TW201935168A - 過電流限制電路、過電流限制方法及電源電路 - Google Patents

過電流限制電路、過電流限制方法及電源電路 Download PDF

Info

Publication number
TW201935168A
TW201935168A TW107145108A TW107145108A TW201935168A TW 201935168 A TW201935168 A TW 201935168A TW 107145108 A TW107145108 A TW 107145108A TW 107145108 A TW107145108 A TW 107145108A TW 201935168 A TW201935168 A TW 201935168A
Authority
TW
Taiwan
Prior art keywords
voltage
output
circuit
transistor
gate
Prior art date
Application number
TW107145108A
Other languages
English (en)
Other versions
TWI780282B (zh
Inventor
冨岡勉
Original Assignee
日商艾普凌科有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商艾普凌科有限公司 filed Critical 日商艾普凌科有限公司
Publication of TW201935168A publication Critical patent/TW201935168A/zh
Application granted granted Critical
Publication of TWI780282B publication Critical patent/TWI780282B/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Abstract

本發明是一種過電流限制電路,進行使電源電路的輸出段電晶體的輸出電流為規定的限制電流值以下的控制,所述過電流限制電路包括:限制電壓生成部,生成使限制電流值為與電源電壓的電壓值相對應的電流值的限制電壓;源極隨耦器,將輸入端子與輸出段電晶體的閘極連接,對自輸出端子輸入至所述輸入端子的電壓進行位準移位而加以輸出;誤差放大電路,放大限制電壓與源極隨耦器所輸出的電壓的差分;以及閘極電壓調整電晶體,對閘極施加誤差放大電路所輸出的電壓,對施加至輸出段電晶體的閘極的閘極電壓進行控制。

Description

過電流限制電路、過電流限制方法及電源電路
本發明是有關於一種過電流限制電路、過電流限制方法及電源電路。
定電壓電源電路即使在輸出電流因負載變動等而發生變化的情況下,亦穩定地供給固定電壓。
但是,在負載變動大幅超過額定值的電流流入的情況,例如在產生有接地故障的情況等,則必須防止因過電流而產生的熱所引起的電源的輸出段的電晶體即輸出段電晶體的損傷。
因此,在定電壓電源電路中,需要限制輸出的最大電流不超過作為額定值而規定的上限值的過電流限制電路(例如,參照專利文獻1)。
如圖8所示,在所述專利文獻1中,設置有過電流限制電路,所述過電流限制電路在輸出端子102產生有接地故障時,藉由抑制輸出段電晶體105的閘極電壓V1的下降,而限制流入至輸出段電晶體105的過電流。所述過電流限制電路基於輸出電壓VOUT 或反饋電壓(feedback voltage)VFB ,調整對流入至輸出段電晶體105的過電流進行限制的限制電壓V3,且根據輸出端子102的接地故障的階段,抑制流入至輸出段電晶體105的過電流。輸出段電晶體105是p通道型的金屬氧化物半導體(metal oxide semiconductor,MOS)電晶體,電晶體M1至電晶體M6分別是n通道型的MOS電晶體。
在圖8中,流入定電流源110的電流的電晶體M4、電晶體M1、電晶體M2及電晶體M3構成電流鏡電路(current mirror circuit)。若電晶體M5為導通狀態,則電流亦流入至電晶體M2,流入至電阻113的電流為電晶體M1及電晶體M2的各自的汲極電流的總和。又,若電晶體M5及電晶體M6為導通狀態,則電流亦流入至電晶體M2及電晶體M3,流入至電阻113的電流成為電晶體M1、電晶體M2及電晶體M3的各自的汲極電流的總和。如上所述,藉由對電晶體M5及電晶體M6進行控制,而對流入至電阻113的電流進行多級控制。
若輸出電壓VOUT 下降時,反饋電壓VFB 低於電晶體M6的臨限電壓,則電晶體M6斷開,電流不再流入至電晶體M3,流入至電阻113的電流下降。又,若輸出電壓VOUT 下降,輸出電壓VOUT 低於電晶體M5的臨限電壓,則電晶體M5斷開,電流不再流入至電晶體M2,流入至電阻113的電流下降。當因接地故障等,而使輸出電壓VOUT 接近於「0」V時,流入至電阻113的電流僅為電晶體M1的汲極電流,限制電壓V3上升。
並且,藉由電壓V2追隨於所述限制電壓V3,而抑制輸出段電晶體105的閘極電壓V1的下降,進行輸出段電晶體105的電流限制。
[現有技術文獻]
[專利文獻]
[專利文獻1]日本專利特開2009-48362號公報
[發明所欲解決之課題]
但是,所述專利文獻1的過電流限制電路是基於輸出電壓VOUT 的下降而進行輸出電流的控制,因此當電源電壓VDD高時,無法有效抑制輸出段電晶體105中的電力損耗所引起的發熱。
本發明是鑒於如上所述的情況而完成的,目的在於提供一種過電流限制電路、過電流限制方法及電源電路,即使在電源電壓高的情況下,亦可在因接地故障等而使大電流流入至輸出段電晶體時,有效限制流入至輸出段電晶體的電流,抑制輸出段電晶體的發熱。
[解決課題之手段]
本發明的過電流限制電路是進行使流入至電源電路的輸出段電晶體的輸出電流為規定的限制電流值以下的控制的過電流限制電路,其包括:限制電壓生成部,生成使所述限制電流值為與電源電壓的電壓值相對應的電流值的限制電壓;源極隨耦器(source follower),將輸入端子與所述輸出段電晶體的閘極連接,對自輸出端子輸入至所述輸入端子的電壓進行位準移位(level shift)而加以輸出;誤差放大電路,放大所述限制電壓與所述源極隨耦器所輸出的電壓的差分;以及閘極電壓調整電晶體,對閘極施加自所述誤差放大電路輸出的電壓,對施加至所述輸出段電晶體的閘極的閘極電壓進行控制。
[發明的效果]
根據所述發明,可提供一種過電流限制電路、過電流限制方法及電源電路,即使在電源電壓高的情況下,因接地故障等而使大電流流入至輸出段電晶體時,亦可有效抑制流入至輸出段電晶體的電流。
<第1實施方式>
以下,參照圖式,對本發明的第1實施方式進行說明。圖1是表示使用本發明的第1實施方式的過電流限制電路的電源電路即電壓調節器的概略方塊圖。
在所述概略方塊圖中,電壓調節器1包括電壓輸出電路100及過電流限制電路200的各個。
電壓輸出電路100是自輸出端子102輸出預先設定的規定的電壓值的輸出電壓VOUT 的電路,包括基準電壓源103、誤差放大電路104、輸出段電晶體105、電阻106及電阻107的各個。
過電流限制電路200包括電流檢測電晶體108、電阻109、誤差放大電路114、閘極電壓調整電晶體115及限制電壓生成部250的各個。
限制電壓生成部250是生成對流入至輸出段電晶體105的電流進行限制的限制電壓V3(後述)的電路,包括定電流源110、電流鏡電路118、可變電阻119及限制電壓控制部120。
電流鏡電路118包括電晶體117及電晶體116的各個。
輸出段電晶體105是p通道型MOS電晶體,將源極S與電源連接,將閘極G經由連接點P1與誤差放大電路104的輸出端子連接,將汲極D與電阻106的一端及輸出端子102連接。
誤差放大電路104將負(-)側輸入端子經由基準電壓源103而接地,將正(+)側輸入端子與連接點P4連接。
電阻106將另一端與連接點P4連接。
電阻107與電阻106串聯,將一端與連接點P4連接,將另一端接地。所述連接點P4的電壓成為輸出電壓VOUT 、以及與電阻106及電阻107的電阻比相對應的反饋電壓VFB
誤差放大電路114將正(+)側輸入端子與連接點P2連接,將負(-)側輸入端子與連接點P3連接,將輸出端子與閘極電壓調整電晶體115的閘極G連接。
電阻109作為電流電壓轉換部而發揮作用,將一端與電源連接,將另一端與連接點P2連接。
電流檢測電晶體108是p通道型MOS電晶體,將源極S與連接點P2連接,將閘極G與誤差放大電路104的輸出端子連接,將汲極D與輸出端子102連接。電流檢測電晶體108及電阻109構成源極隨耦器。
閘極電壓調整電晶體115是p通道型MOS電晶體,將源極S與電源連接,將汲極D與連接點P1連接。
可變電阻119作為電流電壓轉換部而發揮作用,將一端與電源連接,將另一端與連接點P3連接,將控制端子與限制電壓控制部120的輸出端子連接。
限制電壓控制部120將輸入端子與電源連接,將接地端子接地,自輸出端子輸出與電源電壓VDD的電壓值相應的電壓位準的控制訊號。此處,限制電壓控制部120的控制訊號是在電源電壓VDD的電壓值升高時,減小可變電阻119的電阻值。
電晶體117是n通道型MOS電晶體,將汲極D與連接點P3連接,將源極S接地,將閘極G與電晶體116的閘極G連接。
電晶體116是n通道型MOS電晶體,將汲極D及閘極G分別經由定電流源110而與電源連接,將源極S接地。
以下,說明使用第1實施方式的過電流限制電路的電源電路即電壓調節器的運行。
誤差放大電路104將供給至負(-)側輸入端子的基準電壓Vref與供給至正(+)側輸入端子的反饋電壓VFB 的差分加以放大,並將控制訊號輸出至輸出段電晶體105的閘極G。
輸出段電晶體105對輸出端子102輸出與來自誤差放大電路104的控制訊號相對應的輸出電壓。因此,基準電壓Vref與反饋電壓VFB 相等,結果,將輸出電壓VOUT 控制成固定。
電流檢測電晶體108及電阻109構成源極隨耦器,因此生成對連接點P1的電壓V1進行位準移位而成的電壓V2。
誤差放大電路114將供給至負(-)側輸入端子的限制電壓V3與供給至正(+)側輸入端子的電壓V2的差分加以放大,並輸出至閘極電壓調整電晶體115的閘極G。所述限制電壓V3是限制電壓生成部250為了對應於電源電壓VDD的電壓值,限制自輸出段電晶體105輸出的電流而生成的電壓(後述)。
閘極電壓調整電晶體115藉由來自誤差放大電路114的控制訊號,來控制施加至輸出段電晶體105及電流檢測電晶體108的各自的閘極G的電壓,即,控制連接點P1的電壓V1。
電流檢測電晶體108藉由電阻109而流入與施加至閘極G的電壓V1相應的汲極電流,使連接點P2產生電壓V2。所述電壓V2是藉由以下的(1)式而表示。
V2=V1+|VTH108|……(1)
在所述(1)式中,VTH108為電流檢測電晶體108的臨限電壓。
其次,對限制電壓生成部250中的限制電壓V3的生成進行說明。
流入至定電流源110的電流是對經由電流鏡電路118而流入至可變電阻119的電流進行規定。此處,設為電晶體116與電晶體117的縱橫比相同,即,電晶體117的汲極電流與電晶體116的汲極電流相等。
可變電阻119作為電流電壓轉換構件而發揮作用,因此流入至電晶體117的汲極電流的電流值I117藉由可變電阻119的電阻值R119所引起的電壓下降而轉換成限制電壓V3。限制電壓V3是藉由以下的(2)式而表示。
V3=VDD-R119×I117……(2)
如上所述,誤差放大電路114對電壓V2及限制電壓V3分別進行比較,當電壓V2未達限制電壓V3時,使閘極電壓調整電晶體115的閘極G的電壓下降。
因此,閘極電壓調整電晶體115的汲極電流增加,連接點P1的電壓上升。藉此,流入至輸出段電晶體105的電流減少,進行過電流限制。
此處,在包含誤差放大電路114的負反饋電路中,輸入至誤差放大電路114的電壓V2及限制電壓V3在過電流限制狀態下成為相同的電壓(V2=V3)。因此,根據(1)式及(2)式的各個,電壓V1藉由以下的(3)式來表示。
V1=VDD-R119×I117-|VTH108|……(3)
又,當將流入至輸出段電晶體105的汲極電流(飽和汲極電流)設為I115時,汲極電流I115藉由以下的(4)式而表示。
I115=K105×(VDD-V1-|VTH105|)2 ……(4)
在所述(4)式中,VTH105是輸出段電晶體105的臨限電壓,K105是輸出段電晶體105的跨導(transconductance)係數,藉由以下的(4')式而表示。
K105=(1/2)×μ105×Cox105×(W105/L105)……(4')
在所述(4')式中,μ105是輸出段電晶體105的載體(電洞)的遷移率(mobility)。Cox105是輸出段電晶體105的閘極G的每單位面積的閘極氧化膜電容。W105是輸出段電晶體105的通道區域的寬度。L105是輸出段電晶體105的通道區域的長度(通道長)。因此,W105/L105表示輸出段電晶體105的閘極G的縱橫比。
將所述(3)式代入至所述(4)式,將此時的輸出段電晶體105的汲極電流值設置為輸出電流限制值ILIM1。又,當輸出段電晶體105及電流檢測電晶體108的各自的電晶體特性相同,而為相同的臨限電壓,即,VTH105=VTH108時,將(3)式代入至(4)式,結果獲得以下所示的(5)式。
ILIM1=K105×(R119×I117)2 ……(5)
由所述(5)式可知,當電源電壓VDD上升時,藉由減小可變電阻119的電阻值,或減小流入至電晶體117的汲極電流的電流值,可減少流入至輸出段電晶體105的輸出電流限制值ILIM1。
即,根據本實施方式,限制電壓控制部120隨著電源電壓VDD的電壓值的增加,而減小可變電阻119的電阻值,因此藉由對應於電源電壓VDD,使連接點P3上的限制電壓V3的電壓值增加,可將輸出段電晶體105所輸出的電流值限制在與電源電壓VDD的電壓值相對應的輸出電流限制值ILIM1以下,從而可較現有例更有效地抑制輸出段電晶體105的發熱。
即,根據本實施方式,即使在電源電壓高的情況下,因接地故障等而使大電流流入至輸出段電晶體105時,亦可有效抑制輸出段電晶體105中的由電力損耗引起的發熱。
圖2是表示本實施方式的過電流限制電路中的可變電阻119的具體例的電路圖。
圖2的可變電阻電路119包括電阻401、電阻402及電晶體403。
電阻401及電阻402是串聯地介插於電源與連接點P3之間。電晶體403是p通道型MOS電晶體,將源極S與電源連接,將汲極D與連接點P5連接,將閘極G與限制電壓控制部120的輸出端子連接。電晶體403是調整可變電阻電路119中的電阻值的電晶體。
根據如上所述而構成的可變電阻電路119,若電源電壓VDD高於規定的電壓值,則藉由限制電壓控制部120的控制訊號,電晶體403變為導通狀態,電阻值R119下降。因此可知,可使連接點P2上的電壓V2上升,可減小流入至輸出段電晶體105的輸出電流限制值ILIM1。
<第2實施方式>
以下,參照圖式,對本發明的第2實施方式進行說明。圖3是表示本發明的第2實施方式的過電流限制電路中的限制電壓生成部的概略方塊圖。
第2實施方式中,取代圖1中的限制電壓生成部250,而包括限制電壓生成部251。其他結構則與圖1的第1實施方式相同。
限制電壓生成部251包括可變定電流源121、電流鏡電路118、電流電壓轉換部即電阻113及限制電壓控制部120。
可變定電流源121將一端與電源連接,將另一端與電流鏡電路118中的電晶體116的閘極G及汲極D連接,將控制端子與限制電壓控制部120的輸出端子連接,流入與供給至控制端子的電壓的電壓值相應的電流值的電流。
其次,對限制電壓生成部251中的限制電壓V3的生成進行說明。
限制電壓V3在將電阻113的電阻值設為R113時,由電阻113引起的電壓下降為R113×I117,故藉由以下的(6)式而表示。
V3=VDD-R113×I117……(6)
又,當對應於第1實施方式中的(5)式,將輸出段電晶體105的汲極電流的電流值設為輸出電流限制值ILIM2時,輸出電流限制值ILIM2藉由以下的(7)式而表示。
ILIM2=K105×{R113×I117}2 ……(7)
藉由所述結構,隨著電源電壓VDD的電壓值升高,使流入至可變定電流源121的電流減少,而使由電阻113引起的電壓下降減少,藉此使限制電壓V3上升。因此,可使連接點P2上的電壓V2上升,可減少流入至輸出段電晶體105的輸出電流限制值ILIM2。
圖4是表示本實施方式的過電流限制電路中的可變定電流源121的具體例的電路圖。
可變定電流源121包括定電流源110、定電流源801及電晶體802。
電晶體802是n通道型MOS電晶體,將汲極D與連接點P6連接,將源極S經由定電流源801而接地,將閘極G與限制電壓控制部120的輸出端子連接。
根據如上所述而構成的可變定電流源121,隨著電源電壓VDD的電壓值升高,使流入至定電流源801的電流增加,藉此可使流入至電阻113的電流下降,可使限制電壓V3上升。因此可知,可使連接點P2上的電壓V2上升,可減少流入至輸出段電晶體105的輸出電流限制值ILIM2。
<限制電壓控制部120的第1結構例>
圖5是表示限制電壓控制部120的具體例的電路圖。圖5所示的限制電壓控制部可用於已說明的第1實施方式及第2實施方式。
圖5所示的限制電壓控制部120包括經串聯的電阻502、電阻501及輸出端子503。
輸出端子503的電壓V503是由電阻502與電阻501的電阻比來確定,將基於所述電阻比而分壓的電壓作為控制訊號,自限制電壓控制部120的輸出端子輸出。
如圖5而構成的限制電壓控制部120在電源電壓VDD升高的情況下,在圖2的電路例中是使電晶體403的閘極G的電壓低於源極S的電壓,在圖4的電路例中是使電晶體802的閘極G的電壓高於源極S的電壓。即,圖5的限制電壓控制部120可如各實施方式中所說明而控制可變電阻119及可變定電流源121。
<限制電壓控制部120的第2結構例>
圖6(a)及圖6(b)是表示限制電壓控制部120的具體例的電路圖。圖6(a)是說明限制電壓控制部的結構例的圖。圖6(a)所示的限制電壓控制部可用於已說明的第1實施方式。
圖6(a)所示的限制電壓控制部120包括電流鏡電路618、電流源601及電阻604。電流鏡電路618包括電晶體602及電晶體603的各個。
電晶體602是p通道型MOS電晶體,將源極S與電源連接,將閘極G及汲極D經由電流源601而接地。
電晶體603是p通道型MOS電晶體,將源極S與電源連接,將閘極G與電晶體602的閘極G連接,將汲極D與電阻604的一端連接。
電阻604將一端與輸出端子605連接,將另一端接地。
在電流鏡電路618中,使電流源601所流入的電流藉由規定的鏡比率(mirror ratio)而反映在電晶體603的汲極電流中,並流入至電阻604。
藉此,對應於流入至電晶體603的汲極電流的電流值,自輸出端子605輸出由電阻604的電壓下降而產生的電壓V605。
以下,參照圖式,說明限制電壓控制部120的電源電壓VDD與電壓V605的對應關係。
圖6(b)表示限制電壓控制部120的電源電壓VDD與電壓V605的對應關係。橫軸表示電源電壓VDD的電壓值(V),縱軸表示電壓V605的電壓值(V)。
若電源電壓VDD的電壓值處於0 V至未達VDD1的範圍,則電晶體603為斷開狀態,故電流不流入至電阻604,電壓V605為0 V。
電源電壓VDD的電壓值為VDD1而電晶體603成為導通狀態,電晶體603進行電源電壓VDD自VDD1至VDD2為止電阻區域(線性區域)內的運行。在所述電阻區域內,隨著流入至電晶體603的電流增加,電壓V605呈線性增加。在所述電阻區域內,成為V605≒VDD的關係。
因此,當在圖2的電路的限制電壓控制部120中使用圖6(a)的電路時,對電晶體403的閘極G施加電壓V605,故而在電源電壓VDD為VDD2之前,電壓(VDD-V605)低於電晶體403的臨限電壓|VTH403|,因此電晶體403成為斷開狀態。
又,若電源電壓VDD超過VDD2,則電晶體603成為飽和區域,電晶體603的汲極電流不增加而為大致固定值,因此電壓V605亦成為固定值。即,若電源電壓VDD超過VDD2,則成為VDD>V605的關係,若VDD-V605>|VTH403|的關係成立,則電晶體403成為導通狀態。
其結果為,可變電阻電路119的電阻值發生變化,可使限制電壓V3的電壓值上升,使輸出電流限制值ILIM1下降。
又,圖6(a)中的電阻604亦可替換成其他電流電壓轉換元件。例如,所述電阻604可設為如下的結構:介插有一個或多級串聯著的多個將閘極G與汲極D加以連接的二極體連接的電晶體。又,亦可設為如下的結構:取代電阻604而將二極體正向介插於輸出端子605與接地之間。
<限制電壓控制部120的第3結構例>
圖7(a)及圖7(b)是表示限制電壓控制部120的具體例的電路圖。圖7(a)是說明限制電壓控制部的結構例的圖。圖7(a)所示的限制電壓控制部可用於已說明的第2實施方式。
圖7(a)所示的限制電壓控制部120包括電流鏡電路918、電流源901及電阻904。電流鏡電路918包括電晶體902及電晶體903的各個。
電晶體902是n通道型MOS電晶體,將汲極D及閘極G經由電流源901而與電源連接,將源極S接地。
電晶體903是n通道型MOS電晶體,將汲極D與輸出端子905連接,將閘極G與電晶體902的閘極G連接,將源極S接地。
電阻904將一端與電源連接,將另一端與輸出端子905連接。
在電流鏡電路918中,使電流源901所流入的電流藉由規定的鏡比率,而反映在電晶體903的汲極電流中,並流入至電阻904。
藉此,對應於流入至電晶體903的汲極電流的電流值,自輸出端子905輸出由電阻904的電壓下降而產生的電壓V905。
以下,參照圖式,說明限制電壓控制部120的電源電壓VDD與電壓V905的對應關係。
圖7(b)表示限制電壓控制部120的電源電壓VDD與電壓V905的對應關係。橫軸表示電源電壓VDD的電壓值(V),縱軸表示電壓V905的電壓值(V)。
若電源電壓VDD的電壓值處於0 V至即將達到VDD1之前,電晶體903為斷開狀態,因此電壓V905對應於電源電壓VDD的增加而逐漸上升。
當電源電壓VDD的電壓值超過VDD1時,電晶體903成為導通狀態。因此,電壓V905暫時下降至0 V,但電源電壓VDD在自VDD1至VDD2為止作為電阻區域(線性區域)而運行。此時,電壓V905隨著電源電壓VDD而緩慢上升。
又,若電源電壓VDD超過VDD2,則電晶體903成為飽和區域,因此電壓V905的增加具有與電源電壓VDD的增加相同的傾向,電壓V905上升。
即,當電晶體903在飽和區域內運行時,若將電晶體903的汲極電流設為I903,將電阻904的電阻值設為R904,則電壓V905藉由VDD-R904×I903而表示。
當使用圖7(a)所示的電路作為圖2的電路的限制電壓控制部120時,對電晶體802的閘極G施加V905,因此直至電源電壓VDD超過VDD2,電晶體903成為飽和區域為止之前,VDD-R904×I903>|VTH802|的關係不成立,電晶體802為斷開狀態。
而且,當電源電壓VDD超過VDD2,電晶體903成為飽和區域時,對應於電源電壓VDD的增加,電壓V905亦上升。即,若電源電壓VDD超過VDD2,則成為VDD>R904×I903的關係,若VDD-R904×I903>|VTH802|的關係成立,則電晶體802成為導通狀態。
其結果為,流入至電晶體117的電流值減少,可使限制電壓V3的電壓值上升,使輸出電流限制值ILIM2下降。
又,圖7(a)中的電阻904亦可替換成其他電流電壓轉換元件。例如,亦可設為如下的結構:包含一個或多級串聯著的多個將閘極G與汲極D加以連接的二極體連接的電晶體;以及取代電阻904,而將二極體正向介插於電源與輸出端子905之間。
又,在第1實施方式至第4實施方式中,作為電源電路,是以將反饋電壓VFB 與基準電壓Vref控制成相等的降壓型電壓調節器1為例進行說明,所述反饋電壓VFB 是藉由分壓電阻而對輸出電壓VOUT 進行分壓所得,但是亦可用於如下的結構:限制將輸出電壓VOUT 控制成與基準電壓Vref相等的電壓調節器等電源的輸出段的輸出段電晶體中的過電流。
以上,已參照圖式對本發明的實施方式進行詳細說明,但具體的結構並不限於所述實施方式,亦包含不脫離本發明的主旨的範圍的設計等。例如,在圖1中,限制電壓生成部250是設為藉由電流鏡電路118對定電流源110的電流進行複製而流入至可變電阻119的結構,但亦可不為藉由電流鏡電路118進行複製的結構。又,可變電阻119是包含串聯的電阻401、電阻402,但亦可包含並聯的電阻。在此情況下,只要採用適合於所述結構的限制電壓控制部120即可。又,可變定電流源121亦同。
1‧‧‧電壓調節器
100‧‧‧電壓輸出電路
102、503、605、905‧‧‧輸出端子
103‧‧‧基準電壓源
104、114‧‧‧誤差放大電路
105‧‧‧輸出段電晶體
106、107、109、401、402、501、502、604、904‧‧‧電阻
113‧‧‧電阻(電流電壓轉換部)
108‧‧‧電流檢測電晶體
110、601、801、901‧‧‧定電流源
115‧‧‧閘極電壓調整電晶體
116、117、403、602、603、802、902、903‧‧‧電晶體
118、618、918‧‧‧電流鏡電路
119‧‧‧可變電阻(可變電阻電路)
120‧‧‧限制電壓控制部
121‧‧‧可變定電流源
200‧‧‧過電流限制電路
250、251‧‧‧限制電壓生成部
D‧‧‧汲極
G‧‧‧閘極
P1~P6‧‧‧連接點
S‧‧‧源極
V1‧‧‧閘極電壓
V2、V503、V605、V905‧‧‧電壓
V3‧‧‧限制電壓
VDD1、VDD2‧‧‧電源電壓值
VFB‧‧‧反饋電壓
VOUT‧‧‧輸出電壓
Vref‧‧‧基準電壓
M1~M6‧‧‧電晶體
圖1是表示使用本發明的第1實施方式的過電流限制電路的電源電路即電壓調節器(voltage regulator)的概略方塊圖。
圖2是表示本發明的第1實施方式的過電流限制電路中的可變電阻的具體例的電路圖。
圖3是表示本發明的第2實施方式的過電流限制電路中的限制電壓生成部的概略方塊圖。
圖4是表示本發明的第2實施方式的過電流限制電路中的可變定電流源的具體例的電路圖。
圖5是表示第1實施方式及第2實施方式中的限制電壓控制部的具體例的電路圖。
圖6(a)及圖6(b)是表示第1實施方式中的限制電壓控制部的具體例的電路圖。
圖7(a)及圖7(b)是表示第2實施方式中的限制電壓控制部的具體例的電路圖。
圖8是用以說明現有的過電流限制電路的電壓調節器的概略方塊圖。

Claims (9)

  1. 一種過電流限制電路,進行使流入至電源電路的輸出段電晶體的輸出電流為規定的限制電流值以下的控制,所述過電流限制電路的特徵在於包括: 限制電壓生成部,生成使所述限制電流值為與電源電壓的電壓值相對應的電流值的限制電壓; 源極隨耦器,將輸入端子與所述輸出段電晶體的閘極連接,對自輸出端子輸入至所述輸入端子的電壓進行位準移位而加以輸出; 誤差放大電路,放大所述限制電壓與所述源極隨耦器所輸出的電壓的差分;以及 閘極電壓調整電晶體,對閘極施加自所述誤差放大電路輸出的電壓,對施加至所述輸出段電晶體的閘極的閘極電壓進行控制。
  2. 如申請專利範圍第1項所述的過電流限制電路,其中所述限制電壓生成部生成對應於所述電源電壓的增加,使所述限制電流值下降的所述限制電壓。
  3. 如申請專利範圍第1項或第2項所述的過電流限制電路,其中 所述限制電壓生成部包括: 可變電阻; 定電流電路,使規定的電流流入至所述可變電阻;以及 限制電壓控制部,檢測所述電源電壓的電壓值,生成與所述電壓值相對應的控制訊號;且 藉由所述控制訊號而變更所述可變電阻的電阻值,基於所述可變電阻中產生的電壓而輸出所述限制電壓。
  4. 如申請專利範圍第1項或第2項所述的過電流限制電路,其中 所述限制電壓生成部包括: 電流電壓轉換部; 可變定電流電路,使電流流入至所述電流電壓轉換部;以及 限制電壓控制部,檢測所述電源電壓的電壓值,生成與所述電壓值相對應的控制訊號;且 藉由所述控制訊號而變更所述可變定電流電路的電流值,基於所述電流電壓轉換部中產生的電壓而輸出所述限制電壓。
  5. 一種電源電路,其特徵在於包括: 誤差放大電路,放大基準電壓與輸出電壓所對應的電壓的差分,所述輸出電壓是由自電源供給的電源電壓生成; 輸出段電晶體,藉由供給至閘極的所述誤差放大電路的輸出,而輸出與所述基準電壓相對應的所述輸出電壓;以及 如申請專利範圍第1項所述的過電流限制電路。
  6. 一種電源電路,其特徵在於包括: 誤差放大電路,放大基準電壓與輸出電壓所對應的電壓的差分,所述輸出電壓是由自電源供給的電源電壓生成; 輸出段電晶體,藉由供給至閘極的所述誤差放大電路的輸出,而輸出與所述基準電壓相對應的所述輸出電壓;以及 如申請專利範圍第2項所述的過電流限制電路。
  7. 一種電源電路,其特徵在於包括: 誤差放大電路,放大基準電壓與輸出電壓所對應的電壓的差分,所述輸出電壓是由自電源供給的電源電壓生成; 輸出段電晶體,藉由供給至閘極的所述誤差放大電路的輸出,而輸出與所述基準電壓相對應的所述輸出電壓;以及 如申請專利範圍第3項所述的過電流限制電路。
  8. 一種電源電路,其特徵在於包括: 誤差放大電路,放大基準電壓與輸出電壓所對應的電壓的差分,所述輸出電壓是由自電源供給的電源電壓生成; 輸出段電晶體,藉由供給至閘極的所述誤差放大電路的輸出,而輸出與所述基準電壓相對應的所述輸出電壓;以及 如申請專利範圍第4項所述的過電流限制電路。
  9. 一種過電流限制方法,進行使流入至電源電路的輸出段電晶體的輸出電流為規定的限制電流值以下的控制,所述過電流限制方法的特徵在於包括: 限制電壓生成過程,生成使所述限制電流值為與電源電壓的電壓值相對應的電流值的限制電壓; 位準移位過程,將輸入端子與所述輸出段電晶體的閘極連接的源極隨耦器,對輸入至所述輸入端子的電壓進行位準移位並自輸出端子輸出; 差動放大過程,藉由誤差放大電路,而放大所述限制電壓與所述源極隨耦器所輸出的電壓的差分;以及 閘極電壓調整過程,藉由已對閘極施加自所述誤差放大電路輸出的電壓的閘極電壓調整電晶體,而對施加至所述輸出段電晶體的閘極的閘極電壓進行控制。
TW107145108A 2018-02-05 2018-12-14 過電流限制電路、過電流限制方法及電源電路 TWI780282B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018018423A JP7008523B2 (ja) 2018-02-05 2018-02-05 過電流制限回路、過電流制限方法及び電源回路
JP2018-018423 2018-08-24

Publications (2)

Publication Number Publication Date
TW201935168A true TW201935168A (zh) 2019-09-01
TWI780282B TWI780282B (zh) 2022-10-11

Family

ID=67476042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107145108A TWI780282B (zh) 2018-02-05 2018-12-14 過電流限制電路、過電流限制方法及電源電路

Country Status (5)

Country Link
US (1) US10571942B2 (zh)
JP (1) JP7008523B2 (zh)
KR (1) KR20190095097A (zh)
CN (1) CN110120737A (zh)
TW (1) TWI780282B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11507120B2 (en) * 2019-09-13 2022-11-22 Texas Instruments Incorporated Load current based dropout control for continuous regulation in linear regulators
US11803203B2 (en) * 2021-09-13 2023-10-31 Silicon Laboratories Inc. Current sensor with multiple channel low dropout regulator
CN114020087B (zh) * 2021-09-17 2023-05-05 深圳市芯波微电子有限公司 抑制电源干扰的偏置电压产生电路
CN114204925B (zh) * 2021-11-25 2024-01-09 苏州浪潮智能科技有限公司 Mosfet组件的电流控制方法及装置
CN115097893B (zh) * 2022-08-15 2023-08-18 深圳清华大学研究院 输出无外挂电容的ldo电路及mcu芯片
CN115729308B (zh) * 2023-01-13 2023-07-07 上海海栎创科技股份有限公司 一种动态限流控制系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173211A (ja) * 2001-12-05 2003-06-20 Rohm Co Ltd レギュレータ
JP3782726B2 (ja) * 2001-12-13 2006-06-07 株式会社リコー 過電流保護回路
ES2330223T3 (es) * 2003-07-04 2009-12-07 Industria Meccanica Zane' S.R.L. Metodo de fabricacion de dispositivos balisticos inertes para entrenamiento y dispositivo balistico fabricado conforme a dicho metodo.
ITTO20030533A1 (it) * 2003-07-10 2005-01-11 Atmel Corp Procedimento e circuito per la limitazione di corrente in
CN1989467A (zh) * 2004-08-10 2007-06-27 罗姆股份有限公司 电路的保护方法、保护电路及利用其的电源装置
JP2006178539A (ja) * 2004-12-20 2006-07-06 Freescale Semiconductor Inc 過電流保護回路及び直流電源装置
JP4546320B2 (ja) * 2005-04-19 2010-09-15 株式会社リコー 定電圧電源回路及び定電圧電源回路の制御方法
JP4616067B2 (ja) * 2005-04-28 2011-01-19 株式会社リコー 定電圧電源回路
JP4845549B2 (ja) * 2006-03-23 2011-12-28 ローム株式会社 電源装置及びこれを備えた電気機器
JP4929043B2 (ja) * 2007-05-15 2012-05-09 株式会社リコー 過電流保護回路および該過電流保護回路を備えた電子機器
JP2009048362A (ja) * 2007-08-17 2009-03-05 Ricoh Co Ltd 過電流制限及び出力短絡保護回路およびそれを用いたボルテージレギュレータと電子機器
JP5047815B2 (ja) * 2008-01-11 2012-10-10 株式会社リコー 過電流保護回路及びその過電流保護回路を備えた定電圧回路
TW200935698A (en) * 2008-02-01 2009-08-16 Holtek Semiconductor Inc Power IC with over-current protection andits circuit and method
JP5099505B2 (ja) * 2008-02-15 2012-12-19 セイコーインスツル株式会社 ボルテージレギュレータ
JP2011150640A (ja) * 2010-01-25 2011-08-04 Denso Corp 電源用集積回路
TWI427455B (zh) * 2011-01-04 2014-02-21 Faraday Tech Corp 電壓調整器
TW201240257A (en) * 2011-03-17 2012-10-01 Green Solution Tech Co Ltd Transistor circuit with protecting function
JP5806853B2 (ja) * 2011-05-12 2015-11-10 セイコーインスツル株式会社 ボルテージレギュレータ
JP5820990B2 (ja) * 2011-09-27 2015-11-24 パナソニックIpマネジメント株式会社 定電圧回路
JP5950591B2 (ja) * 2012-01-31 2016-07-13 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
JP6168793B2 (ja) * 2013-03-04 2017-07-26 エスアイアイ・セミコンダクタ株式会社 スイッチングレギュレータ及び電子機器
JP6250418B2 (ja) * 2013-05-23 2017-12-20 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
JP6668762B2 (ja) * 2016-01-13 2020-03-18 富士電機株式会社 スイッチング電源装置
CN106227287B (zh) * 2016-08-18 2018-06-22 四川和芯微电子股份有限公司 具有保护电路的低压差线性稳压器

Also Published As

Publication number Publication date
KR20190095097A (ko) 2019-08-14
CN110120737A (zh) 2019-08-13
TWI780282B (zh) 2022-10-11
US20190243400A1 (en) 2019-08-08
JP2019135610A (ja) 2019-08-15
JP7008523B2 (ja) 2022-01-25
US10571942B2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
TWI780282B (zh) 過電流限制電路、過電流限制方法及電源電路
JP6541250B2 (ja) 低ドロップアウト電圧レギュレータおよび方法
US7304540B2 (en) Source follower and current feedback circuit thereof
JP5168910B2 (ja) 定電流回路及び定電流回路を使用した発光ダイオード駆動装置
TWI447552B (zh) 具可調適米勒補償的電壓調節器
TWI405060B (zh) 用於限制來自一功率控制導通元件之一功率電流的電路及方法
US11099590B2 (en) Indirect leakage compensation for multi-stage amplifiers
KR20150111301A (ko) 전압 레귤레이터
US20230236615A1 (en) Low-dropout regulator having bidirectional current adjustment
US7683687B2 (en) Hysteresis characteristic input circuit including resistors capable of suppressing penetration current
CN109960309B (zh) 电流生成电路
US11290061B2 (en) Amplifier circuit with overshoot suppression
KR101362474B1 (ko) Cmos 서브밴드갭 기준발생기
CN110045777B (zh) 逆流防止电路以及电源电路
JP4552569B2 (ja) 定電圧電源回路
CN107193317B (zh) 稳压器
US20210313942A1 (en) Push-pull output driver and operational amplifier using same
JP5849585B2 (ja) 過電流検出回路
CN105988499B (zh) 电源侧电压调节器
US20230161364A1 (en) Linear regulator
US11507123B2 (en) Constant voltage circuit
JP2019144922A (ja) レギュレータ回路
US20230020570A1 (en) Semiconductor integrated circuit, semiconductor device, and temperature characteristic adjustment method
TWI683200B (zh) 動態偏壓控制系統
US8315588B2 (en) Resistive voltage-down regulator for integrated circuit receivers

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent