TW201634696A - 降低植物種子中飽和脂肪酸含量之技術(四) - Google Patents

降低植物種子中飽和脂肪酸含量之技術(四) Download PDF

Info

Publication number
TW201634696A
TW201634696A TW105119975A TW105119975A TW201634696A TW 201634696 A TW201634696 A TW 201634696A TW 105119975 A TW105119975 A TW 105119975A TW 105119975 A TW105119975 A TW 105119975A TW 201634696 A TW201634696 A TW 201634696A
Authority
TW
Taiwan
Prior art keywords
desaturase
sequence
plant
identification number
gene
Prior art date
Application number
TW105119975A
Other languages
English (en)
Inventor
安O 梅洛
丹尼爾J 加裘堤
馬克A 湯普森
特倫斯A 沃爾什
Original Assignee
陶氏農業科學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶氏農業科學公司 filed Critical 陶氏農業科學公司
Publication of TW201634696A publication Critical patent/TW201634696A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
    • C12Y114/19001Stearoyl-CoA 9-desaturase (1.14.19.1), i.e. DELTA9-desaturase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/34Vector systems having a special element relevant for transcription being a transcription initiation element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/36Vector systems having a special element relevant for transcription being a transcription termination element

Abstract

包括基因編碼一種新穎的δ-9去飽和酶及在植物細胞中表現之組成物與方法。在一些實施例中,在一植物細胞中表現核酸之方法係利用δ-9去飽和酶酵素的活性,藉此降低植物種子中的飽和脂肪酸之百分組成,及伴隨著ω-7脂肪酸之增加。在其他實施例中,胺基酸序列具有δ-9去飽和酶活性。為了增加全株植物、植物種子及植物材料例如種子中的特殊脂肪酸量之目的,該方法可涉及在植物細胞、植物材料及全株植物中表現δ-9去飽和酶。

Description

降低植物種子中飽和脂肪酸含量之技術(四) 相關申請案之交互引述
本申請案係共審查中之申請案U.S.S.N.11/576,750之部分延續,其係於2005年10月7日提出申請之第PCT/US05/36052號PCT國際專利申請案之進入國家階段申請案及於2006年4月20日指定美國及以英文公開為第WO 2006/042049 A2號PCT國際公開案。第PCT/US05/36052號PCT國際專利申請案係於2004年10月8日提出申請之第60/617,532號美國暫准專利申請案之延續。本申請案亦為於2010年6月24日提出申請之第61/358,314號美國暫准專利申請案之延續。前述各者之全部內容在此併入本案以為參考資料。
發明領域
一些實施例總體上係有關於特定的δ-9去飽和酶酵素、編碼該等酵素的核酸及在一植物細胞中表現該核酸之方法。一些實施例係有關於利用特定δ-9去飽和酶酵素的活性,來降低植物原料(如種子)中之飽和脂肪酸的百分組成及增加ω-7脂肪酸的百分組成。在此亦揭露藉由特定實施例中的方法所生產之植物與植物原料。
發明背景
植物性油已逐漸取代動物性油與脂肪成為膳食脂肪攝取之主要來源。然而,在大部分工業化國家中,飽和脂肪攝取仍佔總熱量攝取量之約15%至20%。為推動更健康的生活型態,美國農業部(USDA)最近建議飽和脂肪構成低於10%的每日熱量攝取量。為促進消費者的認知,USDA所發出的現行標示準則目前規定每14克的供食份量中之總飽和脂肪酸水平須低於1.0克方可標示“低飽和”,每14克的供食份量中之總飽和脂肪酸水平低於0.5克方可標示“無飽和”。這表示植物油的飽和脂肪酸含量需分別低於7%與3.5%方可標示“低飽和”或“無飽和”。因該等準則之推出,消費者對於“低飽和”與“無飽和”油類之需求已激增。迄今,該項需求主要從油菜籽油得到滿足,及在較小的程度從葵花油與紅花油得到滿足。
不飽和脂肪(單元不飽和與多元不飽和)係有益的(尤其當適度食用時),而飽和與反式脂肪則不然。飽和脂肪與反式脂肪升高血液中不良的LDL膽固醇水平。膳食膽固醇亦升高LDL膽固醇,及即使不促使LDL之升高也可能導致心臟疾病。因此,最好選擇飽和脂肪、反式脂肪及膽固醇低的食物作為健康飲食的一部分。
不論是植物或動物來源的油類之特性,係主要由油分子中的碳與氫原子數目以及脂肪酸鏈中所包含的雙鍵數目與位置決定。自植物所衍生的大部分油類係由不同量 的棕櫚酸(16:0)、硬脂酸(18:0)、油酸(18:1)、亞麻油酸(18:2)及次亞麻油酸(18:3)脂肪酸所組成。按慣例,將棕櫚酸與硬脂酸歸為“飽和”,因其等的碳鏈之氫原子已達到飽和,及因此不具有雙鍵;其等含有最大可能數目的氫原子。然而,油酸、亞麻油酸及次亞麻油酸係在其中分別具有一個、二個及三個雙鍵之十八碳脂肪酸鏈。油酸通常被視為一種單元不飽和脂肪酸,而亞麻油酸與次亞麻油酸被視為多元不飽和脂肪酸。U.S.D.A.之“無飽和”油產物具有低於3.5%的脂肪酸含量之定義,係以飽和脂肪酸含量的合併重量(相較於脂肪酸總量)計算。
油菜籽油的飽和脂肪酸水平係所有植物油中最低者。“油菜”係指油菜籽(蕓苔屬(Brassica)),其以一種子的總脂肪酸含量為基礎之芥子酸(C22:1)含量最多為2重量%(較佳最多0.5重量%及最佳實質上0重量%),及其在榨油後所產生的風乾粕含有低於30微莫耳/克的脫脂(無油)粕。相較於較為傳統的物種類型,該等類型的油菜籽之區別在於其等的可食性。
據推測油籽中的脂肪酸合成作用主要發生在質體中。脂肪酸合成作用的主要產物為棕櫚酸酯(16:0),其似乎有效地伸長成為硬脂酸酯(18:0)。當仍位於質體中時,飽和脂肪酸則可藉由一種稱作醯基-ACPδ-9去飽和酶之酵素去飽和,以植入一或多個碳-碳雙鍵。具體而言,硬脂酸酯可藉由一種質體δ-9去飽和酶酵素快速地去飽和而產生油酸酯(18:1)。事實上,棕櫚酸酯亦可藉由質體δ-9去飽和酶 去飽和而成為棕櫚油酸酯(16:1),但該脂肪酸僅微量(0至0.2%)存在於大部份的植物油中。因此,質體中的脂肪酸合成作用之主要產物為棕櫚酸酯、硬脂酸酯及油酸酯。在大部份的油類中,油酸酯係所合成的主要脂肪酸,而飽和脂肪酸係以顯著較低的比例存在。
新合成的脂肪酸係從質體輸出至細胞質中。植物脂肪酸在細胞質中的後續去飽和作用似乎限於油酸酯,其可藉由微粒體去飽和酶作用在酯化成為磷脂醯膽鹼(PC)的油醯基或亞油醯基(lineoleoyl)受質上,而去飽和成為亞麻油酸酯(18:2)與次亞麻油酸酯(18:3)。此外,依植物而定,油酸酯可藉由伸長作用(成為20:1、22:1及/或24:1)或藉由添加官能基而進一步改質。該等脂肪酸連同飽和脂肪酸、棕櫚酸酯與硬脂酸酯然後在內質網膜中組合成為三酸甘油酯。
植物醯基-ACPδ-9去飽和酶酵素為可溶性。其位於質體基質中,及使用酯化為ACP及主要為硬脂醯基-ACP之新合成的脂肪酸作為受質。其係與其他δ-9去飽和酶酵素相反,其他δ-9去飽和酶係位於內質網膜(ER或微粒體)內,使用酯化為Co-A的脂肪酸作為受質及將飽和脂肪酸、棕櫚酸酯與硬脂酸酯去飽和。第5,723,595與6,706,950號美國專利係有關於一種植物去飽和酶。
已從啤酒酵母菌(Saccharomyces cerevisiae)分離出酵母δ-9去飽和酶基因及予以選殖及定序。Stukey等人(1989年)於期刊“J.Biol.Chem.”第264期第16537-44頁乙 文;Stukey等人(1990年)於期刊“J.Biol.Chem.”第265期第20144-9頁乙文。已將該酵母基因植入菸草葉組織中(Polashcok等人(1991年)於期刊“FASEB J.”第5期第A1157頁乙文;Polashok等人(1992年)於期刊“Plant Physiol.”第100期第894-901頁乙文),及在該組織中明顯表現。此外,該酵母基因在蕃茄中表現。參見Wang等人(1996年)於期刊“J.Agric.Food Chem.”第44期第3399-402頁乙文;及Wang等人(2001年)於期刊“Phytochemistry”第58期第227-32頁乙文。雖然在使用該酵母δ-9去飽和酶基因的菸草與蕃茄中,皆曾報導特定不飽和脂肪酸之部分增加及特定飽和脂肪酸之部分降低,菸草與蕃茄顯然並非油料作物。亦將該酵母基因植入西洋油菜(Brassica napus)中。第5,777,201號美國專利。
已將來自小巢狀麴菌(Aspergillus nidulans)之一種不同的真菌醯基-CoA δ-9去飽和酶植入油菜中,藉此達成籽油中的飽和脂肪酸水平之降低。美國專利申請公開案US 2008/0260933 A1。小巢狀麴菌(A.nidulans)醯基-CoA δ-9去飽和酶所提供之硬脂酸酯耗竭作用(61至90%),係比籽油中含量更豐富的棕櫚酸酯脂肪酸高(36至49%)。
發明概要
在此揭露新穎的真菌δ-9去飽和酶酵素;包含編碼該去飽和酶的至少一種核苷酸序列之核酸;及包含前述任一者之植物、植物原料(如種子)、植物組成部分及植物商品產物。實施例之一些方面係由自稻瘟黴菌(Magnaporthe grisea)、穎枯球腔菌(Leptosphaeria nodorum)及玉米穗蟲(Helicoverpa zea)分離出的真菌δ-9去飽和酶酵素所例證。一些實例包括偏好棕櫚酸或硬脂酸受質之天然與合成的δ-9去飽和酶。
一些實施例包含編碼一種δ-9去飽和酶酵素之一種分離的核酸分子,該酵素所包含一胺基酸序列係與選自由序列辨識編號:12、序列辨識編號:13、序列辨識編號:14、序列辨識編號:50、序列辨識編號:51、序列辨識編號:52、序列辨識編號:72及序列辨識編號:73所組成之群組之一序列至少80%一致。在特定實例中,該核酸分子所包含的一序列係與選自由序列辨識編號:3、序列辨識編號:4、序列辨識編號:5、序列辨識編號:8、序列辨識編號:9、序列辨識編號:10、序列辨識編號:11、序列辨識編號:15、序列辨識編號:16、序列辨識編號:17、序列辨識編號:44、序列辨識編號:45、序列辨識編號:48及序列辨識編號:49所組成之群組之一序列至少60%一致。該等與其他實施例可包括一種分離的δ-9去飽和酶多肽,其所包含的一胺基酸序列係與選自由序列辨識編號:12、序列辨識編號:13、序列辨識編號:14、序列辨識編號:50、序列辨識編號:51、序列辨識編號:52、序列辨識編號:72及序列辨識編號:73所組成之群組之一序列至少80%一致。
亦揭露在一植物細胞中表現至少一種前述核酸及/或多肽之方法。特定實施例係利用一種δ-9去飽和酶酵素 的活性,藉此可降低一種植物、植物原料(如種子)及/或包含該植物細胞的植物組成部分及/或自前述任一者產生之一種植物商品產物中之飽和脂肪酸的百分組成。在特定實施例中,可伴隨增加植物、植物原料、植物組成部分及/或植物商品產物中的ω-7脂肪酸。
一些實施例包括用於降低一種植物、植物原料、植物組成部分及/或植物商品產物中的飽和脂肪酸量之一種方法,該方法包括以本發明編碼一種δ-9去飽和酶多肽之一核酸分子轉形一種植物細胞,藉此降低細胞中的飽和脂肪酸量。一些實施例係包括用於創建一種基因工程植物之一種方法,而該植物所包含的飽和脂肪酸量係低於同一物種的野生型植物。該種方法可包括藉由本發明編碼一種δ-9去飽和酶多肽之一核酸分子轉形一種植物原料(或植物細胞),及培養該轉形植物原料(或植物細胞)而得一種植物。在特定實例中,可藉由本發明編碼一種δ-9去飽和酶多肽之一核酸分子,將來自擬南芥屬物種(Arabidopsis sp.)之一植物細胞及/或植物原料轉形。
自參照所附圖式的數個實施例之下列詳細說明,將更加明瞭前述與其他特性。
第1圖包括各種真菌去飽和酶蛋白質序列之進化示意圖分析。所示去飽和酶的完整蛋白質序列係使用ClustalX排比及使用MEGA顯示。
第2(a-d)圖包括真菌δ-9去飽和酶基因序列之排 比。大寫字體代表該排比中之保留型核苷酸。帶陰影字體代表該排比中之相同的核苷酸。
第3(a-b)圖包括真菌δ-9去飽和酶多肽之排比。
第4至18圖包括例示性質體的質體圖譜,該例示性質體係包含可適用於一些實施例中之編碼真菌δ-9去飽和酶多肽的核苷酸序列。第4圖特別包括例示性質體的質體圖譜,該例示性質體係包含編碼LnD9DS-2(第4a圖;pDAB110110)及編碼HzD9DS(第4b圖;pDAB110112)之核苷酸序列,及其進一步包含PvPhas 5’UTR與PvPhas 3’UTR。
第19圖係包括顯示例示性T2擬南芥屬(Arabidopsis)種子的總飽和脂肪酸含量(%FAME)之數據,該種子係來自經特定例示性真菌δ-9去飽和酶基因序列轉形之植物。
第20圖係包括顯示例示性T2擬南芥屬(Arabidopsis)種子的棕櫚酸(C16:0)含量(%FAME)之數據,該種子係來自經特定例示性真菌δ-9去飽和酶基因序列轉形之植物。
第21圖係包括顯示例示性T2擬南芥屬(Arabidopsis)種子的硬脂酸(C18:0)含量(%FAME)之數據,該種子係來自經特定例示性真菌δ-9去飽和酶基因序列轉形之植物。
第22圖係包括顯示例示性T2擬南芥屬(Arabidopsis)種子的棕櫚油酸(C16:1)含量(%FAME)之數據,該種子係來自經特定例示性真菌δ-9去飽和酶基因序列 轉形之植物。
第23圖包括來自經pDAB7319(AnD9DS v3與LnD9DS-2 v2)或pDAB7324(AnD9DS v3與HzD9DS v2)轉形的油菜植物之發育中種子中之HzD9DS與LnD9DS-2 mRNA轉錄本(相對於AnD9DS轉錄本)的累積作用之一圖示。測定相對於肌動蛋白轉錄本水平之各基因的qRT-PCR△△Ct,然後將HzD9DS與LnD9DS-2之轉錄本的量標準化至各試樣中之AnD9DS轉錄本水平。
序列表
列於所附序列表中的核酸序列,係使用如37 C.F.R.§ 1.822中所界定之核苷酸鹼基的標準字母縮寫顯示。僅顯示各核酸序列中之一股,但提及所示股時,應理解為包括該互補股。在所附序列表中:
序列辨識編號:1顯示用於PCR擴增一種稻瘟黴菌(Magnaporthe grisea)醯基-CoA δ-9飽和酶基因(在有些地方稱為MgD9DS)的一片段之一前置引子
序列辨識編號:2顯示用於PCR擴增一種稻瘟黴菌(M.grisea)醯基-CoA δ-9去飽和酶基因(在有些地方稱為MgD9DS)的一片段之一反置引子。
序列辨識編號:3顯示藉由PCR擴增之一種稻瘟黴菌(M.grisea)醯基-CoA δ-9去飽和酶基因(在有些地方稱為MgD9DS)之一例示性片段。
序列辨識編號:4顯示一種例示性的無內含子MgD9DS殖株。
序列辨識編號:5顯示編碼第一種穎枯球腔菌(Leptosphaeria nodorum)醯基-CoA δ-9去飽和酶之一例示性核酸序列,其在有些地方稱為LnD9DS-1。
序列辨識編號:6與7顯示可適用於一些實施例中之引子序列。
序列辨識編號:8顯示編碼第二種例示性穎枯球腔菌(L.nodorum)醯基-CoA δ-9去飽和酶之一例示性核酸序列,其在有些地方稱為LnD9DS-2。
序列辨識編號:9顯示來自稻瘟黴菌(M.grisea)的一例示性天然δ-9去飽和酶基因之一編碼區(標示為MgD9DS v1)。
序列辨識編號:10顯示來自玉米穗蟲(Helicoverpa zea)的一例示性天然δ-9去飽和酶基因之一編碼區(標示為HzD9DS v1)。
序列辨識編號:11顯示來自穎枯球腔菌(L.nodorum)的一例示性天然δ-9去飽和酶(LnD9DS-2 v1)基因之一編碼區。
序列辨識編號:12顯示來自稻瘟黴菌(M.grisea)的一例示性天然δ-9去飽和酶之胺基酸序列(MgD9DS)。
序列辨識編號:13顯示來自玉米穗蟲(H.zea)的一例示性天然δ-9去飽和酶之胺基酸序列(HzD9DS)。
序列辨識編號:14顯示來自穎枯球腔菌(L.nodorum)的一例示性天然δ-9去飽和酶之胺基酸序列(LnD9DS-2)。
序列辨識編號:15顯示來自稻瘟黴菌(M.grisea)之一例示性油菜最佳化δ-9去飽和酶基因之序列(MgD9DS v2)。
序列辨識編號:16顯示來自玉米穗蟲(H.zea)之一例示性油菜最佳化δ-9去飽和酶基因之序列(HzD9DS v2)。
序列辨識編號:17顯示來自穎枯球腔菌(L.nodorum)之一例示性油菜最佳化δ-9去飽和酶基因之序列(LnD9DS-2 v2)。
序列辨識編號:18至39顯示可適用於一些實施例中的引子與探針之序列。
序列辨識編號:40至43顯示在一些實施例中可用於增加表現作用之例示性任擇Kozak序列。
序列辨識編號:44顯示來自穎枯球腔菌(L.nodorum)之另一例示性油菜最佳化δ-9去飽和酶基因之序列(LnD9DS-2 v3)。
序列辨識編號:45顯示來自玉米穗蟲(H.zea)之另一例示性油菜最佳化δ-9去飽和酶基因之序列(HzD9DS v3)。
序列辨識編號:46顯示一種Myc標籤之胺基酸序列。
序列辨識編號:47顯示一種HA標籤之胺基酸序列。
序列辨識編號:48顯示編碼一種小巢狀麴菌 (Aspergillus nidulans)δ-9去飽和酶之一例示性核酸序列,其在有些地方稱為AnD9DS v2。
序列辨識編號:49顯示編碼一種小巢狀麴菌(A.nidulans)δ-9去飽和酶之第二種例示性核酸序列,其在有些地方稱為AnD9DS v3。
序列辨識編號:50顯示藉由序列辨識編號:48至49例示之核酸所編碼的胺基酸序列(AnD9DS)。
序列辨識編號:51顯示另一例示性AnD9DS去飽和酶之胺基酸序列。
序列辨識編號:52顯示來自啤酒酵母菌(Saccharomyces cerevisiae)的一例示性天然δ-9去飽和酶(ScOLE1)之胺基酸序列。
序列辨識編號:53至66顯示可適用於一些實施例中之質體。
序列辨識編號:67至71包括可適用於一些實施例中之數種核酸調控元素。
序列辨識編號:72顯示一例示性AnD9DS去飽和酶之68個N端殘基(1至68)。
序列辨識編號:73顯示一例示性AnD9DS去飽和酶之175個C端殘基(281至455)。
序列辨識編號:74顯示質體pDAB110110之圖譜。
序列辨識編號:75顯示質體pDAB110112之圖譜。
序列辨識編號:76顯示編碼一例示性稻瘟黴菌(M.grisea)醯基-CoA δ-9去飽和酶之一例示性核酸序列,其 在有些地方稱為MgD9DS。
序列辨識編號:77顯示一胺基酸序列,其係包含在序列辨識編號:14之來自穎枯球腔菌(L.nodorum)的例示性天然δ-9去飽和酶內。
序列辨識編號:78顯示一胺基酸序列,其係包含在序列辨識編號:13之來自玉米穗蟲(H.zea)的例示性天然δ-9去飽和酶內。
詳細說明 I. 數個實施例之概述
吾等先前將來自小巢狀麴菌(Aspergillus nidulans)的一種真菌醯基-CoA δ-9去飽和酶植入油菜中,藉此達成籽油中的飽和脂肪酸水平之降低。美國專利申請公開案US 2008/0260933 A1。小巢狀麴菌(A.nidulans)δ-9去飽和酶所提供之硬脂酸酯耗竭作用(61至90%),係比籽油中含量更豐富的棕櫚酸酯脂肪酸高(36至49%)。因此,共同植入一種優先作用在棕櫚酸酯飽和物之δ-9去飽和酶,將藉由與小巢狀麴菌(A.nidulans)δ-9去飽和酶之偏好硬脂酸酯的活性互補,而達成總飽和物之進一步降低。在本發明的一些實施例中,揭露具有一範圍的受質特異性之真菌δ-9去飽和酶多肽。特定實施例包括一種偏好棕櫚酸酯的δ-9去飽和酶(如在此揭露之一種天然的真菌酵素或或其功能等效物;及經設計而偏好棕櫚酸受質之一種合成多肽)。
在此揭露編碼一種δ-9去飽和酶多肽之核酸分 子,其所包含之一核苷酸序列係與選自由序列辨識編號:3、序列辨識編號:4、序列辨識編號:5、序列辨識編號:8、序列辨識編號:9、序列辨識編號:10、序列辨識編號:11、序列辨識編號:15、序列辨識編號:16、序列辨識編號:17、序列辨識編號:44、序列辨識編號:45、序列辨識編號:48及序列辨識編號:49所組成之群組之一序列至少60%一致。在一些實施例中,該核酸分子可進一步包含與編碼δ-9去飽和酶多肽的序列操作連鎖之一基因調控元素。在特定實施例中,基因調控元素可為菜豆蛋白啟動子、菜豆蛋白5’未轉譯區、菜豆蛋白3’未轉譯區、農桿腫瘤菌(Agrobacterium tumefaciens)ORF13’未轉譯區、樹薯葉脈嵌紋病毒啟動子、煙草(Nicotiana tabacum)RB7基質結合區、T股邊界序列、LfKCS3啟動子及FAE1啟動子。
亦揭露δ-9去飽和酶多肽,其所包含之一胺基酸序列係與選自由序列辨識編號:12、序列辨識編號:13、序列辨識編號:14、序列辨識編號:50、序列辨識編號:52、序列辨識編號:72及序列辨識編號:73所組成之群組之一序列至少80%一致;以及揭露編碼該δ-9去飽和酶多肽之核酸分子。
在一些實施例中,核酸分子與δ-9去飽和酶多肽可在一種植物原料、細胞、組織或全株植物中表現,以降低植物原料、細胞、組織或全株植物中的飽和脂肪酸量,相對於在同一物種的野生型植物中所觀察到的量而言。本發明的任擇實施例包括用於降低植物原料、細胞、組織或 全株植物中的飽和脂肪酸量之方法。該等方法可包括以至少一種前述核酸分子轉形一種植物原料、細胞、組織或全株植物,藉此降低該植物原料、細胞、組織或全株植物中的飽和脂肪酸量。特定實施例係包括用於優先降低一種植物原料、細胞、組織或全株植物中之棕櫚酸及/或硬脂酸脂肪酸之方法。
可在例如植物或自植物(如擬南芥屬(Arabidopsis)的植物或油菜)所衍生的植物原料上,進行在此揭露之方法。一特定實施例係涉及用於創建或再生一種基因工程植物之方法,其中該植物中所包含的飽和脂肪酸量係低於同一物種的野生型植物,該方法包括以至少一種前述核酸分子轉形一種植物細胞或原料;及培養該轉形植物原料而得一種植物。亦揭露藉由前述任一方法所獲得之植物、植物原料、植物細胞及種子。
II. 縮寫
x:y△z 含有x個碳及在從羧基端算起的位置z含有y個雙鍵之脂肪酸
ACP 醯基載體蛋白
CoA 輔酶A
FA 脂肪酸
FAM 螢法素
FAS 脂肪酸合成酶
FAME 脂肪酸甲基酯
KASII β-酮醯基-ACP合成酶II
MUFA 單元不飽和脂肪酸
WT 野生型
III. 詞彙
脂肪酸:如用於此之“脂肪酸”一詞,係指具有例如自約C12至C22的不同鏈長之長鏈脂族酸(烷酸),雖然鏈長較長與較短的酸均為已知者。脂肪酸的結構係由符號x:y△z所代表,其中“x”係該特定脂肪酸中的碳(C)原子總數,及“y”係自該酸的羧基端算起之位置“z”之碳鏈中的雙鍵數目。
代謝途徑:“代謝途徑”一詞係指在一細胞內發生之藉由酵素催化的一系列化學反應,而形成一代謝產物或起始另一代謝途徑。一代謝途徑可能涉及數個或多個步驟,及可能與一種不同的代謝途徑競爭特定的反應受質。同樣地,一代謝途徑的產物可為又一代謝途徑的受質。
代謝工程:就本發明的目的而言,“代謝工程”係指循理設計改變一細胞中的一或多種代謝途徑之策略,藉此在該細胞中運作之整體代謝途徑的總體方案內,將一初始物質逐步改質成為具有所欲的確切化學結構之產物。
去飽和酶:如用於此之“去飽和酶”一詞,係指可在一或多種脂肪酸中去飽和(亦即植入一個雙鍵)而產生所感興趣的一脂肪酸或前驅物之一種多肽。一種植物可溶性脂肪酸去飽和酶酵素,可在一種飽和醯基-ACP受質中以位置特異性方式引入一個雙鍵。醯基-CoA去飽和酶可在一種飽和脂肪醯基-CoA受質中以位置特異性方式引入一個雙 鍵。該反應係涉及藉由一個二電子還原型二鐵中心之分子氧活化作用,而該二鐵中心係由四螺旋束配位形成去飽和酶結構的核心。在一些實施例中,特別感興趣的是醯基-Co-A δ-9去飽和酶。
δ-9-18:01-ACP去飽和酶係所有植物用於維持膜流動性所需者。雖然該酵素係主要將硬脂醯基-ACP去飽和,其在次要程度上亦具有對於棕櫚醯基-ACP的活性。
變異型去飽和酶:如用於此之“變異型去飽和酶”一詞,係涵蓋所展現的特定活性廓型係與產生特殊脂肪酸的一角色相符之該等去飽和酶。變異型去飽和酶可自一種生物體分離;經由一種定向演化方案改造;或自一或多種特性化去飽和酶改造成為一種納入保留型胺基酸的合成去飽和酶。
子代植物:就本發明的目的而言,“子代植物”係指可藉由植物育種方法獲得之任一植物或自其所得的植物原料。植物育種方法係技藝中眾所周知,及包括天然育種、人工育種、涉及DNA分子標記分析之選擇育種、基因轉殖技術及商業性育種。
植物原料:如用於此之“植物原料”一詞,係指自一種植物所得的任一細胞或組織。
核酸分子:核苷酸的一種聚合形式,其可包括RNA、cDNA、基因體DNA的訊息與反訊息股,及上述的合成形式與混合型聚合物。核苷酸係指核糖核苷酸、去氧核苷酸或任一核苷酸類型的改質形式。如用於此之“核酸分 子”係與“核酸”及“聚核苷酸”同義。該詞包括DNA的單股與雙股形式。一核酸分子可包括藉由天然存在及/或非天然存在的核苷酸連鎖而連結在一起之天然存在型與改質型核苷酸中之任一或二者。
如該等具一般技藝者即可理解者,核酸分子能以化學方式或生化方式改質,或可含有非天然或衍生化核苷酸鹼基。該改質作用例如包括標記、甲基化作用、以一類似物取一或多種天然存在的核苷酸、核苷酸間的改質作用,諸如未荷電連鎖(例如膦酸甲酯類、磷酸三酯類、胺基磷酸酯類、胺甲酸酯類等)、荷電連鎖(例如硫代磷酸酯類、二硫代磷酸酯類等)、側鏈基團(例如肽)、嵌合劑(例如吖啶、補骨脂素等)、螯合劑、烷化劑及改質型連鎖(例如α變旋異構核酸等)。“核酸分子”一詞亦包括任一拓撲構形,包括單股型、雙股型、部份雙股型、三股型、髮夾型、環型及扣鎖型構形。
操作連鎖:當第一種核酸序列與第二種核酸序列具有一功能性關係時,則第一種核酸序列係與第二種核酸序列操作連鎖。例如,若一啟動子影響一編碼序列的轉錄作用或表現作用時,則該啟動子係與該編碼序列操作連鎖。當以重組方式產生時,操作連鎖型核酸序列一般係鄰接的,及當需要連接二個蛋白編碼區時則位於同一閱讀架構中。然而,核酸並非必需鄰接方能操作連鎖。
調控元素:如用於此之“調控元素”一詞係指具有基因調控活性之一核酸分子;亦即具有影響一操作連鎖型 可轉錄性核酸分子的轉錄作用或轉譯作用之能力者。調控元素諸如啟動子、引導序列、內含子及轉錄作用終止區,其等係具有基因調控活性的非編碼核酸分子及在活細胞的整體基因表現作用中扮演不可分割的一部分。所分離出之在植物中發揮作用的調控元素,因此適用於經由分子工程技術而將植物表現型改質。“調控元素”係指決定一特定基因是否表現、何時及以何種水平表現之一系列核苷酸。調控型DNA序列係以特異性方式與調控蛋白或其他蛋白交互作用。
如用於此之“基因調控活性”一詞,係指可影響一操作連鎖型核酸分子的轉錄作用或轉譯作用之一核酸分子。具有基因調控活性之一種分離出的核酸分子,可提供操作連鎖型核酸分子之時序或空間表現作用或調制表現作用的水平與速率。具有基因調控活性之一種分離出的核酸分子可包含一啟動子、內含子、引導序列或3’轉錄終止區。
啟動子:如用於此之“啟動子”一詞,係指涉及RNA聚合酶II或其他蛋白諸如轉錄因子(調節轉錄作用之反式作用蛋白因子)之辨識與結合而起始一操作連鎖基因的轉錄作用之一核酸分子。啟動子本身可含有達成操作連鎖基因的轉錄作用之子元素,諸如順式作用元素或增強子域。“植物啟動子”係在植物細胞中具有功能之一種天然或非天然的啟動子。一種植物啟動子可作為用於調制一或多種操作連鎖基因的表現作用之一種5’調控元素。植物啟動子可由其等的時序、空間或在發育時期之表現模式界定。此述之核酸分子可包括包含啟動子的核酸序列。
序列一致性:如用於此之在二種核酸或多肽序列的上下文中的“序列一致性”或“一致性”一詞,可指在一指定的比較窗口進行最大對應的排比時之該二序列中的相同殘基。
當序列一致性百分比係參照蛋白質使用時,認知到不一致的殘基位置通常係因保留性胺基酸取代作用而不同,其中胺基酸殘基係被化學性質(如電荷、疏水性或位阻效應)相近的其他胺基酸殘基取代,及因此不改變該分子的功能性質。
因此,當序列因保留性取代作用而不同時,可將序列一致性百分比向上調整,以就非一致性殘基位點的取代作用之保留性質修正。因該等保留性取代作用而不同之序列,係稱作具有“序列相似性”或“相似性”。具一般技藝者熟知用於進行該項調整之技術。在通常的情況下,該等技術涉及將保留性取代作用評分為部分而非完全錯誤配對,藉此增加序列一致性百分比。例如,其中當一致性胺基酸的評分係介於0與1之間及非保留性取代作用的評分為0時,保留性取代作用之評分係介於0與1之間。可計算保留性取代作用之評分,例如PC/GENE程式(美國加州山景城(Mountain View)之英泰萊遺傳(Intelligenetics)公司)中所執行者。
如用於此之“序列一致性百分比”一詞,可指藉由在一比較窗口比較二種經最佳排比的序列所測得之數值,其中相較於供該二序列的最佳排比所用之參考序列(其不 具有添加或刪除),在比較窗口中之該序列部分可具有添加或刪除(亦即間隙)。百分比之計算係藉由測定在該二序列中出現一致性核苷酸或胺基酸殘基的位置之數目而得配對位置之數目,將比較窗口中之配對位置的數目除以位置總數,及將該結果乘以100而得序列一致性百分比。
一胺基酸序列中的類同位置:可藉由下列段落中所述之方法,進行核酸與胺基酸序列之排比。當排比時,若在共有序列內的位置係一致,則一序列中的一位置係與所排比序列中的一位置處於“類同位置”。
用於序列排比之方法係技藝中眾所周知。各種程式與排比演算法係述於:Smith與Waterman於期刊“Adv.Appl.math.”第2期第482頁(1981年)乙文;Needleman與Wunsch於期刊“J.Mol.Biol.”第48期第443頁(1970年)乙文;Pearson與Lipman於期刊“Proc.Natl.Acad.Sci.USA”第85期第2444頁(1988年)乙文;Higgins與Sharp於期刊“Gene”第73期第237-44頁(1988年)乙文;Higgins與Sharp於期刊“CABIOS”第5期第151-3頁(1989年)乙文;Corpet等人於期刊“Nucleic Acids Research”第16期第10881-10890頁(1988年)乙文;Huang等人於期刊“Computer Applications in the Biosciences”第8期第155-65頁(1992年)乙文;Pearson等人於期刊“Methods in Molecular Biology”第24期第307-31頁(1994年)乙文;Tatiana等人於期刊“FEMS Microbiol.Lett.”第174期第247-50頁(1990年)乙文。Altschul等人於期刊“J.Mol.Biol.”第215期第403-10頁(1990年)乙文(序列排比方法 與同源性計算之詳細考量)。
可在網際網路(網址blast.ncbi.nlm.nih.gov/Blast.cgi)上取得國家生物技術資訊中心(NCBI)的基本局部排比搜尋工具(BLAST),以用於序列分析程式例如blastp與blastn。可經由NCBI網址blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs,而在網際網路上取得如何使用該程式測定序列一致性之說明。
就胺基酸序列之比較而言,BLAST程式的“Blast 2序列”功能(bl2seq)之運用係採用預設參數。可由嫻熟技藝者酌情調整特定參數,例如提供針對錯誤配對之罰分或針對配對之獎酬。
轉形:如用於此之“轉形”一詞,係指在一細胞、組織、器官或生物體中植入一外來核酸分子,諸如一構築質體。所植入的核酸分子可被納入受方細胞、組織、器官或生物體之基因體DNA中,藉此所植入的聚核苷酸分子係由後續子代所繼承。“基因轉殖型”或“轉形”細胞或生物體亦包括該細胞或生物體的子代,及包括從採用該基因轉殖植物作為例如一雜交種的母株及展現源自存在一外來核酸分子之改變的表現型之育種方案所產生的子代。
IV.降低一宿主細胞、組織或生物體中的飽和脂肪酸之代謝工程方法
A. 概述
本發明的一實施例係包括在植物種子中植入具 有特定醯基-CoA偏好(例如對於棕櫚酸或硬脂酸)的δ-9去飽和酶。δ-9去飽和酶之特定醯基-CoA偏好使其能夠導向某些特定飽和脂肪酸池(如導向棕櫚酸酯而轉化為單元不飽和產物)。選擇醯基-Co-A δ-9去飽和酶用於降低植物中的飽和脂肪酸含量,因植物系統正常不會產生任何明顯程度之醯基-Co-A δ-9去飽和酶。
B. 多肽
如本發明的一些實施例之多肽係包含一胺基酸序列,其當與選自由序列辨識編號:12、序列辨識編號:13、序列辨識編號:14、序列辨識編號:50、序列辨識編號:52、序列辨識編號:72及序列辨識編號:73所組成之群組之一序列排比時,顯示遞增的一致性百分比。在該等及其他實施例中之特定胺基酸序列,可包含與前述序列的一致性係例如至少約70%、約75%、約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%或100%之序列。在眾多實施例中,當與前述序列排比時具有前述的序列一致性之胺基酸序列,係編碼具酵素性δ-9-18:0-ACP去飽和酶活性之一肽或該肽之一部分。
C. 核酸
一些實施例係包括編碼上述一種多肽之核酸分子。例如,一些實施例中的核酸序列當與選自由序列辨識編號:3、序列辨識編號:4、序列辨識編號:5、序列辨識編號:8、序列辨識編號:9、序列辨識編號:10、序列辨 識編號:11、序列辨識編號:15、序列辨識編號:16、序列辨識編號:17、序列辨識編號:44、序列辨識編號:45、序列辨識編號:48及序列辨識編號:49所組成之群組之一序列排比時,顯示遞增的一致性百分比。在該等及其他實施例中之特定核酸序列,其所包含的序列與選自由序列辨識編號:3、序列辨識編號:4、序列辨識編號:5、序列辨識編號:8、序列辨識編號:9、序列辨識編號:10、序列辨識編號:11、序列辨識編號:15、序列辨識編號:16、序列辨識編號:17、序列辨識編號:44、序列辨識編號:45、序列辨識編號:48及序列辨識編號:49所組成之群組之一序列之一致性可例如至少約60%、約65%、約70%、約75%、約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%或100%。具一般技藝者瞭解,例如可藉由依據密碼子簡併性引入容許的核苷酸取代作用而將核酸分子改質,及未顯著改變所編碼之多肽的胺基酸序列。
在一些實施例中,本發明的核酸分子包含一種基因調控元素(如啟動子)。可基於將在其中插入載體構築質體之細胞類型,而選擇啟動子。在細菌、酵母及植物中作用之啟動子係技藝中眾所周知。亦可基於其等的調控特性,而選擇啟動子。該等特性的實例包括轉錄活性之增強、誘導性、組織特異性及發育階段特異性。在植物中,曾述及誘導性、病毒或合成來源、具組成性活性、經時序調節及經空間調節之啟動子。如參見Poszkowski等人(1989年)於期 刊“EMBO J.”第3期第2719頁乙文;Odell等人(1985年)於期刊“Nature”第313期第810頁乙文;及Chau等人(1989年)於期刊“Science”第244期第174-81頁乙文)。
適用的誘導性啟動子例如包括藉由施用安全劑(經取代的苯磺醯胺除草劑)誘發的水楊酸或聚丙烯酸類所誘導之啟動子、熱休克啟動子、衍生自菠菜硝酸鹽還原酶可轉錄性核酸分子序列之硝酸鹽誘導性啟動子、荷爾蒙誘導性啟動子及與RuBP羧化酶的小型次單元及LHCP家族相關聯之光誘導性啟動子。
適用的組織特異性、發育調節型啟動子之實例,係包括β-伴大豆球蛋白7S啟動子與種子特異性啟動子。適用於在種子質體中的擇優表現作用之植物功能性啟動子,係包括該等來自涉及油籽中的脂肪酸生物合成作用之蛋白及來自植物儲存性蛋白者。該等啟動子之實例係包括來自該等可轉錄性核酸分子序列之5’調控區,如菜豆蛋白、油菜儲藏蛋白、玉米蛋白、黃豆胰蛋白酶抑制劑、ACP、硬脂醯基-ACP去飽和酶及油體膜蛋白。另一例示性組織特異性啟動子,係對於種子組織具特異性之凝集素啟動子。
其他適用的啟動子包括胭脂鹼合成酶、甘露鹼合成酶及章魚肉鹼合成酶啟動子,其係攜載於農桿腫瘤菌(Agrobacterium tumefaciens)的誘發腫瘤性質體上;花椰菜嵌紋病毒(CaMV)19S與35S啟動子;增強型CaMV35S啟動子;玄參嵌紋病毒35S啟動子;來自核酮糖-1,5-雙磷酸羧化酶(ssRUBISCO)的小型次單元之光誘導性啟動子;來自菸草 的EIF-4A啟動子(Mandel等人(1995年)於期刊“Plant Mol.Biol.”第29期第995-1004頁乙文);玉米蔗糖合成酶;第I型玉米酒精去氫酶;玉米捕光複合體;玉米熱休克蛋白質;來自擬南芥屬(Arabidopsis)的殼質酶啟動子;LTP(脂質轉運蛋白)啟動子;矮牽牛查耳酮異構酶;第1型豆類富含甘胺酸蛋白質;馬鈴薯塊莖儲藏蛋白;泛素啟動子;及肌動蛋白啟動子。適用的啟動子較佳具有種子選擇性、組織選擇性或誘導性。種子特異性調節作用係論述於例如EP 0255378中。
為獲致一異源基因較高的表現作用,較佳者可能是重新設計該基因,藉此其在表現作用宿主細胞(例如油菜、稻米、菸草、玉米、棉花及黃豆之一植物細胞)中更有效地表現。因此,在設計供植物表現之編碼一種δ-9去飽和酶的一基因之一個選擇性附加步驟(亦即除了提供一或多種基因調控元素之外),係重新設計供最佳表現作用之一種異源基因的蛋白編碼區。特定實施例包括經重新設計之基因,其已最佳化而使得一種基因轉殖型油菜植物細胞或擬南芥屬(Arabidopsis)植物細胞中的表現水平,係高於(亦即產生更多蛋白)一種經天然存在的異源基因序列轉形之油菜植物細胞或擬南芥屬(Arabidopsis)植物細胞。
由於遺傳密碼的冗餘性/簡併性所提供之可塑性(亦即一些胺基酸係被一個以上的密碼子指定),基因體在不同的生物體或生物體類型中之演化造成同義密碼子之示差性使用。該”密碼子偏移”係反映在蛋白質編碼區的平均鹼 基組成。例如,生物體的基因體若具有較低的G+C含量,則在同義密碼子的第三個位置具有A或T之密碼子之使用率將較高;而該等具有較高的G+C含量者,則在第三個位置具有G或C的密碼子之使用率較高。此外,據認為在一mRNA內若存在“次要”密碼子,則可能降低該mRNA的絕對轉譯速率,尤其當對應於該次要密碼子之荷電tRNA的相對豐度較低時。該推理之延伸在於就多個次要密碼子而言,轉譯作用速率將因個別次要密碼子之減值而至少是加成的。因此,在一特定的表現作用宿主中之mRNA的次要密碼子相對含量若高,則將具有相應低的轉譯作用速率。該速率可由相應低的編碼蛋白質水平反映。
在設計在油菜或擬南芥屬(Arabidopsis)(或其他植物諸如稻米、菸草、玉米、棉花或黃豆)中表現之用於編碼一種δ-9去飽和酶的最佳化基因時,若已測定預期宿主植物之密碼子偏移係有利的。存在多個公開可用的DNA序列資料庫,其中可取得有關植物基因體的密碼子分布或各種植物基因的蛋白質編碼區之資訊。
密碼子偏移係表現作用宿主(如諸如油菜或擬南芥屬(Arabidopsis)之一植物)用於編碼其蛋白質的胺基酸之密碼子的統計分布。能以單一密碼子相對於所有胺基酸的密碼子之使用頻率之形式,計算密碼子偏移。任擇地,可相對於用於該胺基酸的其他所有密碼子(同義密碼子),以單一密碼子用於編碼一特定胺基酸之頻率,計算密碼子偏移。
在設計用於在植物中表現δ-9去飽和酶基因之最 佳化編碼區時,應判定該植物所偏好的首要(“第一選擇”)密碼子,以及當存在多種選擇時之較佳密碼子的第二、第三、第四選擇等。然後可設計編碼δ-9去飽和酶基因的胺基序列之新DNA序列,其中新DNA序列係藉由表現宿主首選(第一首選、第二首選、第三首選或第四首選等)的密碼子之取代作用來指定該胺基酸序列內的各位置之胺基酸,而與天然的DNA序列(編碼該去飽和酶)不同。然後分析可能已藉由改質作用創建之新序列的限制酶位點。所確定的推定性限制酶位點係藉由以下一個首選的密碼子置換該等密碼子而進一步改質,以移除該限制酶位點。序列中可影響異源序列的轉錄作用或轉譯作用之其他位點,係外顯子:內含子連接處(5’或3’)、多聚腺苷酸添加訊號及/或RNA聚合酶終止訊號。可進一步分析與改質該序列,以降低TA或CG雙重組態之頻率。除了該等雙重組態之外,具有超過約六個相同的G或C核苷酸之序列區塊,亦可能不利於該序列的轉錄或轉譯作用。因此,藉由以選項中的下一個首選密碼子置換第一或第二選擇等的密碼子而改質該等區塊係有利的。
上述方法使嫻熟技藝者得以將對於一特定植物而言的外來基因改質,藉此最佳化該基因在植物中之表現。該方法係進一步說明於PCT申請案WO 97/13402中。因此,在功能上與一些實施例的去飽和酶/基因等效之最佳化的合成基因,可用於轉形包括植物在內之宿主。有關產生合成基因之其他指引,可參見例如第5,380,831號美國專利。
一旦在紙上或電腦上設計出一種植物最佳化DNA序列,可在實驗室中合成在序列上與所設計序列精確對應之實際DNA分子。可選殖及在其他情況下確切地操作該等合成的DNA分子,如同其等係衍生自天然或原生來源一般。
D. 用於植物原料之基因轉形方法
一些實施例係有關於產生包含一或多種核酸分子的一轉形細胞之一種方法,該核酸分子所包含的一核酸序列係與選自由序列辨識編號:3、序列辨識編號:4、序列辨識編號:5、序列辨識編號:8、序列辨識編號:9、序列辨識編號:10、序列辨識編號:11、序列辨識編號:15、序列辨識編號:16、序列辨識編號:17、序列辨識編號:44、序列辨識編號:45、序列辨識編號:48及序列辨識編號:49所組成之群組之一序列至少60%一致。該等核酸分子亦可包含例如非編碼調控元素,諸如啟動子。亦可將其他序列連同非編碼調控元素與可轉錄性核酸分子序列植入該細胞中。該等其他序列可包括3’轉錄終止子、3’多腺苷酸化訊號、其他未轉譯序列、轉運或導向序列、可選擇性標記、增強子及操作子。
轉形方法一般包括選擇一種適宜的宿主細胞、以一重組載體將宿主細胞轉形及獲致轉形宿主細胞之步驟。用於將DNA植入細胞中之技術係嫻熟技藝者所熟知。該等方法一般可分成五種類別:(1)化學方法(Graham與Van der Eb(1973年)於期刊“Virology”第54(2)期第536-9頁乙文; Zatloukal等人(1992年)於期刊“Ann.N.Y.Acad.Sci.”第660期第136-53頁乙文);(2)物理方法諸如顯微注射(Capechi(1980年)於期刊“Cell”第22(2)期第479-88頁乙文)、電穿孔作用(Wong與Neumann(1982年)於期刊“Biochim.Biophys.Res.Commun.”第107(2)期第584-7頁乙文;Fromm等人(1985年)於期刊“Proc.Natl.Acad.Sci.USA”第82(17)期第5824-8頁乙文;第5,384,253號美國專利)及粒子加速作用(Johnston與Tang(1994年)於期刊“Methods Cell Biol.”第43(A)期第353-65頁乙文;Fynan等人(1993年)於期刊“Proc.Natl.Acad.Sci.USA”第90(24)期第11478-82頁乙文;(3)病毒載體(Clapp(1993年)於期刊“Clin.Perinatol.”第20(1)期第155-68頁乙文;Lu等人(1993年)於期刊“J.Exp.Med.”第178(6)期第2089-96頁乙文;Eglitis與Anderson(1988年)於期刊“Biotechniques”第6(7)期第608-14頁乙文);(4)受體介導型機制(Curiel等人(1992年)於期刊“Hum.Gen.Ther.”第3(2)期第147-54頁乙文;Wagner等人(1992年)於期刊“Proc.Natl.Acad.Sci.USA”第89(13)期第6099-103);及(5)細菌介導型機制,諸如藉由農桿菌屬(Agrobacterium)。任擇地,可藉由直接注射至植物的生殖器官,而將核酸直接植入花粉中。Zhou(1983年)於期刊“Methods in Enzymology”第101期第433頁乙文;Hess(1987年)於期刊“Intern.Rev.Cytol.”第107期第367頁乙文;Luo等人(1988年)於期刊“Plant Mol.Biol.Reporter”第6期第165頁乙文;Pena等人(1987年)於期刊“Nature”第325期第274頁乙文。其他轉形方法例如包括原 生質體轉形作用,如第5,508,184號美國專利中所說明。亦可將核酸分子注射至未成熟胚中。Neuhaus等人(1987年)於期刊“Theor.Appl.Genet.”第75期第30頁乙文。
用於植物細胞轉形之最常用的方法係:農桿菌屬(Agrobacterium)介導型DNA轉移法(Fraley等人(1983年)於期刊“Proc.Natl.Acad.Sci.USA”第80期第4803頁乙文)(如第5,824,877號美國專利;第5,591,616號美國專利;第5,981,840號美國專利;及第6,384,301號美國專利中所說明)及生物發射或微粒發射轟擊介導型方法(亦即基因槍)(諸如第5,550,318號美國專利;第5,538,880號美國專利;第6,160,208號美國專利;第6,399,861號美國專利;及第6,403,865號美國專利中所述)。在通常的情況下,核轉形作用係所欲的,但當諸如葉綠體或澱粉體的質體之特別轉形作用係有利時,可利用微粒發射介導輸送特定植物物種諸如例如擬南芥屬(Arabidopsis)、菸草、馬鈴薯及蕓苔屬(Brassica)物種中的所欲核酸分子,而將植物質體轉形。
經由使用屬於農桿菌屬(Agrobacterium)之一種基因工程土壤細菌,而達成農桿菌屬(Agrobacterium)所介導的轉形作用。數種農桿菌屬(Agrobacterium)物種介導一種稱作“T-DNA”的特定DNA之轉移,其可經基因工程而攜帶所欲的DNA片段進入多種植物物種中。標記T-DNA介導型致病機轉技術之主要事件為:誘導致病性基因及T-DNA之處理與轉移。該技術係眾多評論之主題。如參見Ream(1989年)於期刊“Ann.Rev.Phytopathol.”第27期第 583-618頁乙文;Howard與Citovsky(1990年)於期刊“Bioassays”第12期第103-8頁乙文;Kado(1991年)於期刊“Crit.Rev.Plant Sci.”第10期第1-32頁乙文;Zambryski(1992年)於期刊“Annual Rev.Plant Physiol.Plant Mol.Biol.”第43期第465-90頁乙文;Gelvin(1993年)於美國加州聖地牙哥的學術出版社(Academic Press)所出版及由Kung與Wu編輯之“基因轉殖植物(Transgenic Plants)”乙書第49-87頁乙文;Binns與Howitz(1994年)於德國柏林的施普林格(Springer Verlag)公司所出版及由Dang編輯之“基因轉殖植物植物與動物之細菌致病機轉(Bacterical Pathogenesis of Plants and Animals)”乙書第119-38頁乙文;Hooykaas與Beijersbergen(1994年)於期刊“Ann.Rev.Phytopathol.”第32期第157-79頁乙文;Lessl與Lanka(1994年)於期刊“Cell”第77期第321-4頁乙文;及Zupan與Zambryski(1995年)於期刊“Annual Rev.Phytopathol.”第27期第583-618頁乙文。
為在不論轉形方法之情況下進行轉形植物細胞之挑選或評分,植入該細胞中的DNA可含有一基因,其在可再生的一植物組織中作用產生一化合物而賦予該植物組織對於一種原本具毒性的化合物之抗性。使用作為一種可選擇性、可篩選性或可評分性標記之所感興趣的基因,係包括但不限於β-葡萄醣醛酸酶(GUS)、綠螢光蛋白(GFP)、螢光素酶及耐抗生素或除草劑基因。抗生素抗藥性基因之實例,係包括賦予對於盤尼西林、康黴素(kanamycin)(及新黴素、G418、博萊黴素(bleomycin));甲氨蝶呤(及甲氧苄 啶);氯黴素;及四環黴素的抗性之基因。例如,可藉由一種除草劑抗性基因,而賦予對於草甘膦之抗性。Della-Cioppa等人(1987年)於期刊“Bio/Technology”第5期第579-84頁乙文。亦可施行其他挑選方法,例如包括及不限於對於草胺膦、畢拉草(bialaphos)的耐受性及正向選擇機制(Joersbro等人(1998年)於期刊“Mol.Breed.”第4期第111-7頁乙文),及其等係視為位於本發明的實施例之範圍內。
藉由選擇或篩選作用辨識出轉形細胞及在支持再生作用的適當培養基中培養,然後可讓其成熟成為植物。
目前所揭露的方法可用於任何可轉形的植物細胞或組織。如用於此之可轉形的細胞與組織,係包括但不限於可進一步增殖而產生一植物之該等細胞或組織。嫻熟技藝者瞭解當在數種可轉形的植物細胞或組織中插入外源DNA及經適當的培養條件後,該植物細胞或組織可形成一分化植物。適用於該等目的之組織可包括但不限於未成熟胚、盾片組織、懸浮性細胞培養、未成熟花序、芽頂分生組織、節的外植體、癒合組織、下胚軸組織、子葉、根及葉。
來自轉形植物原生質體或外植體之植物的再生作用、發育及栽培係技藝中所知。美國加州聖地牙哥的學術出版社(Academic Press)所出版之Weissbach與Weissbach(1988年)所編輯的“植物分子生物學方法(Methods for Plant Molecular Biology)”乙書;Horsch等人(1985年)於期刊“Science”第227期第1229-31頁乙文。該再生 作用與生長方法典型地包括篩選轉形細胞及培養該等細胞經過胚發育至生根小植株階段的通常階段之步驟。基因轉殖型胚與種子係以類似方式再生。在該方法中,轉形株一般在一種選擇性培養基之存在下培養,該選擇性培養基選擇成功轉形的細胞及誘導植物芽之再生作用。Fraley等人(1993年)於期刊“Proc.Natl.Acad.Sci.USA”第80期第4803頁乙文。典型地在2至4個月內獲得該等芽。之後,將所產生之生根的基因轉殖型芽種植於適當的植物生長介質諸如土壤中。可在支持植物再生作用的培養基中,培養在暴露於一選擇劑後存活之細胞,或在一篩選分析中經評定為陽性之細胞。然後可將芽轉移至一種適當的促根性培養基中,其中含有選擇劑與一種抗生素以避免細菌生長。許多芽將發育出根。然後將其等移植至土壤或其他介質中,以容許根繼續發育。上述方法一般將依所採用的特定植物品系而異,及該方法的細節因此將由嫻熟技藝者酌情決定。
再生的基因轉殖植物可自花授粉而提供同型接合的基因轉殖植物。任擇地,自再生的基因轉殖植物所得之花粉,可與非基因轉殖植物及較佳為農藝上的重要物種之自交系雜交。相反地,來自非基因轉殖植物的花粉可用於授粉再生的基因轉殖植物。
基因轉殖植物可將所轉形的核酸序列傳給其子代。對於所轉形的核酸序列而言,該基因轉殖植物較佳為同型接合,及在有性生殖之際及因有性生殖的結果而將該序列傳給其所有後代。可能從基因轉殖植物所產生的種子 長出子代。該等附加的植物然後可自花授粉而產生純系植物。
除了其他事項外,可評估該等植物的子代之基因表現作用。可藉由數種常用方法檢測基因表現作用,諸如西方墨點法、北方墨點法、免疫沉澱法及ELISA(酵素連結免疫吸附分析)。亦可分析轉形植物是否存在所植入的DNA及其表現水平及/或藉由本發明的核酸分子與胺基酸分子所賦予的脂肪酸廓型。嫻熟技藝者知悉可用於分析轉形植物之眾多方法。例如,用於植物分析之方法包括但不限於南方墨點法或北方墨點法、PCR式方法、生化分析、表現型篩選方法、實地評估及免疫診斷分析。
特別用於將雙子葉植物轉形之方法係嫻熟技藝者所熟知。曾述及在數種作物中使用該等方法之轉形作用及植物再生作用,該等作物包括但不限於擬南芥屬(Arabidopsis)、棉花(Gossypium hirsutum)、黃豆(Glycine max)、花生(Arachis hypogaea)及蕓苔屬(Brassica)之成員。雙子葉植物之轉形方法係主要藉由使用農桿腫瘤菌(Agrobacterium tumefaciens),及已發表所獲得之下列各者的基因轉殖植物:棉花(第5,004,863號美國專利;第5,159,135號美國專利;第5,518,908號美國專利);黃豆(第5,569,834號美國專利;第5,416,011號美國專利;McCabe等人(1988年)於期刊“Biotechnology”第6期第923頁乙文;Christou等人(1988年)於期刊“Plant Physiol.”第87期第671-4頁乙文);蕓苔屬(Brassica)(第5,463,174號美國專利);花生 (Cheng等人(1996年)於期刊“Plant Cell Rep.”第15期第653-7頁乙文;McKently等人(1995年)於期刊“Plant Cell Rep.”第14期第699-703頁乙文);木瓜;及豆(Grant等人(1995年)於期刊“Plant Cell Rep.”第15期第254-8頁乙文)。
單子葉植物之轉形方法亦為技藝中眾所周知。曾述及在數種作物中使用該等方法之轉形作用及植物再生作用,該等作物包括但不限於大麥(Hordeum vulgarae);玉米(Zea mays);燕麥(Avena sativa);果園草(Dactylis glomerata);稻米(Oryza sativa及包括在來米與蓬來米變種);高粱(Sorghum bicolor);甘蔗(Saccharum sp);高牛毛草(Festuca arundinacea);草坪草物種(如匍匐翦股穎(Agrostis stolonifera)、草地早熟禾(Poa pratensis)、聖奧古斯丁草(Stenotaphrum secundatum));小麥(Triticum aestivum);及苜蓿草(Medicago sativa)。嫻熟技藝者明瞭可使用數種轉形方法,及將其等修改用於生產所感興趣之任一數目的目標作物之安定的基因轉殖植物。
在目前所揭露的方法中可選擇使用任一植物。用於如本發明之改質作用的較佳植物,例如包括及不限於油籽植物、阿拉伯芥(Arabidopsis thaliana)、琉璃苣(琉璃苣屬(Borago)物種)、油菜(蕓苔屬(Brassica)物種)、蓖麻(Ricinus communis)、可可豆(Theobroma cacao)、玉米(Zea mays)、棉花(棉花屬(Gossypium)物種)、海邊芥藍屬(Crambe)物種、花柳屬(Cuphea)物種、亞麻(亞麻屬(Linum)物種)、雷斯克勒屬(Lesquerella)與澤花屬(Limnanthes)物種、黃麻、旱金蓮 屬(Tropaeolum)物種、月見草屬(Oenothera)物種、木樨欖屬(Olea)物種、棕櫚(油椰子屬(Elaeis)物種)、花生(花生屬(Arachis)物種)、油菜籽、紅花(紅花屬(Carthamus)物種)、黃豆(大豆亞屬(Glycine)與黃豆亞屬(Soja)物種)、向日葵(向日葵屬(Helianthus)物種)、菸草(菸草屬(Nicotiana)物種)、斑鳩菊屬(Vernonia)物種、小麥(小麥屬(Triticum)物種)、大麥(大麥屬(Hordeum)物種)、稻米(稻屬(Oryza)物種)、燕麥(燕麥屬(Avena)物種)、高粱(高粱屬(Sorghum)物種)及黑麥(黑麥屬(Secale)物種)或禾本科(Gramineae)的其他成員。
嫻熟技藝者明瞭可使用數種轉形方法,及將其等修改用於生產所感興趣之任一數目的目標作物之安定的基因轉殖植物。
E. 基因轉殖型種子
在一些實施例中,一基因轉殖型種子可包含一種δ-9去飽和酶多肽,其所包含之一胺基酸序列係與選自由序列辨識編號:12、序列辨識編號:13、序列辨識編號:14、序列辨識編號:50、序列辨識編號:51、序列辨識編號:52、序列辨識編號:72及序列辨識編號:73所組成之群組之一序列至少80%一致。在該等及其他實施例中,該基因轉殖型種子可包含一核酸序列,其與選自由序列辨識編號:3、序列辨識編號:4、序列辨識編號:5、序列辨識編號:8、序列辨識編號:9、序列辨識編號:10、序列辨識編號:11、序列辨識編號:15、序列辨識編號:16、序列辨識編號:17、序列辨識編號:44、序列辨識編號:45、 序列辨識編號:48及序列辨識編號:49所組成之群組之一序列之一致性係至少60%。在特定實施例中,一基因轉殖型種子可展現較低水平的飽和脂肪酸(例如棕櫚酸脂肪酸及/或硬脂酸脂肪酸)。可自一種可增殖性基因轉殖植物採收種子,及可用於栽培轉形植物的子代,該等轉形植物包括含有如上文所列的至少一種核酸序列及選擇性地至少一種附加的基因或所感興趣的核酸構築質體之雜交植物系。
在此所引述的各文件、專利及參考文獻係在此完整地併入本案。
提供下列實例來說明一些特定的特性及/或實施例。該等實例不應被解釋為將本發明侷限於所述的特定特性或實施例。
實例 第I例:在ole1缺陷型酵母中之醯基-CoA δ-9去飽和酶之選殖及功能特性分析
稻瘟黴菌(Magnaporthe grisea)醯基-CpA δ-9去飽和酶之選殖
使用以NCBI/博大研究所(Broad Institute)所發表之最初註解為一種“假設性蛋白”的一序列為基礎之引子,自基因體DNA分離出稻瘟黴菌(Magnaporthe grisea)醯基-CoA δ-9去飽和酶基因(MgD9DS),及其與啤酒酵母菌(S.cerevisiae)醯基-CoA δ-9去飽和酶(亦即OLE1)在核苷酸階層的一致性為55.4%。設計長度各為41鹼基對之前置與反置引子。前置引子Mg△9F(序列辨識編號:1)在5’端包括一個EcoRI 位點。反置引子Mg9△R(序列辨識編號:2),含有位於三個閱讀架構之各者中之終止密碼子及一個終端XhoI位點。
使用寶(Takara)EZ TaqTM PCR套組(日本滋賀縣大津之寶生物(Takara Bio)股份有限公司),遵循製造商的操作程序,進行MgD9DS基因之PCR擴增。擴增條件係在94℃達1分鐘,接著進行於94℃達30秒、於60℃達60秒及於72℃延伸90秒之循環30次。最終延伸步驟係於72℃進行10分鐘。從瓊脂凝膠割取所預期的1,425鹼基對PCR產物,及依製造商(美國麻薩諸塞州比勒麗卡(Billerica)的密里博(Millipore)公司)的建議,使用蒙太奇(Montage)離心管柱純化。將純化後的片段選殖至pCR®2.1 TOPO®選殖載體(美國加州卡爾斯巴德(Carlsbad)的英杰(Invitrogen)公司)中。按照供應商的條件,將TOPO反應轉形至化學勝任的Top 10大腸桿菌(E.coli)細胞中。將含有推定性殖株的細菌菌落分離。使用一種馬歇雷-納格爾(Macherey-Nagel)核酸離心(Nucleospin)DNA分離套組(德國迪倫(Düren)紐曼尼安德大街(Neumann-Neander-Strasse)的馬歇雷-納格爾公司)進行小量質體製備,及以EcoRIXhoI限制酶剪切DNA。辨識出含有預期的1,425鹼基對MgD9DS基因片段之陽性殖株。經由定序反應取得核苷酸序列。PCR擴增片段之序列係列為序列辨識編號:3。
序列分析揭露位於MgD9DS基因的5’端之一個小型(90bp)內含子。使用裁切重疊延伸式PCR,移除內含子。將所產生的PCR擴增子凝膠純化,選殖至pCR®2.1 TOPO®選殖載體中,及轉形至Top 10大腸桿菌(E.coli)細胞中。經由來自單一轉形株菌落的純化DNA之限制酶剪切物的分析,辨識出數種殖株。進行該等殖株之定序,以確認存在一種無內含子的MgD9DS殖株。所產生的序列係列為序列辨識編號:4。
將具有與不具有內含子的MgD9DS基因,各以EcoRI/XhoI片段之形式次選殖至一種酵母表現載體中。該酵母表現載體含有一種小巢狀麴菌(Aspergillus nidulans)δ-9去飽和酶(AnD9DS)基因,其兩側為啤酒酵母菌(S.cerevisiae)δ-9去飽和酶啟動子與δ-9去飽和酶3’UTR/終止子。在一EcoRI/XhoI片段上割取小巢狀麴菌(Aspergillus nidulans)δ-9去飽和酶基因,其係以含有MgD9DS基因的片段或含有MgD9DS基因之無內含子的片段置換。含有MgD9DS基因的二種殖株(一者具有一內含子及一者不具有內含子)繼續用於啤酒酵母菌(S.cerevisiae)的轉形作用。
在具有Tween®80的酵母蛋白ㄅ右旋葡萄糖(YPD)培養基上維持之一種δ-9去飽和酶缺陷型啤酒酵母菌(S.cerevisiae)品系(OFY093),係使用鹼性-陽離子(Alkali-Cation)酵母轉形套組(加拿大蒙特婁的魁北基因(Qbiogene)公司)進行轉形。藉由在不含Tween®80(單元不飽和脂肪酸增補劑)或尿嘧啶(具有SC-URA之省卻成份基礎瓊脂)的培養基上生長,而辨識互補品系。互補品系係在選擇性培養基上純化三次之單一菌落。藉由δ-9去飽和酶基因的PCR擴增作用,而進一步驗證互補品系,及進行PCR產物之定序。 此外,藉由在YPD+Tween 80®培養基上繼代培養該品系至少三次,然後將該品系敷塗至減去Tween®80的DOBASC-URA培養基,而還原含有MgD9DS殖株之品系的脂肪酸與尿嘧啶依賴性。
含有內含子的MgD9DS編碼序列之表現作用不成功,表示內含子未被酵母的配備工具裁切。藉由FAME分析,進一步特徵分析含有無內含子的MgD9DS編碼序列之酵母品系的受質特異性。
穎枯球腔菌(Leptosphaeria nodorum)醯基-CoA δ-9去飽和酶之選殖
藉由使用BlastN搜尋,自穎枯球腔菌(L.nodorum)EST的一集合中辨識出二種穎枯球腔菌(Leptosphaeria nodorum)EST序列(分別為1,246個與429鹼基對),其等具有與啤酒酵母菌(S.cerevisiae)醯基-CoA δ-9去飽和酶(OLE1)之高水平的序列一致性(分別為54.0%與54.2%)。當排比時,該等序列彼此的一致性為64.6%,表明存在二種獨特的穎枯球腔菌(Leptosphaeria nodorum)醯基-CoA δ-9去飽和酶。藉由以1,246鹼基對的基因探針篩選穎枯球腔菌(L.nodorum)cDNA庫,而分離出一種LnD9DS-1基因(序列辨識編號:5)。取得該基因的序列,及分離編碼序列。首先藉由429鹼基對的EST序列,對於所發表的博大研究所(Broad Institute)穎枯球腔菌(Leptosphaeria nodorum)基因體序列進行BLAST搜尋,而分離出一種LnD9DS-2基因的完整序列。該搜尋辨識出超級重疊群Ln 1.4係含有與該429鹼基對片段 100%同源性之一基因,該基因經註解為編碼一種“假設性蛋白”。接著使用以Ln 1.4超級重疊群序列為基礎之PCR引子,從穎枯球腔菌(Leptosphaeria nodorum)cDNA庫選殖LnD9DS-2基因。所用的引子序列為Lnd9FAD2F(序列辨識編號:6)與Lnd9FAD2R(序列辨識編號:7)。前置引子經設計具有一個5’BamHI位點,而反置引子含有位於三個閱讀架構中的終止密碼子及一個終端NcoI位點。
將一等分試樣的穎枯球腔菌(Leptosphaeria nodorum)cDNA庫稀釋1/10,而提供PCR反應所用的400奈克模板DNA。使用寶(Takara)EZ TaqTM PCR套組,遵循所建議的擴增條件,於94℃達1分鐘及接著進行於94℃達30秒、於60℃達60秒及於72℃延伸90秒之循環30次,而進行PCR擴增作用。最終延伸步驟係於72℃進行10分鐘。自瓊脂凝膠割取預期的1,370鹼基對之產物,及依製造商的建議使用蒙太奇(Montage)離心管柱純化。將純化後的片段選殖至pCR®2.1 TOPO®選殖載體中。依據製造商建議的操作程序,將接合反應轉形至化學勝任的Top 10大腸桿菌(E.coli)細胞中。將含有推定性殖株之菌落分離。以馬歇雷-納格爾核酸離心(Nucleospin)管柱進行小量質體製備,及以BamHINcoI限制酶剪切DNA。進行推定性LnD9DS-2殖株之鑑定與定序。
在定序時,藉由與“假設性蛋白”序列比較,而確認LnD9DS-2(序列辨識編號:8)之一殖株。辨識出LnD9DS-2的序列中之一保留性變化。藉由在鹼基位置271以腺嘌呤取 代胸腺嘧啶,而將密碼子TGC(半胱胺酸)變為AGC(絲胺酸),該密碼子轉譯為所發表序列中的第89個胺基酸。其係一保留性變化,及在多種絲狀真菌中未發現半胱胺酸係一高度保留型胺基酸,故未試圖修正。
將序列辨識編號:5與8的LnD9DS-1與LnD9DS-2基因分別地選殖至一酵母表現載體中。藉由限制酶分析與DNA定序,確認含有LnD9DS-1與LnD9DS-2編碼序列中任一者之殖株。
在具有Tween®80的YPD培養基上維持之一種δ-9去飽和酶缺陷型啤酒酵母菌(S.cerevisiae)品系(OFY093),係使用來自魁北基因公司的鹼性-陽離子(Alkalu-Cation)酵母轉形套組轉形。藉由在不含Tween®80(單元不飽和脂肪酸增補劑)或尿嘧啶(DOBAsc-ura)的培養基上生長,而辨識互補品系。該互補品系係在選擇性培養基上純化三次之單一菌落。藉由PCR擴增作用,而進一步驗證互補品系δ-9去飽和酶基因及進行PCR產物之定序。此外,藉由在YPD+Tween® 80培養基上繼代培養各品系至少三次,然後將該品系敷塗至減去Tween®80的DOBASC-URA培養基,而還原含有一LnD9DS-2殖株之品系的脂肪酸與尿嘧啶依賴性。藉由FAME分析,進一步特徵分析含有LnD9DS-1或LnD9DS-2編碼序列之酵母品系的受質特異性。
以HzD9DS基因進行δ-9去飽和酶缺陷型啤酒酵母菌(S.cerevisiae)之選殖與轉形作用
自DASPICO89(如下所述)割取位於一 BamHI/XhoI片段上之一種編碼玉米穗蟲(Helicoverpa zea)醯基-CoA δ-9去飽和酶之植物最佳化合成基因(HzD9DS)(在Rosenfield等人(2001年)於期刊“Insect Biochem.Mol.Biol.”第31(10)期第949-64頁乙文中鑑定為HzPGDS2),及使用蒙太奇(Montage)離心管柱進行凝膠純化。將該片段接合至先前所述的一種酵母表現載體之對應限制酶位點中,及採用標準分子生物學技術及供應商操作程序(美國加州卡爾斯巴德的英杰公司),而轉形至大腸桿菌(E.coli)品系DH5α中。
在限制酶分析與DNA定序之後,選擇含有HzD9DS基因之一殖株,及用於轉形至δ-9去飽和酶缺陷型啤酒酵母菌(S.cerevisiae)品系OFY093中。在具有Tween®80的YPD培養基上維持之OFY093品系,係使用來自魁北基因公司的鹼性-陽離子(Alkalu-Cation)酵母轉形套組轉形。藉由在不含Tween®80(脂肪酸增補劑)與尿嘧啶(DOBASC-URA)的培養基上生長,而辨識互補品系。推定性互補品系係在選擇性培養基上純化三次之單一菌落。進一步藉由下列各項驗證互補品系:i)使用魁北基因公司的酵母質體純化套組,接著藉由使用HzD9DS基因特異性引子的PCR擴增作用,而萃取質體DNA;ii)HzD9DS基因特異性PCR產物之定序;及iii)藉由在YPD+Tween®80培養基上繼代培養該品系至少三次,然後將該品系敷塗至減去Tween®80的DOBASC-URA培養基,而回復該品系的脂肪酸與URA-3依賴性。藉由FAME分析,進一步特徵分析一種經驗證的互 補型HzD9DS酵母品系的受質特異性。
在OLE1缺陷型酵母品系中表現的LnD9DS-1、LnD9DS-2、MgD9DS及HzD9DS之分析
如上文中所述,從植物病原性真菌即稻瘟黴菌(Magnaporthe grisea)(MgD9DS)與穎枯球腔菌(Leptosphaeria nodorum)(LnD9DS-1與LnD9DS-2)選殖三種例示性醯基-CoA δ-9去飽和酶(D9DS)基因。之前尚未進行該等基因及其等所編碼的蛋白之特徵分析。醯基-CoA δ-9去飽和酶催化輔酶A之飽和14、16及18碳脂肪醯基硫酯的第9與10碳原子之間的一個順式雙鍵之形成,而分別導致產生肉豆蔻油酸(14:1)、棕櫚油酸(16:1)或油酸(18:1)。藉由在同一生物環境中表現不同的真菌醯基-CoA δ-9去飽和酶基因,而消弭具生物體特異性的生物學效應。因此使用一種棕櫚醯基-硬脂醯基CoA去飽和酶(OLE1)缺陷型OFY093酵母品系內之內源性ole1基因啟動子,驅動真菌醯基-CoA δ-9去飽和酶基因的表現作用。因此,在該系統中所觀察到的脂肪酸受質特異性差異,係歸因於在互補啤酒酵母菌(S.cerevisiae)品系中所表現的特定真菌δ-9去飽和酶。
特徵分析在互補型OYF093品系中表現之MgD9DS、LnD9DS-1及LnD9DS-2CoA去飽和酶的受質特異性,及與WO/1999/050430中所述之AnD9DS(sdeA)互補的OFY093比較。使用上述操作程序,將表現作用係由ole1基因啟動子驅動之一種含有AnD9DS基因的酵母表現構築質體,轉形至啤酒酵母菌(S.cerevisiae)OFY093品系及於其中 表現。
互補型啤酒酵母菌(S.cerevisiae)品系係在未增補脂肪酸的基本培養基及30℃生長24小時。在經清洗與冷凍乾燥的細胞沉澱物上進行定量FAME分析。分析結果係示於第1表中。LnD9DS-2促進C14:1與C16:1之形成,而LnD9DS-1與MgD9DS則偏好C18:0,如酵母脂肪酸組成分析中的C16:1/18:1脂肪酸之比例所示。
新穎的去飽和酶進一步與轉移至同一重組表現環境中之天然啤酒酵母菌(S.cerevisiae)的硬脂醯基-CoA δ-9去飽和酶(ole1)比較。建構含有來自WO/2000/011012中所述之啤酒酵母菌(S.cerevisiae)的核苷酸序列之一種酵母表現載體。使用上述操作程序,基將含有天然啤酒酵母菌(S.cerevisiae)的硬脂醯基-CoA δ-9去飽和酶之該酵母表現作用構築質體,轉形至啤酒酵母菌(S.cerevisiae)OFY093品系及於其中表現。亦在該等實驗中評估來自昆蟲物種玉米穗蟲(Helicoverpa zea)(HzD9DS)之另一種非真菌醯基-CoA δ-9去飽和酶。
含有MgD9DS、LnD9DS-2及HzD9DS基因中之一者之互補型啤酒酵母菌(S.cerevisiae)品系,係在省卻成分培養液SC-URA中生長。一對照組品系pDAB467EV-1(藉由先前所述的酵母轉形方法將pDAB467B/N轉形至OFY093中)係在DOB SC-URA+Tween®80中生長,及母株δ-9去飽和酶缺陷型啤酒酵母菌(S.cerevisiae)品系OFY093係在DOB scAA+Tween®80中生長。使用來自含有1.5%瓊脂的同一培養基之一個剛劃線的平皿之一接種環的細胞,接種培養物。品系係於30℃生長24小時。培養物係於6,000rpm離心10分鐘。在水中清洗沉澱物,再度於6,000rpm離心10分鐘,然後在進行FAME分析之前,置於-20℃冷凍。分析三組的表現作用培養物。
經冷凍乾燥的酵母沉澱物係在含有10%(重量/體積)氫氧化鈉的甲醇中皂化。藉由已烷移除非皂化脂質污染物(固醇類)。藉由添加硫酸而酸化甲醇分液,及以已烷萃取質子化脂肪酸。乾燥所分離的已烷分液,及於80℃以0.5N MeOHCl進行脂肪酸的甲基化作用30分鐘。以含有十一酸甲基酯作為內部標準之已烷,萃取所產生的FAME。藉由配備有來自SGE(美國德州奧斯汀)的一個毛細管柱BPX70(15公尺x 0.25毫米x0.25微米)之HP6890氣相層析儀-火焰離子化檢測器(美國加州聖塔克拉拉(Santa Clara)),分析FAME萃取物。使用氦氣作為載體氣體,在一溫度梯度中分離FAME。藉由滯留時間辨識各FAME物種,及藉由注射來自梅崔亞 (Matreya)有限責任公司(美國賓州喜峽(Pleasant Gap))的一種FAME菜籽油參考混合物作為校正標準,而進行量化。
第2表顯示表現各種例示性醯基Co-A δ-9去飽和酶之ole1缺陷型OFY093酵母細胞的脂肪酸組成(示為FAME %)。所有品系皆生長良好,及藉由所植入的去飽和酶完全互補,而不需要外源MUFA(單元不飽和脂肪酸)。
該等數據顯示,互補型酵母品系的脂肪酸組成係依所植入的基因而異。LnD9DS-2產生相對高量的C16:1,HzD9DS與ole1亦然,而AnD9DS與MgD9DS產生相對高量的C18:1。
可藉由就各脂肪酸鏈長即C14、C16或C18計算MUFA相對於總脂肪酸之比例,而進一步顯示以鏈長為基礎之轉化作用的示差性水平。該等數據顯示LnD9DS-2與HzD9DS轉化為C16:1之作用係相對地高,及AnD9DS與MgD9DS之轉化為C18:1之作用係相對地高。第3表。底部四列係代表與所添加的脂肪醇聚氧乙烯醚、不飽和脂肪酸或 Tween®互補之對照組試樣。如經由JMP統計軟體套件(美國北卡羅萊納州卡瑞(Cary)市的SAS軟體研究所有限公司)中進行的塔基-克拉馬(Tukey-Kramer)檢定所測定,具有不同字母的試樣係顯著地不同。
真菌醯基-CoA去飽和酶之系譜
多種真菌醯基-CoA δ-9去飽和酶胺基酸序列之系譜分析,係表明LnD9DS-2有別於偏好18:0的δ-9去飽和酶。因此,吾等假設若進行與偏好18:0的δ-9去飽和酶或與LnD9DS-2密切相關的其他真菌δ-9去飽和酶之特徵分析,可能辨識出具一範圍的18:0或16:0活性之去飽和酶。吾等的假設預測與LnD9DS-2更密切相關的一種真菌δ-9去飽和酶,將具有增高的16:0活性。
搜尋公開的DNA序列資料庫(博大研究所(Broad Institute)、NCBI等),並未在稻瘟黴菌(Magnaporthe grisea) 或穎枯球腔菌(Leptosphaeria nodorum)中辨識出特別註解為δ-9去飽和酶之任一基因序列。在本揭露內容內所辨識出的博大研究所(Broad Institute)序列之Pfam分析顯示,該等蛋白含有在其他真菌醯基-CoA δ-9去飽和酶中亦發現之細胞色素B5與去飽和酶基序。然而,先前並未辨識出該等蛋白為醯基-Co-A δ-9去飽和酶。吾等藉由酵母中的互補作用、逆轉研究及DNA序列分析,已證實該等蛋白的該項功能。
經由MEGA軟體包使用鄰位連接方法,而以系譜方式分析數種真菌去飽和酶基因序列之關係。Tamura等人(2007年)於期刊“Mol.Biol.and Evolution”第24期第1596-9頁乙文。第1圖說明真菌去飽和酶序列之該系譜分析。藉由使用AnD9DS(sdeA)胺基酸序列進行NCBI序列資料庫的BlastN搜尋,而尋獲該等序列。相較於LnD9DS-2,LnD9DS-1與MgD9DS彼此的序列一致性水平較高。除此之外,LnD9DS-1、LnD9DS-2及MgD9DS的ClustalW排比顯示LnD9DS-2與LnD9DS-1及MgD9DS之差異。第2圖。LnD9DS-1與MgD9DS的核苷酸序列所具有的相同鹼基對之數目較多。
第4表與第3圖進一步說明新辨識出的蛋白LnD9DS-1、LnD9DS-2與MgD9DS以及AnD9DS與酵母去飽和酶ScOLE1之系譜關係。相較於LnD9DS-2,LnD9DS-1、MgD9DS與AnD9DS(sdeA)胺基酸序列彼此間的一致性百分比較高。胺基酸一致性之保留,容許吾等預測對於18:0醯 基-CoA之受質特異性係依LnD9DS-1、MgD9DS與AnD9DS(sdeA)之間所共享的保留型序列而定。相比之下,LnD9DS-2因其不同的胺基酸序列之故,其醯基-CoA受質特異性係偏好16:0。
第2例:來自稻瘟黴菌(Magnaporthe grisea)、玉米穗蟲(Helicoverpa zea)及穎枯球腔菌(Leptosphaeria nodorum)的最佳化δ-9去飽和酶基因之設計與合成作用
為在油菜中獲致較高的真菌δ-9去飽和酶基因表現作用,吾等改造該等基因,藉此其等更有效地在含有該異源基因的基因轉殖型油菜細胞中表現。廣泛分析在此分別揭露為序列辨識編號:9、序列辨識編號:10及序列辨識編號:11之天然的稻瘟黴菌(Magnaporthe grisea)、玉米穗蟲(Helicoverpa zea)及穎枯球腔菌(Leptosphaeria nodorum)δ-9去飽和酶編碼區的DNA序列,而揭露存在被認為不利於最佳植物表現作用之數種序列基序以及用於該最佳植物表現作用之一種非最佳密碼子組成。為設計用於編碼一種δ-9去飽和酶蛋白之最佳化基因,吾等經由電腦模擬產生性質較“類似植物”(及具體而言較“類似油菜”)的DNA序列,其中該 序列的改質作用並未阻礙轉譯作用或產生mRNA不穩定性。
為策劃編碼一種δ-9去飽和酶的植物最佳化基因,利用從特定宿主植物(亦即油菜)的蛋白質編碼序列彙編之密碼子偏移表所建立之一冗餘性遺傳密碼,設計用於編碼去飽和酶蛋白的胺基酸序列之DNA序列。用於油菜之較佳的密碼子用法係示於第5表。第5表的C與G欄表達如見於西洋油菜(Brassica napus)的編碼區中之各胺基酸的同義密碼子之分布(以該胺基酸的所有密碼子之使用%為單位)。一些胺基酸的同義密碼子明顯地在植物基因中罕見(如油菜中之CGG)。若一密碼子在任一植物類型出現於編碼相關胺基酸的基因中之時間係約10%或更少,則將其視為鮮少使用(在第5表的D與H欄中示為“DNU”)。為平衡用於一胺基酸的其餘密碼子選擇之分布,使用下列公式計算各密碼子的加權平均代表性:C1之加權平均%=1/(%C1+%C2+%C3+等等)x%C1x100, 其中C1係所涉及的密碼子及%C2、%C3等代表其餘同義密碼子用於西洋油菜(Brassica napus)的%數值之平均(相關密碼子的平均%數值係自第5表的C與G欄取得)。
各密碼子的加權平均%數值係示於第5表的D與H欄。
使用在油菜基因中所發現的常用密碼子之第一與第二選擇密碼子的分布,設計供在油菜中最佳表現之新DNA序列,其係實質上分別編碼序列辨識編號:12、序列 辨識編號:13及序列辨識編號:14之稻瘟黴菌(Magnaporthe grisea)、玉米穗蟲(Helicoverpa zea)及穎枯球腔菌(Leptosphaeria nodorum)δ-9去飽和酶的胺基酸序列。新DNA序列係藉由取代植物首選(亦即第一首選、第二首選、第三首選或第四首選等)的密碼子來指定該蛋白胺基酸序列內的各位置之一適當胺基酸,而與編碼δ-9去飽和酶蛋白的天然DNA序列不同。
植物最佳化DNA序列之設計,係使用自第5表D與H欄所建構之油菜密碼子偏移表,藉由序列辨識編號:12、序列辨識編號:13及序列辨識編號:14之蛋白質序列的反轉譯作用而起始。然後藉由補償密碼子變化(同時保留整體加權平均密碼子代表性)而將初始序列改質,以移除限制酶辨識位點、移除高度穩定的股內二級結構及移除可能不利於該改造基因在植物中的選殖操作或表現作用之其他序列。然後再度分析DNA序列可能因改質作用而已創建的限制酶辨識位點。然後藉由以第一選擇、第二選擇、第三選擇或第四選擇的較佳密碼子置換相關密碼子,而進一步改質該等辨識位點。經改質的序列係進行進一步分析及進一步改質,以降低TA與CG雙重組態的頻率,及增加TG與CT雙重組態的頻率。除了該等雙重組態之外,藉由以所選擇的其他較佳密碼子置換第一或第二選擇密碼子等,將具有超過約六個[G+C]或[A+T]的連續殘基之序列區塊改質。在基因設計中未大幅包括鮮少使用的密碼子,及僅當需要配合一種不同的設計標準而非密碼子組成本身(如限制酶 辨識位點之添加或刪除)時才使用。藉由該方法所設計之合成的例示性油菜最佳化去飽和酶DNA序列,係列於序列辨識編號:15、序列辨識編號:16及序列辨識編號:17中。
所產生之如由序列辨識編號:15至17所代表的DNA序列,具有較高程度的密碼子多樣性及理想的鹼基組成。此外,該等序列含有經策略性放置的限制酶辨識位點,及缺少可能干擾該基因的轉錄作用或產物mRNA的轉譯作用之序列。第6至8表呈現如在天然基因及在植物最佳化版本中所見用於δ-9去飽和酶蛋白之編碼區的密碼子組成之比較,及將二者與自第5表D與H欄計算所得之一種植物最佳化序列的密碼子組成建議相比較。
包含序列辨識編號:15、序列辨識編號:16及序列辨識編號:17的DNA片段之合成作用,係由商業供應商(美國德州休士頓的皮可史克利浦(PicoScript)公司與美國華盛頓州伯瑟爾(Bothell)市的藍鷺生物科技(Blue Heron Biotechnology)公司)進行。該等油菜最佳化序列係標示為第二版本(v2)。然後將合成的DNA片段選殖至表現載體中,及如下列實例中所述轉形至農桿菌屬(Agrobacterium)與油菜中。
第3例:質體建構作用
使用標準分子生物學技術建構下列質體。建構含有植物轉錄單位(由連接所感興趣的一基因之一啟動子所組成及終止於一個3’UTR)或“PTU”之聚核苷酸片段,及與一種二元載體的T股區內之附加植物轉錄單位合併。
pDAB7318之說明:使用標準分子生物學技術建構pDAB7318(第6圖;序列辨識編號:58)。該質體含有二種去飽和酶PTU序列。第一種去飽和酶PTU含有四季豆 (Phaseolus vulgaris)菜豆蛋白啟動子(PvPhas啟動子v2(序列辨識編號:67);基因資料庫(GenBank):J01263)、四季豆(Phaseolus vulgaris)5’未轉譯區(PvPhas 5’UTR(序列辨識編號:68);基因資料庫(GenBank):J01263)、AnD9DS v3基因(序列辨識編號:49)、四季豆(Phaseolus vulgaris)3’未轉譯區(PvPhas 3’UTR v1(序列辨識編號:69);基因資料庫(GenBank):J01263)及四季豆(Phaseolus vulgaris)基質結合區(PvPhas 3’MAR v2(序列辨識編號:70);基因資料庫(GenBank):J01263)。第二種去飽和酶PTU含有PvPhas啟動子v2、PvPhas 5’UTR、LnD9DS-2 v2(序列辨識編號:17)及農桿腫瘤菌(Agrobacterium tumefaciens)ORF23 3’未轉譯區(AtuORF23 3’UTR(序列辨識編號:71);Huang等人(1990年)於期刊“J.Bacteriol.”第172期第1814-22頁乙文)。
去飽和酶PTU中之元素係由附加的短型居間序列所連接。該二種去飽和酶PTU序列的兩側為英杰公司的Gateway®重組位點,其等係用於促進該等PTU表現組合體轉移至農桿菌屬(Agrobacterium)轉形質體中。除此之外,該質體含有一個複製起點及一種康黴素篩選標記。
pDAB7319之說明:經由pDAB7318與pDAB7309(第5圖;序列辨識編號:53)之間的Gateway®重組作用,建構pDAB7319(第7圖;序列辨識編號:60)。該質體含有上述“pDAB7318之說明”中所闡述之該二種去飽和酶PTU序列。該等PTU在植物轉形作用二元載體pDAB7309的T股DNA邊界區內之定向,係一種頭對尾定向。該二元載體除 了其他調控元素諸如煙草(Nicotiana tabacum)RB7基質結合區(RB7 MARv2;基因資料庫(GenBank):U67919)、超驅動子(Overdrive)(Toro等人(1988年)於期刊“Proc.Natl.Acad.Sci.U.S.A.”第85(22)期第8558-62頁乙文)及T股邊界序列(T-DNA邊界A與T-DNA邊界B;Gardner等人(1986年)於期刊“Science”第231期第725-7頁乙文及第WO2001/025459A1號PCT國際專利公開案)之外,含有草胺膦乙醯基轉移酶PTU,其係由樹薯葉脈嵌紋病毒啟動子(CsVMV啟動子v2;Verdaguer等人(1996年)於期刊“Plant Mol.Biol.”第31期第1129-39頁乙文);草胺膦乙醯基轉移酶(PAT v5;Wohlleben等人(1988年)於期刊“Gene”第70期第25-37頁乙文);及農桿腫瘤菌(Agrobacterium tumefaciens)ORF1 3’未轉譯區(AtuORF1 3’UTR v4;如上文之Huang等人(1990年)乙文)所組成。將含有上述PTU之質體分離,及經由限制酶剪切作用與DNA定序而確認。
pDAB7320之說明:使用標準分子生物學技術建構pDAB7320(第8圖;序列辨識編號:55)。該質體含有一種去飽和酶PTU序列。該去飽和酶PTU含有PvPhas啟動子v2、PvPhas 5’UTR、LnD9DS-2 v2(序列辨識編號:17)及AtuORF23 3’UTR。去飽和酶PTU中之元素係由附加的短型居間序列所連接。該去飽和酶PTU序列的兩側亦為英杰公司的Gateway®重組位點,以促進將其轉移至一種農桿菌屬(Agrobacterium)轉形質體中。除此之外,該質體含有一個複製起點及康黴素篩選標記。
pDAB7321之說明:經由pDAB7320與pDAB7309之間的Gateway®重組作用,建構pDAB7321(第9圖;序列辨識編號:61)。該質體含有上述“pDAB7319之說明”中所闡述之去飽和酶PTU序列。該PTU在植物轉形作用二元載體pDAB7309的T股DNA邊界區內之定向,係一種頭對尾定向。除了其他調控元素諸如超驅動子(Overdrive)與T股邊界序列(T-DNA邊界A與T-DNA邊界B)之外,該二元載體含有草胺膦乙醯基轉移酶PTU:CsVMV啟動子v2;PAT v5;及AtuORF1 3’UTR v4。將含有上述PTU之質體分離,及經由限制酶剪切作用與DNA定序而確認。
pDAB7323之說明:使用標準分子生物學技術建構pDAB7323(第10圖;序列辨識編號:56)。該質體含有二種去飽和酶PTU序列。第一種去飽和酶PTU含有PvPhas啟動子v2、PvPhas 5’UTR、AnD9DS v3(序列辨識編號:47)、PvPhas 3’UTR、And PvPhas 3’MAR v2。第二種去飽和酶PTU含有PvPhas啟動子v2、PvPhas 5’UTR、HzD9DS v2(序列辨識編號:16)及AtuORF23 3’UTR。去飽和酶PTU中之元素係由附加的短型居間序列所連接。該二種去飽和酶PTU序列的兩側為英杰公司的Gateway®重組位點,以促進將其等轉移至一種農桿菌屬(Agrobacterium)轉形質體中。除此之外,該質體含有一個複製起點及康黴素篩選標記。
pDAB7324之說明:經由pDAB7323與pDAB7309之間的Gateway®重組作用,建構pDAB7324(第11圖;序列辨識編號:62)。該質體含有上述“pDAB7323之說明”中所 闡述之該二種去飽和酶PTU序列。該等PTU在植物轉形作用二元載體pDAB7309的T股DNA邊界區內之定向,係一種頭對尾定向。除了其他調控元素諸如超驅動子(Overdrive)與T股邊界序列(T-DNA邊界A與T-DNA邊界B)之外,該二元載體含有草胺膦乙醯基轉移酶PTU:CsVMV啟動子v2;PAT v5;及AtuORF1 3’UTR v4。將含有上述PTU之質體分離,及經由限制酶剪切作用與DNA定序而確認。
pDAB7325之說明:使用標準分子生物學技術建構pDAB7325(第12圖;序列辨識編號:57)。該質體含有一種去飽和酶PTU序列。該去飽和酶PTU含有PvPhas啟動子v2、PvPhas 5’UTR、HzD9DS v2(序列辨識編號:16)及AtuORF23 3’UTR。在去飽和酶PTU中之該等元素係由附加的短型居間序列所連接,及該去飽和酶PTU序列的兩側為英杰公司的Gateway®重組位點,以促進將其轉移至一種農桿菌屬(Agrobacterium)轉形質體中。除此之外,該質體含有一個複製起點及康黴素篩選標記。
pDAB7326之說明:經由pDAB7325與pDAB7309之間的Gateway®重組作用,建構pDAB7326(第13圖;序列辨識編號:63)。該質體含有上述“pDAB7325之說明”中所闡述之去飽和酶PTU序列。該PTU在植物轉形作用二元載體pDAB7309的T股DNA邊界區內之定向,係一種頭對尾定向。除了其他調控元素諸如超驅動子(Overdrive)與T股邊界序列(T-DNA邊界A與T-DNA邊界B)之外,該二元載體含有草胺膦乙醯基轉移酶PTU:CsVMV啟動子v2;PAT v5;及 AtuORF1 3’UTR v4。將含有上述PTU之質體分離,及經由限制酶剪切作用與DNA定序而確認。
pDAB7327之說明:使用標準分子生物學技術建構pDAB7327(第14圖;序列辨識編號:58)。該質體含有一種去飽和酶PTU序列。該去飽和酶PTU含有PvPhas啟動子v2、PvPhas 5’UTR、AnD9DS v3基因(序列辨識編號:49)及AtuORF23 3’UTR。在去飽和酶PTU中之該等元素係由附加的短型居間序列所連接。該去飽和酶PTU序列的兩側亦為英杰公司的Gateway®重組位點,以促進將其轉移至一種農桿菌屬(Agrobacterium)轉形質體中。除此之外,該質體含有一個複製起點及康黴素篩選標記。
pDAB7328之說明:經由pDAB7327與pDAB7309之間的Gateway®重組作用,建構pDAB7328(第15圖;序列辨識編號:64)。該質體含有上述“pDAB7327之說明”中所闡述之去飽和酶PTU序列。該PTU在植物轉形作用二元載體pDAB7309的T股DNA邊界區內之定向,係一種頭對尾定向。除了其他調控元素諸如超驅動子(Overdrive)與T股邊界序列(T-DNA邊界A與T-DNA邊界B)之外,該二元載體含有草胺膦乙醯基轉移酶PTU:CsVMV啟動子v2;PAT v5;及AtuORF1 3’UTR v4。將含有上述PTU之質體分離,及經由限制酶剪切作用與DNA定序而確認。
pDAB7329之說明:使用標準分子生物學技術建構pDAB7329(第16圖;序列辨識編號:59)。該質體含有一種去飽和酶PTU序列,其含有PvPhas啟動子v2、PvPhas 5’ UTR、MgD9DS v2(序列辨識編號:15)及AtuORF23 3’UTR。該去飽和酶PTU中的元素係由附加的短型居間序列所連接。該去飽和酶PTU序列的兩側為英杰公司的Gateway®重組位點,以促進將其轉移至一種農桿菌屬(Agrobacterium)轉形質體中。除此之外,該質體含有一個複製起點及康黴素篩選標記。
pDAB7330之說明:經由pDAB7329與pDAB7309之間的Gateway®重組作用,建構pDAB7330(第17圖;序列辨識編號:65)。該質體含有上述“pDAB7325之說明”中所闡述之去飽和酶PTU序列。該PTU在植物轉形作用二元載體pDAB7309的T股DNA邊界區內之定向,係一種頭對尾定向。除了其他調控元素諸如超驅動子(Overdrive)與T股邊界序列(T-DNA邊界A與T-DNA邊界B)之外,該二元載體含有草胺膦乙醯基轉移酶PTU:CsVMV啟動子v2;PAT v5;及AtuORF1 3’UTR v4。將含有上述PTU之質體分離,及經由限制酶剪切作用與DNA定序而確認。
pDAB7331之說明:除了前述之外,建構一種不含有去飽和酶PTU之對照組質體(序列辨識編號:66)。第18圖。除了spDAB7309中所述的其他調控元素之外,該構築質體僅含有草胺膦乙醯基轉移酶PTU。
第4例:農桿菌屬(Agrobacterium)轉形作用
使用來自Weigel與Glazebrook(2002年)於美國紐約州冷泉港的冷泉港實驗室(Cold Spring Harbor Laboratory Press)出版公司出版之“擬南芥屬(Arabidopsis)”乙書第五章 “如何將擬南芥屬轉形(How to Transform Arabidopsis)”乙文之操作程序,製備電穿孔勝任的農桿腫瘤菌(Agrobacterium tumefaciens)細胞(第9表)。將50微升的勝任農桿菌屬(Agrobacterium)細胞置於冰上解凍,及使用300至400奈克的二元載體質體DNA進行轉形。在電壓為2.5千伏、脈波寬度為5毫秒、電容輸出25μF、電阻為200Ω之條件下,使用預冷的電穿孔管(0.2公分)與伯瑞(BIO-RAD)公司(美國加州赫丘里斯(Hercules))的Gene Pulser®電穿孔器,在該DNA之存在下,進行細胞混合物的電穿孔作用。在電穿孔作用之後,在各管中添加1毫升的YEP培養液(酵母萃取(10克/公升)、蛋白腖(10克/公升)及氯化鈉(5克/公升)),及將細胞-YEP懸浮液轉移至一個15毫升的培養管中。在輕緩的攪動下,該等細胞於28℃培養4小時,之後將培養物敷塗在具有如第9表之適當篩選作用之YEP+瓊脂上。該等平皿於28℃培養2至4天,及挑選菌落與劃線接種至具有抗生素篩選作用之新製的YEP+瓊脂平皿上,及於28℃培養1至3天。使用酮乳糖試驗,驗證菌落為農桿菌屬(Agrobacterium),及使用單一菌落分離作用之二個繼代培養,而進一步分離酮乳糖陽性菌落。在單一菌落分離作用完成之後,最終的膜片平板係由菌落製成。
農桿菌屬(Agrobacterium)菌落之驗證:藉由使用載體特異性限制性酶切酵素,利用限制性酶切分析來驗證存在完整的質體。依據製造商建議的操作程序,使用馬歇雷-納格爾NucleoBond®質體DNA套組,而純化來自所挑選的轉形農桿菌屬(Agrobacterium)菌落之質體DNA。將來自農桿菌屬(Agrobacterium)轉形作用中所用的二元載體之質體DNA納入作為一對照組。使用0.75至1微克的DNA,進行四種分開的剪切反應。讓反應進行1至2小時,然後藉由瓊脂凝膠電泳與溴化乙啶染色作用分析。挑選所有酵素剪切物係與質體對照組一致及符合所預期的條帶大小之菌落。
在擬南芥屬(Arabidopsis)轉形作用中使用農桿腫瘤菌(A.tumefaciens)品系LBA404(美國加州卡爾斯巴德的英杰公司),及在油菜轉形作用中使用農桿腫瘤菌(A.tumefaciens)品系Z707S(Hepburn等人(1985年)於期刊“J.Gen.Microbiol.”第131期第2961-9頁乙文)。
第5例:農桿菌屬(Agrobacterium)所介導之阿拉伯芥(Arabidopsis thaliana)的轉形作用
擬南芥屬(Arabidopsis)轉形作用:使用以Clough與Bent(1998)於期刊“Plant J.”第16期第735-743頁乙文之方法為基礎的一種花序浸染法,將擬南芥屬(Arabidopsis)轉形。使用所挑選的一個農桿菌屬(Agrobacterium)菌落,接種含有供篩選用的適當抗生素之YEP培養液的一或多個30毫升預培養物。培養物係在28℃及220rpm的不斷攪動下培 養過夜。使用各預培養物,以接種含有供篩選用的抗生素之YEP培養液之二個500毫升培養物,及培養物係於28℃及不斷攪動下培養過夜。該等細胞然後在室溫及約8700g離心10分鐘,及將所產生的上清液棄置。將細胞沉澱物輕緩地再懸浮於500毫升感染液中,其含有:1/2x馬氏(Murashige)與史氏(Skoog)鹽/甘氏(Gamborg)B5維生素、10%(重量/體積)蔗糖、0.044μM苄胺基嘌呤(10微升/公升之位於DMSO中的1毫克/毫升儲備液)及300微升/公升的Silwet® L-77。將植齡約1個月的植物浸在該感染液中15秒,謹慎地將新長出的花序沒入。然後將植物側放,及覆蓋(透明或不透明)24小時,然後以水清洗,及直立放置。以16小時光照/8小時黑暗之光週期,在22℃栽培該等植物。在浸染約4個星期後,從植物採收種子。
阿拉伯芥(Arabidopsis thaliana)之生長條件:在室溫及乾燥劑之存在下,將剛採收的種子乾燥7天。在乾燥後,將種子懸浮於0.1%瓊脂(美國密蘇里州聖路易市的西克瑪化學(Sigma Chemical)公司)溶液中。懸浮種子在4℃儲存2天,以達到休眠需求及確保同步的種子萌芽(層積作用)。以細蛭石覆蓋陽光混合物(Sunshine Mix)LP5(美國華盛頓州貝爾維尤(Bellevue)市的尚果園藝(Sun Gro Horticulture)有限公司),及在底部灌溉霍格蘭溶液直至濕潤為止。讓土壤混合物排水24小時。將層積後的種子播種在蛭石上,及以濕度罩(加拿大安大略省布蘭里亞(Bramalea)的闊德製品(KORD Products)公司)覆蓋7天。種子萌芽,及植物在120 至150微莫耳/平方公尺秒的光強度、恆定的溫度(22℃)與濕度(40至50%)之長日條件(16小時光照/8小時黑暗)下,在康維隆(Conviron)控制箱(加拿大馬尼托巴的溫尼泊(Winnipeg)之環境控制(Controlled Environments Limited)有限公司的型號CMP4030與CMP3244)中生長。植物最初澆灌霍格蘭溶液及後續澆灌去離子水,以保持土壤潮濕而非濕潤。將臨近種子採收期的植物乾燥(採收前的1至2個星期)。
T1轉形植物之篩選:如上述將T1種子播種在10.5”x 21”的萌芽盤(美國明尼蘇達州清水(Clearwater)市的T.O.塑膠有限公司)上,及在所概述的條件下生長。在播種5至6天後移除該罩。在播種5天後,及再次在播種10天後,使用一種特威(DeVilbiss)壓縮空氣噴頭,以每次施用輸送280克/公頃的固殺草(glufosinate)之有效速率,以10毫升/盤(703公升/公頃)的噴灑體積,在種苗上噴灑0.20%固殺草(glufosinate)除草劑(利伯堤(Liberty)公司)溶液。將10毫升的固殺草除草劑溶液吸移至20毫升的閃爍瓶中,以供各盤噴灑之用。使用一種水平與垂直施用模式進行噴灑。在各次噴灑之後,在各篩選盤加上一個具有除草劑名稱、施用速率及施用日期之噴灑標記。在第二次噴灑之4至7天後,辨識出具除草劑抗性的植物,及移植至以陽光混合物(Sunshine Mix)LP5製備的盆中。將所移植的植物置於具有上述生長條件的溫室中。在移植6至8個星期後,採收各植物的種子,及以專屬的識別號分開儲存。
第7例:農桿菌屬(Agrobacterium)所介導之油菜轉形作用
農桿菌屬(Agrobacterium)之製備:將含有pDAB7319、pDAB7321、pDAB7324、pDAB7326、pDAB7328、pDAB7330或pDAB7331之農桿菌屬(Agrobacterium)品系,劃線接種至含有鏈黴素(100毫克/毫升)與觀黴素(50毫克/毫升)之YEP(細菌蛋白腖(20.0克/公升)與酵母萃取(10.0克/公升))平皿上,及於28℃培養2天。以一接種環將劃線接種2天的平皿接種至位於無菌500毫升的振盪三角燒瓶中之具有鏈黴素(100毫克/毫升)與觀黴素(50毫克/毫升)的150毫升的改良型YEP液中,及於28℃與200rpm振盪。將培養物再懸浮於M-培養基(LS鹽類;3%葡萄糖;改良型B5維生素;1μM細胞裂殖素;1μM 2,4-D;pH 5.8)中,及在油菜下胚軸的轉形作用之前,稀釋至適當密度(50克勒特(Klett)單位)。
油菜轉形作用:
種子萌芽作用:油菜種子(奈瑟拉(Nexera)710品種)係在10%高樂氏(Clorox)漂白水中進行表面消毒10分鐘,及在鋼製濾器中以無菌蒸餾水沖洗三次。將種子種在裝於透明塑膠培養盤之½ MS油菜培養基(1/2 MS、2%蔗糖、0.8%瓊脂)(每個透明塑膠培養盤25顆種子)中,以讓其萌芽。將該等盤置於生長方案設定於25℃及16小時光照/8小時黑暗的光週期之一環境生長箱(美國愛荷華州佩里(Perry)的美國愛荷華州佩里波西弗科技(Percival Scientific)有限公司)中,及發芽5天。
預處理:在第5天,以無菌方式切下約3毫米的下 胚軸段,棄置根與芽部分(切割期間為避免下胚軸乾燥而將其等置於10毫升的無菌超純(milliQ)水中)。將下胚軸段水平放置在癒合組織誘導培養基MSK1D1(MS;1毫克/公升的細胞裂殖素;1毫克/公升的2,4-D;3%蔗糖;0.7%植物凝膠)上的無菌濾紙上,而在生長方案設定於22至23℃及16小時光照/8小時黑暗的光週期之一環境生長箱中進行預處理3天。
與農桿菌屬(Agrobacterium)共同培養:在農桿菌屬(Agrobacterium)處理之前一天,將含有適當抗生素的YEP培養基之燒瓶接種。將下胚軸段自濾紙轉移至含有10毫升的液態M培養基之100x25毫米的空培養皿,以避免下胚軸段乾燥。在這階段使用刮勺舀起該等段及轉移。以吸量管移除液態M培養基,及在培養皿中添加40毫升的農桿菌屬(Agrobacterium)懸浮液(在40毫升的農桿菌屬(Agrobacterium)溶液中具有500段)。在定期旋轉培養皿之情況下,處理該等段達30分鐘,藉此下胚軸維持沉浸在農桿菌屬(Agrobacterium)溶液中。在處理期間結束時,將農桿菌屬(Agrobacterium)溶液吸移至一個廢棄物燒杯中,加以高壓滅菌及棄置(將農桿菌屬(Agrobacterium)溶液完全移除以避免農桿菌屬(Agrobacterium)過度生長)。以鑷子將處理過的下胚軸置回含有MSK1D1與濾紙之原來的平皿,謹慎地確保該等段不乾燥。將下胚軸段連同對照組段歸回至光強度降低(藉由鋁箔覆蓋該等平皿)的環境生長箱中,及處理過的下胚軸與農桿菌屬(Agrobacterium)共同培養3天。
在篩選培養基上誘發癒合組織:在共同培養3天 之後,以鑷子將下胚軸段個別轉移至癒合組織誘導培養基MSK1D1H1(MS;1毫克/公升的細胞裂殖素;1毫克/公升的2,4-D;0.5克/公升的MES;5毫克/公升的硝酸銀;300毫克/公升的特泯菌(Timentin);200毫克/公升的卡本西林(Carbenicillin);1毫克/公升的好必思(Herbiace);3%蔗糖;0.7%植物凝膠)上。下胚軸段係固定在培養基上,但非包埋在培養基中。
篩選作用與芽再生作用:在癒合組織誘導培養基上7天之後,將癒合中的下胚軸段轉移至具有篩選作用的第1型芽再生培養基即MSB3Z1H1(MS;3毫克/公升的BAP;1毫克/公升的玉米素;0.5克/公升的MES;5毫克/公升的硝酸銀;300毫克/公升的特泯菌;200毫克/公升的卡本西林;1毫克/公升的好必思;3%蔗糖;0.7%植物凝膠)。14天後,將有芽的下胚軸段轉移至篩選作用增強的第2型再生培養基即MSB3Z1H3(MS;3毫克/公升的BAP;1毫克/公升的玉米素;0.5克/公升的MES;5毫克/公升的硝酸銀;300毫克/公升的特泯菌;200毫克/公升的卡本西林;3毫克/公升的好必思®;3%蔗糖;0.7%植物凝膠)。
芽伸長作用:14天後,將有芽的段轉移至芽伸長培養基即MSMESH5(MS;300毫克/公升的特泯菌;5毫克/公升的好必思®;2%蔗糖;0.7%的TC瓊脂)。將已伸長的芽分離及轉移至MSMESH5。14天後,將第一回合中未伸長之其餘的芽置於MSMESH5上,及轉移至具有同一組成之新製的篩選培養基。在這階段,棄置所有剩餘的下胚軸段。
將置於MSB3Z1H3培養基上2個星期後伸長的芽分離,及轉移至MSMESH5培養基。將第一回合中在MSMESH5上未伸長之其餘的芽分離,及轉移至具有同一組成之新製的篩選培養基。在這階段,棄置所有剩餘的下胚軸段。
根誘導作用:14天後,將該等芽轉移至MSMEST培養基(MS;0.5克/公升的MES;300毫克/公升的特泯菌;2%蔗糖;0.7%的TC瓊脂),以進行根誘導作用。將第一次轉移至MSMEST時未生根的芽轉移,以在MSMEST培養基上進行第二或第三循環直至獲得生根的植物為止。將第一次轉移至MSMEST時未伸長/生根的芽轉移,以在MSMEST培養基上進行第二或第三循環直至獲得生根的植物為止。將在MSMESH5或MSMEST上生根及為PCR陽性之植物,移植至土壤中。在健化之後,就含有轉殖基因PTU組合體之品項進一步分析T0油菜植物。然後將植物轉移至溫室,生長至成熟期,及採收種子以供其他分析之用。
第8例:T 1 擬南芥屬(Arabidopsis)葉組織與T 0 油菜葉組織之DNA分析
分析T0油菜植物與T1擬南芥屬(Arabidopsis)植物,以辨識含有PTU表現組合體之植物。在推定性轉形植物的最初篩檢試樣中進行Invader®分析,及辨識出含有單套patPTU之品項。將經辨識為單套複製品項之品項保留,及經由PCR進一步分析去飽和酶PTU之存在。在去飽和酶表現組合體PTU方面為PCR陽性之品項,係進一步經由南方墨點 法分析。進行南方墨點分析,以確認該等植物含有來自植物轉形作用所用的二元載體之基因表現組合體PTU。選擇含有所有PTU之單套複製品項,以供後續之用。
DNA分離作用:使用凱傑(Qiagen)DNeasy® 96植物套組(美國加州瓦倫西亞(Valencia)的凱傑公司),自冷凍乾燥的葉組織萃取全基因體DNA(gDNA)。然後將該gDNA稀釋為10奈克/微升(油菜)或0.7奈克/微升(擬南芥屬(Arabidopsis)),以供PCR之用及供Invader®分析用於分析複製套數。
Invader®分析:使用Invader®分析(美國威斯康辛州麥迪遜的第三波科技(Third Wave Technologies)公司),完成可選擇性標記pat之複製套數分析。依據製造商建議的操作程序,基因體DNA係於95℃變性10分鐘,在冰上冷卻,及與含有寡核苷酸探針、可螢光共振能量轉移的染料分子及裂解酶酵素之試劑混合液混合。該等反應含有用於內部參考基因之探針。使用 1 -去氧木酮糖-5-磷酸還原異構酶 (DXR1)基因 作為擬南芥屬(Arabidopsis)Invader®分析反應之一內部參考基因,及使用高遷移率族蛋白基因(HMGa)作為油菜Invader®分析反應之一內部參考基因。此外,該等平皿含有1套、2套及4套複製標準品以及野生型對照組試樣及不含試樣的空白孔。在整個反應上覆蓋礦物油,然後在63℃的熱循環器保溫1.5小時。在螢光評皿讀數器(美國佛蒙特州溫孥斯基(Winooski)的伯騰儀器(BioTek Instruments)公司之SynergyTM 2)上讀取所產生的反應。收集FAM(λ485至528奈 米)與RED(λ560至620奈米)頻道之讀數。藉由將試樣原始訊號除以無模板原始訊號,而自其等測定各試樣之各頻道的零值(亦即背景)倍數。自該數據,建構一標準曲線,及藉由線性迴歸分析測定最佳擬合。使用自該擬合所確定之參數,測定各試樣之表觀pat複製套數。
PCR分析:使用擴增各植物轉錄單位之引子,完成pCR分析。該等引子係位於啟動子(菜豆蛋白)與3’UTR(菜豆蛋白或ORF23)中。在油菜與擬南芥屬(Arabidopsis)的PCR分析中使用相同的引子組。就pDAB7319與pDAB7324的PCR分析品項而言,引子MAS414(序列辨識編號:18)與MAS415(序列辨識編號:19)係用於擴增第一PTU。該PTU係由菜豆蛋白啟動子、來自小巢狀麴菌(Aspergillus nidulans)的一種醯基-Co-A δ-9去飽和酶基因之一功能等效物(AnD9DSv3;序列辨識編號:49)及菜豆蛋白3’UTR-終止子所組成。就構築質體pDAB7319中的第二PTU之PCR擴增作用而言,使用 引子MAS415與MAS413(序列辨識編號:20)。該PTU係由 菜豆蛋白啟動子、來自穎枯球腔菌(Leptosphaeria nodorum) 的一種 醯基-Co-A δ-9去飽和酶基因之一功能等效物 (LnD9DS-2 v2;序列辨識編號:17)及ORF23 3’UTR所組成。藉由使用pDAB7324(菜豆蛋白啟動子、玉米穗蟲(Helicoverpazea)醯基 -Co-A δ-9去飽和酶基因v2(HzD9DS v2;序列辨識編號:16)及ORF23 3’UTR) 的轉形作用所產生品項之第二PTU,亦使用MAS415與MAS413引子對進行擴增 。此外, MAS415與MAS413引子對係用於 擴增 構築質體pDAB7321與pDAB7326中之PTU。
使用20奈克的基因體DNA、5單位Ex Taq(寶生物(Takara)公司),1x反應緩衝液、0.2μM的各dNTP及0.8μM的各引子,在25微升體積中進行PCR反應。在DNA Engine Tetrad®2熱循環器(美國加州赫丘里斯的伯瑞公司)中進行擴增反應。下列循環條件係供引子MAS413與MAS415所用:於94℃達3分鐘;接著進行於94℃達30秒、於63℃達30秒及於72℃達3分鐘之循環35次;及於72℃進行最終延伸作用10分鐘。引子MAS414與MAS415使用相同的循環條件,唯一的差異在於黏合溫度係自63℃降至60℃。反應產物係在1%瓊脂凝膠上進行電泳,以溴化乙啶染色,及在Gel-DocTM上可視化。
南方墨點分析:使用南方墨點分析,建立油菜品項的導入模式。該等實驗所產生的數據顯示去飽和酶轉殖基因在油菜基因體內之導入作用與穩定性。篩選品項經特徵分析為一種全長式、簡單導入品項,其含有來自植物轉形作用所用的二元載體之單套複製的去飽和酶轉殖基因。
使用對於去飽和酶基因具特異性之探針及在位於質體內的位點剪切之說明性限制酶,進行詳細的南方墨點分析。該等剪切物產生質體內部的雜交片段,或跨越質體與油菜基因體DNA連接處片段(邊界片段)。就限制酶與探針的組合而言,南方雜交作用所示之各品項的分子大小係獨特的。該等分析亦顯示該質體片段已插入油菜基因體DNA中,而未造成T股DNA之重排。
就南方墨點分析而言,使用植物小型套組(凱傑公司)萃取100毫克之冷凍乾燥的油菜葉組織。同時以SpeIPacI限制性核酸內切酶(美國麻州易普威治(Ipswich)的新英格蘭生物實驗室(New England Biolabs)公司)剪切每個試樣5微克(5μg)的gDNA,而得含有所感興趣的PTU及/或可選擇性標記(PAT)之片段,以測定複製套數。經剪切的DNA在0.8%瓊脂凝膠上分離。
簡而言之,在DNA片段的電泳分離作用及可視化之後,以0.25N鹽酸進行凝膠的去嘌呤作用約20分鐘,然後依序暴露於一變性溶液約30分鐘及一中和溶液至少30分鐘。使用一種具10x SSC的芯吸系統,在尼龍膜(美國麻薩諸塞州比勒麗卡之密里博公司)上進行南方轉移作用過夜。在轉移之後,以2x SSC溶液清洗該等膜,及DNA藉由紫外線交聯作用而與該膜結合。該方法產生即可供雜交作用所用的南方墨點膜。
產生探針及自質體DNA擴增PCR片段,及使用QIAquick®凝膠萃取作用套組(凱傑公司)經由凝膠萃取作用而純化。用於創建LnD9DS探針之引子為arw008(序列辨識編號:21)與arw009(序列辨識編號:22)。用於創建HzD9探針之引子為arw010(序列辨識編號:23)與arw011(序列辨識編號:24)。用於所有三種反應的PCR條件,係由黏合溫度為63℃及延伸時間為1分鐘之循環35次所組成。使用Prime-It® RmT隨機引子標示套組(美國加州拉荷亞(La Jolla)的史崔塔基因(Stratagene)公司),以32磷標記PCR片段。
雜交步驟係在雜交反應烘箱及約65℃進行過夜。沖洗尼龍膜墨點,及該墨點係在螢光影像屏上曝光過夜,及在StormTM 860掃描器(美國加州桑尼維爾(Sunnyvale)的分子動力學(Molecular Dynamics)公司)上掃描。
第9例:來自含有一醯基-CoA δ-9去飽和酶的基因轉殖型擬南芥屬(Arabidopsis)之種子的脂肪酸組成
擬南芥屬(Arabidopsis)植物係以含有用於LnD9DS-2 v2(pDAB7321;序列辨識編號:61)、HzD9DS v2(pDAB7326;序列辨識編號:63)或MgD9DS v2(pDAB7330;序列辨識編號:65)的基因之農桿菌屬(Agrobacterium)載體轉形。植物亦以含有一個AnD9DS基因(pDAB7328;序列辨識編號:64)的一載體轉形。僅含有可選擇性標記pat基因(pDAB7331;序列辨識編號:66)的一種空載體係作為負對照組。轉形作用亦使用二種去飽和酶之組合進行,以將一種硬脂醯基偏好型去飽和酶(AnD9DS)與一種棕櫚醯基偏好型去飽和酶LnD9DS-2(pDAB7319;序列辨識編號:60)或HzD9DS(pDAB7324;序列辨識編號:62)組合。在所有情況下,去飽和酶基因係由種子特異性PvPhas啟動子(第5,504,200號美國專利)驅動。自藉由Invader®分析確認含有pat基因及藉由PCR分析確認含有去飽和酶PTU之具除草劑抗性的T1植物,採收大量T2種子。
使用一鋼珠與球磨機,在作為代用品之含有庚烷的十七烷酸甘油三酯(美國明尼蘇達州伊利森(Elysian)的努伽克製品(Nu-Chekprep)公司)中,將種子試樣均質化。在均 質化之前,在試樣中添加之新製備之位於甲醇中的0.25M甲醇鈉溶液(西克瑪(Sigma)公司)。該反應在微熱(40℃)及不斷振盪下進行。藉由重獲甲基化代用品而驗證該反應。重複FAME的萃取作用三次,及在分析之前將所有庚烷層匯集。藉由檢查在第四次萃取作用/衍生化作用中是否存在FAME,而確認萃取作用之完成。使用來自SGE之毛細管柱BPX 70(15公尺x0.25毫米x0.25微米),藉由GC-FID分析所產生的FAME。藉由滯留時間辨識各FAME,及藉由注射來自梅崔亞有限責任公司(美國賓州喜峽)的一種FAME菜籽油參考混合物作為校正標準,而進行量化。
來自基因轉殖品項的T2種子之FAME分析顯示,各種去飽和酶的表現作用具有降低種子的總飽和脂肪酸含量之顯著效應,如從各組品項的平均飽和脂肪酸含量所測得。第10表與第19圖。在該表與下列表中,所連接的字母不同之該等數值係顯著不同,如使用JMP®統計軟體包(美國北卡羅萊納州卡瑞市的SAS軟體研究所有限公司)中進行的塔基-克拉馬(Tukey-Kramer)HSD檢定所測得。AnD9DS與LnD9DS-2或HzD9DS之組合產生最低的平均總飽和脂肪酸含量。
雖然該等去飽和酶皆降低擬南芥屬(Arabidopsis)種子中的總飽和脂肪酸含量,其等對於棕櫚酸與硬脂酸脂肪酸含量之效應不同,如酵母實驗所預測。第11表與第20圖顯示各組品項的平均棕櫚酸含量。第12表與第21圖顯示各組品項的T2種子之平均硬脂酸含量。
AnD9DS與MgD9DS對於硬脂酸含量之效應係高於LnD9DS-2與HzD9DS。相反地,LnD9DS-2與HzD9DS對於棕櫚酸含量之效應係高於AnD9DS與MgD9DS。去飽和酶之組合對於該二脂肪酸的效應最大。該等結果亦在去飽和酶增加種子的棕櫚油酸含量之效應上觀察到,棕櫚油酸係棕櫚酸的δ-9去飽和作用之主要產物。第13表與第22圖。
由於位置與複製套數效應,預期在所分析品項中觀察到去飽和酶對於飽和脂肪酸含量的效應之變異。品項的完整脂肪酸廓型與最低的總飽和脂肪酸含量(五個最低品項之平均)之比較,連同來自野生型與對照組轉形植物之種子的廓型,係示於第14表。
除了降低飽和棕櫚酸與硬脂酸脂肪酸的含量及增加單元不飽和脂肪酸(棕櫚油酸與油酸)的含量之外,去飽和酶之存在亦降低種子中之二十酸(C20:0)的量。其可能因為該脂肪酸係衍生自硬脂酸與棕櫚酸之伸長作用。似乎並無藉由所植入的去飽和酶之C20:0的直接去飽和作用,因C20:1△9形式的二十烯酸(C20:1)並未伴隨增加。
第10例:δ-9去飽和酶抗體之製備作用
對於植物中的基因轉殖型δ-9去飽和酶蛋白表現作用之特徵分析而言,諸如抗體之診斷工具係理想的。因為醯基-Co-A δ-9去飽和酶係膜結合型蛋白,在大腸桿菌(Escherichia coli)中的例行過度表現作用係困難的。然而,藉由過度表現各δ-9去飽和酶蛋白之不包括該蛋白的任何跨膜域之一C端片段,成功地產生抗體。
聚合酶鏈反應:設計pCR引子,以擴增各去飽和酶之一等效C端片段。設計3’引子,以編碼具有一個C端6x組胺酸標籤之一蛋白質片段。在5’與3’引子中分別納入NdelBamHI限制酶位點,以促進選殖。引子序列係示於下列第15表中。預期的擴增產物就LnD9DS-2而言為659鹼基對,就MgD9DS而言為683鹼基對,及就HzD9DS而言為335鹼基對。採用供應商的條件,使用寶(Takara)Ex TaqTM PCR套組(美國加州山景城之選殖技術(Clontech)公司),進行PCR反應。總PCR反應體積為50微升。各反應含有200奈克的質體DNA與50皮莫耳的各引子。DNA係於94℃進行變性1分鐘,接著進行於94℃達30秒、於60℃達1分鐘及於72℃達30秒之循環30次。最終延伸作用係於72℃進行10分鐘。各PCR產物係運作通過無菌0.75%瓊脂凝膠上的二個孔,使用蒙太奇(Montage)離心管柱將DNA凝膠純化,及在15微升的TF緩衝液中洗提。
TOPO選殖作用:將純化後的C端片段TA選殖至TOPO® pCR® 2.1載體(美國加州卡爾斯巴德的英杰公司)中,及遵循製造商的操作程序(英杰公司)轉形至Top 10大腸桿菌(E.coli)細胞中。選擇轉形作用,及使用核酸離心(Nucleospin)®管柱(德國迪倫的馬歇雷-納格爾有限兩合公司)純化質體DNA。在20微升的總體積中,於37℃以NdeIBamHI剪切三微升(3μL)的DNA達90分鐘,及在0.8%瓊脂凝膠上進行電泳。在各情況下,可觀察到一個基因特異性片段(加上一個3.9kb的TOPO®載體條帶)。選擇各選殖基因的三個陽性殖株及加以定序,以確認所擴增的PCR片段並無錯誤。各MgD9DS殖株在第45鹼基對含有靜默點突變作用,顯示所發表序列與PCR模板之間之單一核苷酸多型性,或一種靜默PCR錯誤。因該突變作用係靜默型,而沒有修正之必要,及選擇一殖株以供次選殖之用。
δ-9去飽和酶C端片段表現質體之製備作用:以NdeIBamHI限制酶剪切經PCR擴增的δ-9去飽和酶片段,及接合至pET30b(+)表現載體內的對應限制酶位點。該選殖步驟造成添加15個C端胺基酸,構成促進全長式蛋白純化作 用之一個C端6x組胺酸標籤。預期該等添加的胺基酸不會影響蛋白表現作用。獲得陽性殖株,及經由限制酶剪切作用與定序反應加以確認。
δ-9去飽和酶C端肽片段在大腸桿菌(E.coli)中之表現作用:依據製造商建議的操作程序(美國威斯康辛州麥迪遜的諾凡基(Novagen)公司),將δ-9去飽和酶/pET30b(+)表現質體轉形至BL21(DE3)大腸桿菌(E.coli)細胞中。將細胞敷塗於含有康黴素(50微克/毫升)與葡萄糖(1.25M)的LA平皿上。該等平皿係於37℃培養過夜。自該等平皿刮取一整個接種環的細胞,及接種至含有250毫升LB與康黴素(50微克/毫升)及具有異丙基-P-D-硫半乳糖苷(0.75mM)誘導劑之500毫升燒瓶中。試驗三種誘導條件。在不同的溫度誘導培養物,及在如下的不同時間點採收:於28℃過夜(約18小時);於16℃過夜;或於37℃達4小時。藉由在250毫升的瓶中以6,000rpm離心15分鐘而採收細胞,然後於-20℃冷凍。
δ-9去飽和酶C端肽片段之蛋白質純化作用:將來自250毫升培養物的細胞沉澱物解凍,及使用一種手持式均質機而再懸浮於50毫升之冷的磷酸鹽緩衝型食鹽水(PBS)中,其中含有10%甘油與0.5毫升的蛋白酶抑制劑雞尾酒(美國密蘇里州聖路易市的西克瑪公司)。使用必能信(Branson)型號450的超音波細胞破碎儀(美國康乃迪克州丹伯里(Danbury)),在冰上將細胞碎裂約10分鐘。藉由在10,000 x g離心15分鐘而將包涵體沉澱,及以含有0.5%曲拉通(Triton) X-100的PBS萃取2至3次,直至如藉由布萊德福(Bradford)蛋白質分析法所測量之上清液的蛋白質濃度達到基線為止。在室溫中,將所回收的包涵體溶解於含有6M尿素與5mM DTT的PBS溶液中,及攪拌約1小時。藉由於30,000 x g離心15分鐘,將溶解的蛋白質與不可溶的原料分離,及將所留存的上清液施用至一個5毫升的鎳親和性管柱(美國紐澤西州皮斯卡特維(Piscataway)之GE保健(GE Healthcare)公司的HiTrap螯合型)。C端δ-9去飽和酶肽的組胺酸標籤係與該金屬樹脂結合,及使用Akta® Explorer 100(美國紐澤西州皮斯卡特維之GE保健公司),以50至200mM咪唑梯度洗提各片段。收集分液(各3毫升),及藉由SDS-PAGE分析洗提峰。將含有C端δ-9去飽和酶肽之分液匯集,及使用Amicon® Ultra 10,000 MWCO過濾裝置(美國麻薩諸塞州比勒麗卡之密里博公司)濃縮至5毫升體積以下。然後將蛋白試樣注射至Hi LoadTM XK16/60 SuperdexTM 200大小排除管柱(美國紐澤西州皮斯卡特維之GE保健公司),及以位於20mM Tris-HCI、150mM氯化鈉及1mM DTT中之6M尿素透析。將含有純的C端δ-9去飽和酶肽之尖峰分液(各4毫升)保存(在藉由SDS-PAGE分析及其他生化特徵分析驗證之後),及用於生產抗體。產生對於LnD9DS-2肽而言具有27kDa、對於HzD9DS肽而言15kDa及對於MgD9DS肽而言28kDa的預期大小之肽。誘導條件所產生的蛋白質,係足以藉由SDS-PAGE凝膠之考馬斯(Coomassie)藍染色作用可視化。
多株抗體之製造:由合約服務(美國達拉威爾州 紐華克(Newark)市的策略生物方案(Strategic BioSolutions)公司)產生對抗三種C端δ-9去飽和酶肽中的各者之兔抗體。依循其等的標準程序,獲得三種蛋白片段中的各者之高效價(藉由ELISA驗證)抗血清。以20mM Tris-HCl、150mM氯化鈉、1mM DTT緩衝液及最終濃度為2至3M的尿素稀釋純化後的各C端δ-9去飽和酶肽,以將蛋白保留在溶液中。將約10毫克的蛋白送至策略生物方案公司,以用於產生一種多株抗體。選擇二隻兔子以供各免疫原之用,及採用標準操作程序(70天免疫作用)。購買稱作TiterMax® Gold之一種新的佐劑,以用於製備乳化液。亦在免疫作用期間及在操作程序結束時進行ELISA滴定,以確保成功地製造抗體。在二個分開的不同時間點取得抗血清;一者係從標準的2個月程序,及另一者係從放血時。
為從兔血清分離總IgG,將約20至30毫升的高效價抗血清施用至5毫升的耐鹼性蛋白A管柱(GE保健公司型錄編號11-0034-94之HiTrapTM MabSelect SuReTM)。在以PBS緩衝液進行之標準清洗作用後,藉由短暫暴露於pH 3.3的0.1M檸檬酸鈉、0.3M氯化鈉而將結合型IgG自該樹脂洗提出,及藉由在各分液中添加1/10體積之pH 9的2M Tris-HCI緩衝液而立即中和。依循標準的就地清潔(CIP)程序,藉由0.5N氫氧化鈉處理而將親和性管柱消毒,以避免IgG的交叉污染。最後自各試樣所得的IgG係在4℃之50倍體積的PBS中透析過夜,及藉由使用BSA標準品(皮爾斯(Pierce)公司之產品編號23208)之布萊德福(Bradford)分 析,測定蛋白質濃度。將1毫升的等分試樣轉移至個別管中及儲存於-80℃。
該等抗體係用於測量基因轉殖植物原料中的去飽和酶蛋白表現作用之診斷工具。該等抗體係用於建立低飽和脂肪酸油表現型變化與δ-9去飽和酶蛋白表現水平之間的相關性。
第11例:T 2 擬南芥屬(Arabidopsis)種子中之醯基-CoA δ-9去飽和酶蛋白水平
藉由西方墨點法檢測成熟的基因轉殖型種子試樣中之δ-9去飽和酶多肽。在KlecoTM珠磨式研磨器(美國加州維塞利亞(Visalia)的加西亞機械(Garcia Machine)公司)中,藉由不銹鋼珠裂解種子而製備供分析用的種子。添加萃取緩衝液(50mMTris、10mM EDTA、2% SDS),及將試樣管輕緩地晃動30分鐘。試樣係於3,000rcf離心15分鐘。然後,收集上清液及供分析之用。藉由洛瑞(Lowry)分析(美國加州赫丘里斯的伯瑞公司),測定種子萃取物中之總可溶性蛋白的量。將試樣標準化至1.55毫克/毫升的總可溶性蛋白,及在具有40mM DTT的LDS試樣緩衝液(美國加州卡爾斯巴德的英杰公司)中製備,以達到每道20微克的總可溶性蛋白之標準化加載。試樣係在4至12% Bis-Tris凝膠(英杰公司)中進行電泳,及轉移至硝化纖維素膜。在阻斷緩衝液中阻斷墨點,及以對抗四種不同的δ-9去飽和酶多肽(AnD9DS、LnD9DS-2、HzD9DS及MgD9DS)之抗體探測(參見第10例)。
在所有情況下,在兔中產生對抗如上述個別去飽和酶之具組胺酸標籤的純化C端肽片段之多株抗體。使用純化C端片段作為用於西方墨點法定量作用之參考抗原。在檢測作用中使用一種經螢光標記的抗兔二級抗體(山羊抗兔AF 633;英杰公司)。墨點係在TyphoonTM Trio Plus螢光成像器(GE保健公司)上可視化。以二次曲線擬合產生標準曲線,及使用線性迴歸而量化表現作用。
當以特異性抗血清探測來自擬南芥屬(Arabidopsis)品項之成熟T2種子萃取物的SDS-PAGE西方墨點時,顯示位於適當大小的條帶。針對特異性參考抗原而量化該等條帶。以適當的抗血清所進行之擬南芥屬(Arabidopsis)T2種子萃取物的定量西方墨點法顯示,在成熟種子中檢測出平均63奈克的LnD9DS-2/毫克總蛋白質(tp)(最高228奈克/毫克tp),及所檢測出之HzD9DS平均為34奈克/毫克tp(最高100奈克/毫克tp)。就MgD9DS而言,在T2種子中檢測出平均為58奈克/毫克tp(最高1179奈克/毫克tp)。就AnD9DS品項而言,在成熟的T2種子中檢測出平均為625奈克/毫克tp(最高1.5微克/毫克tp)。因此,在基因轉殖種子中表現之偏好棕櫚醯基型去飽和酶即LnD9DS-2與HzD9DS,係比AnD9DS低10至18倍。該等去飽和酶之較高的表現水平將因此進一步驅使飽和物降低,尤其是棕櫚酸。
第12例:油菜中之δ-9去飽和酶基因表現作用
從以pDAB7321(序列辨識編號:61)與pDAB7326(序列辨識編號:63)(分別含有由種子特異性 PvPhas啟動子所驅動之LnD9DS-2與HzD9DS基因)所進行的轉形作用,獲得一系列的基因轉殖油菜品項。將藉由基因體DNA的PCR分析所辨識之含有LnD9DS-2基因的39種pDAB7321品項,栽培於溫室中,而產生T1種子。同樣地,辨識出80種含有HzD9DS基因的pDAB7326品項,及產生T1種子。油菜亦以pDAB7319(序列辨識編號:60)或pDAB7324(序列辨識編號:62)轉形,其含有與LnD9DS-2偶合的AnD9DS基因或含有HzD9DS基因,所有皆由PvPhas啟動子所驅動。分別獲得44與76種品項,其等藉由PCR分析確認含有該二去飽和酶基因,及於溫室中栽培而產生T1種子。
相對於未轉形的油菜植物或以空載體對照組轉形的植物,來自pDAB7321(LnD9DS-2 v2)或pDAB7326(HzD9DS v2)所轉形品項的T1種子試樣之FAME分析,並未顯示飽和脂肪酸水平之顯著降低。T1種子的西方墨點未顯示可檢測的δ-9去飽和酶蛋白水平。此外,在來自以pDAB7319(AnD9DS v3與LnD9DS-2 v2)或pDAB7324(AnD9DS v3與HzD9DS v2)轉形植物的T1種子中,未檢測出可檢測的LnD9DS-2或HzD9DS蛋白;然而可容易檢測出AnD9DS蛋白。在該等品項中,觀察到相對於對照組植物之飽和脂肪酸降低,但其係由於AnD9DS的表現作用。
為評估δ-9去飽和酶基因之相對mRNA水平,自雙重去飽和酶構築質體(pDAB7319與pDAB7324)所轉形品項之發育中的油菜種子萃取總RNA,及藉由定量型即時 PCR分析。在授粉20、25、29、32、39或41天後,在乾冰上自數種油菜植物採收種子,及於-80℃儲存。依據製造商建議的操作程序,使用一種植物RNeasy®RNA萃取作用套組(凱傑公司),自50毫克的匯集冷凍種子製備總RNA。依據製造商建議的操作程序,在使用供qRT-PCR所用之SuperScript®III第一股合成作用超級混合物(英杰公司)之cDNA合成作用中,使用所萃取的RNA作為一模板。
使用羅氏(Roche)分析設計中心(美國印第安納州印第安納波利斯的羅氏診斷(Roche Diagnostics)公司),設計針對去飽和酶標的之RT-PCR分析。分析中所用的引子係述於第16表中。標的分析係利用經 FAM 標記的UPL探針(羅氏診斷公司)。在整合DNA科技(Integrated DNA Technologies)公司所合成之一種經德州紅標記的油菜肌動蛋白參考分析物的複式反應中,進行該等分析。
在LightCycler® 480II即時PCR熱循環器(羅氏(Roche)公司)上,進行RT-PCR反應。使用533奈米發射濾片與483奈米激發訊號,收集標的UPL分析物之數據。使用610奈米濾片與558奈米激發訊號,收集肌動蛋白參考分析物之數據。使用LC480II軟體的“先進相對量化(Advanced Relative Quantification)”分析流程,自動計算循環時間值及標的相對於參考品之比例。使用標準△△Ct方法(羅氏公司),計算各試樣內的去飽和酶轉錄本水平之相對累積作用。
就來自pDAB7319(AnD9DS v3與LnD9DS-2 v2)與pDAB7324(AnD9DS v3與HzD9DS v2)的各油菜種子試樣而言,HzD9DS或LnD9DS-2轉殖基因的轉錄本累積作用係顯著低於同一品項中的AnD9DS轉錄本。在轉錄本累積作用中所觀察到的差異,係自3倍至20倍以下不等。第23圖。因此,HzD9DS與LnD9DS-2的表現作用不足,其可能解釋為何未檢測出多肽及缺乏歸屬於該等基因的表現型。
第13例:藉由任擇啟動子之δ-9去飽和酶PTU表現作用
使用附加的轉錄調控區來表現編碼LnD9DS-2、HzD9DS及MgD9DS蛋白之基因,可進一步增加油菜中之該等δ-9去飽和酶的含量。在發育早期表現及表現較長時間的轉錄調控區之識別與使用,可藉由促進一異源基因在較早的種子發育階段之強勁的種子特異性轉錄作用,而增加油菜種子內的異源δ-9去飽和酶之水平。該轉錄調控區的實例包括但不限於LfKCS3啟動子(第7,253,337號美國專利)與 FAE1啟動子(第6,784,342號美國專利)。該等啟動子係單獨或組合使用,以驅動LnD9DS-2、HzD9DS及MgD9DS表現組合體的表現作用,例如經由與諸如先前所述在質體pDAB7319、pDAB7321、pDAB7324、pDAB7326、pDAB7328及pDAB7330中的該等基因之操作連鎖。置換一質體內的轉錄調控區之方法,係技藝中眾所周知。因此,自pDAB7319、pDAB7321、pDAB7324、pDAB7326、pDAB7328或pDAB7330(或用於建造pDAB7319、pDAB7321、pDAB7324、pDAB7326、pDAB7328或pDAB7330之上述質體)移除一種包含PvPhas啟動子之聚核苷酸片段,及以一個LfKCS3或FAE1啟動子區置換。依據先前實例中所闡述之程序,使用新建構的質體而將油菜植物穩定地轉形。將基因轉殖油菜植物分離,及進行分子特徵分析。測定所產生的δ-9去飽和酶累積作用,及辨識出強勁表現δ-9去飽和酶之油菜植物。
用於增加δ-9去飽和酶表現之轉錄調控區的進一步改質作用,係包括以第17表中所述的任一序列置換現有的Kozak序列。使用標準分子生物學技術,完成在一種δ-9去飽和酶的起始位點上游之任擇Kozak序列的改造。使用技藝中已知之技術,合成合成性聚核苷酸片段,及選殖至一種δ-9去飽和酶編碼序列的上游。起始密碼子的環境對於一轉殖基因的表現水平具有強烈效應。將Kozak序列改質為第17表中所列的一者之改質作用,增加異源性δ-9去飽和酶的表現水平。
第17表:納入一異源性δ-9去飽和酶基因上游以增加表現作
第14例:來自玉米穗蟲(Helicoverpa zea)與穎枯球腔菌(Leptosphaeria nodorum)的δ-9去飽和酶基因之設計與合成
為在植物中獲得較高的異源基因表現水平,修改第2例所述之密碼子最佳化策略,及使用一種新的設計操作程序,重新改造用於HzD9DS與LnD9DS-2之異源基因蛋白編碼區。
使用已計算預期宿主植物即本例之油菜的密碼子偏移之一表,而選擇密碼子。在設計用於在植物中表現δ-9去飽和酶基因之編碼區時,確定植物所偏好的主要(“第一選擇”)密碼子,及其係於約95%的時間使用。“第二選擇”密碼子係以約5%的頻率很少使用。因此,設計編碼各δ-9去飽和酶的胺基序列之一種新的DNA序列,其中新的DNA序列藉由植物第一首選與第二首選的密碼子之取代作用來指定該胺基酸序列內的各位置之適當胺基酸,而與天然的δ-9去飽和酶基因不同。然後分析可能已藉由改質作用創建之新序列的限制酶位點。然後藉由以第一或第二選擇的較佳密碼子置換該等密碼子,而移除已確定的限制酶位點。亦移除序列中可影響所感興趣的基因之轉錄作用或轉譯作用之其他位點,特別是高度穩定的莖環結構。
自油菜的蛋白編碼序列彙編之密碼子偏移表,確 定來自油菜的遺傳密碼之較佳密碼子選項(第一與第二選項)之選擇。在第18與19表中,標示為”天然基因%”之欄,係表達如在西洋油菜(Brassicanapus)(油菜)的編碼區所見之各胺基酸的同義密碼子之分布(以該胺基酸的所有密碼子之使用%為單位)。實質上編碼稻瘟黴菌(M.grisea)、玉米穗蟲(H.zea)及穎枯球腔菌(L.nodorum)δ-9去飽和酶的胺基酸序列之新DNA序列,係設計供在油菜中使用在油菜基因中所見之第一與第二選擇密碼子的較佳密碼子分布之最佳表現作用。植物最佳化DNA序列之設計,係使用所建構的油菜密碼子偏移表,而由序列辨識編號:12(稻瘟黴菌(M.grisea))、序列辨識編號:13(玉米穗蟲(H.zea))及序列辨識編號:14(穎枯球腔菌(L.nodorum))的蛋白質序列之反轉譯作用起始。標示為”植物最佳化基因%”之欄,係指較佳密碼子及其等被納入該δ-9去飽和酶基因設計中之頻率。序列辨識編號:44與序列辨識編號:45係分別闡述新的油菜最佳化LnD9DS-2與HzD9DS去飽和酶之核苷酸序列。該等新的油菜最佳化序列係標示為LnD9DS-2 v3與HzD9DS v3。
包含序列辨識編號:44與序列辨識編號:45的DNA片段之合成作用,係由皮可史克利浦公司與藍鷺生物科技公司進行。然後將合成的DNA選殖至表現載體中,及基本上如前述實例所述轉形至油菜中。
第15例:用以增加植物中的醯基-CoA去飽和酶多肽累積作用之N端與C端改質作用
膜結合型蛋白在內質網(ER)中之累積作用與安定性,可受到其等N端與C端的胺基酸序列基序及改質作用之影響。Ravid與Hochstrasser(2008年)於期刊“Nat.Rev. Mol.Cell.Biol.”第9期第679-90頁乙文。尤其,已顯示在真菌與植物以及動物中,N端與C端基序與改質作用調制脂質去飽和酶的累積作用與安定性。McCartney等人(2004年)於期刊“Plant J.”第37期第156-73頁乙文;Mziaut等人(2000年)於期刊“Proc.Natl.Acad.Sci.U.S.A.”第97期第8883-8頁乙文。
在FAD2或FAD3的N端添加一個Myc或血球凝集素(HA)抗原決定位標籤,係顯著增加酵母內之該等酵素的穩態水平。O’Quin等人(2009年)於期刊“Appl Microbiol Biotechnol”第83期第117-25頁乙文。因此,利用在本發明之一種δ-9去飽和酶的N端添加該等或類似的抗原決定位,而增加該多肽在一植物中之表現作用。將編碼一種Myc標籤(序列辨識編號:46)或一種HA標籤(序列辨識編號:47)之聚核苷酸連接子選殖至一種δ-9去飽和酶(如HzD9DS、MgD9DS、AnD9DS、LnD9DS-1及LnD9DS-2)編碼序列的5’端內,以作為一鄰接開放閱讀架構。使用第3例中所述的選殖策略,將所產生的編碼序列選殖至一種植物表現質體內。新建構的質體係用於穩定地轉形一種擬南芥屬(Arabidopsis)及/或油菜植物細胞、原料或組織。自所轉形的植物細胞、原料或組織再生基因轉殖植物。將基因轉殖植物分離,及進行分子特徵分析。測定所產生的δ-9去飽和酶在基因轉殖植物種子中之累積作用,及辨識出強勁表現δ-9去飽和酶多肽之植物。
來自擬南芥屬(Arabidopsis)與油菜中的AnD9DS 表現作用之證據(第11與12例)顯示,該特定去飽和酶酵素之表現水平係顯著高於HzD9DS與LnD9DS-2。因此,位於AnD9DS之核心去飽和酶域(含有跨膜段與保留型催化性組胺酸殘基)外之全部或部分的N端與C端,可用於置換表現較低的去飽和酶中之等效殘基,及增加其表現作用。因此,AnD9DS之N端殘基1至68及C端殘基281至455(分別為序列辨識編號:72及序列辨識編號:73)的全部或部分,係用於置換LnD9DS-2(序列辨識編號:14)之68個N端殘基(1至68)與168個C端殘基(281至449)的全部或部分;及/或置換HzD9DS(序列辨識編號:13)之76個N端殘基(1至76)與60個C端殘基(293至353)。使用第3例中所述的選殖策略,將所產生的編碼序列選殖至一種植物表現質體內。新建構的質體係用於穩定地轉形一種擬南芥屬(Arabidopsis)及/或油菜植物細胞、原料或組織。自所轉形的植物細胞、原料或組織再生基因轉殖植物。將基因轉殖植物分離,及進行分子特徵分析。測定所產生的δ-9去飽和酶在基因轉殖植物種子中之累積作用,及辨識出強勁表現該改質的HzD9DS或改質的LnD9DS-2多肽之植物。
第16例:用於增強植物中之醯基-CoA去飽和酶的mRNA表現之改質作用
技藝中已知,藉由納入穩定及增加mRNA累積作用之基因元素,可增強mRN表現作用。在緊鄰HzD9DS或LnD9DS-2編碼序列之處納入5’與3’未轉譯區(如菸草滲調蛋白5’與3’UTR序列(Liu等人(2003年)於期刊“Nat. Biotechnol.”第21期第1222-8頁乙文)與菸草嵌紋病毒Ω序列(Gallie等人(1987年)於期刊“Nucleic Acids Res.”第15期第8693-711頁乙文)或內含子(Koziel等人(1996年)於期刊“Mol.Biol.”第32期第393-405頁乙文),係用於增加該轉殖基因的表現水平,相較於缺乏前述基因元素之同一編碼序列的表現作用而言。依據技藝中眾所周知的方法,在去飽和酶PTU內添加一或多種該等基因元素。經由標準選殖方法,將包含5’未轉譯區、3’未轉譯區及/或內含子之聚核苷酸片段添加至一種植物表現質體(如pDAB7319、pDAB7321、pDAB7324、pDAB7326、pDAB7328,pDAB7330或上述用於建造pDAB7319、pDAB7321、pDAB7324、pDAB7326、pDAB7328或pDAB7330之質體)中。新建構的質體係用於穩定地轉形一種擬南芥屬(Arabidopsis)及/或油菜植物細胞、原料或組織。自所轉形的植物細胞、原料或組織再生基因轉殖植物。將基因轉殖植物分離,及進行分子特徵分析。測定所產生的δ-9去飽和酶在基因轉殖植物種子中之累積作用,及辨識出強勁表現HzD9DS或LnD9DS-2多肽之植物。
此外,技藝中已知酵母去飽和酶基因諸如OLE1係經高度調控的。刪除編碼跨膜區及身為細胞色素b5域的一部分之序列,將降低OLE1轉錄本的穩定性。Vemula等人(2003年)於期刊“J.Biol.Chem.”第278(46)期第45269-79頁乙文。存在於OLE1內之該等序列係作用為mRNA穩定序列。因此,利用在LnD9DS-2或HzD9DS編碼序列中納入編碼跨膜區與細胞色素b5域的OLE1序列,而增加該編碼序列 的mRNA轉錄本之安定性,藉此導致較高的表現水平及其後LnD9DS-2或HzD9DS多肽之增加。使用技藝中的已知方法,建構包括OLE1跨膜區與細胞色素b5域序列之一種嵌合型LnD9DS-2或HzD9DS編碼序列。將藉此所產生的編碼序列納入一種植物表現質體(如前述實例中所述)中,及用於經由農桿菌屬(Agrobacterium)介導型植物轉形作用而產生基因轉殖植物。將基因轉殖植物分離,及進行特徵分析。測定所產生的δ-9去飽和酶累積作用,及辨識出強勁表現δ-9去飽和酶之植物。
第17例:一種任擇的3’未轉譯區終止子用於在一植物中穩定表現一種δ-9去飽和酶之用途
由於可取得的3’UTR-終止子之數量有限,典型地使用農桿菌屬(Agrobacterium)ORF23 3’UTR-終止子(AtuORF23 3’UTR)來終止轉錄作用。最近顯示其他3’UTR終止子更有效地終止阿拉伯芥(Arabidopsis thaliana)中的轉錄通讀蛋白。因此,四季豆(Phaseolus vulgaris)菜豆蛋白3’UTR-終止子(序列辨識編號:69)係與四季豆(Phaseolus vulgaris)菜豆蛋白啟動子組合使用,以降低上游基因的轉錄通讀蛋白,藉此減少轉錄干擾。
在一種LnD9DS-2 v2表現組合體及在一種HzD9DS v2表現組合體中納入四季豆(Phaseolusvulgaris)菜豆蛋白3’UTR-終止子(PvPhas 3’UTR v1),其等係先前在質體pDAB7321與pDAB7326中所述。依據嫻熟技藝者所熟知之方法,將包含PvPhas 3’UTR v1之一聚核苷酸片段置於 LnD9DS-2 v2基因的下游,以創建二元質體pDAB110110(第4a圖;序列辨識編號:74)。亦將包含PvPhas 3’UTR v1之一聚核苷酸片段置於HzD9DS v2基因的下游,以創建二元質體pDAB110112(第4b圖;序列辨識編號:75)。
經由限制酶剪切作用及定序,確認所產生的二元質體。新建構的質體係各用於穩定地轉形一種擬南芥屬(Arabidopsis)及/或油菜植物細胞、原料或組織。自所轉形的植物細胞、原料或組織再生基因轉殖植物。將基因轉殖植物分離,及進行分子特徵分析。測定基因轉殖植物之種子中所產生的δ-9去飽和酶累積作用,及辨識出強勁表現HzD9DS或LnD9DS-2多肽之植物。
<110> 陶氏農業科學公司
<120> 降低植物種子中飽和脂肪酸含量之技術(四)
<130> 2971-p10092.1US
<150> US 61/358,314
<151> 2010-06-24
<160> 78
<170> 專利申請軟體3.4版
<210> 1
<211> 44
<212> DNA
<213> 人工
<220>
<223> 前置引子Mgdelta9F
<400> 1
<210> 2
<211> 41
<212> DNA
<213> 人工
<220>
<223> 反置引子Mg9deltaR
<400> 2
<210> 3
<211> 1523
<212> DNA
<213> 人工
<220>
<223> MgD9Ds之PCR擴增片段
<400> 3
<210> 4
<211> 1428
<212> DNA
<213> 人工
<220>
<223> 無內含子MgD9Ds植株
<400> 4
<210> 5
<211> 1997
<212> DNA
<213> 穎枯球腔菌(Leptosphaeria nodorum)
<400> 5
<210> 6
<211> 39
<212> DNA
<213> 人工
<220>
<223> 前置引子Lnd9FAD2F
<400> 6
<210> 7
<211> 38
<212> DNA
<213> 人工
<220>
<223> 反置引子Lnd9FAD2R
<400> 7
<210> 8
<211> 1370
<212> DNA
<213> 穎枯球腔菌(Leptosphaeria nodorum)
<400> 8
<210> 9
<211> 1428
<212> DNA
<213> 稻瘟黴菌(Magnaporthe grisea)
<400> 9
<210> 10
<211> 1062
<212> DNA
<213> 玉米穗蟲(Helicoverpa zea)
<400> 10
<210> 11
<211> 1350
<212> DNA
<213> 穎枯球腔菌(Leptosphaeria nodorum)
<400> 11
<210> 12
<211> 475
<212> PRT
<213> 稻瘟黴菌(Magnaporthe grisea)
<400> 12
<210> 13
<211> 353
<212> PRT
<213> 玉米穗蟲(Helicoverpa zea)
<400> 13
<210> 14
<211> 449
<212> PRT
<213> 穎枯球腔菌(Leptosphaeria nodorum)
<400> 14
<210> 15
<211> 1428
<212> DNA
<213> 人工
<220>
<223> 油菜最佳化去飽和酶序列
<400> 15
<210> 16
<211> 1062
<212> DNA
<213> 人工
<220>
<223> 油菜最佳化去飽和酶序列
<400> 16
<210> 17
<211> 1350
<212> DNA
<213> 人工
<220>
<223> 油菜最佳化去飽和酶序列
<400> 17
<210> 18
<211> 24
<212> DNA
<213> 人工
<220>
<223> 引子MAS414
<400> 18
<210> 19
<211> 24
<212> DNA
<213> 人工
<220>
<223> 引子MAS415
<400> 19
<210> 20
<211> 24
<212> DNA
<213> 人工
<220>
<223> 引子MAS413
<400> 20
<210> 21
<211> 25
<212> DNA
<213> 人工
<220>
<223> 引子arw008
<400> 21
<210> 22
<211> 22
<212> DNA
<213> 人工
<220>
<223> 引子arw009
<400> 22
<210> 23
<211> 24
<212> DNA
<213> 人工
<220>
<223> 引子arw010
<400> 23
<210> 24
<211> 22
<212> DNA
<213> 人工
<220>
<223> 引子arw011
<400> 24
<210> 25
<211> 33
<212> DNA
<213> 人工
<220>
<223> 引子AntiLnD9DS2F
<400> 25
<210> 26
<211> 35
<212> DNA
<213> 人工
<220>
<223> 引子AntiLnD9DS2Rh
<400> 26
<210> 27
<211> 36
<212> DNA
<213> 人工
<220>
<223> 引子AntiMgD9DSF
<400> 27
<210> 28
<211> 32
<212> DNA
<213> 人工
<220>
<223> 引子AntiMgD9DSRh
<400> 28
<210> 29
<211> 30
<212> DNA
<213> 人工
<220>
<223> 引子AntiHzD9DSF
<400> 29
<210> 30
<211> 35
<212> DNA
<213> 人工
<220>
<223> 引子AntiHzD9DSRh
<400> 30
<210> 31
<211> 24
<212> DNA
<213> 人工
<220>
<223> 用於標的AnD9Ds之前置引子
<400> 31
<210> 32
<211> 20
<212> DNA
<213> 人工
<220>
<223> 用於標的AnD9Ds之反置引子
<400> 32
<210> 33
<211> 18
<212> DNA
<213> 人工
<220>
<223> 用於標的HzD9Ds之前置引子
<400> 33
<210> 34
<211> 21
<212> DNA
<213> 人工
<220>
<223> 用於標的LnD9Ds之反置引子
<400> 34
<210> 35
<211> 20
<212> DNA
<213> 人工
<220>
<223> 用於標的LnD9Ds之前置引子
<400> 35
<210> 36
<211> 20
<212> DNA
<213> 人工
<220>
<223> 用於標的LnD9Ds之反置引子
<400> 36
<210> 37
<211> 21
<212> DNA
<213> 人工
<220>
<223> 用於標的肌動蛋白之前置引子
<400> 37
<210> 38
<211> 22
<212> DNA
<213> 人工
<220>
<223> 用於標的肌動蛋白之反置引子
<400> 38
<210> 39
<211> 22
<212> DNA
<213> 人工
<220>
<223> 肌動蛋白探針
<400> 39
<210> 40
<211> 13
<212> DNA
<213> 人工
<220>
<223> Kozak序列
<400> 40
<210> 41
<211> 13
<212> DNA
<213> 人工
<220>
<223> Kozak序列
<400> 41
<210> 42
<211> 18
<212> DNA
<213> 人工
<220>
<223> Kozak序列
<400> 42
<210> 43
<211> 14
<212> DNA
<213> 人工
<220>
<223> Kozak序列
<400> 43
<210> 44
<211> 1350
<212> DNA
<213> 人工
<220>
<223> 油菜最佳化去飽和酶
<400> 44
<210> 45
<211> 1062
<212> DNA
<213> 人工
<220>
<223> 油菜最佳化去飽和酶
<400> 45
<210> 46
<211> 10
<212> PRT
<213> 人工
<220>
<223> Myc標籤
<400> 46
<210> 47
<211> 9
<212> PRT
<213> 人工
<220>
<223> 血球凝集素標籤
<400> 47
<210> 48
<211> 1368
<212> DNA
<213> 小巢狀麴菌(Aspergillus nidulans)
<400> 48
<210> 49
<211> 1368
<212> DNA
<213> 人工
<220>
<223> AnD9DS v3靜默突變株
<400> 49
<210> 50
<211> 455
<212> PRT
<213> 小巢狀麴菌(Aspergillus nidulans)
<400> 50
<210> 51
<211> 455
<212> PRT
<213> 小巢狀麴菌(Aspergillus nidulans)
<400> 51
<210> 52
<211> 510
<212> PRT
<213> 啤酒酵母菌(Saccharomyces cerevisiae)
<400> 52
<210> 53
<211> 13227
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7309
<400> 53
<210> 54
<211> 10247
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7318
<400> 54
<210> 55
<211> 6058
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7320
<400> 55
<2l0>56
<2ll>9956
<2l2>DNA
<213>人工
<220>
<223> 質體pDAB7323
<400> 56
<210> 57
<211> 5767
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7325
<400> 57
<210> 58
<211> 6109
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7327
<400> 58
<210> 59
<211> 6136
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7329
<400> 59
<210> 60
<211> 18713
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7319
<400> 60
<210> 61
<211> 14524
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7321
<400> 61
<210> 62
<211> 18422
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7324
<400> 62
<210> 63
<211> 14233
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7326
<400> 63
<210> 64
<211> 14575
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7328
<400> 64
<210> 65
<211> 14602
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7330
<400> 65
<210> 66
<211> 10915
<212> DNA
<213> 人工
<220>
<223> 質體pDAB7331
<400> 66
<210> 67
<211> 1448
<212> DNA
<213> 人工
<220>
<223> PvPhas v2啟動子
<400> 67
<210> 68
<211> 85
<212> DNA
<213> 人工
<220>
<223> PvPhas 5’UTR
<400> 68
<210> 69
<211> 129
<212> DNA
<213> 人工
<220>
<223> PvPhas 3’UTR v1
<400> 69
<210> 70
<211> 1088
<212> DNA
<213> 人工
<220>
<223> PvPhas 3’MAR v2
<400> 70
<210> 71
<211> 457
<212> DNA
<213> 人工
<220>
<223> AtuORF 3’UTR v1
<400> 71
<210> 72
<211> 68
<212> PRT
<213> 人工
<220>
<223> AnD9DS之N端第1至68個殘基
<400> 72
<210> 73
<211> 175
<212> PRT
<213> 人工
<220>
<223> AnD9DS之C端第281至455個殘基
<400> 73
<210> 74
<211> 14103
<212> DNA
<213> 人工
<220>
<223> 質體pDAB110110
<400> 74
<210> 75
<211> 13812
<212> DNA
<213> 人工
<220>
<223> 質體pDAB110112
<400> 75
<210> 76
<211> 1434
<212> DNA
<213> 稻瘟黴菌(Magnaporthe grisea)
<400> 76
<210> 77
<211> 212
<212> PRT
<213> 穎枯球腔菌(Leptosphaeria nodorum)
<400> 77
<210> 78
<211> 216
<212> PRT
<213> 玉米穗蟲(Helicoverpa zea)
<400> 78

Claims (18)

  1. 一種經分離的核酸分子,其包含一多核苷酸,該多核苷酸可操作連鎖至一種子特異性植物啟動子,其中該多核苷酸編碼包含一胺基酸序列的一δ-9去飽和酶酵素,該胺基酸序列係與序列辨識編號:12至少80%一致。
  2. 如申請專利範圍第1項之核酸分子,其中該多核苷酸係與選自於由序列辨識編號:3、序列辨識編號:4、序列辨識編號:9及序列辨識編號:15所組成之群組之一序列至少60%一致。
  3. 如申請專利範圍第1項之核酸分子,其中該種子特異性植物啟動子係選自於由菜豆蛋白啟動子、LfKCS3啟動子及FAE 1啟動子所組成之群組。。
  4. 如申請專利範圍第1項之核酸分子,其中該多核苷酸係可操作連鎖至一選自於由下列所組成之群組的基因調控元素:δ-9去飽和酶3’UTR/終止子、四季豆(Phaseolus vulgaris)菜豆蛋白5’未轉譯區、四季豆(Phaseolus vulgaris)菜豆蛋白3’未轉譯區、四季豆(Phaseolus vulgaris)菜豆蛋白基質結合區、農桿腫瘤菌(Agrobacterium tumefaciens)ORF23 3’未轉譯區、農桿腫瘤菌(Agrobacterium tumefaciens)ORF1 3’未轉譯區、超驅動子(Overdrive)、T股邊界序列、序列辨識編號:40、序列辨識編號:41、序列辨識編號:42及序列辨識編號:43。
  5. 一種用於降低一細胞中的飽和脂肪酸量之方法,該方法包括:以如申請專利範圍第1項之核酸分子轉形一細胞,藉此降低該細胞中的飽和脂肪酸量。
  6. 如申請專利範圍第5項之方法,其中該細胞係一酵母細胞。
  7. 如申請專利範圍第5項之方法,其中該細胞係一種植物細胞。
  8. 如申請專利範圍第7項之方法,其包括以多於一種如申請專利範圍第1項之核酸分子轉形該植物細胞。
  9. 如申請專利範圍第7項之方法,其中該植物細胞的轉形作用係在該植物細胞中植入用於降低該植物細胞中的16:0-ACP水平之一構件。
  10. 如申請專利範圍第9項之方法,其中用於降低該植物細胞中的16:0-ACP水平之構件係一種質體外去飽和酶。
  11. 如申請專利範圍第10項之方法,其中該質體外去飽和酶係選自由LnD9DS去飽和酶、AnD9DS去飽和酶、HzD9DS去飽和酶及MgD9DS去飽和酶所組成之群組之一種去飽和酶。
  12. 如申請專利範圍第7項之方法,其中該植物細胞係自選自由擬南芥屬(Arabidopsis)、琉璃苣屬(Borago)、油菜、蓖麻屬(Ricinus)、可可屬(Theobroma)、玉米屬(Zea)、草棉屬(Gossypium)、海邊芥藍屬(Crambe)、花柳屬(Cuphea)、亞麻屬(Linum)、雷斯克勒屬(Lesquerella)、澤花屬(Limnanthes)、黃麻、旱金蓮屬(Tropaeolum)、月 見草屬(Oenothera)、木樨欖屬(Olea)、油椰子屬(Elaeis)、花生屬(Arachis)、油菜籽、紅花屬(Carthamus)、大豆亞屬(Glycine)、黃豆亞屬(Soja)、向日葵屬(Helianthus)、菸草屬(Nicotiana)、斑鳩菊屬(Vernonia)、小麥屬(Triticum)、大麥屬(Hordeum)、稻屬(Oryza)、燕麥屬(Avena)、高粱屬(Sorghum)、黑麥屬(Secale)所組成之群組之一屬及禾本科(Gramineae)的其他成員之一種植物取得。
  13. 一種包含如申請專利範圍第1項之核酸序列之油籽植物細胞。
  14. 一種表現包含一胺基酸序列之一質體外δ-9去飽和酶酵素的植物細胞,該胺基酸序列係與序列辨識編號:12至少80%一致。
  15. 如申請專利範圍第14項之植物細胞,其中該植物細胞係來自一基因轉殖西洋油菜(Brassica napus)系。
  16. 一種用於增殖植物中所包含的飽和脂肪酸量低於野生型植物的一基因工程植物原料之方法,該方法包括:以如申請專利範圍第1項之核酸分子將植物原料轉形;及培養該轉形植物原料。
  17. 如申請專利範圍第16項之方法,其中該植物係選自由擬南芥屬(Arabidopsis)、琉璃苣屬(Borago)、油菜、蓖麻屬(Ricinus)、可可屬(Theobroma)、玉米屬(Zea)、草棉屬(Gossypium)、海邊芥藍屬(Crambe)、花柳屬(Cuphea)、 亞麻屬(Linum)、雷斯克勒屬(Lesquerella)、澤花屬(Limnanthes)、黃麻、旱金蓮屬(Tropaeolum)、月見草屬(Oenothera)、木樨欖屬(Olea)、油椰子屬(Elaeis)、花生屬(Arachis)、油菜籽、紅花屬(Carthamus)、大豆亞屬(Glycine)、黃豆亞屬(Soja)、向日葵屬(Helianthus)、菸草屬(Nicotiana)、斑鳩菊屬(Vernonia)、小麥屬(Triticum)、大麥屬(Hordeum)、稻屬(Oryza)、燕麥屬(Avena)、高粱屬(Sorghum)、黑麥屬(Secale)及禾本科(Gramineae)的其他成員所組成之群組之一屬。
  18. 如申請專利範圍第16項之方法,進一步包含從該培養步驟再生一植物。
TW105119975A 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(四) TW201634696A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35831410P 2010-06-24 2010-06-24
US13/168,742 US20110302672A1 (en) 2004-10-08 2011-06-24 Lowering saturated fatty acid content of plant seeds

Publications (1)

Publication Number Publication Date
TW201634696A true TW201634696A (zh) 2016-10-01

Family

ID=45372139

Family Applications (4)

Application Number Title Priority Date Filing Date
TW105119975A TW201634696A (zh) 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(四)
TW105119968A TW201634694A (zh) 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(二)
TW105119964A TW201634693A (zh) 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(一)
TW105119972A TW201634695A (zh) 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(三)

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW105119968A TW201634694A (zh) 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(二)
TW105119964A TW201634693A (zh) 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(一)
TW105119972A TW201634695A (zh) 2010-06-24 2011-06-29 降低植物種子中飽和脂肪酸含量之技術(三)

Country Status (20)

Country Link
US (1) US20110302672A1 (zh)
EP (3) EP2585600B1 (zh)
JP (5) JP6096114B2 (zh)
KR (3) KR20180008884A (zh)
CN (3) CN105755017A (zh)
AR (1) AR081303A1 (zh)
AU (1) AU2011270652B2 (zh)
BR (1) BR112012033112A2 (zh)
CA (3) CA2803098C (zh)
CL (5) CL2012003665A1 (zh)
DK (3) DK2862931T3 (zh)
EA (1) EA029904B1 (zh)
ES (3) ES2568803T3 (zh)
IL (3) IL223438A (zh)
MX (3) MX347113B (zh)
NZ (3) NZ603971A (zh)
TW (4) TW201634696A (zh)
UA (1) UA115302C2 (zh)
WO (1) WO2011163632A2 (zh)
ZA (1) ZA201209083B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617555B2 (en) 2004-10-08 2017-04-11 Dow Agrosciences Llc Generation of transgenic canola with low or no saturated fatty acids
BR102012019434B1 (pt) 2011-07-26 2021-11-09 Dow Agrosciences Llc Métodos de controle de pestes, de insetos, molécula e sequência de dna diagnóstica para o evento de soja 9582.814.19.1
BR102012019436B8 (pt) * 2011-07-26 2022-10-11 Dow Agrosciences Llc Método de detecção do evento de soja pdab9582.814.19.1
MX2017007320A (es) * 2014-12-19 2017-08-25 Dow Agrosciences Llc Generacion de canola transgenica con acidos grasos de baja saturacion o no saturados.
CN106755017A (zh) * 2017-01-09 2017-05-31 程佳祎 一种纳豆激酶的转基因方法
CN109880849B (zh) * 2019-01-03 2023-04-11 四川大学 靶向肿瘤相关巨噬细胞的GHOST-shRNA表达载体复合物及其应用
CN111560394A (zh) * 2019-12-30 2020-08-21 海南大学 一种利用种子荧光快速鉴定转基因拟南芥的方法
KR102566555B1 (ko) * 2020-05-20 2023-08-14 한국화학연구원 델타-9-지방산불포화 효소를 암호화 하는 유전자 및 이의 용도
EP4222167A1 (en) 2020-09-30 2023-08-09 Nobell Foods, Inc. Recombinant milk proteins and food compositions comprising the same
US10947552B1 (en) 2020-09-30 2021-03-16 Alpine Roads, Inc. Recombinant fusion proteins for producing milk proteins in plants
US10894812B1 (en) 2020-09-30 2021-01-19 Alpine Roads, Inc. Recombinant milk proteins
KR20230046412A (ko) 2021-09-30 2023-04-06 세종대학교산학협력단 종자 내 포화지방산 함량 증가용 조성물 및 방법
CN115807014A (zh) * 2022-07-01 2023-03-17 西南大学 桑蚕脂肪酸脱氢酶Bmdesat5的应用

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504200A (en) 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US5188958A (en) 1986-05-29 1993-02-23 Calgene, Inc. Transformation and foreign gene expression in brassica species
NZ221259A (en) 1986-07-31 1990-05-28 Calgene Inc Seed specific transcriptional regulation
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
DE3784860D1 (de) 1986-12-05 1993-04-22 Ciba Geigy Ag Verbessertes verfahren zur transformation von pflanzlichen protoplasten.
US5416011A (en) 1988-07-22 1995-05-16 Monsanto Company Method for soybean transformation and regeneration
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US7705215B1 (en) 1990-04-17 2010-04-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5484956A (en) 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
WO1991010725A1 (en) 1990-01-22 1991-07-25 Dekalb Plant Genetics Fertile transgenic corn plants
US7037692B1 (en) 1990-03-16 2006-05-02 Calgene, Inc. Plant desaturases compositions and uses
US6403865B1 (en) 1990-08-24 2002-06-11 Syngenta Investment Corp. Method of producing transgenic maize using direct transformation of commercially important genotypes
US5384253A (en) 1990-12-28 1995-01-24 Dekalb Genetics Corporation Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes
US5518908A (en) 1991-09-23 1996-05-21 Monsanto Company Method of controlling insects
JPH0614667A (ja) * 1992-03-13 1994-01-25 Lubrizol Corp:The デサチュラーゼを使用しての植物油の改変
DE69334225D1 (de) 1992-07-07 2008-07-31 Japan Tobacco Inc Verfahren zur transformation einer monokotyledon pflanze
DE69638032D1 (de) 1995-10-13 2009-11-05 Dow Agrosciences Llc Modifiziertes bacillus thuringiensis gen zur kontrolle von lepidoptera in pflanzen
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
ES2328427T3 (es) 1998-03-30 2009-11-12 Dow Agrosciences Llc Modificacion de la composicion de acido graso en plantas mediante la expresion de una delta-9 coa desaturasa de aspergillus nidulans.
WO2000011012A1 (en) 1998-08-24 2000-03-02 Rutgers, The State University Of New Jersey Synthetic fatty acid desaturase gene for expression in plants
WO2000042207A2 (en) 1999-01-14 2000-07-20 Monsanto Technology Llc Soybean transformation method
US6784342B1 (en) 1999-08-04 2004-08-31 The University Of British Columbia Regulation of embryonic transcription in plants
KR100785946B1 (ko) 1999-09-30 2007-12-14 니뽄 다바코 산교 가부시키가이샤 식물 형질전환 벡터
WO2001090386A2 (en) 2000-05-24 2001-11-29 The University Of British Columbia Gene regulatory region that promotes early seed-specific transcription
US6706950B2 (en) 2000-07-25 2004-03-16 Calgene Llc Nucleic acid sequences encoding β-ketoacyl-ACP synthase and uses thereof
US7045683B2 (en) * 2001-05-04 2006-05-16 Abbott Laboratories Δ4-desaturase genes and uses thereof
JP2005185101A (ja) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences 植物の全長cDNAおよびその利用
CA2450000A1 (en) * 2003-12-18 2005-06-18 Alberta Research Council Inc. Method of creating plants with reduced level of saturated fatty acid in seed oil
ATE479757T1 (de) * 2004-06-04 2010-09-15 Fluxome Sciences As Stoffwechseltechnisch hergestellte zellen zur produktion mehrfach ungesättigter fettsäuren
US20080260933A1 (en) * 2004-10-08 2008-10-23 Dow Agroscience Llc Certain Plants with "No Saturate" or Reduced Saturate Levels of Fatty Acids in Seeds, and Oil Derived from the Seeds
PL2338328T3 (pl) * 2004-10-08 2018-02-28 Dow Agrosciences Llc Pewne rośliny bez nasyconych kwasów tłuszczowych lub ze zmniejszonymi poziomami nasyconych kwasów tłuszczowych w nasionach i olej pochodzący z nasion
WO2007044043A2 (en) * 2004-12-21 2007-04-19 Monsanto Technology, Llc Transgenic plants with enhanced agronomic traits
US20090070897A1 (en) * 2006-01-12 2009-03-12 Goldman Barry S Genes and uses for plant improvement
EP3059306A1 (en) * 2005-01-12 2016-08-24 Monsanto Technology LLC Genes and uses for plant improvement
US8372595B2 (en) * 2006-05-11 2013-02-12 Evonik Industries Ag Method for obtaining a microbial strain for production of sphingoid bases
US8329994B2 (en) * 2008-10-14 2012-12-11 Monsanto Technology Llc Utilization of fatty acid desaturases from Hemiselmis spp

Also Published As

Publication number Publication date
CN103068986B (zh) 2017-03-29
EP2585600B1 (en) 2016-02-03
CL2016000902A1 (es) 2016-10-14
CN105755017A (zh) 2016-07-13
MX338726B (es) 2016-04-28
JP2013534826A (ja) 2013-09-09
ZA201209083B (en) 2014-02-26
DK2862931T3 (en) 2017-05-01
JP2016136957A (ja) 2016-08-04
EP2585600A4 (en) 2013-12-25
NZ700897A (en) 2015-10-30
CA2803098C (en) 2019-05-21
CN103068986A (zh) 2013-04-24
TW201634694A (zh) 2016-10-01
MX347113B (es) 2017-04-12
CA2999347A1 (en) 2011-12-29
JP2016136958A (ja) 2016-08-04
BR112012033112A2 (pt) 2015-09-08
AR081303A1 (es) 2012-08-01
JP6301381B2 (ja) 2018-03-28
CA2803098A1 (en) 2011-12-29
EA029904B1 (ru) 2018-05-31
WO2011163632A3 (en) 2012-05-18
JP6186463B2 (ja) 2017-08-23
US20110302672A1 (en) 2011-12-08
NZ603971A (en) 2015-06-26
EP2862931B1 (en) 2017-01-25
CA2999335C (en) 2021-10-19
KR20180008884A (ko) 2018-01-24
MX2012015301A (es) 2014-04-25
EP2585600A2 (en) 2013-05-01
NZ700902A (en) 2016-04-29
KR20130098282A (ko) 2013-09-04
EP2862930A1 (en) 2015-04-22
AU2011270652B2 (en) 2015-10-01
DK2585600T3 (da) 2016-05-09
CL2016000905A1 (es) 2016-12-09
DK2862930T3 (en) 2017-05-22
AU2011270652A1 (en) 2013-01-10
IL244003A0 (en) 2016-04-21
KR20180008885A (ko) 2018-01-24
TW201634693A (zh) 2016-10-01
JP2016144456A (ja) 2016-08-12
EP2862930B1 (en) 2017-02-08
CL2012003665A1 (es) 2013-08-09
WO2011163632A2 (en) 2011-12-29
ES2568803T3 (es) 2016-05-04
CL2016000904A1 (es) 2016-12-09
MX350491B (es) 2017-09-07
CA2999335A1 (en) 2011-12-29
ES2623454T3 (es) 2017-07-11
IL223438A (en) 2016-10-31
JP6096114B2 (ja) 2017-03-15
CA2999347C (en) 2020-04-14
EA201291332A1 (ru) 2013-05-30
JP6186462B2 (ja) 2017-08-23
IL244002A0 (en) 2016-04-21
JP2016171789A (ja) 2016-09-29
CN105734067A (zh) 2016-07-06
TW201634695A (zh) 2016-10-01
CL2016000903A1 (es) 2016-10-14
ES2620492T3 (es) 2017-06-28
UA115302C2 (uk) 2017-10-25
EP2862931A1 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
EP2585600B1 (en) Lowering saturated fatty acid content of plant seeds
KR20170098810A (ko) 포화 지방산을 적게 함유하거나 전혀 함유하지 않는 트랜스제닉 카놀라의 생성
US20170145433A1 (en) Lowering saturated fatty acid content of plant seeds
US10370674B2 (en) Generation of transgenic canola with low or no saturated fatty acids
AU2015201328B2 (en) Lowering saturated fatty acid content of plant seeds
TW201300534A (zh) 降低植物種子中飽和脂肪酸含量之技術
CN112996915A (zh) 用于在植物中产生高水平pufa的改进方法
CN113412332A (zh) 用于在植物中产生高水平pufa的改进方法