TW201634547A - 樹脂組成物及其製備方法 - Google Patents

樹脂組成物及其製備方法 Download PDF

Info

Publication number
TW201634547A
TW201634547A TW104137014A TW104137014A TW201634547A TW 201634547 A TW201634547 A TW 201634547A TW 104137014 A TW104137014 A TW 104137014A TW 104137014 A TW104137014 A TW 104137014A TW 201634547 A TW201634547 A TW 201634547A
Authority
TW
Taiwan
Prior art keywords
boron nitride
hexagonal boron
particle size
powder
nitride powder
Prior art date
Application number
TW104137014A
Other languages
English (en)
Inventor
坂口陽一郎
Original Assignee
昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工股份有限公司 filed Critical 昭和電工股份有限公司
Publication of TW201634547A publication Critical patent/TW201634547A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本發明提供具有極佳的電絕緣性質及厚度方向導熱性之樹脂組成物。 在樹脂組成物中的六角形氮化硼粉末(B)含有具有聚結於其中的六角形氮化硼初級粒子之聚結粒子且在其粒徑分布曲線中具有在超過1mm或更大但不超過500mm之粒徑範圍內的初始最大波峰。其具有使粒徑分布曲線在超音波照射處理之後改變及使粒徑分布曲線滿足特定條件的特徵。

Description

樹脂組成物及其製備方法
本發明關於樹脂組成物及其製備方法。
由於因為電氣零件或電子零件的小型化或功率增加而於最近增加的彼等熱量值,使得自電氣零件或電子零件所產生的熱在狹窄的空間中散逸成為問題。在分別構成電氣零件或電子零件的加熱單元與使其熱散逸的熱散逸元件之間放置具有絕緣性質或導熱性之黏著劑或黏著片材的方式已知為克服此問題之方法。此種黏著劑或黏著片材係由具有高導熱性之無機化合物填充劑填充熱固性樹脂所獲得的組成物所製成。來自電氣零件或電子零件的熱量值傾向進一步增加,使得因此所使用的黏著劑或黏著片材必需具有進一步改進之導熱性。
因此,在近年來,利用六角形氮化硼(hBN)作為熱散逸填充劑之科技提供具有改進之厚度方向導熱性的黏著劑或黏著片材引起注意。六角形氮化硼之初級粒子具有類似於石墨的六角網目層化結構作為其晶體結構且該 等粒子呈鱗片形式。鱗片狀粒子的面方向導熱性為其厚度方向導熱性的約20倍(從60至80W/m.K)且因此粒子具有各向異性導熱性。
另一方面,具有六角形氮化硼初級粒子聚結於其中之聚結粒子的導熱性為各向同性且該等聚結粒子適用為能夠改進含有該等聚結粒子之模塑或成型產物的厚度方向導熱性之絕緣及熱散逸填充劑。
例如,提出下列的科技作為藉由使用六角形氮化硼之聚結粒子作為熱散逸填充劑以改進導熱性之方法。
專利文件1揭示使用六角形氮化硼之初級粒子與六角形氮化硼之聚結粒子的混合物作為熱散逸填充劑而製得的黏著片材。專利文件2揭示使用六角形氮化硼之聚結粒子及具有粒徑小於該聚結粒子之氧化鋁、使六角形氮化硼之聚結粒子變形且從而容許熱散逸填充劑彼此緊密堆積而製得的黏著片材。專利文件3揭示同時具有高導熱性及電絕緣性質的黏著片材,其係藉由將斷裂強度不同及同時初級粒子之平均長直徑不同的兩種六角形氮化硼聚結粒子混合且進行在黏著片材中的兩種六角形氮化硼聚結粒子中之一者的內聚性破壞而獲得。
引用名單 專利文獻
[PTL 1]JP 2008-189818 A
[PTL 2]JP 2013-39834 A
[PTL 3]JP 2011-6586 A
只大量填充六角形氮化硼以改進導熱性引起電絕緣性質劣化的問題,特別劣化黏著劑或黏著片材的介電崩潰電壓性能(崩潰電壓性能)或黏著性質。
本發明的目的為克服先前技術中的此種問題且提供具有極佳的電絕緣性質及厚度方向導熱性之樹脂組成物,以及樹脂組成物之製備方法。
為了克服上述問題,本發明包括作為一個實施態樣的下列[1]至[5]。
[1]樹脂組成物具有樹脂組份(A)及六角形氮化硼粉末(B),該粉末含有具有聚結於其中的六角形氮化硼初級粒子之聚結粒子的六角形氮化硼粉末(B),其中樹脂組成物具有如使用Koka型流量測試機在150℃下所測量的0.01Pa.s或更大但不超過500Pa.s之熔融黏度,其中六角形氮化硼粉末(B)具有大於10m2/g但小於15m2/g之BET比表面積,其中六角形氮化硼粉末(B)在其粒徑分布曲線中具有一個在超過1mm但不超過500mm之粒徑範圍內的最 大波峰,且該最大波峰被視為初始最大波峰,及其中當以六角形氮化硼粉末(B)分散於水中所獲得的分散液以具有19.5kHz之振盪頻率的超音波照射且由此施予用於聚結粒子的內聚性破壞之內聚性破壞處理時,則六角形氮化硼粉末(B)具有使得粒徑分布曲線改變且使粒徑分布曲線滿足所有下列三個條件的特徵:(條件1)粒徑分布曲線具有在1μm或更大但不超過20μm之粒徑範圍內的第一最大波峰;(條件2)粒徑分布曲線具有在超過1μm但不超過350μm之粒徑範圍內且在超過第一最大波峰之粒徑但不超過初始最大波峰之粒徑的粒徑範圍內的第二最大波峰;及(條件3)第一最大波峰的高度對第二最大波峰的高度之比[第一最大波峰的高度]/[第二最大波峰的高度]為0.1或更大但不超過8.0。
[2]如上述[1]中之樹脂組成物,其進一步具有除了六角形氮化硼粉末(B)以外的陶瓷粉末(C)。
[3]如上述[2]中之樹脂組成物,其中樹脂組份(A)的含量為5質量%或更大但不超過40質量%,六角形氮化硼粉末(B)的含量為5質量%或更大但不超過75質量%,及陶瓷粉末(C)的含量為10質量%或更大但不超過90質量%。
[4]如上述[2]或[3]中之樹脂組成物,其中陶瓷粉末(C)為至少一種選自下列的粉末:氧化鋁粉末、 氮化鋁粉末、玻璃珠、氧化鋅粉末、氧化鎂粉末及矽石粉末。
[5]製備樹脂組成物之方法,其係藉由將含有具有聚結於其中的六角形氮化硼初級粒子之聚結粒子的六角形氮化硼粉末與樹脂組份混合,其中六角形氮化硼粉具有大於10m2/g但小於15m2/g之BET比表面積且在其粒徑分布曲線中具有一個在超過1mm但不超過500mm之粒徑範圍內的最大波峰作為初始最大波峰,及其中當以六角形氮化硼粉末分散於水中所獲得的分散液以具有19.5kHz之振盪頻率的超音波照射且測量以超音波照射之六角形氮化硼粉末的粒徑分布所獲得的粒徑分布曲線滿足所有下列三個條件時,則將未以超音波照射之六角形氮化硼粉末與樹脂組份混合:(條件1)粒徑分布曲線具有在1μm或更大但不超過20μm之粒徑範圍內的第一最大波峰;(條件2)粒徑分布曲線具有在超過1μm但不超過350μm之粒徑範圍內且在超過第一最大波峰之粒徑但不超過初始最大波峰之粒徑的粒徑範圍內的第二最大波峰;及(條件3)第一最大波峰的高度對第二最大波峰的高度之比[第一最大波峰的高度]/[第二最大波峰的高度]為0.1或更大但不超過8.0。
本發明的樹脂組成物具有極佳的電絕緣性質及厚度方向導熱性,而且根據本發明的樹脂組成物能製備具有極佳的電絕緣性質及厚度方向導熱性,而且具有良好的孔隙率及流動性之樹脂組成物。
[圖1]圖1為製備例1的六角形氮化硼粉末在超音波照射處理之前及之後的粒徑分布曲線。
[圖2]圖2為製備例2的六角形氮化硼粉末在超音波照射處理之前及之後的粒徑分布曲線。
[圖3]圖3為比較用製備例1的六角形氮化硼粉末在超音波照射處理之前及之後的粒徑分布曲線。
[圖4]圖4為比較用製備例2的六角形氮化硼粉末在超音波照射處理之前及之後的粒徑分布曲線。
[圖5]圖5為比較用製備例3的六角形氮化硼粉末在超音波照射處理之前及之後的粒徑分布曲線。
[圖6]圖6為比較用製備例4的六角形氮化硼粉末在超音波照射處理之前及之後的粒徑分布曲線。
[實施態樣之說明]
根據本發明的樹脂組成物及其製備方法之實 施態樣將於下文詳細說明。
發現含有如下文所述之六角形氮化硼粉末作為填充劑的樹脂組成物可具有極佳的電絕緣性質及厚度方向導熱性且另外具有良好的孔隙率及流動性,本發明者於是完成本發現。
具體說明之本發明實施態樣的六角形氮化硼粉末具有預定之BET比表面積且在其粒徑分布曲線中具有一個在預定位置上的最大波峰。再者,本發明實施態樣的六角形氮化硼粉末具有如下特徵:藉由使用超音波照射處理的內聚性破壞處理使得粒徑分布曲線由於具有聚結於其中的六角形氮化硼初級粒子之聚結粒子的內聚性破壞而改變及使粒徑分布曲線具有兩個在預定位置上的預定高度之最大波峰。本發明實施態樣的六角形氮化硼粉末將於下文具體說明。在本發明中,術語“六角形氮化硼粉末”意指含有具有聚結於其中的六角形氮化硼初級粒子之聚結粒子的粉末。
<(1)六角形氮化硼粉末(B)>
從含有六角形氮化硼粉末之樹脂組成物的導熱性與流動性之間平衡的觀點來看,本發明實施態樣的六角形氮化硼粉末之BET比表面積大於10m2/g但小於15m2/g,較佳為大於10m2/g但不超過13m2/g。BET比表面積可使用全自動BET比表面積測量裝置“Multisorb 16”(Yuasa Ionics Co.,Ltd.之產品)測量。
本發明實施態樣的六角形氮化硼粉末在其粒徑分布曲線中具有一個在超過1mm但不超過500mm之粒徑範圍內的最大波峰(其將於下文被稱為“初始最大波峰”)。該粉末具有如下特徵:粒徑分布曲線係以超音波照射處理而改變及使粒徑分布曲線滿足所有下列三個條件:(條件1)粒徑分布曲線具有在1μm或更大但不超過20μm之之粒徑範圍內的第一最大波峰;(條件2)粒徑分布曲線具有在超過1μm但不超過350μm之粒徑範圍內且在超過第一最大波峰之粒徑但不超過初始最大波峰之粒徑的粒徑範圍內的第二最大波峰;及(條件3)第一最大波峰的高度對第二最大波峰的高度之比[第一最大波峰的高度]/[第二最大波峰的高度]為0.1或更大但不超過8.0。
應注意的是在本發明中的粒徑分布曲線為粒徑頻率分布曲線。在本發明中,粒徑分布曲線的最大波峰意指在藉由微分以縱座標上的豐度比及橫座標上的粒徑所繪製之粒徑分布曲線所取得的一階導數之符號從正改變至負或從負改變至正的該處之波峰。這意指所謂的肩峰不包括在最大波峰內。然而,當R2/R1(亦即在兩個相鄰的最大波峰中較低的一個最大波峰之豐度比(R2)對存在於兩個相鄰的最大波峰之間的最小波峰之豐度比(R1)的比值)大於1.0但不超過1.1時,則較低的最大波峰不被視為本發明的最大波峰。
超音波照射處理可使粒徑分布曲線改變成第一最大波峰及第二最大波峰中之一或二者有複數個的曲線。在此例子中,以在複數個最大波峰之中具有最小直徑的第一最大波峰及在複數個最大波峰之中具有最大直徑的第二最大波峰用於條件3中的比值計算。
再者,超音波照射處理為例如下列的處理。分散液係藉由將0.06g六角形氮化硼粉末分散在50g水中而製得。將所得分散液以150W之輸出及19.5kHz之振盪頻率的超音波照射3分鐘。雖然超音波照射器未受到特別的限制,但是以使用具有螺栓緊式電致伸縮振盪元件的超音波裝置在19.5±1kHz之振盪頻率下照射較佳。例如,可使用超音波均質機“US-150V”(NIHONSEIKI KAISHA LTD.之產品)。
再者,六角形氮化硼粉末在超音波照射處理之前及之後的粒徑分布係以例如下列方法測量。將六角形氮化硼粉末以界面活性劑的輔助而分散在純水中且使用雷射繞射-散射方法測量粒徑分布曲線。可使用例如粒徑分析儀“Microtrac MT3300 EXII”(NIKKISO CO.,LTD.之產品)作為測量粒徑分布曲線的裝置。
可假定第一最大波峰為可歸因於以超音波照射處理六角形氮化硼粉末之聚結粒子和初級粒子的內聚性破壞所形成的小直徑聚結粒子之波峰。可假定第二最大波峰為可歸因於以超音波照射處理之後沒有內聚性破壞而留下的原始聚結粒子(在超音波照射處理之前的聚結粒子) 之波峰。這意指本發明實施態樣的六角形氮化硼粉末同時含有在對其施加特定的外來刺激時易感受內聚性破壞之聚結粒子及不易感受內聚性破壞之聚結粒子。
當樹脂組成物含有此等六角形氮化硼粉末(B)作為填充劑時,六角形氮化硼粉末(B)之聚結粒子的內聚性破壞係由對其施加之外來刺激而發生。因此,可假定在樹脂組成物內含有的六角形氮化硼粉末(B)同時具有以原始聚結粒子和初級粒子的內聚性破壞所形成的小直徑聚結粒子;及沒有內聚性破壞而留下的原始聚結粒子。
含有具有上述特徵之六角形氮化硼粉末(B)的樹脂組成物因此可同時具有極佳的電絕緣性質(特別為極佳的介電崩潰電壓性能(崩潰電壓性能))和極佳的厚度方向導熱性。樹脂組成物可以本發明實施態樣的六角形氮化硼粉末(B)以高填充比填充,使其可具有降低的孔隙率及更穩定的電絕緣性質和導熱性。
六角形氮化硼粉末(B)在其粒徑分布曲線中僅具有一個在超過1μm但不超過500μm之粒徑範圍內的初始最大波峰。該粉末較佳地僅具有一個在10μm或更大但不超過300μm之粒徑範圍內的初始最大波峰。當六角形氮化硼粉末(B)僅具有一個在上述範圍內的最大波峰時,則六角形氮化硼粉末(B)在含有六角形氮化硼粉末(B)的樹脂組成物加工成具有約200mm或更小的厚度之片材時具有較佳的可分散性。
第一最大波峰係落在1μm或更大但不超過20μm之粒徑範圍內,更佳為3μm或更大但不超過19μm之粒徑範圍內。當第一最大波峰係落在1mm或更大的粒徑範圍內時,則在樹脂組成物中的六角形氮化硼粉末(B)之聚結粒子之間的抗接觸性降低且樹脂組成物傾向具有改進的導熱性。另一方面,當第一最大波峰係落在20mm或更小的粒徑範圍內時,則在樹脂組成物中的六角形氮化硼粉末(B)有可能具有緊密堆積之結構,使得樹脂組成物由於聚結粒子之間的抗接觸性降低而傾向具有改進的導熱性。
再者,第二最大波峰係落在超過1mm但不超過350mm之粒徑範圍內,較佳為5mm或更大但不超過150mm之粒徑範圍內。當第二最大波峰係落在超過1mm之粒徑範圍內時,則在樹脂組成物中的六角形氮化硼粉末(B)之聚結粒子之間的抗接觸性降低,且藉由所得樹脂組成物成型成片材或板材形式所獲得的似片材元件或似板材元件傾向具有改進的厚度方向導熱性。另一方面,當第二最大波峰係落在350μm或更小的粒徑範圍內時,則六角形氮化硼粉末(B)具有與藉由樹脂組成物成型成片材或板材形式所獲得的似片材元件或似板材元件之厚度相比而足夠小的尺寸。於是似片材元件或似板材元件具有平順的表面而沒有大的不平均性;似片材元件或似板材元件在其成型期間不輕易裂開;且其可容易地具有極佳的電絕緣性質(特別為崩潰電壓)。
再者,第一最大波峰的高度對第二最大波峰的高度之比[第一最大波峰的高度)/[第二最大波峰的高度]為0.1或更大但不超過8.0,更佳為0.4或更大但不超過4.0,還更佳為0.5或更大但不超過3.0。0.1或更大的比意指六角形氮化硼粉末(B)之聚結粒子適度的內聚性破壞,使得樹脂組成物中的六角形氮化硼粉末(B)有可能具有緊密堆積之結構。另一方面,不超過8.0的比意指原始聚結粒子適度地保留而沒有內聚性破壞,使得難以發生在樹脂組成物含有六角形氮化硼之初級粒子時的問題,更尤其為自六角形氮化硼之鱗片狀初級粒子所衍生的各向異性導熱性之問題及自六角形氮化硼之初級粒子的大比表面積所衍生之問題,造成極佳的厚度依賴性導熱性能。
再者,六角形氮化硼粉末(B)含有具有聚結於其中的六角形氮化硼初級粒子之聚結粒子。當使用例如六角形氮化硼粉末(B)作為填充劑的樹脂組成物成型成片材時,可避免或阻止六角形氮化硼之初級粒子定位在特定方向上,與增加六角形氮化硼粉末(B)在片材中的填充比無關。
再者,從改進導熱性和絕緣性的觀點來看,六角形氮化硼粉末(B)的純度(亦即六角形氮化硼在六角形氮化硼粉末(B)中的含量)較佳為96質量%或更大,更佳為98質量%或更大,還更佳為99質量%或更大,最佳為99.5質量%或更大。
再者,當六角形氮化硼粉末(B)作為填充劑 添加至樹脂組成物中時,從改進其填充性質的觀點來看,六角形氮化硼粉末(B)之裝填密度較佳為0.2g/cm3或更大,更佳為0.3g/cm3或更大,還更佳為0.4g/cm3或更大。雖然裝填密度的測量方法未受到特別的限制,但是裝填密度的測量可藉由將100g六角形氮化硼粉末(B)裝入300-mL量筒中且將量筒以搖動器振動3分鐘,以求得振動之裝填密度作為裝填密度。
<(2)六角形氮化硼粉末(B)>之製備方法
本發明實施態樣的六角形氮化硼粉末(B)可由下列方法製備,該粉末具有如下特徵:在其粒徑分布曲線中具有一個在超過1mm但不超過500mm之粒徑範圍內的初始最大波峰且其粒徑分布曲線在對其施加超音波照射處理時改變,以滿足所有上述三個條件。
具體說明之方法為將由20質量%或更大但不超過90質量%之氮化硼及10質量%或更大但不超過80質量%之氧化硼(B2O3)所組成的六角形氮化硼粗製粉末成型成例如片狀物,且接著將所得片狀物在含氮氣氛圍中烘烤,且由此獲得含有具有聚結於其中的六角形氮化硼初級粒子之聚結粒子的六角形氮化硼粉末(B)之方法。
在六角形氮化硼粉末(B)的此製備方法中,六角形氮化硼粉末(B)較佳地藉由在烘烤之後進行研磨及分級中之至少一者而獲得。六角形氮化硼粉末(B)更佳地藉由進行所謂的“崩潰方法”而獲得,亦即其中同時進行研磨 及分級之方法。
六角形氮化硼粉末(B)亦可以所謂的“由下向上方法(bottom up process)”製備,其為將六角形氮化硼之鱗片狀初級粒子或低結晶狀六角形氮化硼粗製粉末分散在液體分散介質中,將所得漿液在空氣中噴霧乾燥且進一步在黏合劑組份的存在噴霧乾燥之方法。由下向上方法既不需要形成六角形氮化硼粗製粉末,亦不需要在烘烤之後研磨,該等形成及研磨分別於上述崩潰方法中。另外,此由下向上方法能形成由具有高強度及尖銳的粒徑分布之球狀顆粒所組成的粉末。
以崩潰方法製備六角形氮化硼粉末(B)最佳,以便將六角形氮化硼粉末(B)併入樹脂組成物中且由此賦予所得樹脂組成物高的崩潰電壓、高的導熱性、低的孔隙率和熔融流動性(可加工性)。
六角形氮化硼粉末(B)之製備方法將於隨後更詳細說明。首先說明作為原料添加的六角形氮化硼粗製粉末,接著說明用於製備六角形氮化硼粉末(B)之每一模塑或成型、烘烤、研磨及分級步驟。
(I)作為原料的六角形氮化硼粗製粉末
六角形氮化硼粗製粉末含有20質量%或更大但不超過90質量%之氮化硼及10質量%或更大但不超過80質量%之氧化硼。此六角形氮化硼粗製粉末可如下文所述容易地製得。
六角形氮化硼粉末(B)可使用含有20質量%或更大的氮化硼之六角形氮化硼粗製粉末作為原料而以高效率製得。當氮化硼的含量為90質量%或更少時,則適用為原料的六角形氮化硼粗製粉末可以高效率製得。從該等觀點來看,在六角形氮化硼粗製粉末中的氮化硼含量較佳為25質量%或更大,更佳為30質量%或更大,還更佳為35質量%或更大。該含量較佳為85質量%或更少,更佳為80質量%或更少,還更佳為75質量%或更少。再者,該含量較佳為25質量%或更大但不超過85質量%,更佳為30質量%或更大但不超過80質量%,還更佳為35質量%或更大但不超過75質量%或更少。
在六角形氮化硼粗製粉末中的氮化硼與氧化硼的總含量較佳為90質量%或更大,更佳為95質量%或更大,還更佳為99質量%或更大,最佳為100質量%。六角形氮化硼粗製粉末可含有其他的組份,其量不損害本發明的有利效應,但在六角形氮化硼粗製粉末中之其他組粉的含量較佳為10質量%或更少,更佳為5質量%或更少,還更佳為1質量%或更少。六角形氮化硼粗製粉末最佳地不含有其他的組份。
(II)六角形氮化硼粗製粉末之製備方法
六角形氮化硼粗製粉末較佳地可藉由將氧化硼與含胺基化合物混合,將所得混合物模塑或成型,且將模塑或成型產物加熱及接著研磨而獲得。首先說明用作為製備六角 形氮化硼粗製粉末之原料的氧化硼及含胺基化合物,且接著分別說明混合、模塑或成型、加熱及研磨步驟。
(II-1)氧化硼
氧化硼為含有硼及氧的化合物且其實例包括硼酸、氧化硼和硼砂。
可使用以下式代表的一或多種化合物作為硼酸:(B2O3)×X(H2O)[其中X代表0或更大但不超過3之數字],諸如正硼酸(H3BO3)、偏硼酸(HBO2)、四硼酸(H2B4O7)和硼酸酐(B2O3)。在該等之中,適合使用正硼酸,因為其容易取得且與含胺基化合物(諸如三聚氰胺)具有良好的混溶性。
(II-2)含胺基化合物
含胺基化合物的實例包括胺基三汫化合物、胍化合物和尿素。胺基三汫化合物的實例包括三聚氰胺、胍胺(guanamine)和苯並胍胺及其縮合物,諸如蜜白胺(melam)、蜜勒胺(melem)和氰尿醯胺(melon)。
在該等化合物之中,以在其胺基上或除了胺基以外的基團上具有氮原子的化合物較佳,諸如三聚氰胺和胍。
(II-3)氧化硼與含胺基化合物之混合
氧化硼與含胺基化合物之混合方法未受到特別的限制且可使用濕式混合或乾式混合。以濕式混合較佳。以濕式 混合形成前驅物。例如,添加水至硼酸或硼酸酐與三聚氰胺之混合物中產生以下分子式代表的前驅物:C3N3(NH2×H3BO3)3。可以常使用的混合機(諸如Henschel混合機、球磨機或帶狀摻混機)用於濕式混合。
將氧化硼與含胺基化合物較佳地以給出從1/3至2/1之原子比(B/N)混合。原子比為氧化硼中的硼原子(B)對含胺基化合物中的氮原子(N)之比。在1/3或更大的原子比(B/N)下,可避免或阻止在水的存在下不成為前驅物之剩餘的含胺基化合物且因此可避免或阻止含胺基化合物在烘烤期間碳化及由此變黑或變棕色的氮化硼。在至多1/2之原子比(B/N)下,當硼原子數目較大時,可獲得具有更好的結晶性之六角形氮化硼。
從上述的觀點來看,當使用三聚氰胺作為含胺基化合物時,三聚氰胺係以100質量份之氧化硼為基準計較佳為30質量份或更大但不超過65質量份之量添加。
(II-4)氧化硼與含胺基化合物之混合物的模塑或成型
接著將如上述藉由混合氧化硼與含胺基化合物而獲得的含前驅物之混合物模塑或成型成例如片狀物。以含前驅物之混合物模塑或成型成模塑或成型產物使混合物之裝填密度增加。接著可將大量混合物裝入具有預定容量的加熱裝置中,造成改進的六角形氮化硼粉末(B)之生產力。
(II-5)模塑或成型產物之加熱
接著將藉由模塑或成型而獲得的模塑或成型產物加熱。將氧化硼反應且將模塑或成型產物中的含胺基化合物以此加熱彼此反應,以製造六角形氮化硼。
加熱較佳地在氨或非氧化氣體氛圍中進行。非氧化氣體氛圍較佳為氮氣體氛圍或惰性氣體氛圍,諸如氬氣氛圍。在該等之中,以氨氛圍更佳。
從改進氧化硼與含胺基化合物之間的反應性及研磨容易性的觀點來看,加熱溫度較佳為400℃或更高但不超過1500℃,更佳為600℃或更高但不超過1300℃,還更佳為800℃或更高但不超過1200℃。
(II-6)模塑或成型產物之研磨
接著將藉由加熱模塑或成型產物而獲得的產物研磨成六角形氮化硼粗製粉末。研磨方法未受到特別的限制且可使用顎夾研磨、粗軋輥研磨及類似者。
(III)六角形氮化硼粗製粉末之模塑或成型
將用於製備六角形氮化硼粉末(B)之六角形氮化硼粗製粉末模塑或成型成例如片狀物。從改進具有聚結於其中的六角形氮化硼初級粒子之聚結粒子的強度、六角形氮化硼粉末(B)之生產力、處置容易性及反應性的觀點來看,以模塑或成型較佳。
在模塑或成型時,可將黏合劑添加至六角形氮化硼粗製粉末中。雖然黏合劑未受到特別的限制,但是實例包括樹脂,諸如聚乙烯醇(PVA)、清漆、纖維素和聚偏二氟 乙烯(PVDF)。以聚乙烯醇較佳。
(IV)模塑或成型產物之烘烤
接著將藉由模塑或成型而獲得的模塑或成型產物烘烤。具有聚結於其中的六角形氮化硼初級粒子之聚結粒子係以壓力模塑或成型六角形氮化硼粗製粉末而產生。當進行烘烤而不以模塑或成型時,則擔心不可以充份製備具有高壓縮斷裂強度的六角形氮化硼粉末(B)。
在烘烤期間的氛圍較佳為含有氮氣之氛圍。在含有氮氣之氛圍中的氮氣濃度較佳為60體積%或更大,更佳為80體積%或更大,還更佳為90體積%或更大,最佳為99體積%或更大。在氛圍中以具有較低濃度的氧氣較佳。
可將烘烤溫度設定在1000℃或更高但不超過2200℃。在1000℃或更高的烘烤溫度下繼續適當的增加氮化硼的純度。六角形氮化硼在不超過2200℃的烘烤溫度下不易發生降解。從此等觀點來看,烘烤溫度較佳為1500℃或更高但不超過2200℃,更佳為1600℃或更高但不超過2200℃,還更佳為1700℃或更高但不超過2200℃。
可將烘烤時間設定在1小時或更長但不超過20小時。1小時或更長的烘烤時間可容易地促使適當的增加氮化硼純度。不超過20小時的烘烤時間能以低成本烘烤。從使等觀點來看,烘烤時間較佳為2小時或更長但不超過15小時,更佳為3小時或更長但不超過10小時。
可將模塑或成型產物在烘烤之前乾燥。乾燥溫度較佳為150℃或更高但不超過400℃,更佳為200℃或更高但不超過400℃。乾燥時間較佳為2小時或更長但不超過10小時。
(V)模塑或成型產物之研磨
接著將藉由烘烤模塑或成型產物而獲得的產物研磨成六角形氮化硼粉末(B)。研磨方法未受到特別的限制且可使用顎夾研磨和粗軋輥研磨或類似者。
(VI)分級
接著較佳地將藉由研磨而獲得的研磨產物分級。分級方法未受到特別的限制且可將研磨產物以振動篩、空氣分離、水篩、離心分離或類似者分級。在該等之中,以振動篩分級較佳。亦有可能藉由分級及由此移出除了六角形氮化硼粉末(B)以外的六角形氮化硼之鱗片狀初級粒子而增加在六角形氮化硼粉末(B)中的聚結粒子含量。
上述六角形氮化硼粉末(B)之製備方法較佳地獲得在其粒徑分布曲線中具有一個在超過1mm但不超過500mm之粒徑範圍內的初始最大波峰之六角形氮化硼粉末(B),但是不言而喻的是製備方法不受限於此。可使用另一製備方法,只要其可製備具有如下特徵的六角形氮化硼粉末(B):在其粒徑分布曲線中具有一個在超過1mm但不超過500mm之粒徑範圍內的初始最大波峰且 其粒徑分布曲線在對其施予超音波照射處理時改變,以滿足所有上述三個條件。
藉由對所得六角形氮化硼粉末(B)施予超音波照射處理以測量其粒徑分布且確認粒徑分布曲線在超音波照射處理之後改變以滿足所有上述三個條件,在使用六角形氮化硼粉末(B)之前(例如在其作為填充劑併入樹脂組成物中之前)的階段中可預期含有六角形氮化硼粉末(B)的樹脂組成物之特徵。
<(3)樹脂組成物>
樹脂組成物可藉由含有如上述所獲得的六角形氮化硼粉末(B)作為填充劑而賦予熱散逸性質。這意指本發明實施態樣的樹脂組成物含有樹脂組份(A)及六角形氮化硼粉末(B)。
在藉由將此種六角形氮化硼粉末(B)在樹脂組份(A)中混合所獲得的樹脂組成物中,六角形氮化硼粉末(B)之聚結粒子的部分內聚性破壞可在製備樹脂組成物的時候、在模塑或成型樹脂組成物的時候或在使用樹脂組成物之模塑或成型產物的時候給予樹脂組成物的外來刺激而發生,所以推測樹脂組成物或模塑或成型產物(例如片材)含有自原始聚結粒子及初級粒子的內聚性破壞所衍生之小直徑聚結粒子及未施加內聚性破壞而保留的原始粒子。
在樹脂組成物或其模塑或成型產物中,推測在六角形 氮化硼粉末(B)之聚結粒子之間的接觸頻率顯著地增加。
根據本發明實施態樣的樹脂組成物或模塑或成型產物具有極佳的電絕緣性質,特別為極佳的介電崩潰電壓性能(崩潰電壓性能)和極佳的厚度方向導熱性。可將樹脂組成物以高填充比的六角形氮化硼粉末(B)填充,使得根據本發明實施態樣的樹脂組成物或模塑或成型產物具有降低的孔隙率及更穩定的電絕緣性質和導熱性。
因為根據本發明實施態樣的樹脂組成物或模塑或成型產物具有極佳的介電崩潰電壓性能(崩潰電壓性能)和極佳的厚度方向導熱性,所以可將其用作為放熱電子零件(諸如功率裝置、電晶體、閘流體、CPU(中央處理單元)及類似者)的熱散逸元件。另外,可將其用作為固定及絕緣電子零件(諸如功率半導體、半導體元件(包括光學半導體)、半導體裝置、電路用金屬板、由金屬板所製成的電路、電路基板和混合積體電路)的熱散逸黏著劑或熱散逸片材。
(I)樹脂組份(A)
樹脂組份(A)的種類未受到特別的限制且可使用單獨的熱固性樹脂或熱塑性樹脂或二或多種該等樹脂之組合。熱固性樹脂的特定實例包括環氧樹脂、聚胺酯樹脂、酚樹脂、含有(甲基)丙烯醯基的樹脂、乙烯酯樹脂和聚矽氧樹脂。從與基體材料之黏著性的觀點來看,在該等之 中,以含有環氧樹脂之樹脂較佳。如本文所使用的術語“(甲基)丙烯醯基”意指丙烯醯基及/或甲基丙烯醯基。術語“(甲基)丙烯基”亦意指丙烯基及/或甲基丙烯基。
當使用本發明實施態樣的樹脂組成物之模塑或成型產物例如作為功率半導體模組的導熱性黏著片材時,則不僅與基體材料的黏著性為必要,且耐熱性及崩潰電壓亦為必要的。應選擇滿足該等需求特徵之樹脂組份。首先說明熱固性樹脂。
可使用如下述第一熱固性樹脂(A-1)作為樹脂組份(A)。具體說明之第一熱固性樹脂(A-1)具有至少一種選自環氧基及(甲基)丙烯醯基之反應性基團且每一分子的反應性基團數量為3或更大。其為每一反應性基團具80或更大但小於200之分子量的樹脂且其具有300或更大但小於1000之數量平均分子量。
在固化且賦予固化產物耐熱性及崩潰電壓之後,添加第一熱固性樹脂(A-1)以增加本發明實施態樣的樹脂組成物之交聯密度。以每一分子具有三或更多個反應性基團及每一反應性基團具小於200之分子量的熱固性樹脂可改進交聯密度及改進耐熱性。含有具有數量平均分子量小於1000之熱固性樹脂的樹脂組成物具有適度的流動性和極佳的模塑性或成型性。此種樹脂組成物之模塑或成型產物因此不容易具有微小的裂開或空隙且其具有極佳的抗電壓性。
作為第一熱固性樹脂(A-1)的含環氧基之樹 脂的實例包括縮水甘油胺環氧樹脂、雜環環氧樹脂和三官能性或更高官能性之芳族環氧樹脂。
縮水甘油胺環氧樹脂的特定實例包括N,N,N’,N’-四縮水甘油基-4,4’-二胺基二苯基甲烷(商品名:“Epotote YH-434L”,NIPPON STEEL & SUMIKIN CHEMICAL CO.,LTD.之產品)、N,N,N’,N’-四縮水甘油基-1,3-苯二(甲胺)(商品名:“TETRAD-X”,MITSUBISHI GAS CHEMICAL COMPANY,INC.之產品)、4-(縮水甘油氧基)-N,N-二縮水甘油基苯胺和3-(縮水甘油氧基)-N,N-二縮水甘油基苯胺。
雜環環氧樹的特定實例包括三縮水甘油基三聚氰酸酯(“TEPIC-S”,商品名;Nissan Chemical Industries,Ltd.之產品)。三官能性或更高官能性之芳族環氧樹脂的特定實例包括四官能性萘環氧樹脂(“EPICLON HP-4700”,商品名;DIC Corporation之產品)和三苯基甲烷環氧樹脂(“1032H60”,商品名;Mitsubishi Chemical Corporation之產品)。
作為第一熱固性樹脂(A-1)的含(甲基)丙烯醯基之樹脂的實例包括在一個分子中具有三或更多個羥基的多元醇之(甲基)丙烯酸酯和雜環(甲基)丙烯酸酯。
在一個分子中具有三或更多個羥基的多元醇之(甲基)丙烯酸酯的特定實例包括三羥甲基丙烷三(甲基)丙烯酸酯、新戊四醇三(甲基)丙烯酸酯、新戊四醇四(甲 基)丙烯酸酯、二新戊四醇五丙烯酸酯和二新戊四醇六丙烯酸酯。
雜環(甲基)丙烯酸酯的特定實例包括諸如參(2-丙烯醯氧基乙基)三聚氰酸酯和參(2-甲基丙烯醯氧基乙基)三聚氰酸酯之樹脂。
意欲之性能可藉由例如調整第一熱固性樹脂(A-1)之量至樹脂組份(A)的25質量%或更大但不超過60質量%而達成。該量更佳為30質量%或更大但不超過50質量%。當第一熱固性樹脂的量為25質量%或更大時,則可達成較佳的耐熱性和崩潰電壓,而當該量為60質量%或更小時,則固化產物具有極佳的可撓性。
亦可使用第二熱固性樹脂(A-2)作為如上述之樹脂組份(A)。具體說明之第二熱固性樹脂(A-2)為例如除了第一熱固性樹脂(A-1)以外的環氧樹脂或含(甲基)丙烯醯基之樹脂。從黏著性質的觀點來看,以如上述之環氧樹脂特別佳。併入第二熱固性樹脂(A-2)以控制本發明實施態樣的樹脂組成物之流動性或固化產物之黏著性質和可撓性。
作為第二熱固性樹脂(A-2)之環氧樹脂的實例包括二官能性縮水甘油醚環氧樹脂、縮水甘油酯環氧樹脂、不包括在第一熱固性樹脂(A-1)中的多官能性環氧樹脂和直鏈脂族環氧樹脂。
二官能性縮水甘油醚環氧樹脂的特定實例包括雙酚A環氧樹脂、雙酚F環氧樹脂、雙酚S環氧樹脂、氫化雙酚 A環氧樹脂和聯苯基環氧樹脂。
縮水甘油酯環氧樹脂的特定實例包括縮水甘油基六酞酸酯和二聚物酸之縮水甘油醚。
不包括在第一熱固性樹脂(A-1)中的多官能性環氧樹脂的特定實例包括酚酚醛環氧樹脂、甲酚酚醛環氧樹脂、聯苯基芳烷基環氧樹脂和縮水甘油醚環氧樹脂,諸如萘芳烷基環氧樹脂。
直鏈脂族環氧樹脂的特定實例包括直鏈脂族環氧樹脂,諸如環氧化聚丁二烯和環氧化大豆油。上述環氧樹脂可單獨或以二或多種之組合使用。
含(甲基)丙烯醯基之樹脂的實例包括二元醇化合物之(甲基)丙烯酸酯和多元醇與己內酯的加成物之(甲基)丙烯酸酯。
二元醇化合物之(甲基)丙烯酸酯的特定實例包括乙二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基丙烯酸酯)、新戊二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯和三丙二醇二(甲基)丙烯酸酯。
多元醇與己內酯的加成物之(甲基)丙烯酸酯的特定實例包括新戊四醇×己內酯之(甲基)丙烯酸酯和二新戊四醇×己內酯之(甲基)丙烯酸酯。
再者,當使用環氧樹脂作為第一熱固性樹脂(A-1)及第二熱固性樹脂(A-2)時,可添加固化劑或固 化加速劑(固化觸媒)。固化劑的實例包括脂環酸酐,諸如甲基四氫酞酸酐、甲基六氫酞酸酐和海米酸酐(himic anhydride);脂族酸酐,諸如十二烯基琥珀酸酐;及芳族酸酐,諸如酞酸酐和偏苯三甲酸酐。
額外的實例包括雙酚,諸如2,2-雙(4-羥苯基)丙烷(別名:雙酚A)、2-(3-羥苯基)-2-(4’-羥苯基)丙烷、雙(4-羥苯基)甲烷(別名:雙酚F)和雙(4-羥苯基)碸(別名:雙酚S);酚樹脂,諸如酚×甲醛樹脂、酚×芳烷基樹脂、萘酚×芳烷基樹脂和酚-二環戊二烯共聚合物;及有機二醯肼,諸如二氰二醯胺和己二酸二醯肼。
固化觸媒的實例包括參(二甲基胺基甲基)酚、二甲基苯甲基胺和1,8-二氮雜雙環(5,4,0)十一烯及其衍生物。固化觸媒的額外實例包括咪唑,諸如2-甲基咪唑、2-乙基-4-甲基咪唑和2-苯基咪唑。該等可單獨或以二或多種之組合使用。
當使用含(甲基)丙烯醯基之樹脂作為第一熱固性樹脂(A-1)及第二熱固性樹脂(A-2)時,可添加有機過氧化物作為固化劑。有機過氧化物的特定實例包括過氧基二碳酸二異丙酯、過氧基-2-乙基己酸第三丁酯、過氧基-2-乙基己酸第三己酯、過氧基-2-乙基己酸1,1,3,3-四甲基丁酯、過氧基-2-乙基己酸第三戊酯、月桂基過氧化物、1,1-雙(第三丁基過氧基)-3,3,5-三甲基環己酮、環己酮過氧化物、甲基乙酮過氧化物、二異丙苯過氧化 物、第三丁基異丙苯過氧化物和異丙苯過氧化氫。
再者,可使用熱塑性樹脂(A-3)作為樹脂組份(A)。熱塑性樹脂(A-3)賦予未固化或固化樹脂組成物或其模塑或成型產物(例如片材)適度的可撓性且扮演重要的角色,例如改進片材處置期間的可操作性或作為固化組成物之應力緩和劑。
熱塑性樹脂(A-3)的特定實例包括聚乙烯基丁醛樹脂、聚酯樹脂、苯氧基樹脂和丙烯酸系共聚合物。以聚乙烯基丁醛樹脂和聚酯樹脂特別佳,以便賦予樹脂組成物可撓性。該等熱塑性樹脂(A-3)係以較佳為5質量%或更大但不超過30質量%,更佳為10質量%或更大但不超過25質量%之量添加,該量分別係以樹脂組份(A)為基準。以5質量%或更大的量可提供具有充份可撓性的樹脂組成物或模塑或成型產物,而不超過30質量%之量提供具有改進之可模塑性或可成型性的樹脂組成物。
(II)除了六角形氮化硼粉末(B)以外的陶瓷粉末(C)
本發明實施態樣的樹脂組成物可另外含有除了六角形氮化硼粉末(B)以外的陶瓷粉末(C)。陶瓷粉末(C)為增強樹脂組成物的流動性且同時增強固化之樹脂組成物的厚度方向導熱性之重要的組份。雖然陶瓷粉末(C)的種類未受到特別的限制,但是可使用一或多種選自下列的陶瓷粉末:例如氧化鋁粉末、氮化鋁粉末、玻璃珠、氧化鋅粉末、氧化鎂粉末、矽石粉末(例如發煙矽石)和立方 結晶氮化硼(cBN)。在該等之中,以氮化鋁粉末特別佳,因為其具有高導熱率(200W/mxK)。
然而,較佳地使用具有100MPa或更大但不超過1500MPa之壓縮斷裂強度的陶瓷粉末作為陶瓷粉末(C)。當六角形氮化硼粉末(B)的壓縮斷裂強度落在1.0MPa或更大但不超過20MPa之範圍內時,則推測六角形氮化硼粉末(B)之聚結粒子的部分內聚性破壞或變形係發生在加熱或加壓期間且使得該等粒子的表面與具有大的壓縮斷裂強度之陶瓷粉末(C)的粒子接觸。因此,在樹脂組成物或其模塑或成型產物的厚度方向上形成熱轉移路徑效率且該效率改進厚度方向導熱性。從獲得具有高導熱性的模塑或成型產物的觀點來看,六角形氮化硼粉末(B)的壓縮斷裂強度較佳為從1.0至3.3MPa。
具有大的壓縮斷裂強度之陶瓷粉末(C)的特定實例包括“FAN-f50-J”(體積平均粒徑:50μm)和“FAN-f30”(體積平均粒徑:30μm),分別為Furukawa Denshi Co.,Ltd.之氮化鋁。額外的實例包括“CB-A50S”(體積平均粒徑:50μm)、“CB-A30S”(體積平均粒徑:28μm)、“CB-A20S”(體積平均粒徑:21μm)、“AS-10”(體積平均粒徑:39μm)、“AS-20”(體積平均粒徑:22μm)、“AL-17-1”(體積平均粒徑:60μm)、“AL-17-2”(體積平均粒徑:60μm)和“AL-13KT”(體積平均粒徑:97μm),分別為Showa Denko K.K.之氧化鋁。其他的實例包括“J-320”(體積平均粒徑:50μm)、 “GB301S”(體積平均粒徑:50μm)、“GB301SA-PN”(體積平均粒徑:50μm)、“GB301SB-PN”(體積平均粒徑:50μm)和“GB-301SC-PN”(體積平均粒徑:50μm),分別為Potters-Ballotini Co.,Ltd.之玻璃珠。又其他的實例包括“FB-20D”(體積平均粒徑:23μm)和“FB-950”(體積平均粒徑:24μm),分別為DENKI KAGAKU KOGYO KABUSHIKI KAISHA之發煙矽石。
六角形氮化硼粉末(B)或陶瓷粉末(C)的壓縮斷裂強度可使用例如SHIMADZU CORPORATION之微壓縮測試機(例如“MCT-510”)測量。此微壓縮測試機可藉由將試驗力施加至固定在上部加壓端子與下部加壓板之間的粉末粒子,同時以特定的增加率增加施力及接著測量粉末粒子在此時的變形量來測量壓縮斷裂強度。壓縮斷裂強度可根據JIS R 1639-5(2007)中所示之以下公式(1)計算:Cs=2.48×(P/πd2)...(1)在公式(1)中,Cs代表壓縮斷裂強度(MPa),P代表試驗力(N),d代表粉末粒子的粒徑(mm),及π代表圓周率。
陶瓷粒子(C)的體積平均粒徑較佳為20μm或更大但不超過100μm,更佳為40μm或更大但不超過80μm。當陶瓷粒子(C)具有20μm或更大的體積平均粒徑時,則有效地發生六角形氮化硼粉末(B)之聚結粒子的變形及內聚性破壞。當該等具有不超過100μm之體 積平均粒徑時,則所得樹脂組成物可平穩地施加至基體材料。
在樹脂組成物中,將樹脂組份(A)、六角形氮化硼粉末(B)與陶瓷粉末(C)混合,以給出5質量%或更大但不超過40質量%之樹脂組份(A)含量、5質量%或更大但不超過75質量%之六角形氮化硼粉末(B)含量及10質量%或更大但不超過90質量%之陶瓷粉末(C)含量。
當樹脂組成物中的樹脂組份(A)含量落在5質量%或更大但不超過40質量%之範圍內時,則因此獲得的樹脂組成物具有完全分散於其中的六角形氮化硼粉末(B)及陶瓷粉末(C)。當樹脂組成物中的六角形氮化硼粉末(B)含量落在5質量%或更大但不超過75質量%之範圍內及陶瓷粉末(C)含量落在10質量%或更大但不超過90質量%之範圍內時,則因此獲得的樹脂組成物成功具有良好的導熱性、孔隙率和崩潰電壓。
在樹脂組成物中,六角形氮化硼粉末(B)、陶瓷粉末(C)及除了揮發性組份以外的其他無機粒子的總含量較佳為50質量%或更大但不超過95質量%或更小,更佳為60質量%或更大但不超過90質量%或更小。當總含量為95質量%或更小時,則所得樹脂組成物具有改進的黏著性質和強度。另一方面,當總含量為50質量%或更大時,則所得樹脂組成物可具有充份的熱散逸性質。
具有大的壓縮斷裂強度之陶瓷粉末(C)對六 角形氮化硼粉末(B)之較佳的質量比[陶瓷粉末(C)]/[六角形氮化硼粉末(B)]較佳為0.1或更大但不超過20,更佳為0.2或更大但不超過10。當質量比為0.1或更大時,則足以發生六角形氮化硼粉末(B)之聚結粒子的變形或內聚性破壞。另一方面,當質量比不超過20時,則所得樹脂組成物具有極佳的熱散逸性質,因為用以填充空隙的六角形氮化硼粉末(B)之聚結粒子由於變形和內聚性破壞而不發生短缺。
(III)偶合劑
再者,本發明實施態樣的樹脂組成物可含有以改進無機填充劑(諸如六角形氮化硼粉末(B)及陶瓷粉末(C))在樹脂組份(A)中的可分散性為目的、以改進樹脂組成物的可加工性為目的、以改進對基體材料的黏著性質為目的或類似目的之偶合劑。例如,可將六角形氮化硼粉末(B)與偶合劑反應以進行表面處理。
偶合劑的實例包括矽烷系列偶合劑、鈦酸鹽系列偶合劑和鋁系列偶合劑。在該等之中,以矽烷系列偶合劑最佳,因為該等可改進上述可分散性、可加工性、黏著性質及類似者。
在矽烷偶合劑之中,以胺基矽烷化合物特別佳,諸如g-胺基丙基三甲氧基矽烷、g-胺基丙基三乙氧基矽烷、g-(2-胺基乙基)胺基丙基三甲氧基矽烷、g-(2-胺基乙基)胺基丙基三乙氧基矽烷、g-苯胺基丙基三甲氧基矽 烷、g-苯胺基丙基三乙氧基矽烷、N-β-(N-乙烯基苯甲基胺基乙基)-g-胺基丙基三甲氧基矽烷和N-β-(N-乙烯基苯甲基胺基乙基)-g-胺基丙基三乙氧基矽烷。
(IV)其他的添加劑
本發明實施態樣的樹脂組成物可含有其他的添加劑,諸如以控制除了熱散逸性質以外的性質為目的無機填充劑,只要其量不抑制熱散逸性質。此種無機填充劑的實例包括賦予樹脂組成物阻燃性之氫氧化鋁、控制樹脂組成物流動性之發煙矽石及用於著色之氧化鈦。
(V)樹脂組成物之流動性
再者,本發明的樹脂組成物較佳地具備用於模塑或成型加工所必要的流動性,因為在模塑或成型成片材或類似者之後有時會利用該流動性。為了獲得良好的可模塑或可成型加工性,且達成在厚度方向上的高導熱性,所以樹脂組成物具有0.01 Paxs或更大但不超過500 Paxs,0.1 Paxs或更大但不超過200 Paxs之熔融黏度,其係在150℃下使用Koka型流量測試機所測得。當熔融黏度為0.01 Paxs或更大但不超過500 Paxs時,則模塑或成型產物(諸如片材)可自具有較佳的流動性之樹脂組成物容易地製得。
熔融黏度測量樣品之製備方法及熔融黏度之測量方法將於下文詳細說明。
(V-1)熔融黏度測量樣品之製備方法
將甲酚酚醛環氧樹脂“N-680”(DIC Corporation之產物)及酚醛苯酚樹脂“Shonol BRN-5384Y”(Showa Denko K.K.之產品)秤重且混合,以給出2:1之質量比。將以樹脂總量為基準計1.0質量%之矽烷偶合劑“Z-6040”(Toray Industries,Inc.之產品)及適量的有機溶劑添加至所得樹脂組成物中,以獲得樹脂溶液。樹脂溶液既不含有固化劑,亦不含有固化觸媒,以防止在熔融黏度測量期間固化。
將因此獲得的樹脂溶液及六角形氮化硼粉末(B)秤重,以給出在樹脂溶液中的43.2質量%之樹脂含量及55.8質量%之六角形氮化硼粉末(B)含量,且將該等裝入行星式離心混合機(“Awatori Rentaro ARE-310”,THINKY CORPORATION之產品)。將該等混合,直到六角形氮化硼粉末(B)均勻分散為止。將所得混合物用作為樣品混合物。
接著將樣品混合物塗覆在具有250mm厚度之可釋離的聚對苯二甲酸乙二酯(PET)片材(“PET 100SG2S”,PANAC Co.,Ltd.之產品)上,以獲得樣品片材。將所得樣品片材在常壓下以70℃經30分鐘乾燥及接著在減壓下以70℃經30分鐘乾燥,以移除樣品混合物的有機溶劑。將乾燥之樣品混合物自可釋離的PET片材釋離且接著研磨成熔融黏度測量樣品。
(V-2)熔融黏度之測量方法
秤出1.6g熔融黏度測量樣品且使用Koka型流量測試機(“CFT-500A”,SHIMADZU CORPORATION之產品)測量熔融黏度。熔融黏度係在150℃下分別以6MPa、4MPa、2MPa及1MPa之測量負荷測量且以該等測量負荷的測量結果之中最低的熔融黏度標定為熔融黏度測量樣品之熔融黏度。
再者,當樣品在150℃之溫度下以6MPa之測量負荷測量時,為了獲得良好的熔融流動性且達成高的厚度方向導熱性,所以具有55.8質量%之六角形氮化硼粉末(B)含量的熔融黏度測量樣品之熔融黏度較佳為0.01Paxs或更大但不超過500Paxs,更佳為0.1Paxs或更大但不超過200Paxs。
(VI)樹脂組成物之製備方法
本發明實施態樣的樹脂組成物之製備方法未受到特別的限制且其可以各種方法製備。下列為製備方法的一個實例。
首先,例如將作為樹脂組份(A)的熱固性樹脂與使熱固性樹脂固化所必要的量之固化劑或固化加速劑混合。若必要時,在溶劑添加至所得混合物中之後,接著添加具有大的壓縮斷裂強度之六角形氮化硼粉末(B)及陶瓷粉末(C)且將該等初步混合。將所得初步混合物在行星式混合機或類似者中捏和,以獲得樹脂組成物。當製備含有 偶合劑的樹脂組成物時,則偶合劑可在捏和之前的任何階段添加。
將因此獲得的樹脂組成物放置在基體材料上且固化,同時施加預定的壓製壓力,以獲得熱散逸性質極佳的固物產物。用以改進熱散逸性質的高填充之無機填充劑通常在固化產物中產生空隙,所以應該增加在壓製步驟中的壓製壓力。然而,如上文所述,因為本發明實施態樣的樹脂組成物含有六角形氮化硼粉末(B),所以推測經歷變形或內聚性破壞的六角形氮化硼粉末(B)之聚結粒子進入空隙部位,以降低孔隙率。因此,本發明實施態樣的樹脂組成物具有極佳的導熱性和熱散逸性質。
為了達成極佳的導熱性和熱散逸性質,所以用於六角形氮化硼粉末(B)之聚結粒子的變形或內聚性破壞之壓製壓力、樹脂組成物的流動性及控制固化的溫度具有重要性。壓力係落在較佳為1MPa或更大但不超過100MP,更佳為2MPa或更大但不超過50MPa之範圍。推測除了六角形氮化硼粉末(B)以外的填充劑在不超過100MPa或更小的壓力下不可能發生內聚性破壞,而六角形氮化硼粉末(B)之聚結粒子在1MPa或更大的壓力下發生變形或內聚性破壞。
溫度範圍較佳為70℃或更高但不超過200℃,更佳為90℃或更高但不超過180℃。樹脂組份(A)在不超過200℃之溫度下不可能以氧化或類似作用而降解且樹脂組成物在70℃或更高的溫度下具有充份的流動 性。自其所獲得的固化產物因此可保持平坦性且同時平穩地進行固化。當本發明實施態樣的樹脂組成物在此等條件下固化時,固化產物具有低至5%或更小的孔隙率。
接著將說明本發明實施態樣的樹脂組成物加工成片材。當樹脂組成物加工成片材時,則考慮應用性質而使用將樹脂組成物分散或溶解在有機溶劑中而獲得的樹脂組成物分散液或溶液。樹脂組成物分散液或溶液係使用塗覆裝置(諸如塗覆器或刀塗佈器)塗覆在支撐膜上,且接著加熱以乾燥有機溶劑。乾燥溫度較佳為40℃或更高但不超過150℃,更佳為50℃或更高但不超過120℃。有機溶劑在40℃或更高的乾燥溫度下難以保留,而且可固化的樹脂組份(A)在不超過150℃之乾燥溫度下不過度進行反應。在溶劑乾燥之後,膜厚度係落在較佳為30mm或更大但不超過500mm,更佳為50mm或更大但不超過300mm之範圍內。當膜厚度為30mm或更大時,則因此形成的膜不受所添加的填充劑之粒徑的影響且不喪失平坦性。當膜厚度不超過500μm時,則不可能保留有機溶劑且因此對固化產物的導熱性或物理性質沒有不利的影響。
雖然片材之製備方法未受到特別的限制,但是其可藉由將樹脂組成物溶液塗覆在支撐膜上,將經溶液塗覆之片材表面的一部分或全部以覆蓋膜覆蓋且接著將所得堆疊體在上述條件下加熱及加壓而製得。為了獲得厚的樹脂組成物層,建議將樹脂組成物溶液塗覆在兩個支撐膜上,將支撐膜中之一者的經溶液塗覆之表面堆疊在另一支 撐膜的經溶液塗覆之表面上且接著將所得堆疊體在上述條件下加熱及加壓。
獲得其中六角形氮化硼粉末(B)之聚結粒子經推測發生適當的內聚性破壞或變形之片材的加熱溫度條件較佳為所使用的樹脂組份(A)之軟化點或更高。更特定言之,其較佳為50℃或更高但不超過150℃,更佳為70℃或更高但不超過120℃。推測樹脂在50℃或更高的加熱溫度條件下軟化且六角形氮化硼粉末(B)之聚結粒子發生適當的內聚性破壞或變形。這造成導熱性的改進。另一方面,樹脂組份(A)在不超過150℃之加熱溫度下不過度進行固化反應,這在架設電子零件或類似物期間造成黏著性質的改進。
壓力條件較佳為1MPa或更大但不超過100MPa,更佳為從2至50MPa。六角形氮化硼粉末(B)之聚結粒子在1MPa或更高的壓力條件下發生內聚性破壞或變形,這造成導熱性的改進。另一方面,該等粒子在不超過100MPa之壓力條件下不發生厚度方向導熱性的降低,其係由於六角形氮化硼粉末(B)之大部分聚結粒子的內聚性破壞或六角形氮化硼之鱗片狀初級粒子定位在平面方向上。
可使用分批系統壓製機作為片材成型期間的加熱×加壓裝置。在考慮生產力時,以能夠進行連續加熱×加壓之輥壓機較佳。當使用輥壓機時,直線速度較佳為0.1m/min或更大但不超過5m/min,更佳為0.3m/min或 更大但不超過3m/min。以0.1m/min或更大的直線速度提供良好的生產力,而六角形氮化硼粉末(B)之聚結粒子在不超過5m/min之直線速度下發生充份的內聚性破壞或變形,這造成厚度方向導熱性的改進。
在製備片材所使用的支撐膜及覆蓋膜可取決於片材的使用目的而選擇。該等膜的實例包括金屬箔,諸如銅和鋁箔,及聚合物膜,諸如聚丙烯、聚碳酸酯、聚萘二甲酸乙二酯、聚對苯二甲酸乙二酯、聚四氟乙烯、聚苯硫醚、聚偏二氟乙烯和聚醯亞胺醚。當使用聚合物膜時,可對其施予釋離處理以改進自樹脂組成物的釋離性質。支撐膜或覆蓋膜具有較佳為10mm或更大但不超過200mm之厚度。
將因此獲得的片材放置在基體材料上且經熱固化,且使用預定的壓製機施加壓力。接著可獲得熱散逸性質極佳的固物產物。當電子零件或類似物黏合至片材時,其可藉由將支撐膜中之至少一者自片材釋離、將電子零件或類似物附著至樹脂組成物表面且接著在加熱×加壓下固化而黏合。用於黏合電子零件或類似物之過大的壓力可能損害電子零件或類似物,所以應該將壓力調整在容許黏合而不損害電子零件或類似物之壓力範圍內。
當使用片材黏合電子零件或類似物時,可在只發生黏合的條件下進行加壓×加熱。壓力範圍較佳為0.1MPa或更大但不超過10MPa,更佳為0.5MPa或更大但不超過8MPa。0.1MPa或更大的壓力容許黏合,而不超 過10MPa之壓力比較不可能損害電子零件或類似物。溫度範圍較佳為70℃或更高但不超過200℃,更佳為90℃或更高但不超過180℃。樹脂組份(A)在不超過200℃之溫度下比較不可能由於氧化或類似作用而降解,而電子零件或類似物在70℃或更高的溫度下有可能黏合片材,因為樹脂組成物具有充份的流動性。
[實施例]
本發明將於下文以實施例和比較例更詳細說明。
(1)六角形氮化硼粉末(B)之製備 (1-1)六角形氮化硼粗製粉末之製備
將硼酸(4g)、2g三聚氰胺與1g水以攪拌混合。將反應混合物倒入模型中且加壓,以獲得片狀物形式的模塑產物。將所得模塑產物在乾燥器中以300℃經1小時乾燥且接著在氨氛圍下以1000℃初步烘烤。將所得初步烘烤產物研磨成六角形氮化硼粗製粉末。
(1-2)六角形氮化硼粉末(B)之製備
將10質量份之具有2.5質量%濃度的聚乙烯醇水溶液添加至100質量份之六角形氮化硼粗製粉末中。在混合機中攪拌混合之後,將反應混合物倒入模型中且接著加壓,以獲得片狀物形式的模塑產物。將所得模塑產物在乾燥器 中以200℃經1小時乾燥,以獲得乾燥產物。將所得乾燥產物在氮氣氛圍中以1800℃烘烤4小時且獲得烘烤產物。將因此獲得的烘烤產物研磨且以無水振動篩分級成大於及小於106-mm篩目的粉末。在分級之後,收集小於106-mm篩目的粉末作為六角形氮化硼粉末(B)。
藉由將製備條件到達穩定範圍之前所收集的樣品標定為比較用製備例之六角形氮化硼粉末及將製備條件到達穩定範圍之後所收集的樣品標定為製備例之六角形氮化硼粉末而獲得製備例1和2之六角形氮化硼粉末a和b及比較用製備例1至4的六角形氮化硼粉末c、d和e。比較用製備例4之六角形氮化硼粉末f為藉由比較用製備例1之六角形氮化硼粉末c與比較用製備例2之六角形氮化硼粉末d的分級產物(分級成從45至106mm之範圍)以1:1之質量比混合而獲得的混合物。
製備例1和2之六角形氮化硼粉末a和b滿足本發明的所有上述三個條件;比較用製備例1至3之六角形氮化硼粉末c、d和e不滿足本發明的上述三個條件中之至少一者;及比較用製備例4之六角形氮化硼粉末f在超音波照射之前具有兩個最大波峰。
測量每一六角形氮化硼粉末a至f之BET比表面積和壓力斷裂強度。BET比表面積係使用全自動BET比表面積測量裝置“Multisorb 16”(Yuasa Ionics Co.,Ltd.之產品)測量。壓縮斷裂強度係以使用SHIMADZU CORPORATION之微壓縮測試機“MCT-510”的上述方法測 量。
對六角形氮化硼粉末a至f分別施予超音波照射處理(斷裂處理)。使用具有螺栓緊式電致伸縮振盪元件之超音波照射裝置給予由0.06g每一六角形氮化硼粉末a至f分散在50g水中所獲得的分散液超音波斷裂處理。超音波照射處理係在下列條件下進行:150W之超音波照射裝置輸出、19.5kHz之振盪頻慮及3分鐘之照射時間。
接著測量每一六角形氮化硼粉末a至f在超音波照射處理之前及之後的粒徑分布。因此獲得的粒徑分布曲線顯示於圖1至6中。從超音波照射處理之前及之後的粒徑分布粒徑分布曲線讀出第一最大波峰高度及第二最大波峰高度,且同時計算第一最大波峰高度對第二最大波峰高度之比[第一最大波峰高度/第二最大波峰高度]。將該等的測量結果全部顯示於表1中。
(2)樹脂組成物之製備1
樹脂組成物係藉由將73.9質量份之每一六角形氮化硼粉末a至f、26.1質量份之雙酚A環氧樹脂(“Epotote YD-128”,商品名;NIPPON STEEL & SUMIKIN CHEMICAL CO.,LTD.之產品,環氧基當量:190g/eq)與作為固化觸媒的0.8質量份之咪唑化合物(1-(氰乙基)-2-十二烷基咪唑)混合且將所得混合物使用行星式離心混合機(“Awatori Rentaro ARE-310”,THINKY CORPORATION之產品)捏和而製得。
將所得樹脂組成物成型成具有厚度從200至500mm之片材且藉由使用熱壓製機在6MPa之壓力下及在130℃之溫度下加熱及加壓30分鐘而固化,並因此製備實施例11和12及比較例11至14的經壓製之固化片材。測量所得經壓製之固化片材的厚度方向導熱率和孔隙率。將結果顯示於表2中。
接著說明導熱率和孔隙率之個別測量方法。首先說明用於計算導熱率和孔隙率所必要的比重之測量方法。試驗樣品的比重ρ係藉由使用分別為Sartorius Mechatronics Japan K.K.之產品的電子天平(“CP224S”)及比重/密度測量套組(“YDK01”/“YDK01-OD”/ “YDK01LP”)測量每一試驗樣品在空氣中的質量W(a)及其在水中的質量W(f1)而計算且根據下列公式(2)計算試驗樣品的比重:ρ=W(a)×ρ(f1)/{W(a)-W(f1)}...(2)其中在公式(2)中,ρ(f1)代表液體(水)的密度。
接著將說明導熱率之測量方法。由切割具有如上文在製備樹脂組成物中所述之此種厚度的經壓製之固化片材而獲得的具有邊長10mm之方形試驗片材在25℃下的熱擴散率係使用導熱率測量裝置(“LFA 447 Nano Flash”,NETZSCH之產品)測量。進一步根據以上述方法所測量的經壓製之固化片材的比重及分開測定的經壓製之固化片材之比熱,使用下列公式(3)計算經壓製之固化片材的厚度方向導熱率:導熱率(W/m×K)=(熱擴散率)×(比熱)×(比重)...(3)
接著將說明孔隙率之測量方法。首先使用上述方法測量樹脂組份(其為樹脂組成物的原料)及填充劑(諸如六角形氮化硼粉末)的比重。接著自所得比重及混合量(質量%)導出經壓製之固化片材的理論比重。接著使用上述方法測量經壓製之固化片材的比重(實際比重)且使用下列公式(4)計算孔隙率:孔隙率(%)=100-((實際比重/理論比重)×100)...(4)
從表2中所示之結果顯見使用製備例1和2的六角形氮化硼粉末a和b之實施例11和12的經壓製之固化片材具有比比較例11和14的經壓製之固化片材更小 的孔隙率且在厚度方向導熱率與孔隙率之間完好地平衡。
在比較例14中所使用的六角形氮化硼粉末f為比較用製備例1的六角形氮化硼粉末c及比較用製備例2的六角形氮化硼粉末d之分級產物(分級成從45至106mm之範圍)的1:1(質量比)混合物。類似於比較例11和13之比較例14的經壓製之固化片材具有大的孔隙率。
(3)樹脂組成物之製法2
樹脂組成物之製備係如下:將六角形氮化硼粉末a至f中之任一者、作為樹脂組份(A)的雙酚A環氧樹脂(“Epotote YD-128”,商品名;NIPPON STEEL & SUMIKIN CHEMICAL CO.,LTD.之產品,環氧基當量:190g/eq)、除了六角形氮化硼粉末(B)以外的陶瓷粉末(C)與作為固化觸媒的咪唑化合物(1-(氰乙基)-2-十一烷基咪唑“CURESOL C11Z-CN”,SHIKOKU CHEMICALS CORPORATION之產品)混合及接著將所得混合物以類似於“樹脂組成物之製法1”的方式處理。所添加之各原料的量顯示於表3中(單位:質量份)。
實施例21、22、32和42及比較例21至24的經壓製之固化片材係以類似於“樹脂組成物之製法1”的方式自所得樹脂組成物製得。測量每一經壓製之固化片材的厚度方向導熱率和孔隙率。將結果顯示於表3中。
用作為陶瓷粉末(C)的無機填充劑為球體氧化鋁(“CB-A50S”,Showa Denko K.K.之產品,體積平均粒 徑:50μm)、氮化鋁(“FAN-f50-J”,Furukawa Denshi Co.,Ltd.之產品,體積平均粒徑:50μm)或球體玻璃珠(“GB301S”,Potters-Ballotini Co.,Ltd.之產品,體積平均粒徑:50μm)。
從表3的結果顯見含有氮化鋁作為陶瓷粉末(C)的經壓製之固化片材與不含有陶瓷粉末(C)的經壓製之固化片材相比(參考表2)而特別具有較高的導熱率且在厚度方向導熱率與孔隙率之間完好地平衡。
(4)樹脂組成物之製法3
將甲酚酚醛環氧樹脂(“EPICLON N-680”,商品名;DIC Corporation之產品,數量平均分子量:1280,環氧基當量:218g/eq)及酚醛酚樹脂(“Shonol BRN-5834Y”,商品名;Showa Denko K.K.之產品)秤重且混合以給出2:1之質量比。將以樹脂組成物總重量(樹脂組份(A)、六角形氮化硼粉末(B)與矽烷偶合劑的總量)為基準計1質量%之3-縮水甘油醚基丙基三甲氧基矽烷(矽烷偶合劑“Z-6040”,Toray Industries,Inc.之產品)及有機溶劑添加至所得樹脂混合物中,以獲得樹脂溶液。
將因此獲得的樹脂及六角形氮化硼粉末a至f中之任一者秤重,以給出在樹脂溶液中的43.2質量%之樹脂含量及55.8質量%之六角形氮化硼粉末(B)量且將該等倒入行星式離心混合機(“Awatori Rentaro ARE-310”,THINKY CORPORATION之產品)中。將該等混合,直到六角形氮化硼粉末(B)均勻分散為止,且將所得混合物用作為樣品混合物。
接著將樣品混合物塗覆在具有250mm厚度之可釋離的聚PET片材(“PET 100SG2S”,PANAC Co.,Ltd. 之產品)上,以獲得樣品片材。將所得樣品片材在常壓下以70℃經30分鐘乾燥及接著在減壓下以70℃經30分鐘乾燥,以移除樣品混合物的有機溶劑。將乾燥之樣品混合物自可釋離的PET片材釋離且接著研磨成實施例51和52及比較例51至54之熔融黏度測量樣品。
將熔融黏度測量樣品(1.6g)秤重且使用Koka型流量測試機(“CFT-500A”,SHIMADZU CORPORATION之產品)測量其熔融黏度。熔融黏度係在150℃下分別以每一下列負荷:6MPa、4MPa、2MPa和1MPa測量且以上述測量負荷的測量結果之中最低的熔融黏度標定為熔融黏度測量樣品之熔融黏度。將結果顯示於表4中。
當模塑或成型產物(諸如片材)係自含有樹脂組份的樹脂組成物獲得時,則熔融黏度為流動性的指標,其為重要的特徵。從表4顯見使用製備例1和2之六角形氮化硼粉末a和b的實施例51和52之個別樣品分別具有低的熔融黏度且在流動性與上述的導熱率或孔隙率之 間完好地平衡。
(5)樹脂組成物之製法4
樹脂溶液之製備係使用35質量份之N,N,N’,N’-四縮水甘油基-4,4’-二胺基二苯基甲烷(“Epotote YH-434L”,商品名;NIPPON STEEL & SUMIKIN CHEMICAL CO.,LTD.之產品)作為樹脂組份(A)、10質量份之雙酚A環氧樹脂(“Epotote YD-128”,商品名;NIPPON STEEL & SUMIKIN CHEMICAL CO.,LTD.之產品)、25質量份之聚乙烯基丁醛樹脂(“S-LEC SV-02”,商品名;SEKISUI CHEMICAL CO.,LTD.之產品,其為熱固性樹脂)、10質量份之酚酚醛樹脂(“Shonol BRN-5384Y”,商品名;Showa Denko K.K.之產品)及20質量份之多官能性酚樹脂(“SN-395”,商品名;NIPPON STEEL & SUMIKIN CHEMICAL CO.,LTD.之產品);且添加作為溶劑的150質量份之丙二醇單甲醚(Wako Pure Chemical Industries,Ltd.之產品),以溶解其中的樹脂組份。
將作為固化觸媒的0.3質量份之1-(氰乙基)-2-十二烷基咪唑(“CURESOL C11Z-CN”,商品名;SHIKOKU CHEMICALS CORPORATION之產品)添加至所得樹脂溶液中。將作為六角形氮化硼粉末(B)的125質量份之六角形氮化硼粉末a、除了六角形氮化硼粉末(B)以外作為陶瓷粉末(C)的452質量份之氮化鋁(“FAN-f50”,商品名;Furukawa Denshi Co.,Ltd.之產 品)及作為溶劑的25質量份之丙二醇單甲醚進一步添加至所得樹脂溶液中。將所得樹脂溶液在行星式離心混合機(“Awatori Rentaro ARE-310”,THINKY CORPORATION之產品)中捏和,以獲得樹脂組成物。
將因此製備的樹脂組成物藉助於自動化塗佈棒(“PI-1210”,TESTER SANGYO CO,.LTD.之產品)塗覆在100-mm厚度的電解銅箔上,在溶劑乾燥之後得到約300mm厚度及10cm寬度的膜。在常壓下以70℃經20分鐘乾燥之後,將所得膜在減壓下以70℃經20分鐘乾燥,以移除溶劑。獲得具有在電解銅箔上所成型的樹脂組成物膜之片材。
將PET膜疊層至以樹脂組成物形成於其上的所得片材之表面上。將因此獲得的疊層物使用桌上型輥壓機(“SA-601”,裝置名稱,TESTER SANGYO CO,.LTD.之產品)在120℃之溫度、6MPa之施加壓力及0.3m/min之輥壓速度的條件下加熱×加壓三次,以獲得實施例61之具有約200mm厚度的片材。
在類似於實施例61所使用的方式中,除了改變如表5中所示之六角形氮化硼粉末(B)及陶瓷粉末(C)的種類及量以外,獲得實施例62、72和82及比較例61至64的片材。測量片材的崩潰電壓、導熱率和孔隙率。將測量結果全部顯示於表5中。導熱率和孔隙率之測量方法類似於經壓製之固化片材的那些方法。下列為崩潰電壓之測量方法。
將片材分別切割成具有50mm邊長之方形且自片材釋離PET膜。接著將由樹脂組成物所製造之所得片材在180℃之溫度及3MPa之壓力下且夾在具有70mm邊長之35mm-厚度的電解銅箔之間而壓製固化。自所得雙面以銅包覆之片材釋離在兩個面上的銅箔且獲得5個單層的固化片材。介電崩潰電壓試驗係使用片材在下列條件下進行。
使用具有50Hz頻率之AC電源施加電壓至固化片材。電壓施加係藉由重複以下的循環來進行:以5kV/min之速率增加壓力至5kV、保持壓力1分鐘及接著以5kV/min之速率降低壓力至0kV。當上述電壓施加期間發現1mA或更大的通電量時,則判定固化片材之介電崩潰。使用耐壓及絕緣電阻測試機“TOS9201”(KIKUSUI ELECTRONICS CORPORATION之產品)進行試驗且使用具有25mm直徑的柱形電極及具有75mm直徑的柱形電極作為電極。
分別對5個固化片材施予上述之介電崩潰電壓試驗且彼等的崩潰電壓係以通過試驗而不引起介電崩潰之片材的百分比(合格百分比)為基準評估。
從表5顯見使用含有製備例1的六角形氮化硼粉末a或製備例2的六角形氮化硼粉末b之樹脂組成物所製備的實施例61、62、72和82之固化片材顯示良好的崩潰電壓且在崩潰電壓與導熱率、孔隙率或流動性之間完 好地平衡。

Claims (5)

  1. 樹脂組成物,其包含樹脂組份(A)及六角形氮化硼粉末(B),該粉末包含具有聚結於其中的六角形氮化硼初級粒子之聚結粒子,其中該樹脂組成物具有如使用Koka型流量測試機在150℃下所測量的0.01Pa.s或更大但不超過500Pa.s之熔融黏度,其中該六角形氮化硼粉末(B)具有大於10m2/g但小於15m2/g之BET比表面積,其中該六角形氮化硼粉末(B)在六角形氮化硼粉末(B)的粒徑分布曲線中具有一個在大於1mm但不超過500mm之粒徑範圍內的最大波峰,且最大波峰被視為初始最大波峰,及其中當該六角形氮化硼粉末(B)分散於水中所獲得的分散液以具有19.5kHz之振盪頻率的超音波照射且由此施加用於該聚結粒子的內聚性破壞之內聚性破壞處理時,則該六角形氮化硼粉末(B)具有使得粒徑分布曲線改變且粒徑分布曲線滿足所有下列三個條件的特徵:(條件1)粒徑分布曲線具有在1μm或更大但不超過20μm之粒徑範圍內的第一最大波峰;(條件2)粒徑分布曲線具有在超過1μm但不超過350μm之粒徑範圍內且在超過該第一最大波峰之粒徑但不超過該初始最大波峰之粒徑的粒徑範圍內的第二最大波峰;及 (條件3)第一最大波峰的高度對第二最大波峰的高度之比[第一最大波峰的高度]/[第二最大波峰的高度]為0.1或更大但不超過8.0。
  2. 根據申請專利範圍第1項之樹脂組成物,其進一步包含除了六角形氮化硼粉末(B)以外的陶瓷粉末(C)。
  3. 根據申請專利範圍第2項之樹脂組成物,其中該樹脂組份(A)的含量為5質量%或更大但不超過40質量%,六角形氮化硼粉末(B)的含量為5質量%或更大但不超過75質量%,及該陶瓷粉末(C)的含量為10質量%或更大但不超過90質量%。
  4. 根據申請專利範圍第2或3項之樹脂組成物,其中該陶瓷粉末(C)為至少一種選自下列的粉末:氧化鋁粉末、氮化鋁粉末、玻璃珠、氧化鋅粉末、氧化鎂粉末及矽石粉末。
  5. 一種製備樹脂組成物之方法,其係藉由將包含具有聚結於其中的六角形氮化硼初級粒子之聚結粒子的六角形氮化硼粉末與樹脂組份混合,其中該六角形氮化硼粉末具有大於10m2/g但小於15m2/g之BET比表面積且在該六角形氮化硼粉末的粒徑分布曲線中具有一個在大於1mm但不超過500mm之粒徑範圍內的最大波峰,作為初始最大波峰,及其中當該六角形氮化硼粉末分散於水中所製備的分散液以具有19.5kHz之振盪頻率的超音波照射且測量以該 超音波照射之該六角形氮化硼粉末的粒徑分布曲線所獲得的粒徑分布曲線滿足所有下列三個條件時,則將未以超音波照射之六角形氮化硼粉末與該樹脂組份混合:(條件1)該粒徑分布曲線具有在1μm或更大但不超過20μm之粒徑範圍內的第一最大波峰;(條件2)該粒徑分布曲線具有在超過1μm但不超過350μm之粒徑範圍內且在超過該第一最大波峰之粒徑但不超過初始最大波峰之粒徑的粒徑範圍內的第二最大波峰;及(條件3)該第一最大波峰的高度對該第二最大波峰的高度之比[第一最大波峰的高度]/[第二最大波峰的高度]為0.1或更大但不超過8.0。
TW104137014A 2014-12-08 2015-11-10 樹脂組成物及其製備方法 TW201634547A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247526A JP6538337B2 (ja) 2014-12-08 2014-12-08 樹脂組成物及びその製造方法

Publications (1)

Publication Number Publication Date
TW201634547A true TW201634547A (zh) 2016-10-01

Family

ID=54780431

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104137014A TW201634547A (zh) 2014-12-08 2015-11-10 樹脂組成物及其製備方法

Country Status (3)

Country Link
JP (1) JP6538337B2 (zh)
TW (1) TW201634547A (zh)
WO (1) WO2016092734A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511679A (zh) * 2017-12-27 2020-08-07 昭和电工株式会社 六方氮化硼粉末及其生产方法和使用其的组合物和散热材料

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822836B2 (ja) * 2016-12-28 2021-01-27 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP6414260B2 (ja) * 2017-03-23 2018-10-31 三菱マテリアル株式会社 放熱回路基板
JP7104503B2 (ja) * 2017-10-13 2022-07-21 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
WO2019164002A1 (ja) * 2018-02-26 2019-08-29 デンカ株式会社 絶縁放熱シート
JP7257104B2 (ja) * 2018-03-01 2023-04-13 積水化学工業株式会社 積層体
US11198263B2 (en) * 2018-03-22 2021-12-14 Rogers Corporation Melt processable thermoplastic composite comprising a multimodal dielectric filler
JP7069967B2 (ja) * 2018-03-29 2022-05-18 Tdk株式会社 放熱基板
WO2019189182A1 (ja) * 2018-03-29 2019-10-03 Jnc株式会社 熱伝導性複合フィラーとこれを含む放熱性樹脂組成物、該放熱性樹脂組成物からなる放熱性グリース及び放熱部材
JP7476482B2 (ja) * 2019-04-01 2024-05-01 住友ベークライト株式会社 熱伝導性シート
CN111423699B (zh) * 2020-05-12 2022-11-11 河北工业大学 高填充量六方氮化硼/聚合物块状复合材料的制备方法
WO2022118873A1 (ja) 2020-12-04 2022-06-09 住友ベークライト株式会社 熱伝導性樹脂組成物および成形体
EP4257545A1 (en) * 2021-01-06 2023-10-11 Denka Company Limited Aggregated boron nitride particles, boron nitride powder, heat-conductive resin composition, and heat-dissipation sheet
WO2022149553A1 (ja) * 2021-01-06 2022-07-14 デンカ株式会社 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
WO2022264327A1 (ja) * 2021-06-16 2022-12-22 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898009A (en) * 1996-03-19 1999-04-27 Advanced Ceramics Corporation High density agglomerated boron nitride particles
JP4889110B2 (ja) 2007-02-05 2012-03-07 日東電工株式会社 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
JP5184543B2 (ja) * 2007-09-26 2013-04-17 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP5208060B2 (ja) * 2009-06-26 2013-06-12 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
EP2610277A4 (en) * 2010-08-26 2015-08-19 Denki Kagaku Kogyo Kk RESIN COMPOSITION, MOLDED OBJECT AND SUBSTRATE MATERIAL ALL TWO OBTAINED FROM THE RESIN COMPOSITION, AND CIRCUIT BOARD USING THE SAME
KR102051272B1 (ko) 2011-03-28 2019-12-03 히타치가세이가부시끼가이샤 다층 수지 시트, 수지 시트 적층체, 다층 수지 시트 경화물 및 그 제조 방법, 금속박이 형성된 다층 수지 시트, 그리고 반도체 장치
TWI547436B (zh) * 2011-11-29 2016-09-01 Mitsubishi Chem Corp 氮化硼凝集粒子、含有該粒子之組成物、以及具有由該組成物所構成的層之三維積體電路
CN105308125B (zh) * 2013-06-14 2017-12-19 三菱电机株式会社 热固性树脂组合物、导热性片材的制造方法及电源模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511679A (zh) * 2017-12-27 2020-08-07 昭和电工株式会社 六方氮化硼粉末及其生产方法和使用其的组合物和散热材料
CN111511679B (zh) * 2017-12-27 2022-12-09 昭和电工株式会社 六方氮化硼粉末及其生产方法和使用其的组合物和散热材料

Also Published As

Publication number Publication date
JP6538337B2 (ja) 2019-07-03
WO2016092734A1 (en) 2016-06-16
JP2016108457A (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
TW201634547A (zh) 樹脂組成物及其製備方法
CN106232731B (zh) 热传导性聚合物组合物和热传导性成型体
JP6022546B2 (ja) 硬化性放熱組成物
WO2011104996A1 (ja) 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
JP2019116401A (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
JP5698932B2 (ja) 熱伝導性シート
WO2012070289A1 (ja) 熱伝導性シート及びパワーモジュール
JP5738652B2 (ja) 熱伝導性シートの製造方法および熱伝導性シート
CN107614620B (zh) 树脂组合物、树脂片、预浸渍体、绝缘物、树脂片固化物和散热构件
TWI520926B (zh) A ceramic mixture, and a thermally conductive resin sheet containing a ceramic composition
JP2013177562A (ja) 熱伝導性シート
CN109312164B (zh) 膜用树脂组合物、膜、带有基材的膜、金属/树脂层叠体、树脂固化物、半导体装置以及膜的制造方法
JP6627303B2 (ja) 熱伝導性樹脂組成物、回路基板用積層体、回路基板および半導体装置
JP5171798B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
TWI683880B (zh) 半導體裝置及其製造方法以及接著組成物片
JP2011178894A (ja) 熱硬化性樹脂組成物、熱伝導性シート及びパワーモジュール
JP7188070B2 (ja) 放熱絶縁シートおよび該シート硬化物を絶縁層とする積層構造体
JP6451451B2 (ja) 伝導性シートの製造方法
JP5888584B2 (ja) 樹脂組成物、樹脂シート、プリプレグシート、樹脂硬化物シート、構造体、および動力用又は光源用半導体デバイス
JP2018165344A (ja) 窒化ホウ素粒子含有シート
JP2015189884A (ja) 熱硬化性樹脂組成物、樹脂シート、プリプレグ及び積層板
JP2014189701A (ja) 高熱伝導性樹脂硬化物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂組成物
TWI801547B (zh) 散熱片、散熱構件及半導體元件
KR20220129549A (ko) 열전도성 시트, 적층체, 및 반도체 장치
JP6715033B2 (ja) 熱伝導性接着剤組成物、熱伝導性接着剤シートおよび積層体の製造方法