォトダイオード21およびパイロメータは、保持部7によって加熱されている同一の半導体ウェハーWの表面から放射される放射光を受光して測定しているため、それぞれの測定結果を対応付けることによってテーブル32を作成することができる。例えば、保持部7にて600℃に加熱した半導体ウェハーWの表面から放射される放射光をフォトダイオード21およびパイロメータの双方にて受光し、パイロメータによって測定された放射エネルギーの値とフォトダイオード21の出力値とを対応付ける。同様の対応付けを他の温度についても行うことによって、第1実施形態と同様の図9に示すような半導体ウェハーWの単位時間当たりの放射エネルギーとフォトダイオード21の出力との相関関係を示すテーブル32を取得するのである。なお、テーブル32の取得が完了し、処理対象となる半導体ウェハーWの熱処理を行うときにはパイロメータは撤去するのが好ましい。
また、第1実施形態では温度算定部34によって算定された半導体ウェハーWの表面温度Twに基づいてフラッシュ光の制御を行っていたが、第2実施形態においては、エネルギー算出部33によって求められた半導体ウェハーWの単位時間当たりの放射エネルギーEwに基づいてフラッシュランプFLの発光を制御している。すなわち、図8のステップS6にて、エネルギー算出部33によって求められた半導体ウェハーWの単位時間当たりの放射エネルギーEwが予め設定された所定値に到達したか否かを判定し、放射エネルギーEwが所定値に到達した時点にて、制御部3の制御によりIGBT制御部98がIGBT96をオフ状態としてコンデンサ93からフラッシュランプFLに流れる電流を遮断する。
第2実施形態の残余については第1実施形態と同様である。第2実施形態においては、パイロメータによる実測によって求めた半導体ウェハーWの放射エネルギーとフォトダイオード21の出力の実測結果とを対応付けて、それらの相関関係を示すテーブル32を取得している。そして、処理対象となる半導体ウェハーWにフラッシュランプFLからフラッシュ光を照射したときに、その半導体ウェハーWから放射される放射光をフォトダイオード21にて受光する。制御部3は、取得したテーブル32に基づいて、そのフォトダイオード21の出力からフラッシュ光が照射された半導体ウェハーWが放出する放射エネルギーを求める。さらに、制御部3は、求めた放射エネルギーから半導体ウェハーWの表面温度を算定する。
このようにしても、予め半導体ウェハーWの放射エネルギーとフォトダイオード21の出力との相関関係を示すテーブル32を取得しておき、フラッシュ光照射時には極めて応答時間の短いフォトダイオード21から得られた出力を当該テーブル32に照合して放射エネルギーを求めているため、フラッシュ光照射時の半導体ウェハーWの放射エネルギーをリアルタイムに求めることができる。その結果、第1実施形態の熱処理装置1は、フラッシュ光照射時の半導体ウェハーWの表面温度をリアルタイムに測定することができる。
また、フラッシュ光照射時における半導体ウェハーWの放射エネルギーをリアルタイムに求めることができれば、その測定結果に基づいてフラッシュランプFLの発光を制御することもできる。
<変形例>
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、第1,2実施形態ではそれぞれ半導体ウェハーWの表面温度Twおよび放射エネルギーEwに基づいてフラッシュ光の制御を行っていたが、半導体ウェハーWの表面から放出された総放射エネルギーに基づいてフラッシュランプFLの発光制御を行うようにしても良い。すなわち、エネルギー算出部33によって求められた半導体ウェハーWの単位時間当たりの放射エネルギーEwをフラッシュ光照射開始からの経過時間で逐次積分することによって総放射エネルギーを算定することができる。そして、図8のステップS6にて、その総放射エネルギーが予め設定された所定値に到達したか否かを判定し、所定値に到達した時点にて、制御部3の制御によりIGBT制御部98がIGBT96をオフ状態としてコンデンサ93からフラッシュランプFLに流れる電流を遮断する。
また、第1実施形態において第2実施形態の如く半導体ウェハーWの放射エネルギーEwに基づいてフラッシュランプFLの発光を制御するようにしても良いし、第2実施形態において第1実施形態の如く半導体ウェハーWの表面温度Twに基づいてフラッシュランプFLの発光を制御するようにしても良い。
また、上記各実施形態においては、フラッシュ光照射時に半導体ウェハーWから放射される波長3μmの赤外光をフォトダイオード21で受光して測定するようにしていたが、測定に使用する波長は3μmに限定されるものではなく、キセノンフラッシュランプFLからのフラッシュ光に含まれていない3μm以上であれば良い。フォトダイオード21が受光する光の波長は干渉フィルター22の透過波長域を設定することによって調整することができる。フォトダイオード21で受光して測定する放射光の波長が3μm以上であれば、フラッシュ光が外乱光となるのを防止することができる。
また、フラッシュランプFLから照射されたフラッシュ光から波長3μm以上の光を除くためのフィルターをチャンバー窓61に付設するようにしても良い。これにより、フラッシュ光が外乱光となるのを確実に防止することができる。
また、第1実施形態においては、式(1)を用いて半導体ウェハーWの放射エネルギーの理論値を500℃から10℃刻みで算出していたが、任意の温度から任意の温度間隔にて算出するようにしても良い。但し、テーブル32を取得するに際して、フォトダイオード21の出力の実測は、放射エネルギーの理論値の算出条件と同じ条件にて行う必要がある。
また、エネルギー算出部33および温度算定部34は、ワンチップマイコン26によって実現するようにしても良い。特に、フラッシュ光照射時の半導体ウェハーWの放射エネルギーおよび表面温度を高速に求めるのであれば、予めプログラムした特定処理を高速で実行するのに適したワンチップマイコン26内にエネルギー算出部33および温度算定部34を実現するのが好ましい。さらに、IGBT制御部98をもワンチップマイコン26内に組み込むようにしても良い。
また、上記実施形態においては、フラッシュランプFLの駆動回路にIGBT96を組み込んでフラッシュランプFLを流れる電流を遮断できるようにしていたが、IGBT96を組み込んでいない駆動回路であっても本発明に係る技術を適用してフラッシュ光照射時の半導体ウェハーWの放射エネルギーおよび表面温度をリアルタイムに求めることができる。もっとも、IGBT96を組み込んでいない場合には、測定結果に基づくフラッシュランプFLの発光制御は出来ない。
また、上記実施形態においては、スイッチング素子としてIGBT96を用いていたが、これに代えてゲートに入力された信号レベルに応じて回路をオンオフできる他のトランジスタを用いるようにしても良い。もっとも、フラッシュランプFLの発光には相当に大きな電力が消費されるため、大電力の取り扱いに適したIGBTやGTO(Gate Turn Off)サイリスタを採用するのが好ましい。
また、フラッシュ光照射時に、IGBT制御部98からIGBT96のゲートに複数のパルスを含むパルス信号を出力してIGBT96をオンオフし、フラッシュランプFLに流れる電流をチョッパ制御するようにしても良い。
また、上記実施形態においては、ランプハウス5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。さらに、加熱源となる光源はフラッシュランプに限らず、他の種類のランプであっても本発明に係る技術を適用して半導体ウェハーWの温度を算定することができる。
また、上記実施形態においては、ホットプレート71に載置することによって半導体ウェハーWを予備加熱するようにしていたが、予備加熱の手法はこれに限定されるものではなく、ハロゲンランプを設けて光照射によって半導体ウェハーWを予備加熱温度T1にまで予備加熱するようにしても良い。但し、この場合、フラッシュ光照射時に、ハロゲンランプの光が外乱光とならないように、ハロゲンランプからフォトダイオード21に至る光路を遮光しておくのが好ましい。
また、本発明に係る熱処理技術によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などに用いるガラス基板や太陽電池用の基板であっても良い。また、本発明に係る技術は、金属とシリコンとの接合、或いはポリシリコンの結晶化に適用するようにしても良い。
1 熱処理装置
3 制御部
4 保持部昇降機構
5 ランプハウス
6 チャンバー
7 保持部
20 サンプリング部
21 フォトダイオード
22 干渉フィルター
23 電流電圧変換回路
24 増幅回路
25 高速A/Dコンバータ
26 ワンチップマイコン
31 磁気ディスク
32 テーブル
33 エネルギー算出部
34 温度算定部
35 表示部
60 上部開口
61 チャンバー窓
65 熱処理空間
70 支持ピン
71 ホットプレート
72 サセプタ
96 IGBT
98 IGBT制御部
FL フラッシュランプ
W 半導体ウェハー

Claims (14)

  1. 基板に対してフラッシュ光を照射することによって該基板を加熱する熱処理装置であって、
    基板を収容するチャンバーと、
    前記チャンバー内にて基板を保持する保持手段と、
    前記保持手段に保持された基板にフラッシュ光を照射するフラッシュランプと、
    前記保持手段に保持された基板から放射される放射光を受光するフォトダイオードと、
    基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを記憶する記憶手段と、
    前記テーブルに基づいて、前記フラッシュランプからフラッシュ光が照射された基板が放出する単位時間当たりの放射エネルギーを前記フォトダイオードの出力から求めるエネルギー算出部と、
    前記エネルギー算出部によって求められた基板の単位時間当たりの放射エネルギーから当該基板の表面温度を算定する温度算定部と、
    を備えることを特徴とする熱処理装置。
  2. 請求項1記載の熱処理装置において、
    前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタと、
    前記温度算定部によって算定された基板の表面温度が所定値に到達した時点で前記絶縁ゲートバイポーラトランジスタをオフ状態に切り替えるIGBT制御手段と、
    をさらに備えることを特徴とする熱処理装置。
  3. 請求項1記載の熱処理装置において、
    前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタと、
    前記エネルギー算出部によって求められた基板の単位時間当たりの放射エネルギーが所定値に到達した時点で前記絶縁ゲートバイポーラトランジスタをオフ状態に切り替えるIGBT制御手段と、
    をさらに備えることを特徴とする熱処理装置。
  4. 請求項1記載の熱処理装置において、
    前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタと、
    前記エネルギー算出部によって求められた基板の単位時間当たりの放射エネルギーから算定される総放射エネルギーが所定値に到達した時点で前記絶縁ゲートバイポーラトランジスタをオフ状態に切り替えるIGBT制御手段と、
    をさらに備えることを特徴とする熱処理装置。
  5. 請求項1から請求項4のいずれかに記載の熱処理装置において、
    前記記憶手段は、黒体輻射のエネルギーの理論値と基板の放射率より求めた基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを記憶することを特徴とする熱処理装置。
  6. 請求項1から請求項4のいずれかに記載の熱処理装置において、
    前記記憶手段は、パイロメータによって測定された基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを記憶することを特徴とする熱処理装置。
  7. 請求項1から請求項6のいずれかに記載の熱処理装置において、
    前記フラッシュランプはキセノンフラッシュランプであり、
    前記フォトダイオードの測定波長は3μm以上であることを特徴とする熱処理装置。
  8. 基板に対してフラッシュ光を照射することによって該基板を加熱する熱処理方法であって、
    基板の単位時間当たりの放射エネルギーと当該基板から放射される放射光を受光するフォトダイオードの出力との相関関係を示すテーブルを取得するテーブル取得工程と、
    フラッシュランプから基板にフラッシュ光を照射するフラッシュ照射工程と、
    前記テーブルに基づいて、フラッシュ光が照射された基板が放出する単位時間当たりの放射エネルギーを前記フォトダイオードの出力から求めるエネルギー算出工程と、
    前記エネルギー算出工程にて求められた基板の単位時間当たりの放射エネルギーから当該基板の表面温度を算定する温度算定工程と、
    を備えることを特徴とする熱処理方法。
  9. 請求項8記載の熱処理方法において、
    前記温度算定工程にて算定された基板の表面温度が所定値に到達した時点で前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタをオフ状態に切り替えることを特徴とする熱処理方法。
  10. 請求項8記載の熱処理方法において、
    前記エネルギー算出工程にて求められた基板の単位時間当たりの放射エネルギーが所定値に到達した時点で前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタをオフ状態に切り替えることを特徴とする熱処理方法。
  11. 請求項8記載の熱処理方法において、
    前記エネルギー算出工程にて求められた基板の単位時間当たりの放射エネルギーから算定される総放射エネルギーが所定値に到達した時点で前記フラッシュランプに流れる電流を断続する絶縁ゲートバイポーラトランジスタをオフ状態に切り替えることを特徴とする熱処理方法。
  12. 請求項8から請求項11のいずれかに記載の熱処理方法において、
    前記テーブル取得工程は、黒体輻射のエネルギーの理論値と基板の放射率より求めた基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを取得することを特徴とする熱処理方法。
  13. 請求項8から請求項11のいずれかに記載の熱処理方法において、
    前記テーブル取得工程は、パイロメータによって測定された基板の単位時間当たりの放射エネルギーと前記フォトダイオードの出力との相関関係を示すテーブルを取得することを特徴とする熱処理方法。
  14. 請求項8から請求項13のいずれかに記載の熱処理方法において、
    前記フラッシュランプはキセノンフラッシュランプであり、
    前記フォトダイオードの測定波長は3μm以上であることを特徴とする熱処理方法。
JP2010216393A 2010-09-28 2010-09-28 熱処理装置および熱処理方法 Pending JP2012074430A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010216393A JP2012074430A (ja) 2010-09-28 2010-09-28 熱処理装置および熱処理方法
US13/177,705 US9025943B2 (en) 2010-09-28 2011-07-07 Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flashes of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216393A JP2012074430A (ja) 2010-09-28 2010-09-28 熱処理装置および熱処理方法

Publications (1)

Publication Number Publication Date
JP2012074430A true JP2012074430A (ja) 2012-04-12

Family

ID=45870764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216393A Pending JP2012074430A (ja) 2010-09-28 2010-09-28 熱処理装置および熱処理方法

Country Status (2)

Country Link
US (1) US9025943B2 (ja)
JP (1) JP2012074430A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009450A (ja) * 2015-06-23 2017-01-12 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP2018046130A (ja) * 2016-09-14 2018-03-22 株式会社Screenホールディングス 熱処理装置
WO2020003894A1 (ja) * 2018-06-25 2020-01-02 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP2021027226A (ja) * 2019-08-07 2021-02-22 株式会社Screenホールディングス 熱処理方法
JP2021034505A (ja) * 2019-08-22 2021-03-01 株式会社Screenホールディングス 熱処理方法および熱処理装置
US12125723B2 (en) 2018-06-25 2024-10-22 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091203A (ko) * 2013-01-10 2014-07-21 삼성전자주식회사 반도체의 잔류 응력 제거장치 및 잔류 응력 제거방법
US9754807B2 (en) * 2013-03-12 2017-09-05 Applied Materials, Inc. High density solid state light source array
US10437153B2 (en) * 2014-10-23 2019-10-08 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus
JP6654374B2 (ja) * 2015-08-17 2020-02-26 株式会社Screenホールディングス 熱処理方法および熱処理装置
CN105627752B (zh) * 2016-03-09 2019-02-12 镇江新航精密铸造有限公司 一种差异分析电炉
JP6688172B2 (ja) * 2016-06-24 2020-04-28 東京エレクトロン株式会社 基板処理システムおよび方法
US9933314B2 (en) * 2016-06-30 2018-04-03 Varian Semiconductor Equipment Associates, Inc. Semiconductor workpiece temperature measurement system
EP3419049A1 (de) * 2017-06-22 2018-12-26 Meyer Burger (Germany) GmbH Beheizbarer waferträger und bearbeitungsverfahren
US20240014052A1 (en) * 2020-08-13 2024-01-11 Ci Systems (Israel) Ltd. Synchronization between temperature measurement device and radiation sources

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188940A (ja) * 1987-01-30 1988-08-04 Nikon Corp 光加熱装置
JPH11316159A (ja) * 1998-03-12 1999-11-16 Ag Associates 熱処理チャンバ中の物体温度決定装置および方法
JP2003186322A (ja) * 2001-10-09 2003-07-04 Canon Inc 定着装置及び画像形成装置
JP2004186300A (ja) * 2002-12-02 2004-07-02 Matsushita Electric Ind Co Ltd 半導体ウェハの熱処理方法
JP2005093750A (ja) * 2003-09-18 2005-04-07 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2005515425A (ja) * 2001-12-26 2005-05-26 ボルテック インダストリーズ リミテッド 温度測定および熱処理方法およびシステム
JP2005527972A (ja) * 2002-03-29 2005-09-15 マットソン、テクノロジー、インコーポレーテッド 加熱源の組み合わせを使用する半導体パルス加熱処理方法
JP2006170616A (ja) * 2001-03-06 2006-06-29 Tokyo Electron Ltd 温度計測方法及び装置、半導体熱処理装置
JP2007500447A (ja) * 2003-07-28 2007-01-11 マットソン テクノロジイ インコーポレイテッド 処理物体を加工するシステム
JP2008185482A (ja) * 2007-01-30 2008-08-14 Hamamatsu Photonics Kk 温度計測装置
JP2009508337A (ja) * 2005-09-14 2009-02-26 マトソン テクノロジー カナダ インコーポレイテッド 繰返し可能な熱処理方法および機器
JP2009277759A (ja) * 2008-05-13 2009-11-26 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859832A (en) 1986-09-08 1989-08-22 Nikon Corporation Light radiation apparatus
US5501637A (en) * 1993-08-10 1996-03-26 Texas Instruments Incorporated Temperature sensor and method
US20070189359A1 (en) * 2002-06-12 2007-08-16 Wei Chen Nanoparticle thermometry and pressure sensors
JP2004031557A (ja) * 2002-06-25 2004-01-29 Ushio Inc 光加熱装置
US6885815B2 (en) * 2002-07-17 2005-04-26 Dainippon Screen Mfg. Co., Ltd. Thermal processing apparatus performing irradiating a substrate with light
US7041931B2 (en) * 2002-10-24 2006-05-09 Applied Materials, Inc. Stepped reflector plate
US7642205B2 (en) * 2005-04-08 2010-01-05 Mattson Technology, Inc. Rapid thermal processing using energy transfer layers
WO2008131513A1 (en) * 2007-05-01 2008-11-06 Mattson Technology Canada, Inc. Irradiance pulse heat-treating methods and apparatus
US7758238B2 (en) * 2008-06-30 2010-07-20 Intel Corporation Temperature measurement with reduced extraneous infrared in a processing chamber
JP5498010B2 (ja) 2008-11-07 2014-05-21 大日本スクリーン製造株式会社 熱処理装置
JP5606852B2 (ja) * 2010-09-27 2014-10-15 大日本スクリーン製造株式会社 熱処理装置および熱処理方法
JP5855353B2 (ja) * 2011-05-13 2016-02-09 株式会社Screenホールディングス 熱処理装置および熱処理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188940A (ja) * 1987-01-30 1988-08-04 Nikon Corp 光加熱装置
JPH11316159A (ja) * 1998-03-12 1999-11-16 Ag Associates 熱処理チャンバ中の物体温度決定装置および方法
JP2006170616A (ja) * 2001-03-06 2006-06-29 Tokyo Electron Ltd 温度計測方法及び装置、半導体熱処理装置
JP2003186322A (ja) * 2001-10-09 2003-07-04 Canon Inc 定着装置及び画像形成装置
JP2005515425A (ja) * 2001-12-26 2005-05-26 ボルテック インダストリーズ リミテッド 温度測定および熱処理方法およびシステム
JP2005527972A (ja) * 2002-03-29 2005-09-15 マットソン、テクノロジー、インコーポレーテッド 加熱源の組み合わせを使用する半導体パルス加熱処理方法
JP2004186300A (ja) * 2002-12-02 2004-07-02 Matsushita Electric Ind Co Ltd 半導体ウェハの熱処理方法
JP2007500447A (ja) * 2003-07-28 2007-01-11 マットソン テクノロジイ インコーポレイテッド 処理物体を加工するシステム
JP2005093750A (ja) * 2003-09-18 2005-04-07 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2009508337A (ja) * 2005-09-14 2009-02-26 マトソン テクノロジー カナダ インコーポレイテッド 繰返し可能な熱処理方法および機器
JP2008185482A (ja) * 2007-01-30 2008-08-14 Hamamatsu Photonics Kk 温度計測装置
JP2009277759A (ja) * 2008-05-13 2009-11-26 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009450A (ja) * 2015-06-23 2017-01-12 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP2018046130A (ja) * 2016-09-14 2018-03-22 株式会社Screenホールディングス 熱処理装置
WO2020003894A1 (ja) * 2018-06-25 2020-01-02 株式会社Screenホールディングス 熱処理方法および熱処理装置
US12125723B2 (en) 2018-06-25 2024-10-22 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus
JP2021027226A (ja) * 2019-08-07 2021-02-22 株式会社Screenホールディングス 熱処理方法
JP7372074B2 (ja) 2019-08-07 2023-10-31 株式会社Screenホールディングス 熱処理方法
JP2021034505A (ja) * 2019-08-22 2021-03-01 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP7370763B2 (ja) 2019-08-22 2023-10-30 株式会社Screenホールディングス 熱処理方法および熱処理装置
US11876006B2 (en) 2019-08-22 2024-01-16 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus of light irradiation type

Also Published As

Publication number Publication date
US9025943B2 (en) 2015-05-05
US20120076477A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP2012074430A (ja) 熱処理装置および熱処理方法
JP5819633B2 (ja) 熱処理装置および熱処理方法
JP5606852B2 (ja) 熱処理装置および熱処理方法
JP5855353B2 (ja) 熱処理装置および熱処理方法
JP2009099758A (ja) 熱処理装置および熱処理方法
JP2009070948A (ja) 熱処理装置
JP5562572B2 (ja) 熱処理装置および熱処理方法
JP5642359B2 (ja) 熱処理方法および熱処理装置
JP2010238767A (ja) 熱処理装置および熱処理方法
JP5646864B2 (ja) 熱処理方法および熱処理装置
JP5965122B2 (ja) 熱処理方法および熱処理装置
JP2010114460A (ja) 熱処理方法および熱処理装置
JP2014045067A (ja) 熱処理方法および熱処理装置
JP5378817B2 (ja) 熱処理装置および熱処理方法
JP5562571B2 (ja) 熱処理装置
JP2010258425A (ja) 熱処理装置
JP6068556B2 (ja) 熱処理装置および熱処理方法
JP5507195B2 (ja) 熱処理方法および熱処理装置
JP5813291B2 (ja) 熱処理装置および熱処理方法
JP2012064699A (ja) 熱処理装置および熱処理方法
JP2020004764A (ja) 熱処理方法および熱処理装置
JP5483710B2 (ja) 印加電圧設定方法、熱処理方法および熱処理装置
WO2020003894A1 (ja) 熱処理方法および熱処理装置
JP2011210965A (ja) 熱処理方法および熱処理装置
JP2022187213A (ja) 熱処理方法および熱処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104