TW201349619A - 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置 - Google Patents

發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置 Download PDF

Info

Publication number
TW201349619A
TW201349619A TW102113622A TW102113622A TW201349619A TW 201349619 A TW201349619 A TW 201349619A TW 102113622 A TW102113622 A TW 102113622A TW 102113622 A TW102113622 A TW 102113622A TW 201349619 A TW201349619 A TW 201349619A
Authority
TW
Taiwan
Prior art keywords
light
emitting element
emitting
layer
abbreviation
Prior art date
Application number
TW102113622A
Other languages
English (en)
Other versions
TWI586011B (zh
Inventor
Satoshi Seo
Shunpei Yamazaki
Takahiro Ishisone
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW201349619A publication Critical patent/TW201349619A/zh
Application granted granted Critical
Publication of TWI586011B publication Critical patent/TWI586011B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

本發明的目的在於:作為使用多個發光摻雜劑的發光元件,提供發光效率高的發光元件。另外,本發明的一個方式藉由使用上述發光元件分別提供減少了耗電量的發光裝置、發光模組、發光顯示裝置、電子裝置及照明設備。注目到作為分子間的能量轉移機構之一的福斯特機構。藉由使提供能量的分子的發光波長與接受能量的分子的吸收光譜乘以波長的4次方而成的曲線中的具有最長波長一側的極大的峰值重疊,可以高效地實現上述福斯特機構中的能量轉移。

Description

發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
本發明係關於一種將有機化合物用作發光物質的發光元件、顯示裝置、發光裝置、電子裝置及照明設備。
近年來,對利用電致發光(EL:Electro Luminescence)的發光元件的研究開發日益火熱。在這些發光元件的基本結構中,在一對電極之間夾有包含發光物質的層(EL層)。藉由對該元件施加電壓,可以獲得來自發光物質的發光。
因為這種發光元件是自發光型發光元件,所以具有優於液晶顯示器的優點諸如像素的可見度高,不需要背光等,由此,這種發光元件被認為適合於平板顯示器元件。另外,使用這種發光元件的顯示器可以被製造成薄且輕,這也是極大的優點。再者,應答速度非常快也是特徵之一。
因為這種發光元件可以將發光層形成為膜狀,所以可以容易獲得面發光。因此,可以容易形成大面積的元件。這是在以白熾燈和LED為代表的點光源或以螢光燈為代表的線光源中難以得到的特徵。因此,上述利用電致發光的發光元件在作為可以應用於照明等的面光源的利用價值也高。
在將有機化合物用於發光物質且在一對電極之間設置有該EL層的有機EL元件中,藉由對一對電極之間施加電壓,電子和電洞分別從陰極和陽極注入到發光性的EL層,而使電流流過。而且,被注入了的電子與電洞再結合而使發光有機化合物成為激發態,由此可以從被激發的發光有機化合物得到發光。
作為由有機化合物形成的激發態,可以舉出單重激發態和三重激發態,從單重激發態(S*)的發光被稱為螢光,而從三重激發態(T*)的發光被稱為磷光。另外,在該發光元件中,單重激發態與三重激發態的統計學上的產生比率被認為是S*:T*=1:3。
當使用從單重激發態發光的化合物(以下稱為螢光化合物)時,在室溫下通常僅觀察到從單重激發態的發光(螢光),而觀察不到從三重激發態的發光(磷光)。因此,基於S*:T*=1:3的關係,使用螢光化合物的發光元件中的內部量子效率(相對於所注入的載流子的所產生的光子的比率)的理論上的極限被認為是25%。
另一方面,當使用從三重激發態發光的化合物(以下 稱為磷光化合物)時,觀察到從三重態激發的發光(磷光)。此外,在磷光化合物中,由於容易產生系間穿越(即從單重激發態轉移到三重激發態),因此理論上能夠將內部量子效率增加到100%。換句話說,可以得到比螢光化合物高的發光效率。由於所述理由,為了實現高效率的發光元件,近年來對使用磷光化合物的發光元件的開發日益火熱。
專利文獻1公開了一種白色發光元件,該白色發光元件具有包括多個發光摻雜劑的發光區域且該發光摻雜劑發射磷光。
[專利文獻1]日本PCT國際申請翻譯第2004-522276號公報
雖然磷光化合物在理論上能夠實現100%的內部量子效率,但是在不進行與元件結構或其他材料的組合的最適化的情況下難以實現高效率。尤其是,當使用將多種不同帶(發光顏色)的磷光化合物用作發光摻雜劑的發光元件時,當然需要考慮能量轉移,而且需要將該能量轉移本身的效率最適化,要不然難以獲得高效率的發光。實際上,在上述專利文獻1中,雖然發光摻雜劑都是磷光元件,但是其外部量子效率為3%至4%左右。根據該事實可以認為:即使考慮光取出效率,內部量子效率也是20%以下。作為磷光發光元件,該內部量子效率值低。
在使用不同發光顏色的摻雜劑的多色發光元件中,不僅需要提高發光效率,而且需要使各發光顏色的摻雜劑平 衡地發射光。難以在實現高發光效率的同時保持各摻雜劑的發光平衡。
鑒於上述課題,本發明的一個方式的目的在於:作為使用多個發光摻雜劑的發光元件提供發光效率高的發光元件。另外,本發明的一個方式的目的在於:藉由使用上述發光元件分別提供減少了耗電量的發光裝置、顯示裝置、電子裝置及照明設備。
本發明只要解決上述課題中的任一個即可。
在本發明中,注目到作為分子間的能量轉移機構之一的福斯特機構,藉由採用使提供能量的分子的發光光譜的高峰與接受能量的分子的吸收光譜乘以波長的4次方而成的特性曲線中的具有最長波長一側的極大的高峰彼此重疊的分子組合,可以高效地實現上述福斯特機構中的能量轉移。在此,上述能量轉移不是從主體到摻雜劑的一般的能量轉移,而是摻雜劑之間的能量轉移。如此,藉由採用使摻雜劑之間的能量轉移的效率高的組合的摻雜劑,並設計使各摻雜劑分子之間適當地分離的元件結構,可以獲得本發明的一個方式的發光元件。
換言之,本發明的一個方式是一種發光元件,該發光元件在一對電極之間包括:第一發光層,其中第一磷光化合物分散在第一主體材料;以及第二發光層,其中呈現波長比所述第一磷光化合物長的發光的第二磷光化合物分散 在第二主體材料,其中所述第二磷光化合物的由ε(λ)λ4表示的函數的位於最長波長一側的極大值的波長與第一磷光化合物的磷光發光光譜F(λ)重疊。(注意,ε(λ)表示各磷光化合物的莫耳吸光係數並是波長λ的函數。)
另外,本發明的另一個方式是一種發光元件,在一對電極之間包括:第一發光層,其中第一磷光化合物分散在第一主體材料;以及第二發光層,其中呈現波長比所述第一磷光化合物長的發光的第二磷光化合物分散在第二主體材料,其中所述第一磷光化合物的磷光發光光譜的包括最大值的高峰與第二磷光化合物的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰彼此重疊。(注意,ε(λ)表示各磷光化合物的莫耳吸光係數並是波長λ的函數。)
另外,本發明的另一個方式是包括上述結構的發光元件,其中第一發光層還包含第一有機化合物,第一主體材料與第一有機化合物形成激態複合物,並且第一磷光化合物的發光具有比激態複合物的發光長的波長。
另外,本發明的另一個方式是包括上述結構的發光元件,其中激態複合物的發光光譜與第一磷光化合物的由ε(λ)λ4表示的函數的位於最長波長一側的極大值的波長重疊。(注意,ε(λ)表示各磷光化合物的莫耳吸光係數並是波長λ的函數。)
另外,本發明的另一個方式是包括上述結構的發光元件,其中激態複合物的發光光譜的包括最大值的高峰與第 一磷光化合物的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰彼此重疊。(注意,ε(λ)表示各磷光化合物的莫耳吸光係數並是波長λ的函數。)
另外,本發明的另一個方式是包括上述結構的發光元件,其中第一磷光化合物在500nm至600nm的範圍內具有磷光發光峰值,並且第二磷光化合物在600nm至700nm的範圍內具有磷光發光峰值。
另外,本發明的另一個方式是包括上述結構的發光元件,其中電子與電洞的再結合區域是第一發光層。
另外,本發明的另一個方式是包括上述結構的發光元件,其中與第二發光層相比,第一發光層位於陽極一側,並且第二發光層至少具有比電洞傳輸性高的電子傳輸性。
另外,本發明的另一個方式是包括上述結構的發光元件,其中與第二發光層相比,第一發光層位於陽極一側,並且第一主體材料及第二主體材料都具有電子傳輸性。注意,作為具有電子傳輸性的材料,較佳為使用電子傳輸性高於電洞傳輸性的材料。
另外,本發明的另一個方式是包括上述結構的發光元件,其中與第二發光層相比,第一發光層位於陰極一側,並且第二發光層至少具有比電子傳輸性高的電洞傳輸性。
另外,本發明的另一個方式是包括上述結構的發光元件,其中與第二發光層相比,第一發光層位於陰極一側,並且第一主體材料及第二主體材料都具有電洞傳輸性。注意,作為具有電洞傳輸性的材料,較佳為使用電洞傳輸性 高於電子傳輸性的材料。
另外,本發明的另一個方式是包括上述結構的發光元件,其中第一發光層及第二發光層以彼此接觸的方式層疊。
另外,本發明的另一個方式是一種具備上述結構的發光元件的發光裝置、發光顯示裝置、電子裝置及照明設備。
注意,本說明書中的發光裝置包括使用發光元件的影像顯示裝置。此外,如下模組都包括在發光裝置中:發光元件安裝有連接器諸如各向異性導電薄膜、或TCP(Tape Carrier Package:帶載封裝)的模組;在TCP的端部設置有印刷線路板的模組;藉由COG(Chip On Glass:玻璃覆晶封裝)方式在發光元件上直接安裝有IC(積體電路)的模組。再者,本說明書中的發光裝置還包括用於照明設備等的發光裝置。
本發明的一個方式可以提供發光效率高的發光元件。本發明的一個方式藉由使用該發光元件可以提供減少了耗電量的發光裝置、發光顯示裝置、電子裝置及照明設備。
10‧‧‧電極
11‧‧‧電極
101‧‧‧第一電極
102‧‧‧第二電極
103‧‧‧EL層
111‧‧‧電洞注入層
112‧‧‧電洞傳輸層
113‧‧‧發光層
113a‧‧‧第一發光層
113Da‧‧‧第一磷光化合物
113Ha‧‧‧第一主體材料
113b‧‧‧第二發光層
113Db‧‧‧第二磷光化合物
113Hb‧‧‧第二主體材料
113A‧‧‧第一有機化合物
113Ec‧‧‧激態複合物
114‧‧‧電子傳輸層
115‧‧‧電子注入層
400‧‧‧基板
401‧‧‧第一電極
402‧‧‧輔助電極
403‧‧‧EL層
404‧‧‧第二電極
405‧‧‧密封材料
406‧‧‧密封材料
407‧‧‧密封基板
412‧‧‧焊盤
420‧‧‧IC晶片
601‧‧‧驅動電路部(源極線驅動電路)
602‧‧‧像素部
603‧‧‧驅動電路部(閘極線驅動電路)
604‧‧‧密封基板
605‧‧‧密封材料
607‧‧‧空間
608‧‧‧佈線
609‧‧‧FPC(軟性印刷電路)
610‧‧‧元件基板
611‧‧‧開關TFT
612‧‧‧電流控制TFT
613‧‧‧第一電極
614‧‧‧絕緣物
616‧‧‧EL層
617‧‧‧第二電極
618‧‧‧發光元件
623‧‧‧n通道型TFT
624‧‧‧p通道型TFT
625‧‧‧乾燥劑
901‧‧‧外殼
902‧‧‧液晶層
903‧‧‧背光
904‧‧‧外殼
905‧‧‧驅動器IC
906‧‧‧端子
951‧‧‧基板
952‧‧‧電極
953‧‧‧絕緣層
954‧‧‧隔離層
955‧‧‧EL層
956‧‧‧電極
1001‧‧‧基板
1002‧‧‧基底絕緣膜
1003‧‧‧閘極絕緣膜
1006‧‧‧閘極電極
1007‧‧‧閘極電極
1008‧‧‧閘極電極
1020‧‧‧第一層間絕緣膜
1021‧‧‧第二層間絕緣膜
1022‧‧‧電極
1024W‧‧‧發光元件的第一電極
1024R‧‧‧發光元件的第一電極
1024G‧‧‧發光元件的第一電極
1024B‧‧‧發光元件的第一電極
1025‧‧‧分隔壁
1028‧‧‧EL層
1029‧‧‧發光元件的第二電極
1031‧‧‧密封基板
1032‧‧‧密封材料
1033‧‧‧透明基材
1034R‧‧‧紅色著色層
1034G‧‧‧綠色著色層
1034B‧‧‧藍色著色層
1035‧‧‧黑色層(黑矩陣)
1036‧‧‧覆蓋層
1037‧‧‧第三層間絕緣膜
1040‧‧‧像素部
1041‧‧‧驅動電路部
1042‧‧‧周邊部
1044W‧‧‧白色發光區域
1044R‧‧‧紅色發光區域
1044B‧‧‧藍色發光區域
1044G‧‧‧綠色發光區域
2001‧‧‧外殼
2002‧‧‧光源
3001‧‧‧照明設備
3002‧‧‧顯示裝置
5000‧‧‧顯示
5001‧‧‧顯示
5002‧‧‧顯示
5003‧‧‧顯示
5004‧‧‧顯示
5005‧‧‧顯示
7101‧‧‧外殼
7103‧‧‧顯示部
7105‧‧‧支架
7107‧‧‧顯示部
7109‧‧‧操作鍵
7110‧‧‧遙控器
7201‧‧‧主體
7202‧‧‧外殼
7203‧‧‧顯示部
7204‧‧‧鍵盤
7205‧‧‧外部連接埠
7206‧‧‧指向裝置
7210‧‧‧第二顯示部
7301‧‧‧外殼
7302‧‧‧外殼
7303‧‧‧連接部分
7304‧‧‧顯示部
7305‧‧‧顯示部
7306‧‧‧揚聲器部分
7307‧‧‧儲存介質插入部分
7308‧‧‧LED燈
7309‧‧‧操作鍵
7310‧‧‧連接端子
7311‧‧‧感測器
7400‧‧‧行動電話機
7401‧‧‧外殼
7402‧‧‧顯示部
7403‧‧‧操作按鈕
7404‧‧‧外部連接埠
7405‧‧‧揚聲器
7406‧‧‧麥克風
9033‧‧‧卡子
9034‧‧‧開關
9035‧‧‧電源開關
9036‧‧‧開關
9038‧‧‧操作開關
9630‧‧‧外殼
9631‧‧‧顯示部
9631a‧‧‧顯示部
9631b‧‧‧顯示部
9632a‧‧‧觸摸屏區域
9632b‧‧‧觸摸屏區域
9633‧‧‧太陽能電池
9634‧‧‧充放電控制電路
9635‧‧‧電池
9636‧‧‧DCDC轉換器
9637‧‧‧操作鍵
9638‧‧‧轉換器
9639‧‧‧按鈕
在圖示中:圖1A至圖1C是發光元件的示意圖;圖2A和圖2B是示出發光層的能量轉移的圖;圖3A和圖3B是說明福斯特轉移的圖; 圖4A和圖4B是主動矩陣型發光裝置的示意圖;圖5A和圖5B是被動矩陣型發光裝置的示意圖;圖6A和圖6B是主動矩陣型發光裝置的示意圖;圖7是主動矩陣型發光裝置的示意圖;圖8A和圖8B是照明設備的示意圖;圖9A至圖9D是示出電子裝置的圖;圖10是示出電子裝置的圖;圖11是示出照明設備的圖;圖12是示出照明設備及顯示裝置的圖;圖13是示出車載顯示裝置及照明設備的圖;圖14A至圖14C是示出電子裝置的圖;圖15是示出發光元件1的亮度-電流效率特性的圖;圖16是示出發光元件1的電壓-亮度特性的圖;圖17是示出發光元件1的亮度-外部量子效率特性的圖;圖18是示出發光元件1的亮度-功率效率特性的圖;圖19是示出發光元件1的發射光譜的圖;圖20A和圖20B是說明發光元件1的福斯特轉移的圖;圖21A和圖21B是說明發光元件1的福斯特轉移的圖;圖22是說明發光元件1的福斯特轉移的圖;圖23是示出2mDBTPDBq-II、PCBA1BP以及它們的混合膜的PL光譜的圖; 圖24是示出發光元件2的亮度-電流效率特性的圖;圖25是示出發光元件2的電壓-亮度特性的圖;圖26是示出發光元件2的亮度-外部量子效率特性的圖;圖27是示出發光元件2的亮度-功率效率特性的圖;圖28是示出發光元件2的發射光譜的圖;圖29是示出發光元件2的可靠性測試的結果的圖;圖30是示出發光元件3的亮度-電流效率特性的圖;圖31是示出發光元件3的電壓-亮度特性的圖;圖32是示出發光元件3的亮度-外部量子效率特性的圖;圖33是示出發光元件3的亮度-功率效率特性的圖;圖34是示出發光元件3的發射光譜的圖;圖35是示出發光元件4的亮度-電流效率特性的圖;圖36是示出發光元件4的電壓-亮度特性的圖;圖37是示出發光元件4的亮度-外部量子效率特性的圖;圖38是示出發光元件4的亮度-功率效率特性的圖;圖39是示出發光元件4的發射光譜的圖;圖40是示出發光元件5的亮度-電流效率特性的圖;圖41是示出發光元件5的電壓-亮度特性的圖;圖42是示出發光元件5的亮度-外部量子效率特性的圖;圖43是示出發光元件5的亮度-功率效率特性的圖; 圖44是示出發光元件5的發射光譜的圖;圖45A和45B是說明發光元件4的福斯特轉移的圖;圖46是說明發光元件4的福斯特轉移的圖;圖47A和47B是說明發光元件5的福斯特轉移的圖;圖48A和48B是說明發光元件5的福斯特轉移的圖;圖49是說明發光元件5的福斯特轉移的圖。本發明的選擇圖是圖2A和圖2B。
以下,參照圖式詳細地說明本發明的實施方式。但是,本發明不侷限於以下說明,所屬技術領域的普通技術人員可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的宗旨及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下所示的實施方式所記載的內容中。
實施方式1
首先,對本發明的一個方式的發光元件的工作原理進行說明。本發明的宗旨在於:藉由使用第一磷光化合物和呈現波長比該第一磷光化合物長的發光的第二磷光化合物,並使第一及第二磷光化合物高效地發光,來獲得高效 的多色發光元件。
作為獲得使用磷光化合物的多色發光元件的一般方法,可以舉出以適當的比率將不同發光顏色的多個磷光化合物分散在某個主體材料中的方法。然而,在採用這種方法的情況下,由於呈現最長波長的發光的磷光化合物易發光,所以非常難以設計‧控制用來獲得多色發光的元件結構(尤其是,主體材料中的各磷光化合物的濃度)。
作為獲得多色發光元件的另一個方法,可以舉出將不同發光顏色的發光元件串聯層疊的所謂串置結構(tandem structure)。例如,藉由將藍色發光元件、綠色發光元件、紅色發光元件的三個發光元件串聯層疊使其同時發光,可以容易獲得多色光(在此情況下,白色光)。作為元件結構,將藍色、綠色、紅色的各元件分別最適化即可,因此其設計‧控制較容易。然而,由於層疊三個元件,所以層數增大,製造變複雜。另外,當各元件的連接部(所謂的中間層)的電接觸產生問題時,有可能導致驅動電壓的增大,即電力浪費。
另一方面,本發明的一個方式的發光元件是一種發光元件,該發光元件在一對電極之間層疊有:在第一主體材料中分散有第一磷光化合物的第一發光層;以及在第二主體材料中分散有呈現波長比所述第一磷光化合物長的發光的第二磷光化合物的第二發光層。此時,與串置結構不同,第一發光層及第二發光層也可以以彼此接觸的方式設置。
圖1A至圖1C示意性地示出上述本發明的一個方式的發光元件的元件結構。圖1C記載有第一電極101、第二電極102、EL層103。EL層103至少設置有發光層113,且也可以適當地設置其他層。在圖1C中,作為一個例子示出設置有電洞注入層111、電洞傳輸層112、電子傳輸層114及電子注入層115的結構。另外,第一電極101用作陽極,第二電極102用作陰極。
另外,圖1A及圖1B是將該發光元件中的發光層113放大而表示的圖。圖1A及圖1B示出第一發光層113a、第二發光層113b、層疊有該兩層的發光層113、第一磷光化合物113Da、第二磷光化合物113Db、第一主體材料113Ha、以及第二主體材料113Hb。另外,圖1B是第一發光層113a還包含第一有機化合物113A時的模式圖。不管是上述哪一種情況,由於各磷光化合物(第一及第二磷光化合物)分散在主體材料中,所以各磷光化合物被各主體材料彼此隔離。另外,第一主體材料與第二主體材料可以彼此相同或不同。另外,第一發光層113a和第二發光層113b的任一個可以位於陽極一側或陰極一側。
在此情況下,在各磷光化合物之間,電子交換相互作用(所謂的德克斯特(Dexter)機制)所引起的能量轉移被抑制。換言之,可以防止如下現象,即在第一磷光化合物113Da被激發了之後,該激發能量由德克斯特機制轉移到第二磷光化合物113Db的現象。因此,可以抑制呈現最長波長的發光的第二磷光化合物113Db主要發光的現象。 另外,由於當在第二發光層113b中直接生成激子時第二磷光化合物113Db主要發光,所以載流子的再結合區域較佳為在第一發光層113a內(即,以第一磷光化合物113Da為主進行激發)。
但是若完全抑制從第一磷光化合物113Da的能量轉移,則不能獲得第二磷光化合物113Db的發光。因此,在本發明的一個方式中,以使第一磷光化合物113Da的激發能量部分地轉移到第二磷光化合物113Db的方式進行元件設計。藉由利用偶極-偶極相互作用(福斯特(Förster)機制),可以實現上述被隔離了的分子間的能量轉移。
在此,將說明福斯特機制。以下,將提供激發能量的分子記載為能量施體,並且將接受激發能量的分子記載為能量受體。換言之,在本發明的一個方式中,能量施體、能量受體都是磷光化合物,並被主體材料彼此隔離。
福斯特機制在能量轉移中不需要分子間的直接接觸。 藉由能量施體和能量受體間的偶極振盪的共振現象發生能量轉移。由於偶極振盪的共振現象,能量施體向能量受體供應能量,處於激發態的能量施體變為基態,且處於基態的能量受體變為激發態。算式(1)示出藉由福斯特機制的能量轉移的速度常數kF
在算式(1)中,ν表示振盪數,F(ν)表示能量施體的被標準化了的發射光譜(在從單重激發態的能量轉移的 情況下是螢光光譜,且在從三重激發態的能量轉移的情況下是磷光光譜),ε(ν)表示能量受體的莫耳吸光係數,N表示阿伏伽德羅數,n表示介質的折射率,R表示能量施體和能量受體的分子間距離,τ表示所測量的激發態的壽命(螢光壽命或磷光壽命),c表示光速,Φ表示發光量子產率(在從單重激發態的能量轉移的情況下是螢光量子產率,且在從三重激發態的能量轉移的情況下是磷光量子產率),K2是表示能量施體和能量受體的躍遷偶極矩的配向的係數(0至4)。此外,在無規配向中K2=2/3。
根據算式(1)可知藉由福斯特機制的能量轉移(福斯特轉移)的條件是1.不使能量施體與能量受體離得太遠(與距離R有關),2.使能量施體發光(與發光量子產率Φ有關),3.能量施體的發光光譜與能量受體的吸收光譜具有重疊部分(與積分項有關)。
在此,如圖1A至圖1C所說明,由於各磷光化合物(第一及第二磷光化合物)分散在各主體材料中,且各磷光化合物被各主體材料彼此隔離,所以距離R至少具有一分子以上(1nm以上)的距離。因此,不會由於第一磷光化合物產生的所有激發能量藉由福斯特機制轉移到第二磷光化合物。另一方面,若R是10nm至20nm左右,則可以進行福斯特轉移。為了在第一磷光化合物與第二磷光化合物之間至少確保一分子以上的距離R,而較佳為將在主體材料中分散的各磷光化合物的體積設定為一定體積以下。對應此的發光層內的各磷光化合物濃度為10wt%以 下。由於磷光化合物濃度過低也難以得到良好的特性,所以在本實施方式中磷光化合物濃度較佳為0.1wt%以上且10wt%以下。尤其是,第一磷光化合物較佳為以0.1wt%以上且5wt%以下的濃度包含在第一發光層113a中。
圖2A和圖2B示出本發明的一個方式的如下發光元件中的各磷光化合物間的福斯特轉移的示意圖,該發光元件使用:第一磷光化合物113Da;以及呈現波長比所述第一磷光化合物長的發光的第二磷光化合物113Db。圖2A和圖2B示出在電極10與電極11之間層疊有第一發光層113a和第二發光層113b的結構。另外,電極10和電極11中的任一方用作陽極,而另一方用作陰極。如圖2A所示,首先由於第一磷光化合物113Da產生的單重激發態(Sa)藉由系間交差被轉換為三重激發態(Ta)。換言之,第一發光層113a中的激子基本上都成為Ta
接著,該Ta狀態的激子的能量的一部分就那樣被轉換為發光,但是藉由利用福斯特機制可以使其一部分轉移到第二磷光化合物113Db的三重激發態(Tb)。這是因為第一磷光化合物113Da具有發光性(磷光量子產率Φ高)且第二磷光化合物113Db具有相當於從單重激發態到三重激發態的電子遷移的直接吸收(具有三重激發態的吸收光譜)的緣故。當滿足上述條件時,可以實現從Ta到Tb的三重態-三重態福斯特轉移。
另外,由於在很多情況下第二磷光化合物113Db的單重激發態(Sb)的能量比第一磷光化合物113Da的三重激 發態(Ta)的能量高,所以在很多情況下不太有助於上述能量轉移。因此,在此省略其說明。當然,在第二磷光化合物113Db的單重激發態(Sb)的能量比第一磷光化合物113Da的三重激發態(Ta)的能量低的情況下,與上述同樣,可能產生能量轉移。在此情況下,轉移到第二磷光化合物113Db的單重激發態(Sb)的能量藉由系間交差轉移到第二磷光化合物113Db的三重激發態(Tb),這樣有助於發光。
另外,為了設計為使上述福斯特轉移高效地產生在作為摻雜劑的磷光化合物之間且不使能量轉移到主體材料,較佳為不使第一主體材料及第二主體材料在第一磷光化合物113Da的發光區域中具有吸收光譜。像這樣,藉由不使主體材料(具體地,第二主體材料)介於中間而在摻雜劑之間直接進行能量轉移,可以抑制產生多餘的能量轉移的路徑,可以實現高發光效率,因此這是較佳的結構。
另外,第一主體材料較佳為具有比第一磷光化合物高的三重激發態能,以便不使第一磷光化合物淬滅。
如上所述,本發明的一個方式的基本思想是採用如下元件結構:首先使用主體材料及疊層結構使第一磷光化合物與第二磷光化合物彼此隔離,且以呈現最短波長的發光的第一磷光化合物為主進行激發。在這種元件結構中,只要在一定程度的距離以內(20nm以內)就部分地產生福斯特型能量轉移,所以第一磷光化合物的激發能量部分地轉移到第二磷光化合物,從而可以從第一及第二磷光化合 物分別獲得發光。
但是,在此,在本發明的一個方式中更重要的是考慮到上述能量轉移選擇材料及元件結構。
首先,為了產生福斯特轉移,需要使能量施體的發光量子產率Φ高,但是由於在本發明的一個方式中使用磷光化合物(具體地,磷光量子產率為0.1以上的發光化合物),所以不產生問題。重要的是,使算式(1)的積分項大,即順利地使能量施體的發光光譜F(ν)與能量受體的莫耳吸光係數ε(ν)重疊。
一般地認為:在能量受體的莫耳吸光係數ε(ν)大的波長區域中重疊能量施體的發光光譜F(ν)即可(換言之,使F(ν)ε(ν)的積大即可)。但是,在福斯特機制中,該思想不一定是真的。這是因為算式(1)的積分項與振盪數ν的四乘方成反比且存在波長依賴性的緣故。
為了便於理解,首先對算式(1)進行變形。當光的波長為λ時,滿足ν=c/λ,因此算式(1)可以被改寫為下述算式(2)。
就是說,可知波長λ越大,積分項越大。簡單地,可以認為越靠近長波長一側,越容易產生能量轉移。換言之,即使莫耳吸光係數ε(λ)大的波長區域與F(λ)重疊也不夠,需要使ε(λ)λ4大的區域與F(λ)重疊。
因此,為了提高從第一磷光化合物113Da的能量轉移 效率,作為本發明的一個方式的發光元件中的第二磷光化合物113Db,使用如下磷光化合物,即第一磷光化合物113Da的發光光譜的包括最大值的高峰與第二磷光化合物113Db的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰彼此重疊的磷光化合物。
注意,較佳的是,第二磷光化合物的由ε(λ)λ4表示的函數的位於最長波長一側的極大值的波長與第一磷光化合物的磷光發光光譜F(λ)重疊。並且,更佳的是,在第一磷光化合物113Da的發光光譜的包括上述最大值的高峰中的具有上述最大值的一半強度的波長範圍與第二磷光化合物的由ε(λ)λ4表示的函數的包括上述極大值的高峰中的具有上述極大值的一半強度的波長範圍之間有重疊部分,這是因為在這種狀態下這兩個光譜重疊的部分大的緣故。
包括上述結構的發光元件可以實現發光效率高且能夠從各磷光化合物平衡地得到發光的發光元件。
為了便於理解上述磷光化合物的結構,以下參照具體例子進行說明。在此,以如下情況為例子進行說明:作為第一磷光化合物113Da使用下述化合物(1)(雙[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III)(簡稱:Ir(tBuppm)2(acac))),作為呈現波長比第一磷光化合物113Da長的發光的第二磷光化合物113Db使用下述化合物(2)(雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷)銥(III)(簡稱:Ir(tppr)2(dpm)))。
圖3A示出作為第二磷光化合物的化合物(2)的莫耳吸光係數ε(λ)和ε(λ)λ4。越靠近長波長一側,莫耳吸光係數ε(λ)越降低,但是ε(λ)λ4在550nm附近(相當於化合物(2)的三重態MLCT吸收帶)具有極大值。從該例子可知,由於λ4的項的影響,第二磷光化合物的ε(λ)λ4在位於最長波長一側的吸收帶(三重態MLCT吸收帶)具有極大值。
另一方面,圖3B示出化合物(1)的光致發光(PL)光譜F(λ)和化合物(2)的ε(λ)λ4。化合物(1)是第一磷光化合物,並呈現在545nm附近具有發光峰值的綠色發光。該第一磷光化合物的PL光譜F(λ)在第二磷光化合物的ε(λ)λ4的極大值附近具有與ε(λ)λ4的大重疊,藉由福斯特機制產生從第一磷光化合物到第二磷光化合物的能量轉移。在此情況下,由於極大值對應於三重態MLCT吸收帶,所以這是三重態-三重態的福斯特型能量轉移(圖2A和圖2B中的Ta-Tb能量轉移)。在此情況下,當第一磷光化合物的PL光譜F(λ)的發光峰值波長與第二磷 光化合物的ε(λ)λ4的極大值的波長的差異是0.2eV以下時,由於高效地產生能量轉移,所以是較佳的。化合物(1)的PL光譜F(λ)的發光峰值波長是546nm,化合物(2)的ε(λ)λ4的極大值的波長是543nm,它們的差異是3nm,並相當於0.01eV。由此可知,非常高效地產生化合物(1)與化合物(2)之間的能量轉移。
據此,第二磷光化合物較佳為在吸收光譜的最長波長一側具有相當於從單重基態到三重激發態的電子遷移的直接吸收(例如,三重態MLCT吸收)。藉由採用這種結構,高效地產生圖2A和圖2B所示的三重態-三重態的能量轉移。
另外,為了獲得上述再結合區域,在第一發光層113a位於陽極一側的情況下,較佳第二發光層113b至少具有電子傳輸性,且第一發光層113a及第二發光層113b的兩者都可以具有電子傳輸性,並且在第一發光層113a位於陰極一側的情況下,較佳第二發光層113b至少具有電洞傳輸性,且第一發光層113a及第二發光層113b的兩者都可以具有電洞傳輸性。
在此,在第一發光層113a中,第一主體材料113Ha的光致發光(PL)光譜F(λ)的包括極大值的高峰與第一磷光化合物的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰的重疊較佳大。
但是,一般而言,難以使主體材料的光致發光(PL)光譜F(λ)的包括極大值的高峰與客體材料(第一磷光化合 物113Da)的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰重疊。這是因為如下緣故:一般而言,主體材料的光致發光(PL)是螢光發光,螢光發光是從比磷光發光高的能階進行的發光,當主體材料的螢光光譜位於與客體材料的最長波長一側的吸收光譜(客體材料的三重激發態)接近的波長時,主體材料的三重態能階小於客體材料的三重態能階的可能性高。當主體材料的三重態能階小於客體材料的三重態能階時,客體材料的三重態能量轉移到主體材料而導致發光效率的下降。
於是,在本實施方式中,第一發光層113a還包括第一有機化合物113A,並且第一主體材料113Ha和第一有機化合物113A較佳是形成激態複合物(exciplex)113Ec的組合(圖1B、圖2B)。在圖2B中,元件符號10及11都是電極,電極10和電極11中的任一方用作陽極而另一方用作陰極。注意,在圖2A和圖2B中,激態複合物113Ec的單重激發態由Se表示而三重激發態由Te表示,第一磷光化合物113Da的單重激發態由Sa表示而三重激發態由Ta表示,並且第二磷光化合物113Db的單重激發態由Sb表示而三重激發態由Tb表示。
在此情況下,當在第一發光層113a中載流子(電子及電洞)再結合時,第一有機化合物113A與第一主體材料113Ha從電子和電洞的再結合獲得能量而形成激態複合物113Ec。從激態複合物113Ec發射的螢光發光在比第一有機化合物113A單體及第一主體材料113Ha單體的螢光 光譜長波長一側具有光譜,並且激態複合物113Ec具有單重激發態Se的能量與三重激發態Te的能量非常接近的特性。因此,藉由使從激態複合物113Ec的單重激發態的發光的PL光譜F(λ)的包括極大值的高峰與客體材料(第一磷光化合物113Da)的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰(相當於客體材料的三重激發態Ta的吸收光譜)重疊,可以盡可能地提高從Se到Ta的能量轉移和從Te到Ta的能量轉移的兩者。在此情況下,當激態複合物113Ec的發光峰值波長與客體材料(第一磷光化合物113Da)的ε(λ)λ4的極大值的波長之間的差異是0.2eV以下時,高效率地產生能量轉移,因此是較佳的。另外,較佳為將第一有機化合物113A及第一主體材料113Ha的三重激發態能階保持為比第一磷光化合物113Da的三重激發態能階高。
藉由上述方式轉移到第一磷光化合物113Da的能量如上所述那樣其一部分轉移到第二磷光化合物113Db,由此第一磷光化合物113Da及第二磷光化合物113Db都高效率地發光。
注意,從激態複合物113Ec的三重激發態(Te)到第一磷光化合物113Da的能量轉移藉由德克斯特機制高效地產生。從單重激發態(Se)的能量轉移藉由上述結構的德克斯特機制高效地產生,因此可以實現整體上高效的能量轉移。
作為第一有機化合物113A和第一主體材料113Ha的 組合,只要是產生激態複合物的組合即可,較佳為組合容易接受電子的化合物(電子俘獲化合物)和容易接受電洞的化合物(電洞俘獲化合物)。
作為容易接受電子的化合物,可以舉出:雙(10-羥基苯並[h]喹啉)鈹(II)(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯並噁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯並噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等的金屬錯合物;2-(4-聯苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、3-(4-聯苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(簡稱:TAZ)、1,3-雙[5-(對叔丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯並咪唑)(簡稱:TPBI)、2-[3-(二苯並噻吩-4-基)苯基]-1-苯基-1H-苯並咪唑(簡稱:mDBTBIm-II)等的具有多唑骨架的雜環化合物;2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯並噻吩-4-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mCzBPDBq)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯並噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)等的具有二嗪骨架的雜環化合物;以及3,5-雙[3-(9H-咔唑- 9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等的具有吡啶骨架的雜環化合物。其中,具有二嗪骨架的雜環化合物或具有吡啶骨架的雜環化合物具有良好可靠性,所以是較佳的。尤其是,具有二嗪骨架(嘧啶或吡嗪)骨架的雜環化合物具有高電子傳輸性,也有助於降低驅動電壓。
另外,作為容易接受電洞的化合物,可以舉出:4,4’-雙[N-(1-萘基)-N-苯基氨基]聯苯(簡稱:NPB)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基氨基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9-聯茀-2-胺(簡稱:PCBASF)等的具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)等的具有 咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯並噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯並噻吩(簡稱:DBTFLP-IV)等的具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯並呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯並呋喃(簡稱:mmDBFFLBi-II)等的具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物、具有咔唑骨架的化合物具有良好的可靠性和高電洞傳輸性並有助於降低驅動電壓,所以是較佳的。
第一有機化合物113A和第一主體材料113Ha不侷限於此,只要是能夠形成激態複合物的組合,激態複合物的光致發光(PL)光譜F(λ)的包括極大值的高峰與第一磷光化合物113Da的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰重疊,並且激態複合物的發光光譜的峰值位於比第一磷光化合物113Da的發光光譜的峰值長波長,即可。
注意,在利用容易接受電子的化合物和容易接受電洞的化合物分別構成第一有機化合物113A和第一主體材料113Ha的情況下,可以藉由調節兩者的混合比來控制載流子平衡。明確而言,較佳為滿足第一有機化合物113A:第一主體材料113Ha=1:9至9:1的範圍。
在本結構中,選擇形成如下那樣的激態複合物的第一有機化合物113A和第一主體材料113Ha,在該激態複合 物中,激態複合物的光致發光(PL)光譜F(λ)的包括極大值的高峰與第一磷光化合物的由ε(λ)λ4表示的函數的包括位於最長波長一側的極大值的高峰重疊。該高峰的重疊越大越好。
注意,較佳的是,第一磷光化合物的由ε(λ)λ4表示的函數的位於最長波長一側的極大值的波長與激態複合物的光致發光(PL)光譜F(λ)重疊。並且,更佳的是,在激態複合物的光致發光(PL)光譜F(λ)的包括上述最大值的高峰中的具有上述最大值的一半強度的波長範圍與第一磷光化合物的由ε(λ)λ4表示的函數的包括極大值的高峰中的具有上述極大值的一半強度的波長範圍之間有重疊部分,這是因為在這種狀態下這兩個光譜重疊的部分大的緣故。
在本實施方式中,可以從由第一主體材料113Ha和第一有機化合物113A構成的激態複合物到第一磷光化合物113Da高效地轉移能量,從而可以進一步提高能量轉移效率,並且可以實現外部量子效率高的發光元件。
實施方式2
在本實施方式中,以下將參照圖1A至圖1C說明實施方式1所說明的發光元件的詳細結構的例子。
本實施方式的發光元件在一對電極之間包括由多個層構成的EL層。在本實施方式中,發光元件由第一電極101、第二電極102、設置在第一電極101與第二電極102 之間的EL層103構成。注意,在本實施方式中,以下假設第一電極101用作陽極且第二電極102用作陰極而進行說明。就是說,當以使第一電極101的電位高於第二電極102的電位的方式對第一電極101和第二電極102施加電壓時,得到發光。
由於第一電極101用作陽極,所以較佳為使用功函數大(具體為4.0 eV以上)的金屬、合金、導電化合物、以及它們的混合物等形成。具體地,例如可以舉出氧化銦-氧化錫(ITO:銦錫氧化物)、包含矽或氧化矽的氧化銦-氧化錫、氧化銦-氧化鋅、包含氧化鎢及氧化鋅的氧化銦(IWZO)等。雖然通常藉由濺射法形成這些導電金屬氧化物膜,但是也可以應用溶膠-凝膠法等來製造。作為製造方法的例子,可以舉出如下方法:使用相對於氧化銦添加有1wt%至20wt%的氧化鋅的靶材藉由濺射法形成氧化銦-氧化鋅的方法。另外,可以使用相對於氧化銦添加有0.5wt%至5wt%的氧化鎢和0.1wt%至1wt%的氧化鋅的靶材藉由濺射法形成包含氧化鎢及氧化鋅的氧化銦(IWZO)。另外,可以舉出金(Au)、鉑(Pt)、鎳(Ni)、鎢(W)、鉻(Cr)、鉬(Mo)、鐵(Fe)、鈷(Co)、銅(Cu)、鈀(Pd)或金屬材料的氮化物(例如,氮化鈦)等。也可以使用石墨烯。另外,藉由將後述的複合材料用於EL層103中的接觸於第一電極101的層,可以選擇電極材料而與功函數無關。
EL層103的疊層結構只要具有實施方式1所示的發 光層113的結構就沒有特別的限制。例如,可以適當地組合電洞注入層、電洞傳輸層、發光層、電子傳輸層、電子注入層、載流子阻擋層、中間層等來構成EL層103的疊層結構。在本實施方式中,說明如下結構:EL層103包括在第一電極101上依次層疊的電洞注入層111、電洞傳輸層112、發光層113、電子傳輸層114、電子注入層115。以下,示出構成各層的具體材料。
電洞注入層111是包含電洞注入性高的物質的層。並且,可以使用鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等。另外,也可以使用酞菁類化合物如酞菁(簡稱:H2Pc)、銅酞菁(簡稱:CuPc)等;芳香胺化合物如4,4’-雙[N-(4-二苯基氨基苯基)-N-苯基氨基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)氨基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)等;或者高分子如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS)等來形成電洞注入層111。
另外,作為電洞注入層111,可以使用在電洞傳輸物質中含有受體物質的複合材料。注意,藉由使用在電洞傳輸物質中含有受體物質的複合材料,可以選擇形成電極的材料而不顧及電極的功函數。就是說,作為第一電極101,除了功函數大的材料以外,還可以使用功函數小的材料。作為受體物質,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4-TCNQ)、氯醌等。另外,可以舉出過渡金屬氧化物、以及屬於元素週期表中 的第4族至第8族的金屬的氧化物。具體地,較佳為使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸,因為其電子接受性高。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。
作為用於複合材料的電洞傳輸物質,可以使用各種有機化合物如芳香胺化合物、咔唑衍生物、芳烴、高分子化合物(低聚物、樹枝狀聚合物、聚合物等)等。作為用於複合材料的有機化合物,較佳為使用電洞傳輸性高的有機化合物。具體地,較佳為使用電洞遷移率為10-6cm2/Vs以上的物質。以下,具體地列舉可以用作複合材料中的電洞傳輸物質的有機化合物。
例如,作為芳香胺化合物,可以舉出N,N’-二(p-甲苯基)-N,N’-二苯基-p-亞苯基二胺(簡稱:DTDPPA)、4,4’-雙[N-(4-二苯基氨基苯基)-N-苯基氨基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)氨基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)、1,3,5-三[N-(4-二苯基氨基苯基)-N-苯基氨基]苯(簡稱:DPA3B)等。
作為可以用於複合材料的咔唑衍生物,可以具體地舉出3-[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(簡稱: PCzPCN1)等。
另外,作為可以用於複合材料的咔唑衍生物,還可以舉出4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、1,4-雙[4-(N-咔唑基)苯基]-2,3,5,6-四苯基苯等。
另外,作為可以用於複合材料的芳烴,例如可以舉出2-叔丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、2-叔丁基-9,10-二(1-萘基)蒽、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、2-叔丁基-9,10-雙(4-苯基苯基)蒽(簡稱:t-BuDBA)、9,10-二(2-萘基)蒽(簡稱:DNA)、9,10-二苯基蒽(簡稱:DPAnth)、2-叔丁基蒽(簡稱:t-BuAnth)、9,10-雙(4-甲基-1-萘基)蒽(簡稱:DMNA)、2-叔丁基-9,10-雙[2-(1-萘基)苯基]蒽、9,10-雙[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-聯蒽、10,10’-二苯基-9,9’-聯蒽、10,10’-雙(2-苯基苯基)-9,9’-聯蒽、10,10’-雙[(2,3,4,5,6-五苯基)苯基]-9,9’-聯蒽、蒽、稠四苯、紅螢烯、苝、2,5,8,11-四(叔丁基)苝等。除此之外,還可以使用稠五苯、蔻等。像這樣,更佳為使用具有1×10-6cm2/Vs以上的電洞遷移率的碳原子數為14至42的芳烴。
注意,可以用於複合材料的芳烴也可以具有乙烯基骨架。作為具有乙烯基的芳烴,例如可以舉出4,4’-雙(2,2- 二苯基乙烯基)聯苯(簡稱:DPVBi)、9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽(簡稱:DPVPA)等。
另外,也可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基氨基)苯基]苯基-N’-苯基氨基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
藉由形成電洞注入層,使電洞注入性變為良好,從而可以獲得驅動電壓小的發光元件。
電洞傳輸層112是包含電洞傳輸物質的層。作為電洞傳輸物質,例如可以使用芳香胺化合物等,諸如4,4’-雙[N-(1-萘基)-N-苯基氨基]聯苯(簡稱:NPB)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(N,N-二苯基氨基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基氨基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基氨基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)等。在此所述的物質具有高電洞傳輸性,電洞遷移率主要是10-6cm2/Vs以上的物質。 另外,也可以將作為上述複合材料中的電洞傳輸物質舉出的有機化合物用於電洞傳輸層112。另外,也可以使用諸如聚(N-乙烯基咔唑)(簡稱:PVK)或聚(4-乙烯基三苯胺)(簡稱:PVTPA)等的高分子化合物。另外,包含電洞 傳輸物質的層不限於單層,也可以為兩層以上的由上述物質構成的層的疊層。
發光層113是包含第一磷光化合物及第二磷光化合物的層。由於發光層113包括實施方式1所說明的結構,所以本實施方式中的發光元件可以實現發光效率良好的發光元件。作為發光層113的主要結構,參照實施方式1的記載。
在發光層113中能夠用作第一磷光化合物及第二磷光化合物的材料只要是處於實施方式1所說明的關係的組合,就沒有特別的限制。作為第一磷光化合物及第二磷光化合物,例如可以舉出如下物質。
例如,可以舉出:三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κ N2]苯基-κ C}銥(III)(簡稱:Ir(mpptz-dmp)3)、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:Ir(Mptz)3)、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPrptz-3b)3)等的具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:Ir(Mptzl-mp)3)、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:Ir(Prptzl-Me)3)等的具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:Ir(iPrpmi)3)、三[3-(2,6-二甲基苯基)-7-甲基咪唑並[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱: Ir(dmpimpt-Me)3)等的具有咪唑骨架的有機金屬銥錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)唑啶甲酸酯(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’}銥(III)吡啶甲酸酯(簡稱:Ir(CF3ppy)2(pic))、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)乙醯丙酮(簡稱:FIracac)等的以具有拉電子基的苯基吡啶衍生物為配體的有機金屬銥錯合物。上述物質是發射藍色磷光的化合物,並且在440nm至520nm具有發光的峰值。其中,具有4H-三唑、1H-三唑、咪唑等的多唑基骨架的有機金屬銥錯合物具有高電洞俘獲性。因此,在將上述化合物用作本發明的一個方式的發光元件中的第一磷光化合物,第一發光層比第二發光層接近陰極一側,並且第二發光層具有電洞傳輸性(明確而言,第二主體材料是電洞傳輸材料)的情況下,可以容易將載流子的再結合區域控制在第一發光層內,所以是較佳的。另外,由於具有4H-三唑骨架的有機金屬銥錯合物具有優異的可靠性及發光效率,所以是特別較佳的。
另外,可以舉出:三(4-甲基-6-苯基嘧啶根)銥(III)(簡稱:Ir(mppm)3)、三(4-叔丁基-6-苯基嘧啶根)銥(III)(簡稱:Ir(tBuppm)3)、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶根)銥(III)(簡稱:Ir(mppm)2(acac))、(乙醯丙酮根)雙(6-叔丁基-4-苯基嘧啶根)銥(III)(簡稱:Ir(tBuppm)2(acac))、(乙醯 丙酮根)雙[6-(2-降冰片基)-4-苯基嘧啶根]銥(III)(簡稱:Ir(nbppm)2(acac))、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶根]銥(III)(簡稱:Ir(mpmppm)2(acac))、(乙醯丙酮根)雙(4,6-二苯基嘧啶根)銥(III)(簡稱:Ir(dppm)2(acac))等的具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪根)銥(III)(簡稱:Ir(mppr-Me)2(acac))、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪根)銥(III)(簡稱:Ir(mppr-iPr)2(acac))等的具有吡嗪骨架的有機金屬銥錯合物;三(2-苯基吡啶根-N,C2’)銥(III)(簡稱:Ir(ppy)3)、雙(2-苯基吡啶根-N,C2’)銥(III)乙醯丙酮(簡稱:Ir(ppy)2acac)、雙(苯並[h]喹啉)銥(III)乙醯丙酮(簡稱:Ir(bzq)2(acac))、三(苯並[h]喹啉)銥(Ⅲ)(簡稱:Ir(bzq)3)、三(2-苯基喹啉-N,C2’]銥(III)(簡稱:Ir(pq)3)、雙(2-苯基喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:Ir(pq)2(acac))等的具有吡啶骨架的有機金屬銥錯合物;以及三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:Tb(acac)3(Phen))等的稀土金屬錯合物。上述物質主要是發射綠色發光的化合物,並且在500nm至600nm具有發光的峰值。其中,具有嘧啶、吡嗪等的二嗪骨架的有機金屬銥錯合物具有低電洞俘獲性和高電子俘獲性。因此,在將上述化合物用作本發明的一個方式的發光元件中的第一磷光化合物,第一發光層比第二發光層接近陽極一側,並且第二發光層具有電子傳輸性(明確而言,第二主體材料是 電子傳輸材料)的情況下,可以容易將載流子的再結合區域控制在第一發光層內,所以是較佳的。另外,由於具有嘧啶骨架的有機金屬銥錯合物具有特別優異的可靠性及發光效率,所以是特別較佳的。
另外,可以舉出:雙[4,6-雙(3-甲基苯基)嘧啶基](二異丁醯甲橋)銥(III)(簡稱:Ir(5mdppm)2(dibm))、雙[4,6-雙(3-甲基苯基)嘧啶根)(二新戊醯基甲烷根)銥(III)(簡稱:Ir(5mdppm)2(dpm))、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:Ir(d1npm)2(dpm))等的具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(2,3,5-三苯基吡嗪根)銥(III)(簡稱:Ir(tppr)2(acac))、雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷根)銥(III)(簡稱:Ir(tppr)2(dpm))、(乙醯丙酮根)雙[2,3-雙(4-氟苯基)喹喔啉合]銥(III)(簡稱:Ir(Fdpq)2(acac))等的具有吡嗪骨架的有機金屬銥錯合物;三(1-苯基異喹啉-N,C2’)銥(III)(簡稱:Ir(piq)3)、雙(1-苯基異喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:Ir(piq)2acac)等的具有吡啶骨架的有機金屬銥錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等的鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:Eu(DBM)3(Phen))、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:Eu(TTA)3(Phen))等的稀土金屬錯合物。上述物質是發射紅色磷光的化合物,並且在600nm至700nm具有發光的峰值。其中,具有嘧啶、吡嗪等的二嗪骨架的有機金屬 銥錯合物具有低電洞俘獲性和高電子俘獲性。因此,在將具有二嗪骨架的有機金屬銥錯合物用作第二磷光化合物,第一發光層比第二發光層接近陰極一側,並且第二發光層具有電洞傳輸性(明確而言,第二主體材料是電洞傳輸材料)的情況下,可以容易將載流子的再結合區域控制在第一發光層內,所以是較佳的。另外,由於具有嘧啶骨架的有機金屬銥錯合物具有特別優異的可靠性及發光效率,所以是特別較佳的。另外,由於具有嘧啶骨架的有機金屬銥錯合物可以獲得色度良好的紅色發光,所以藉由將其用於白色發光元件,可以提高演色性。
另外,除了上述磷光化合物以外,還可以從已知的磷光發光材料中選擇處於實施方式1所示的關係的第一磷光材料及第二磷光材料而使用。
另外,也可以使用顯示熱活化的延遲螢光的材料、即熱活化型延遲螢光(Thermally Activated Delayed Fluorescence:TADF)材料代替磷光化合物(第一磷光化合物113a和第二磷光化合物113b)。在此,延遲螢光是指在保持與通常的螢光同樣的光譜的同時壽命顯著長的發光。其壽命為10-6秒以上,較佳為10-3秒以上。作為熱活化型延遲螢光材料,明確而言,可以舉出富勒烯及其衍生物、普魯黃等的吖啶衍生物以及伊紅等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為該含金屬卟啉,例如,也可以舉出原卟啉-氟化錫錯合物(簡 稱:SnF2(Proto IX))、中卟啉-氟化錫錯合物(簡稱:SnF2(Meso IX))、血卟啉-氟化錫錯合物(簡稱:SnF2(Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(簡稱:SnF2(Copro III-4Me)、八乙基卟啉-氟化錫錯合物(簡稱:SnF2(OEP))、初卟啉-氟化錫錯合物(簡稱:SnF2(Etio I))以及八乙基卟啉-氯化鉑錯合物(簡稱:PtCl2(OEP))等。 再者,還可以使用2-(聯苯-4-基)-4,6-雙(12-苯基吲哚[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)等的具有富π電子芳雜環和π缺乏型芳雜環的雜環化合物。另外,在富π電子芳雜環和π缺乏型芳雜環的雜環直接接合的物質中,富π電子芳雜環的施體的性質和π缺乏型芳雜環的受體的性質都變強而S1與T1之間的能量差變小,所以是特別較佳的。
另外,對能夠用作上述第一及第二主體材料的材料沒有特別的限制,選擇各種載流子傳輸材料並以能夠獲得圖1所示的元件結構的方式適當地組合該材料即可。
例如,作為具有電子傳輸性的主體材料,可以舉出:雙(10-羥基苯並[h]喹啉)鈹(II)(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯並噁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯並噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等的金屬錯合物;2-(4-聯苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、3-(4-聯苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(簡稱:TAZ)、 1,3-雙[5-(對叔丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯並咪唑)(簡稱:TPBI)、2-[3-(二苯並噻吩-4-基)苯基]-1-苯基-1H-苯並咪唑(簡稱:mDBTBIm-II)等的具有多唑骨架的雜環化合物;2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯並噻吩-4-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mCzBPDBq)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯並噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)等的具有二嗪骨架的雜環化合物;以及3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等的具有吡啶骨架的雜環化合物。其中,具有二嗪骨架的雜環化合物或具有吡啶骨架的雜環化合物具有良好的可靠性,所以是較佳的。尤其是,具有二嗪(嘧啶或吡嗪)骨架的雜環化合物具有高電子傳輸性,也有助於降低驅動電壓。
另外,作為具有電洞傳輸性的主體材料,可以舉出:4,4’-雙[N-(1-萘基)-N-苯基氨基]聯苯(簡稱:NPB)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基氨基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺 (簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9-聯茀-2-胺(簡稱:PCBASF)等的具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)等的具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯並噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯並噻吩(簡稱:DBTFLP-IV)等的具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯並呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯並呋喃(簡稱:mmDBFFLBi-II)等的具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物、具有咔唑骨架的化合物具有良好的可靠性和高電洞傳輸性並有助於降低驅動電壓,所以是較佳的。
另外,除了上述主體材料以外,也可以從已知的物質 中選擇主體材料而使用。作為主體材料,較佳為選擇具有比磷光化合物的三重態能階(基態與三重激發態的能量差)大的三重態能階的物質。另外,較佳上述主體材料在藍色區域不具有吸收光譜。明確而言,吸收光譜的吸收端較佳為在440nm以下。
具有如上所述的結構的發光層113可以藉由利用真空蒸鍍法的共蒸鍍、使用混合溶液的噴墨法、旋塗法、浸漬塗布法等來製造。
電子傳輸層114是包含電子傳輸物質的層。例如,電子傳輸層114是由如下具有喹啉骨架或苯並喹啉骨架的金屬錯合物等構成的層:三(8-羥基喹啉)鋁(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(簡稱:Almq3)、雙(10-羥基苯並[h]喹啉)鈹(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚鹽)鋁(簡稱:BAlq)等。除此之外,還可以使用雙[2-(2-羥基苯基)苯並噁唑]鋅(簡稱:Zn(BOX)2)、雙[2-(2-羥基苯基)苯並噻唑]鋅(簡稱:Zn(BTZ)2)等具有噁唑類、噻唑類配位體的金屬錯合物等。再者,除了金屬錯合物之外,還可以使用2-(4-聯苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、1,3-雙[5-(p-叔丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、3-(4-聯苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(簡稱:TAZ)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)等。這裏所述的物質具有高電子傳輸性,並是主要具有10-6cm2/Vs以上的電 子遷移率的物質。注意,也可以將上述具有電子傳輸性的主體材料用於電子傳輸層114。
另外,電子傳輸層114可以是單層,也可以是由上述物質構成的層的兩層以上的疊層。
另外,也可以在電子傳輸層和發光層之間設置控制電子載流子的移動的層。這是對如上所述的電子傳輸性高的材料添加了少量的電子捕捉性高的物質而成的層,並且藉由抑制電子載流子的移動,可以調節載流子平衡。這種結構對抑制由於電子穿過發光層而發生的問題(例如,元件的使用壽命的降低)發揮很大的效果。
另外,也可以在電子傳輸層114和第二電極102之間以接觸於第二電極102的方式設置電子注入層115。作為電子注入層115,可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)等的鹼金屬、鹼土金屬、或它們的化合物。例如,可以使用將鹼金屬、鹼土金屬或它們的化合物包含在由具有電子傳輸性的物質構成的層中的層。藉由作為電子注入層115使用在由具有電子傳輸性的物質構成的層中包含鹼金屬或鹼土金屬的層,可以從第二電極102有效地注入電子,因此是更較佳的。
作為形成第二電極102的物質,可以使用功函數小(具體為3.8 eV以下)的金屬、合金、導電化合物以及它們的混合物等。作為這種陰極材料的具體例子,可以舉出鋰(Li)或銫(Cs)等鹼金屬、鎂(Mg)、鈣(Ca)或鍶(Sr)等的屬於元素週期表中的第1族或第2族的元 素、包含它們的合金(MgAg、AlLi)、銪(Eu)、鐿(Yb)等稀土金屬、以及包含它們的合金等。然而,藉由在第二電極102和電子傳輸層之間設置電子注入層,可以不顧及功函率的大小而將各種導電材料諸如Al、Ag、ITO、包含矽或氧化矽的氧化銦-氧化錫等用作第二電極102。可以藉由濺射法、噴墨法、旋塗法等進行這些導電材料的成膜。
另外,作為EL層103的形成方法,不論乾處理或濕處理,都可以使用各種方法。例如,也可以使用真空蒸鍍法、噴墨法或旋塗法等。另外,也可以根據各電極或各層使用不同的成膜方法。
電極既可以藉由利用溶膠-凝膠法等濕處理形成,又可以藉由利用金屬材料的膏劑的濕處理形成。另外,也可以藉由濺射法、真空蒸鍍法等乾處理形成電極。
在包括上述結構的發光元件中,電流因產生在第一電極101與第二電極102之間的電位差而流過,並且電洞與電子在為包含發光性高的物質的層的發光層113中再結合,以進行發光。換句話說,發光區域形成在發光層113中。
光經過第一電極101和第二電極102中的任一者或兩者被取出到外部。因此,第一電極101和第二電極102中的任一者或兩者由具有透光性的電極構成。當只有第一電極101具有透光性時,光經過第一電極101被取出。另外,當只有第二電極102具有透光性時,光經過第二電極 102被取出。當第一電極101和第二電極102都具有透光性時,光經過第一電極101及第二電極102被取出。
注意,設置在第一電極101與第二電極102之間的層的結構不侷限於上述結構。但是,較佳為採用在離第一電極101及第二電極102遠的部分設置電洞與電子再結合的發光區域的結構,以便抑制由於發光區域與用於電極或載流子注入層的金屬接近而發生的淬滅。
另外,為了抑制從在發光層中產生的激子的能量轉移,接觸於發光層113的電洞傳輸層或電子傳輸層,尤其是接觸於發光層113中的離發光區域近的一側的載流子傳輸層較佳為使用如下物質構成:該物質具有比構成發光層的發光物質或者包含在發光層中的發光中心物質所具有的帶隙大的帶隙。
本實施方式中的發光元件可以在由玻璃、塑膠等構成的基板上製造。作為在基板上製造發光元件的順序,既可從第一電極101一側依次層疊又可從第二電極102一側依次層疊。發光裝置既可以在一個基板上形成有一個發光元件,又可以在一個基板上形成有多個發光元件。藉由在一個基板上製造多個這種發光元件,可以製造元件被分割了的照明設備或被動矩陣型發光裝置。另外,也可以在由玻璃、塑膠等構成的基板上例如形成薄膜電晶體(TFT),並且在與TFT電連接的電極上製造發光元件。由此,可以製造藉由TFT控制發光元件的驅動的主動矩陣型發光裝置。注意,對TFT的結構沒有特別的限制。TFT可以為 交錯型或反交錯型。另外,對用於TFT的半導體的結晶性也沒有特別的限制,而可以使用非晶半導體或結晶半導體。另外,形成在TFT基板中的驅動電路既可以由N型及P型TFT構成,又可以只由N型和P型TFT中的任一方構成。
本實施方式可以與其他實施方式適當地組合。
實施方式3
在本實施方式中,將說明使用實施方式1及實施方式2所記載的發光元件製造的發光裝置。
在本實施方式中,參照圖4A和圖4B對使用實施方式1及實施方式2所記載的發光元件製造的發光裝置進行說明。注意,圖4A是示出發光裝置的俯視圖,並且圖4B是沿圖4A中的線A-B及線C-D切斷的剖面圖。該發光裝置作為用來控制發光元件的發光的單元包括由虛線表示的驅動電路部(源極線驅動電路)601、像素部602、驅動電路部(閘極線驅動電路)603。另外,元件符號604是密封基板,元件符號625是乾燥劑,元件符號605是密封材料,由密封材料605圍繞的內側是空間607。
注意,引導佈線608是用來傳送輸入到源極線驅動電路601及閘極線驅動電路603的信號的佈線,並且從用作外部輸入端子的FPC(軟性印刷電路)609接收視頻信號、時脈信號、起始信號、重設信號等。注意,雖然在此只圖示出FPC,但是該FPC還可以安裝有印刷線路板 (PWB)。本說明書中的發光裝置不僅包括發光裝置主體,而且還包括安裝有FPC或PWB的發光裝置。
下面,參照圖4B說明剖面結構。雖然在元件基板610上形成有驅動電路部及像素部,但是在此示出作為驅動電路部的源極線驅動電路601和像素部602中的一個像素。
作為源極線驅動電路601,形成組合n通道型TFT 623和p通道型TFT 624的CMOS電路。另外,驅動電路也可以利用各種CMOS電路、PMOS電路或NMOS電路形成。另外,雖然在本實施方式中示出在基板上形成有驅動電路的驅動器一體型,但是不需要必須採用該結構,驅動電路也可以形成在外部,而不形成在基板上。
另外,像素部602由多個像素形成,該多個像素分別包括開關TFT 611、電流控制TFT 612以及與該電流控制TFT 612的汲極電連接的第一電極613。注意,以覆蓋第一電極613的端部的方式形成有絕緣物614。在此,使用正型感光丙烯酸樹脂膜形成絕緣物614。
另外,為了得到良好的覆蓋性,在絕緣物614的上端部或下端部形成具有曲率的曲面。例如,在使用正型感光丙烯酸樹脂作為絕緣物614的材料的情況下,較佳為只使絕緣物614的上端部包括具有曲率半徑(0.2μm至3μm)的曲面。另外,作為絕緣物614,可以使用負型感光樹脂或者正型感光樹脂。
在第一電極613上形成有EL層616及第二電極 617。在此,較佳為使用具有功函數大的材料作為用於用作陽極的第一電極613的材料。例如,除了可以使用諸如ITO膜、包含矽的銦錫氧化物膜、包含2wt.%至20wt.%的氧化鋅的氧化銦膜、氮化鈦膜、鉻膜、鎢膜、Zn膜、Pt膜等的單層膜以外,還可以使用由氮化鈦膜和以鋁為主要成分的膜構成的疊層膜、以及由氮化鈦膜、以鋁為主要成分的膜、和氮化鈦膜構成的三層結構膜等。注意,當採用疊層結構時,作為佈線的電阻也低,可以得到良好的歐姆接觸,還可以用作陽極。
另外,EL層616藉由使用蒸鍍遮罩的蒸鍍法、噴墨法、旋轉塗敷法等各種方法形成。EL層616包括實施方式1及實施方式2所說明的結構。另外,作為構成EL層616的其他材料,也可以使用低分子化合物、或者高分子化合物(包含低聚物、樹枝狀聚合物)。
另外,作為用於形成在EL層616上並用作陰極的第二電極617的材料,較佳為使用具有功函數小的材料(Al、Mg、Li、Ca、或它們的合金及化合物、MgAg、MgIn、AlLi等)。注意,當使產生在EL層616中的光透過第二電極617時,較佳為使用由膜厚度減薄了的金屬薄膜和透明導電膜(ITO、包含2wt.%至20wt.%的氧化鋅的氧化銦、包含矽的銦錫氧化物、氧化鋅(ZnO)等)構成的疊層結構作為第二電極617。
發光元件由第一電極613、EL層616、第二電極617形成。該發光元件是實施方式1及實施方式2所記載的發 光元件。再者,像素部形成有多個發光元件,並且本實施方式的發光裝置也可以包括實施方式1及實施方式2所記載的發光元件和包括其他結構的發光元件的兩者。
另外,藉由使用密封材料605將密封基板604貼合到元件基板610,形成如下結構,即發光元件618安裝在由元件基板610、密封基板604以及密封材料605圍繞的空間607中。注意,空間607中填充有填料,作為該填料,除了使用惰性氣體(氮或氬等)以外,還使用密封材料605。藉由在密封基板中形成凹部且在其上設置乾燥劑625,可以抑制水分所導致的劣化,所以是較佳的。
注意,較佳為使用環氧類樹脂或玻璃粉作為密封材料605。另外,這些材料較佳是盡可能地不使水或氧透過的材料。另外,作為用於密封基板604的材料,除了可以使用玻璃基板或石英基板以外,還可以使用由FRP(玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯、丙烯酸樹脂等構成的塑膠基板。
如上所述,可以得到使用實施方式1及實施方式2所記載的發光元件製造的發光裝置。
因為本實施方式的發光裝置使用實施方式1及實施方式2所記載的發光元件,所以可以得到具有優良特性的發光裝置。具體地,實施方式1及實施方式2所示的發光元件是發光效率良好的發光元件,因此可以實現降低了耗電量的發光裝置。另外,因為可以得到驅動電壓小的發光元件,所以可以得到驅動電壓小的發光裝置。
如上所述,雖然在本實施方式中說明了主動矩陣型發光裝置,然而,發光裝置也可以為被動矩陣型。圖5A和圖5B示出藉由使用本發明製造的被動矩陣型發光裝置。注意,圖5A是表示發光裝置的立體圖,並且圖5B是沿線X-Y切斷圖5A而獲得的剖面圖。在圖5A和圖5B中,在基板951上的電極952與電極956之間設置有EL層955。電極952的端部被絕緣層953覆蓋。在絕緣層953上設置有隔離層954。隔離層954的側壁具有如下傾斜,即越接近基板表面,兩個側壁之間的間隔越窄。換句話說,隔離層954的短邊方向的剖面是梯形,底邊(朝向與絕緣層953的面方向相同的方向並與絕緣層953接觸的邊)比上邊(朝向與絕緣層953的面方向相同的方向並與絕緣層953不接觸的邊)短。如此,藉由設置隔離層954,可以防止起因於靜電等的發光元件的故障。另外,在被動矩陣型發光裝置中,藉由包括以低驅動電壓工作的實施方式1及實施方式2所記載的發光元件,可以以低耗電量進行驅動。另外,藉由包括實施方式1及實施方式2所記載的發光元件,可以得到可靠性高的發光裝置。
另外,為了進行全彩色顯示,在來自發光元件的光透射到發光裝置的外部的光路上設置著色層或顏色轉換層,即可。圖6A和圖6B示出藉由設置著色層等實現全彩色化的發光裝置的例子。圖6A示出基板1001、基底絕緣膜1002、閘極絕緣膜1003、閘極電極1006、1007、1008、第一層間絕緣膜1020、第二層間絕緣膜1021、周邊部 1042、像素部1040、驅動電路部1041、發光元件的第一電極1024W、1024R、1024G、1024B、分隔壁1025、EL層1028、發光元件的第二電極1029、密封基板1031、密封材料1032等。另外,將著色層(紅色著色層1034R、綠色著色層1034G、藍色著色層1034B)設置在透明基材1033上。另外,還可以設置黑色層(黑矩陣)1035。對設置有著色層及黑色層的透明基材1033進行對準將其固定到基板1001。另外,著色層及黑色層被覆蓋層1036覆蓋。另外,本實施方式包括光不透過著色層而透射到外部的發光層及光透過各顏色的著色層而透射到外部的發光層,不透過著色層的光成為白色光且透過著色層的光成為紅色光、藍色光、綠色光,因此能夠以四個顏色的像素呈現影像。
另外,雖然以上說明了具有在形成有TFT的基板1001一側取出光的結構(底部發射型)的發光裝置,但是也可以採用具有在密封基板1031一側取出發光的結構(頂部發射型)的發光裝置。圖7示出頂部發射型發光裝置的剖面圖。在此情況下,基板1001可以使用不使光透過的基板。到製造連接TFT與發光元件的陽極的連接電極為止的製程與底部發射型發光裝置同樣地進行。然後,以覆蓋電極1022的方式形成第三層間絕緣膜1037。該第三層間絕緣膜1037也可以具有平坦化的功能。第三層間絕緣膜1037可以使用與第二層間絕緣膜相同的材料或其他已知的材料形成。
雖然在此發光元件的第一電極1024W、1024R、1024G、1024B是陽極,但是也可以是陰極。另外,在採用如圖7所示的頂部發射型發光裝置的情況下,第一電極較佳為反射電極。EL層1028的結構採用實施方式1及實施方式2所說明的結構,採用能夠獲得白色發光的元件結構。當使用兩層的EL層時,作為能夠獲得白色發光的結構,可以舉出如下結構等:從一方的EL層中的發光層能夠獲得藍色光,且從另一方的EL層中的發光層能夠獲得橙色光;以及從一方的EL層中的發光層能夠獲得藍色光,且從另一方的EL層中的發光層能夠獲得紅色光及綠色光。另外,當使用三層的EL層時,藉由採用從各發光層能夠獲得紅色發光、綠色發光、藍色發光的結構,可以獲得呈現白色發光的發光元件。另外,當採用實施方式1及實施方式2所示的結構時,獲得白色發光的結構當然不侷限於此。
著色層設置在來自發光元件的光透射到外部的光路上。在圖6A所示的底部發射型發光裝置中,可以將著色層1034R、1034G、1034B設置在透明基材1033上並固定到基板1001。另外,如圖6B所示,也可以在閘極絕緣膜1003和第一層間絕緣膜1020之間設置著色層。在採用圖7所示的頂部發射結構的情況下,也可以使用設置有著色層(紅色著色層1034R、綠色著色層1034G、藍色著色層1034B)的密封基板1031進行密封。密封基板1031也可以設置有位於像素與像素之間的黑色層(黑矩陣)1035。 著色層(紅色著色層1034R、綠色著色層1034G、藍色著色層1034B)、黑色層(黑矩陣)1035也可以被覆蓋層1036覆蓋。另外,作為密封基板1031,使用具有透光性的基板。
藉由對以如上所述的方式獲得的有機發光元件的一對電極之間施加電壓,能夠獲得白色發光區域1044W。另外,藉由組合著色層,能夠獲得紅色發光區域1044R、藍色發光區域1044B、綠色發光區域1044G。由於本實施方式的發光裝置使用實施方式1及實施方式2所述的發光元件,所以能夠實現耗電量小的發光裝置。
另外,雖然在此示出了以紅色、綠色、藍色、白色的四個顏色進行全彩色顯示的例子,但是並不侷限於此。也可以以紅色、綠色、藍色的三個顏色進行全彩色顯示。
此外,本實施方式可以與其他實施方式自由地組合。
實施方式4
在本實施方式中,參照圖8A和圖8B對將實施方式1及實施方式2所記載的發光元件用於照明設備的例子進行說明。圖8B是照明設備的俯視圖,圖8A是圖8B中的沿著線e-f切割的剖面圖。
在本實施方式的照明設備中,在用作支撐體的具有透光性的基板400上形成有第一電極401。第一電極401相當於實施方式3中的第一電極101。
在第一電極401上設置有輔助電極402。本實施方式 示出從第一電極401一側取出光的例子,所以第一電極401使用具有透光性的材料形成。輔助電極402是為了補償具有透光性的材料的導電率的不足而設置的,所以抑制第一電極401的高電阻引起電壓下降而使發光表面的亮度變得不均勻。輔助電極402使用導電率至少比第一電極401的材料高的材料形成,較佳為使用鋁等導電率高的材料形成。另外,較佳輔助電極402中的不與第一電極401接觸的表面被絕緣層覆蓋。藉由採用上述結構,可以抑制不能取出的來自輔助電極402的上部的光,結果可以降低無效電流,抑制電力效率的下降。另外,也可以在形成輔助電極402的同時形成用來對第二電極404供應電壓的焊盤412。
在第一電極401及輔助電極402上形成有EL層403。EL層403包括實施方式1及實施方式2所說明的結構。注意,作為它們的結構,參照各記載。另外,較佳當從平面看時,將EL層403形成為比第一電極401稍微大,因為這樣可以使EL層403具有抑制第一電極401與第二電極404之間的短路的作為絕緣層的功能。
以覆蓋EL層403的方式形成第二電極404。第二電極404相當於實施方式3中的第二電極102,包括相同的結構。在本實施方式中,從第一電極401一側取出光,所以第二電極404較佳為使用反射率高的材料形成。在本實施方式中,藉由使第二電極404與焊盤412連接,將電壓供應到第二電極404。
如上所述,本實施方式所示的照明設備具備包括第一電極401、EL層403以及第二電極404(以及輔助電極402)的發光元件。由於該發光元件是發光效率高的發光元件,所以本實施方式的照明設備可以為耗電量小的照明設備。另外,由於該發光元件是高可靠性發光元件,所以可以使本實施方式中的照明設備為可靠性高的照明設備。
藉由使用密封材料405、406固定密封基板407進行包括上述結構的發光元件的密封來製造照明設備。也可以僅使用密封材料405和406中的一方。另外,也可以在內側的密封材料406中混合乾燥劑,由此可以吸收水分而提高可靠性。
另外,藉由以延伸到密封材料405、406的外部的方式設置焊盤412、第一電極401以及輔助電極402的一部分,可以將其用作外部輸入端子。另外,也可以在其上設置安裝有轉換器等的IC晶片420等。
由於本實施方式所記載的照明設備在EL元件中包括實施方式1及實施方式2所記載的發光元件,所以可以實現耗電量小的照明設備。另外,可以實現驅動電壓低的照明設備。另外,可以實現可靠性高的照明設備。
實施方式5
在本實施方式中,對在其一部分包括實施方式1及實施方式2所記載的發光元件的電子裝置的例子進行說明。 實施方式1及實施方式2所記載的發光元件是發光效率良 好且耗電量被降低了的發光元件。其結果,本實施方式所記載的電子裝置可以實現包括耗電量被降低了的發光部的電子裝置。另外,因為實施方式1及實施方式2所記載的發光元件是驅動電壓小的發光元件,所以可以實現驅動電壓小的電子裝置。
作為採用上述發光元件的電子裝置,可以例如舉出電視機(也稱為電視機或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機等影像拍攝裝置、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、彈子機等大型遊戲機等。以下,示出這些電子裝置的具體例子。
圖9A示出電視機的一個例子。在電視機中,外殼7101中組裝有顯示部7103。另外,在此示出利用支架7105支撐外殼7101的結構。可以利用顯示部7103顯示影像,並且將實施方式1及實施方式2所記載的發光元件排列為矩陣狀構成顯示部7103。該發光元件可以成實現發光效率高的發光元件。另外,該發光元件可以實現低驅動電壓的發光元件。另外,該發光元件可以實現使用壽命長的發光元件。因此,包括由該發光元件構成的顯示部7103的電視機可以實現耗電量被降低了的電視機。另外,該電視機可以實現驅動電壓小的電視機。另外,該電視機可以實現可靠性高的電視機。
可以藉由利用外殼7101所具備的操作開關或另行提供的遙控器7110進行電視機的操作。藉由利用遙控器 7110所具備的操作鍵7109,可以控制頻道及音量,由此可以控制顯示在顯示部7103中的影像。另外,也可以在遙控器7110中設置用來顯示從該遙控器7110輸出的資訊的顯示部7107。
另外,電視機採用具備接收機、數據機等的結構。可以藉由接收機接收一般的電視廣播。再者,藉由數據機連接到有線或無線方式的通信網路,能夠進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通信。
圖9B1示出電腦,該電腦包括主體7201、外殼7202、顯示部7203、鍵盤7204、外部連接埠7205、指向裝置7206等。另外,該電腦藉由將與實施方式2或實施方式3所說明的發光元件相同的發光元件排列為矩陣狀並用於顯示部7203而製造。圖9B1中的電腦也可以為如圖9B2所示的方式。圖9B2所示的電腦設置有第二顯示部7210代替鍵盤7204及指向裝置7206。第二顯示部7210是觸摸屏,藉由利用手指或專用筆操作顯示在第二顯示部7210上的輸入用顯示,能夠進行輸入。另外,第二顯示部7210不僅能夠顯示輸入用顯示,而且可以顯示其他影像。另外,顯示部7203也可以是觸摸屏。因為兩個屏面藉由鉸鏈部連接,所以可以防止當收納或搬運時發生問題如屏面受傷、破壞等。該發光元件可以實現高發光效率的發光元件。因此,具備包括該發光元件的顯示部7203的電腦可以實現耗電量被降低了的電腦。
圖9C示出可攜式遊戲機,該可攜式遊戲機由外殼7301和外殼7302的兩個外殼構成,並且藉由連接部分7303可以開閉地連接。外殼7301中組裝有將實施方式1及實施方式2所說明的發光元件排列為矩陣狀而製造的顯示部7304,並且外殼7302中組裝有顯示部7305。另外,圖9C所示的可攜式遊戲機還具備揚聲器部分7306、儲存介質插入部分7307、LED燈7308、輸入單元(操作鍵7309、連接端子7310、感測器7311(包括測定如下因素的功能:力量、位移、位置、速度、加速度、角速度、轉動數、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、斜率、振動、氣味或紅外線)、麥克風7312)等。 當然,可攜式遊戲機的結構不侷限於上述結構,只要在顯示部7304和顯示部7305中的至少一者或兩者中使用將實施方式1及實施方式2所記載的發光元件排列為矩陣狀製造的顯示部即可,而可以採用適當地設置有其他附屬設備的結構。圖9C所示的可攜式遊戲機具有如下功能:讀出儲存在儲存介質中的程式或資料並將其顯示在顯示部上;以及藉由與其他可攜式遊戲機之間進行無線通信而實現資訊共用。另外,圖9C所示的可攜式遊戲機的功能不侷限於此,可以具有各種各樣的功能。由於在上述包括顯示部7304的可攜式遊戲機中,用於顯示部7304的發光元件具有良好的發光效率,從而該可攜式遊戲機可以實現耗電量被降低了的可攜式遊戲機。另外,因為可以以低驅動電壓 驅動用於顯示部7304的發光元件,所以該可攜式遊戲機可以實現低驅動電壓的可攜式遊戲機。另外,因為用於顯示部7304的發光元件為長使用壽命的發光元件,所以該可攜式遊戲機可以實現可靠性高的可攜式遊戲機。
圖9D示出行動電話機的一個例子。行動電話機具備組裝在外殼7401中的顯示部7402、操作按鈕7403、外部連接埠7404、揚聲器7405、麥克風7406等。另外,行動電話機7400包括將實施方式1及實施方式2所記載的發光元件排列為成矩陣狀而製造的顯示部7402。該發光元件可以實現發光效率高的發光元件。另外,該發光元件可以實現驅動電壓小的發光元件。另外,該發光元件可以實現使用壽命長的發光元件。因此,具備包括該發光元件的顯示部7402的行動電話機可以實現耗電量被降低了的行動電話機。另外,該行動電話機可以實現驅動電壓小的行動電話機。另外,該行動電話機可以實現可靠性高的行動電話機。
圖9D所示的行動電話機也可以具有用手指等觸摸顯示部7402來輸入資訊的結構。在此情況下,能夠用手指等觸摸顯示部7402來進行打電話或編寫電子郵件等的操作。
顯示部7402主要有三種屏面模式。第一是以影像的顯示為主的顯示模式,第二是以文字等的資訊的輸入為主的輸入模式,第三是混合顯示模式和輸入模式的兩個模式的顯示輸入模式。
例如,在打電話或編寫電子郵件的情況下,可以採用將顯示部7402主要用於輸入文字的文字輸入模式而輸入在屏面上顯示的文字。在此情況下,較佳為在顯示部7402的屏面的大多部分中顯示鍵盤或號碼按鈕。
另外,藉由在行動電話機內部設置具有陀螺儀和加速度感測器等檢測傾斜度的感測器的檢測裝置,可以判斷行動電話機的方向(縱或橫)而自動進行顯示部7402的屏面顯示的切換。
另外,藉由觸摸顯示部7402或對外殼7401的操作按鈕7403進行操作,來進行屏面模式的切換。或者,也可以根據顯示在顯示部7402上的影像的種類切換屏面模式。例如,當顯示在顯示部上的影像信號為動態影像的資料時,將屏面模式切換成顯示模式,而當該影像信號為文字資料時,將屏面模式切換成輸入模式。
另外,當在輸入模式下藉由檢測出顯示部7402的光感測器所檢測的信號而得知在一定期間內沒有顯示部7402的觸摸操作輸入時,也可以進行控制以將屏面模式從輸入模式切換成顯示模式。
也可以將顯示部7402用作影像感測器。例如,藉由用手掌或手指觸摸顯示部7402,來拍攝掌紋、指紋等,能夠進行個人識別。另外,藉由在顯示部中使用發射近紅外光的背光或發射近紅外光的感測用光源,也能夠拍攝手指靜脈、手掌靜脈等。
另外,本實施方式所示的結構可以適當地與實施方式 1至4所示的結構組合而使用。
如上所述,具備實施方式1及實施方式2所記載的發光元件的發光裝置的應用範圍極為廣泛,而能夠將該發光裝置用於各種領域的電子裝置。藉由使用實施方式1及實施方式2所記載的發光元件,可以得到耗電量被降低了的電子裝置。
圖10示出將實施方式1及實施方式2所記載的發光元件用於背光的液晶顯示裝置的一個例子。圖10所示的液晶顯示裝置包括外殼901、液晶層902、背光單元903以及外殼904,液晶層902與驅動器IC905連接。另外,在背光單元903中使用實施方式1及實施方式2所記載的發光元件,並且藉由端子906將電流供應到背光903。
藉由將實施方式1及實施方式2所記載的發光元件用於液晶顯示裝置的背光,可以得到耗電量被降低了的背光。另外,藉由使用實施方式2所記載的發光元件,能夠製造面發射的照明設備,還能夠實現大面積化。由此能夠實現背光的大面積化及液晶顯示裝置的大面積化。再者,使用實施方式2所記載的發光元件的發光裝置可以使厚度比習知的發光裝置薄,所以還能夠實現顯示裝置的薄型化。
圖11示出將實施方式1及實施方式2所記載的發光元件用於作為照明設備的檯燈的例子。圖11所示的檯燈包括外殼2001和光源2002,並且作為光源2002使用實施方式4所記載的發光裝置。
圖12示出將實施方式1及實施方式2所記載的發光元件用於室內的照明設備3001及顯示裝置3002的例子。 因為實施方式1及實施方式2所記載的發光元件是耗電量被降低了的發光元件,所以能夠提供耗電量被降低了的照明設備。另外,因為實施方式1及實施方式2所記載的發光元件能夠實現大面積化,所以能夠用於大面積的照明設備。另外,因為實施方式1及實施方式2所記載的發光元件的厚度薄,所以能夠製造實現薄型化的照明設備。
還可以將實施方式1及實施方式2所記載的發光元件安裝在汽車的擋風玻璃或儀錶盤上。圖13示出將實施方式2所記載的發光元件用於汽車的擋風玻璃或儀錶盤的一個方式。顯示5000至顯示5005使用實施方式1及實施方式2所記載的發光元件設置。
顯示5000和顯示5001是設置在汽車的擋風玻璃上的安裝有實施方式1及實施方式2所記載的發光元件的顯示裝置。藉由使用具有透光性的電極形成第一電極和第二電極,可以將實施方式1及實施方式2所記載的發光元件形成為能看到對面的景色的所謂的透視式顯示裝置。若採用透視式顯示,即使設置在汽車的擋風玻璃上,也不妨礙視界。另外,在設置用來驅動的電晶體等的情況下,較佳為使用具有透光性的電晶體,諸如使用有機半導體材料的有機電晶體或使用氧化物半導體的電晶體等。
顯示5002是設置在立柱部分的安裝有實施方式1及實施方式2所記載的發光元件的顯示裝置。藉由在顯示 5002上顯示來自設置在車廂上的成像單元的影像,可以補充被立柱遮擋的視界。另外,同樣地,設置在儀錶盤部分上的顯示5003藉由顯示來自設置在汽車外側的成像單元的影像,能夠補充被車廂遮擋的視界的死角,而提高安全性。藉由顯示影像以補充不看到的部分,更自然且簡單地確認安全。
顯示5004和顯示5005可以提供導航資訊、速度表、轉速計、行車距離、加油量、排檔狀態、空調的設定以及其他各種資訊。使用者可以適當地改變顯示專案及佈置。另外,這些資訊也可以顯示在顯示5000至顯示5003上。另外,也可以將顯示5000至顯示5005用作照明設備。
實施方式1及實施方式2所記載的發光元件可以實現發光效率高的發光元件或者是耗電量小的發光元件。由此,即使設置多個顯示5000至顯示5005那樣的大面積屏面,也可以減少電池的負載而舒適地使用。從而,使用實施方式1及實施方式2所記載的發光元件的發光裝置或照明設備可以適用於車載用發光裝置或照明設備。
圖14A及圖14B是翻蓋式平板終端的一個例子。圖14A是打開的狀態,並且平板終端包括外殼9630、顯示部9631a、顯示部9631b、顯示模式切換開關9034、電源開關9035、省電模式切換開關9036、卡子9033以及操作開關9038。該平板終端藉由將具備實施方式1及實施方式2所記載的發光元件的發光裝置用於顯示部9631a、顯示部9631b的一者或兩者來製造。
在顯示部9631a中,可以將其一部分用作觸摸屏區域9632a,並且可以藉由接觸所顯示的操作鍵9637來輸入資料。此外,作為一個例子示出如下結構:顯示部9631a的一半只有顯示的功能,另一半具有觸摸屏的功能,但是不侷限於該結構。也可以採用顯示部9631a的整個區域具有觸摸屏的功能的結構。例如,可以使顯示部9631a的整個面顯示鍵盤按鈕來將其用作觸摸屏,並且將顯示部9631b用作顯示畫面。
此外,在顯示部9631b中與顯示部9631a同樣,也可以將其一部分用作觸摸屏區域9632b。此外,藉由使用手指或觸控筆等接觸觸摸屏上的鍵盤顯示切換按鈕9639的位置,可以在顯示部9631b上顯示鍵盤按鈕。
此外,也可以對觸摸屏區域9632a和觸摸屏區域9632b同時進行觸摸輸入。
另外,顯示模式切換開關9034能夠切換豎屏顯示和橫屏顯示等顯示的方向並選擇黑白顯示或彩色顯示等的切換。根據藉由平板終端所內置的光感測器所檢測的使用時的外光的光量,省電模式切換開關9036可以將顯示的亮度設定為最適合的亮度。平板終端也可以內置光感測器、陀螺儀和加速度感測器等檢測傾斜度的感測器等的其他檢測裝置。
此外,圖14A示出顯示部9631b的顯示面積與顯示部9631a的顯示面積相等的例子,但是不侷限於此,既可以使一方顯示部的尺寸和另一方顯示部的尺寸不相等又可以 使它們的顯示品質有差異。例如顯示部9631a和顯示部9631b中的一方與另一方相比可以進行高精細的顯示。
圖14B是合上的狀態,並且本實施方式中的平板終端示出包括外殼9630、太陽能電池9633、充放電控制電路9634、電池9635以及DCDC轉換器9636的例子。此外,在圖14B中,作為充放電控制電路9634的一個例子示出包括電池9635和DCDC轉換器9636的結構。
此外,翻蓋式平板終端在不使用時可以合上外殼9630。因此,可以保護顯示部9631a和顯示部9631b,而可以提供一種耐久性優越且從長期使用的觀點來看可靠性優越的平板終端。
此外,圖14A及圖14B所示的平板終端還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等);將日曆、日期或時刻等顯示在顯示部上;對顯示在顯示部上的資訊進行觸摸輸入操作或編輯的觸摸輸入;藉由各種各樣的軟體(程式)控制處理等。
藉由利用安裝在平板終端的表面上的太陽能電池9633,可以將電力供應到觸摸屏、顯示部或影像信號處理部等。注意,太陽能電池9633可以設置在外殼9630的一個面或兩個面,可以高效地對電池9635充電。
另外,參照圖14C所示的方塊圖對圖14B所示的充放電控制電路9634的結構和工作進行說明。圖14C示出太陽能電池9633、電池9635、DCDC轉換器9636、轉換器9638、開關SW1至開關SW3以及顯示部9631,電池 9635、DCDC轉換器9636、轉換器9638、開關SW1至開關SW3對應於圖14B所示的充放電控制電路9634。
首先,說明在利用外光使太陽能電池9633發電時的工作的例子。使用DCDC轉換器9636對太陽能電池所產生的電力進行升壓或降壓以使它成為用來對電池9635進行充電的電壓。並且,當利用來自太陽能電池9633的電力使顯示部9631工作時使開關SW1導通,並且,利用轉換器9638將來自太陽能電池9633的電力升壓或降壓到顯示部9631所需要的電壓。另外,可以採用當不進行顯示部9631中的顯示時,使SW1關閉且使SW2導通來對電池9635進行充電的結構。
注意,作為發電單元的一個例子示出太陽能電池9633,但是發電單元不侷限於此,也可以使用壓電元件(piezoelectric element)或熱電轉換元件(珀耳帖元件(Peltier element))等其他發電單元進行電池9635的充電。也可以使用以無線(不接觸)的方式收發電力來進行充電的無線電力傳輸模組或組合其他充電單元進行充電,並且也可以不包括發電單元。
另外,只要具備上述顯示部9631,就不侷限於圖14A及圖14B所示的形狀的平板終端。
實施例1
在本實施例中,說明使用實施方式1及實施方式2所記載的相當於本發明的一個方式的發光元件的製造方法及 特性。以下示出本實施例所使用的有機化合物的結構式。
接著示出本實施例的發光元件的製造方法。
首先,在玻璃基板上藉由濺射法形成包含氧化矽的銦錫氧化物(ITSO),由此形成第一電極101。另外,將其厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極101是用作發光元件的陽極的電極。
接著,作為為了在基板上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,進行UV臭氧處理370秒。
然後,將基板放入到其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後對基板進行30分鐘左右的放冷。
接著,以使形成有第一電極101的面朝下的方式將形成有第一電極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極101上藉由利用電阻加熱的蒸鍍法共蒸鍍由上述結構式(i)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬(VI),從而形成電洞注入層111。電洞注入層111的厚度為33nm,將DBT3P-II與氧化鉬的重量比調節為4:2(=DBT3P-II:氧化鉬)。另外,共蒸鍍法是指在一個處理室中從多個蒸發源同時進行蒸鍍的蒸鍍法。
接著,在電洞注入層111上形成由上述結構式(ii)表示的厚度為20nm的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)膜,由此形成電洞傳輸層112。
再者,在電洞傳輸層112上以0.8:0.2:0.05(=2mDBTPDBq-II:PCBA1BP:Ir(tBuppm)2(acac))的重量比並以20nm的厚度共蒸鍍由上述結構式(iii)表示的2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTPDBq-II)、由上述結構式(iv)表示的4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、由上述結構式(v)表示的雙[2-(6-叔丁基-4-嘧啶基-κN3) 苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III))(簡稱:[Ir(tBuppm)2(acac)])形成第一發光層113a,然後以1:0.06(=2mDBTPDBq-II:[Ir(tppr)2(dpm)])的重量比並以20nm的厚度共蒸鍍2mDBTPDBq-II、由上述結構式(vi)表示的雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷)銥(III)(簡稱:[Ir(tppr)2(dpm)])形成第二發光層113b。 另外,作為主體材料的2mDBTPDBq-II與PCBA1BP形成激態複合物。
然後,在發光層113上形成厚度為15nm的2mDBTPDBq-II膜,再者形成厚度為15nm的由上述結構式(vii)表示的紅啡啉(簡稱:BPhen)膜,從而形成電子傳輸層114。
在形成電子傳輸層114之後,以1nm的厚度蒸鍍氟化鋰(LiF)形成電子注入層115。
最後作為用作陰極的第二電極102以200nm的厚度蒸鍍鋁膜,從而製造本實施例的發光元件1。
另外,在上述蒸鍍過程中,作為蒸鍍都採用電阻加熱法。
表1示出藉由上述步驟來得到的發光元件1的元件結構。
在氮氛圍的手套箱中,以不使發光元件1暴露於大氣的方式使用玻璃基板對發光元件1進行密封處理(將密封材料塗敷在元件的周圍,在密封時在80℃的溫度下進行1小時的熱處理)。
在發光元件1中,作為第一磷光化合物113Da使用[Ir(tBuppm)2(acac)],作為第二磷光化合物113Db使用[Ir(tppr)2(dpm)]。在此說明[Ir(tBuppm)2(acac)]的PL光譜與[Ir(tppr)2(dpm)]的ε(λ)λ4的關係。另外,λ表示波長,ε(λ)表示莫耳吸光係數。
首先,圖20A示出[Ir(tppr)2(dpm)]的莫耳吸光係數ε(λ)和ε(λ)λ4的曲線。在莫耳吸光係數ε(λ)中的長波長一側的區域中不存在明顯的峰值,而在ε(λ)λ4的曲線中存在543nm處具有極大值的峰值(高峰)。該峰值是[Ir(tppr)2(dpm)]的三重態MLCT吸收,藉由使該峰值與第一磷光化合物113Da的發光峰值重疊,可以大幅度地提高能量轉移的效果。
圖20B示出作為第一磷光化合物113Da的[Ir(tBuppm)2(acac)]的PL光譜F(λ)和表示作為第二磷光化合物113Db的[Ir(tppr)2(dpm)]的ε(λ)λ4的曲線。由該曲線 可知,[Ir(tBuppm)2(acac)]的PL光譜F(λ)的包括峰值的高峰與[Ir(tppr)2(dpm)]的ε(λ)λ4的包括最長波長一側的極大值的高峰大部分重疊,並且這兩種化合物是能夠高效地進行能量轉移的組合。另外,作為第一磷光化合物113Da的[Ir(tBuppm)2(acac)]的發光峰值在於546nm,作為第二磷光化合物113Db的[Ir(tppr)2(dpm)]的表示ε(λ)λ4的光譜中的長波長一側的極大值在於543nm,兩者的差異是3nm。 546nm相當於2.27eV,543nm相當於2.28eV,兩者的差異是0.01eV,即小於0.2eV,因此,由該峰值位置可知能夠高效地進行能量轉移。
接著,圖21A示出作為第一磷光化合物113Da的[Ir(tBuppm)2(acac)]的莫耳吸光係數ε(λ)和ε(λ)λ4的曲線。 在表示莫耳吸光係數ε(λ)的曲線中,長波長一側的峰值的強度比短波長一側的峰值的強度小,與此相比,在ε(λ)λ4的曲線中,在494nm處存在具有大強度的極大值。存在該極大值的峰值(高峰)是[Ir(tBuppm)2(acac)]的三重態MLCT吸收,藉由使該峰值與能量施體的發光峰值重疊,可以大幅度地提高能量轉移的效果。
在此,在本實施例中的發光元件1中,作為第一主體材料的2mDBTPDBq-II和作為第一有機化合物的PCBA1BP形成激態複合物113Ec,從該激態複合物113Ec到第一磷光化合物113Da供應能量。圖23是表示2mDBTPDBq-II、PCBA1BP以及它們的混合膜(2mDBTPDBq-II:PCBA1BP=0.8:0.2的質量比)的PL光 譜的圖,由該圖可知,2mDBTPDBq-II和作為第一有機化合物的PCBA1BP形成激態複合物113Ec。另外,圖21B示出該激態複合物的PL光譜F(λ)和作為第一磷光化合物113Da的[Ir(tBuppm)2(acac)]的表示ε(λ)λ4的曲線。由該曲線可知,激態複合物的PL光譜F(λ)的包括峰值的高峰與[Ir(tBuppm)2(acac)]的ε(λ)λ4的包括最長波長一側的極大值的高峰大部分重疊,並且這兩種化合物是能夠高效地進行能量轉移的組合。另外,激態複合物的PL光譜的峰值在於519nm,作為第一磷光化合物113Da的[Ir(tBuppm)2(acac)]的表示ε(λ)λ4的光譜中的長波長一側的極大值在於494nm,兩者的差異是25nm。當換算為能量時,519nm相當於2.39eV,494nm相當於2.51eV,兩者的差異是0.12eV,即小於0.2eV,因此,由該峰值位置可知能夠高效地進行能量轉移。
另外,由圖23可知,作為第一主體材料113Ha的2mDBTPDBq-II的PL光譜的峰值是426nm,當換算為能量時,相當於2.91eV。並且,作為第一有機化合物113A的PCBA1BP的PL光譜的峰值是405nm,當換算為能量時,相當於3.06eV。[Ir(tBuppm)2(acac)]的表示ε(λ)λ4的光譜中的長波長一側的極大值是494nm,當換算為能量時,相當於2.51eV。[Ir(tBuppm)2(acac)]與第一主體材料113Ha的2mDBTPDBq-II的差異是0.4eV,[Ir(tBuppm)2(acac)]與第一有機化合物113A的PCBA1BP的差異是0.55eV,即都具有0.2eV以上的能差,因此可 知,從2mDBTPDBq-II、PCBA1BP到[Ir(tBuppm)2(acac)]不容易轉移能量。
另外,圖22示出激態複合物的PL光譜F(λ)、[Ir(tBuppm)2(acac)]的PL光譜F(λ)、[Ir(tppr)2(dpm)]的PL光譜F(λ)、[Ir(tBuppm)2(acac)]的ε(λ)λ4、[Ir(tppr)2(dpm)]的ε(λ)λ4的曲線。由圖22可知,利用激態複合物的PL光譜和[Ir(tBuppm)2(acac)]的ε(λ)λ4的重疊(極大值A附近)從激態複合物到[Ir(tBuppm)2(acac)],並且利用[Ir(tBuppm)2(acac)]的PL光譜和[Ir(tppr)2(dpm)]的ε(λ)λ4的重疊(極大值B附近)從[Ir(tBuppm)2(acac)]到[Ir(tppr)2(dpm)]可以分步進行能量轉移。注意,也可以從激態複合物到作為第二磷光化合物的[Ir(tppr)2(dpm)]直接進行能量轉移。這是因為如下緣故,即,由圖22可知,在[Ir(tppr)2(dpm)]的三重態MLCT吸收帶(極大值B附近)的短波長一側,[Ir(tppr)2(dpm)]的ε(λ)λ4還與激態複合物的PL光譜F(λ)重疊。
對該發光元件的元件特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖15示出發光元件1的亮度-電流效率特性。在圖15中,橫軸表示亮度(cd/m2),縱軸表示電流效率(cd/A)。圖16示出電壓-亮度特性。在圖16中,橫軸表示電壓(V),縱軸表示亮度(cd/m2)。圖17示出亮度-外部量子效率特性。在圖17中,橫軸表示亮度(cd/m2),縱軸表示外部量子效率(%)。圖18示出 亮度-功率效率特性。在圖18中,橫軸表示亮度(cd/m2),縱軸表示功率效率(lm/W)。
如上所述可知,發光元件1呈現良好的元件特性。尤其是,由圖15、圖17以及圖18可知,發光元件1具有非常良好的發光效率,並且其外部量子效率在實用亮度(1000 cd/m2)附近呈現20%以上的高數值。並且,與此同樣,電流效率是60cd/A左右,功率效率是60lm/W左右,都是非常良好的數值。
另外,圖19示出對發光元件1流過0.1mA的電流時的發光光譜。在圖19中,橫軸表示波長(nm),縱軸表示發光強度(任意單位)。由圖19可知,發光元件1呈現平衡地包含來源於雙[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III))(簡稱:[Ir(tBuppm)2(acac)])的綠色的波長的光和來源於雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷)銥(III)(簡稱:[Ir(tppr)2(dpm)])的紅色的波長的光的發光光譜。
如上所述可知,相當於本發明的一個方式的發光元件1具有良好的發光效率,並且可以平衡地得到來自兩種發光中心物質的光。
實施例2
在本實施例中,說明使用實施方式1及實施方式2所記載的相當於本發明的一個方式的發光元件的製造方法及 特性。以下示出本實施例所使用的有機化合物的結構式。
接著示出本實施例的發光元件的製造方法。
首先,在玻璃基板上藉由濺射法形成包含氧化矽的銦錫氧化物(ITSO),由此形成第一電極101。另外,將其厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極101是用作發光元件的陽極的電極。
接著,作為為了在基板上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,進行UV臭氧處理370秒。
然後,將基板放入到其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後對基板進行30分鐘左右的放冷。
接著,以使形成有第一電極101的面朝下的方式將形成有第一電極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極101上藉由利用電阻加熱的蒸鍍法共蒸鍍由上述結構式(viii)表示的3-(4-(9-菲基)-苯基)-9-苯基-9H-咔唑(簡稱:PCPPn)和氧化鉬(VI),從而形成電洞注入層111。 電洞注入層111的厚度為33.3nm,將PCPPn與氧化鉬的重量比調節為1:0.5(=PCPPn:氧化鉬)。另外,共蒸鍍法是指在一個處理室中從多個蒸發源同時進行蒸鍍的蒸鍍法。
接著,在電洞注入層111上形成由上述結構式(ii)表示的厚度為20nm的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)膜,由此形成電洞傳輸層112。
再者,在電洞傳輸層112上以0.8:0.2:0.06(=2mDBTBPDBq-II:PCBNBB:[Ir(tBuppm)2(acac)])的重量比並以20nm的厚度共蒸鍍由上述結構式(ix)表示的2-[3’-(二苯並噻吩-4-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mDBTBPDBq-II)、由上述結構式(x)表示的4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、由上述結構式(v)表示的雙[2-(6-叔丁 基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III))(簡稱:[Ir(tBuppm)2(acac)])形成第一發光層113a,然後以1:0.06(=2mDBTBPDBq-II:[Ir(tppr)2(dpm)])的重量比並以20nm的厚度共蒸鍍2mDBTBPDBq-II、由上述結構式(vi)表示的雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷)銥(III)(簡稱:[Ir(tppr)2(dpm)])形成第二發光層113b。另外,作為主體材料的2mDBTBPDBq-II與PCBNBB形成激態複合物。
然後,在發光層113上形成厚度為15nm的2mDBTBPDBq-II膜,再者形成厚度為15nm的由上述結構式(vii)表示的紅啡啉(簡稱:BPhen)膜,從而形成電子傳輸層114。
在形成電子傳輸層114之後,以1nm的厚度蒸鍍氟化鋰(LiF)形成電子注入層115。
最後作為用作陰極的第二電極102以200nm的厚度蒸鍍鋁膜,從而製造本實施例的發光元件2。
另外,在上述蒸鍍過程中,作為蒸鍍都採用電阻加熱法。
表2示出藉由上述步驟來得到的發光元件2的元件結構。
在氮氛圍的手套箱中,以不使發光元件2暴露於大氣的方式使用玻璃基板對發光元件2進行密封處理(將密封材料塗敷在元件的周圍,在密封時在80℃的溫度下進行1小時的熱處理)。
在發光元件2中,與發光元件1同樣,作為第一磷光化合物113Da使用Ir(tBuppm)2(acac),作為第二磷光化合物113Db使用Ir(tppr)2(dpm)。因此,關於Ir(tBuppm)2(acac)的PL光譜與Ir(tppr)2(dpm)的ε(λ)λ4的關係,因為與發光元件1相同,所以參照實施例1的圖20A和圖20B的記載而省略其重複說明。由此可知,在發光元件2中,能夠高效地進行第一磷光化合物113Da與第二磷光化合物113Db之間的能量轉移。
對該發光元件的元件特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖24示出發光元件2的亮度-電流效率特性。圖25示出電壓-亮度特性。圖26示出亮度-外部量子效率特性。圖27示出亮度-功率效率特性。
如上所述可知,發光元件2呈現良好的元件特性。尤其是,由圖24、圖26以及圖27可知,發光元件2具有 非常良好的發光效率,並且其外部量子效率在實用亮度(1000 cd/m2)附近呈現20%以上的高數值。並且,與此同樣,電流效率是60cd/A左右,功率效率是601m/W左右,都是非常良好的數值。
另外,圖28示出對發光元件2流過0.1mA的電流時的發光光譜。由圖28可知,發光元件2呈現平衡地包含來源於雙[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III))(簡稱:[Ir(tBuppm)2(acac)])的綠色的波長的光和來源於雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷)銥(III)(簡稱:[Ir(tppr)2(dpm)])的紅色的波長的光的發光光譜。
另外,圖29示出在初始亮度為5000 cd/m2且電流密度恆定的條件下以初始亮度為100%進行可靠性測試的結果。由圖29可知,發光元件2即使在初始亮度為5000 cd/m2的可靠性測試中,也在經過70個小時後保持初始亮度的96%,因此是可靠性良好的發光元件。
如上所述可知,相當於本發明的一個方式的發光元件2具有良好的發光效率,可以平衡地得到來自兩種發光中心物質的光,並且具有良好的可靠性及長使用壽命。
實施例3
在本實施例中,說明使用實施方式1及實施方式2所記載的相當於本發明的一個方式的發光元件的製造方法及特性。以下示出本實施例所使用的有機化合物的結構式。
接著示出本實施例的發光元件的製造方法。
首先,在玻璃基板上藉由濺射法形成包含氧化矽的銦錫氧化物(ITSO),由此形成第一電極101。另外,將其厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極101是用作發光元件的陽極的電極。
接著,作為為了在基板上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,進行UV臭氧處理370秒。
然後,將基板放入到其內部被減壓到10-4Pa左右的真 空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後對基板進行30分鐘左右的放冷。
接著,以使形成有第一電極101的面朝下的方式將形成有第一電極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極101上藉由利用電阻加熱的蒸鍍法共蒸鍍由上述結構式(i)表示的4,4,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬(VI),從而形成電洞注入層111。電洞注入層111的厚度為40nm,將DBT3P-II與氧化鉬的重量比調節為4:2(=DBT3P-II:氧化鉬)。另外,共蒸鍍法是指在一個處理室中從多個蒸發源同時進行蒸鍍的蒸鍍法。
接著,在電洞注入層111上形成由上述結構式(xi)表示的厚度為10nm的4,4’,4”-三(咔唑-9-基)三苯基胺(簡稱:TCTA)膜,由此形成電洞傳輸層112。
再者,在電洞傳輸層112上以1:0.1(=TCTA:Ir(tppr)2(dpm))的重量比並以10nm的厚度共蒸鍍TCTA和由上述結構式(vi)表示的雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷)銥(III)(簡稱:[Ir(tppr)2(dpm)])形成第二發光層113b,然後以0.8:0.2:0.05(=2mDBTPDBq-II:PCBA1BP:Ir(tBuppm)2(acac))的重量比並以5nm的厚度共蒸鍍由上述結構式(iii)表示的2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTPDBq- II)、由上述結構式(iv)表示的4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)以及由上述結構式(v)表示的雙[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III)(簡稱:Ir(tBuppm)2(acac))形成第一發光層113a。另外,作為主體材料的2mDBTPDBq-II與PCBA1BP形成激態複合物。
然後,在發光層113上以1:0.05(=2mDBTPDBq-II:Ir(tBuppm)2(acac))的重量比並以20nm的厚度共蒸鍍2mDBTPDBq-II和Ir(tBuppm)2(acac),形成厚度為10nm的2mDBTPDBq-II膜,並且形成厚度為20nm的由上述結構式(vii)表示的紅啡啉(簡稱:BPhen)膜,從而形成電子傳輸層114。
在形成電子傳輸層114之後,以1nm的厚度蒸鍍氟化鋰(LiF)形成電子注入層115。
最後作為用作陰極的第二電極102以200nm的厚度蒸鍍鋁膜,從而製造本實施例的發光元件3。
另外,在上述蒸鍍過程中,作為蒸鍍都採用電阻加熱法。
表3示出藉由上述步驟來得到的發光元件3的元件結構。發光元件3是作為電洞傳輸層的材料及第二主體材料使用與發光元件1及發光元件2不同的材料而製造的發光元件。另外,在發光元件3中,第一發光層及第二發光層對電極的位置和電子傳輸層的結構也與發光元件1及發光元件2不同。
在氮氛圍的手套箱中,以不使發光元件3暴露於大氣的方式使用玻璃基板對發光元件3進行密封處理(將密封材料塗敷在元件的周圍,在密封時在80℃的溫度下進行1小時的熱處理)。
在發光元件3中,與發光元件1同樣,作為第一磷光化合物113Da使用Ir(tBuppm)2(acac),作為第二磷光化合物113Db使用Ir(tppr)2(dpm)。因此,關於Ir(tBuppm)2(acac)的PL光譜與Ir(tppr)2(dpm)的ε(λ)λ4的關係,因為與發光元件1相同,所以參照實施例1的圖20A和圖20B的記載而省略其重複說明。由此可知,在發光元件3中,能夠高效地進行第一磷光化合物113Da與第二磷光化合物113Db之間的能量轉移。
對該發光元件的元件特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖30示出發光元件3的亮度-電流效率特性。圖31示出電壓-亮度特性。圖32示出亮度-外部量子效率特性。圖33示出亮度-功率效率特性。
如上所述可知,發光元件3呈現良好的元件特性。尤其是,由圖30、圖32以及圖33可知,發光元件3具有 非常良好的發光效率,並且其外部量子效率在實用亮度(1000 cd/m2)附近呈現20%以上的高數值。並且,與此同樣,電流效率是60cd/A左右,功率效率是70lm/W左右,都是非常良好的數值。
另外,圖34示出對發光元件3流過0.1mA的電流時的發光光譜。由圖34可知,發光元件3呈現平衡地包含來源於雙[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III)(簡稱:Ir(tBuppm)2(acac))的綠色的波長的光和來源於雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷)銥(III)(簡稱:Ir(tppr)2(dpm))的紅色的波長的光的發光光譜。
如上所述可知,相當於本發明的一個方式的發光元件3雖然使用與發光元件1及發光元件2不同的主體材料,但是具有良好的發光效率,可以平衡地得到來自兩種發光中心物質的光。
實施例4
在本實施例中,說明使用實施方式1及實施方式2所記載的相當於本發明的一個方式的發光元件的製造方法及特性。以下示出本實施例所使用的有機化合物的結構式。
接著示出本實施例的發光元件(發光元件4及發光元件5)的製造方法。
首先,在玻璃基板上藉由濺射法形成包含氧化矽的銦錫氧化物(ITSO),由此形成第一電極101。另外,將其厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極101是用作發光元件的陽極的電極。
接著,作為為了在基板上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,進行UV臭氧處理370秒。
然後,將基板放入到其內部被減壓到10-4Pa左右的真 空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後對基板進行30分鐘左右的放冷。
接著,以使形成有第一電極101的面朝下的方式將形成有第一電極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極101上藉由利用電阻加熱的蒸鍍法共蒸鍍由上述結構式(ii)表示的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)和氧化鉬(VI),從而形成電洞注入層111。電洞注入層111的厚度為33.3nm,將BPAFLP與氧化鉬的重量比調節為1:0.5(=BPAFLP:氧化鉬)。另外,共蒸鍍法是指在一個處理室中從多個蒸發源同時進行蒸鍍的蒸鍍法。
接著,在電洞注入層111上形成厚度為20nm的BPAFLP膜來形成電洞傳輸層112。
再者,在電洞傳輸層112上以0.8:0.2:0.06(=2mDBTPDBq-II:PCBA1BP:Ir(tBuppm)2(acac))的重量比並以20nm的厚度共蒸鍍由上述結構式(iii)表示的2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTBPDBq-II)、由上述結構式(iv)表示的4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)以及由上述結構式(v)表示的雙[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III)(簡稱:Ir(tBuppm)2(acac))形成第一發光層113a,然後以1:0.06 (=2mDBTPDBq-II:[Ir(dmdppr-P)2(dibm)])的重量比並以 20nm的厚度共蒸鍍2mDBTBPDBq-II和由上述結構式(xii)表示的雙{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O”)銥(III)(簡稱:[Ir(dmdppr-P)2(dibm)])形成第二發光層113b。另外,作為主體材料的2mDBTPDBq-II與PCBA1BP形成激態複合物。
然後,在發光層113上形成厚度為15nm的2mDBTPDBq-II膜,再者形成厚度為15nm的由上述結構式(vii)表示的紅啡啉(簡稱:BPhen)膜,從而形成電子傳輸層114。
在形成電子傳輸層114之後,以1nm的厚度蒸鍍氟化鋰(LiF)形成電子注入層115。
最後作為用作陰極的第二電極102以200nm的厚度蒸鍍鋁膜,從而製造本實施例的發光元件4。
關於發光元件5的製造方法,除了使用由上述結構式(xiii)表示的三[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC]銥(III)(簡稱:Ir(tBuppm)3)代替第一發光層113a的Ir(tBuppm)2(acac)以外,與發光元件4相同。
另外,在上述蒸鍍過程中,作為蒸鍍都採用電阻加熱法。
表4及表5分別示出藉由上述步驟來得到的發光元件4及發光元件5的元件結構。
在氮氛圍的手套箱中,以不使發光元件4及發光元件5暴露於大氣的方式使用玻璃基板對發光元件4及發光元件5進行密封處理(將密封材料塗敷在元件的周圍,在密封時在80℃的溫度下進行1小時的熱處理)。
在發光元件4中,作為第一磷光化合物113Da使用Ir(tBuppm)2(acac),作為第二磷光化合物113Db使用[Ir(dmdppr-P)2(dibm)]。在此說明Ir(tBuppm)2(acac)的PL光譜與[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的關係。另外,λ表示波長,ε(λ)表示莫耳吸光係數。
首先,圖45A示出作為發光元件4的第二磷光化合物113Db的[Ir(dmdppr-P)2(dibm)]的莫耳吸光係數ε(λ)和ε(λ)λ4的曲線。在莫耳吸光係數ε(λ)中不存在長波長一側 的區域中的明顯的峰值,而在ε(λ)λ4的曲線中存在包括509nm的極大值及具有550nm、605nm附近的肩峰(shoulder peak)的峰值(高峰)。該峰值是[Ir(dmdppr-P)2(dibm)]的三重態MLCT吸收,藉由使該峰值與第一磷光化合物113Da的發光峰值重疊,可以大幅度地提高能量轉移的效果。
圖45B示出作為發光元件4的第一磷光化合物113Da的[Ir(tBuppm)2(acac)]的PL光譜F(λ)和表示作為第二磷光化合物113Db的[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的曲線。 由該曲線可知,[Ir(tBuppm)2(acac)]的PL光譜F(λ)的包括峰值的高峰與[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的包括最長波長一側的極大值的高峰大部分重疊,並且這兩種化合物是能夠高效地進行能量轉移的組合。另外,作為第一磷光化合物113Da的[Ir(tBuppm)2(acac)]的發光峰值在於546nm,作為第二磷光化合物113Db的[Ir(dmdppr-P)2(dibm)]的表示ε(λ)λ4的光譜中的長波長一側的極大值在於509nm,兩者的差異是37nm。546nm相當於2.27eV,509nm相當於2.44eV,兩者的差異是0.17eV,即小於0.2eV,因此,由該峰值位置可知能夠高效地進行能量轉移。注意,雖然[Ir(dmdppr-P)2(dibm)]的表示ε(λ)λ4的光譜中的長波長一側的極大(極大值C)與[Ir(tBuppm)2(acac)]的發光光譜F(λ)幾乎不重疊,但是[Ir(dmdppr-P)2(dibm)]的表示ε(λ)λ4的光譜中的包括極大值C的高峰具有在長波長一側很寬的形狀,該長波長一側的 光譜與[Ir(tBuppm)2(acac)]的發光光譜F(λ)具有很大的重疊。因此,可以實現非常良好的能量轉移。
在發光元件4中,作為第一主體材料的2mDBTPDBq-II和作為第一有機化合物的PCBA1BP形成激態複合物,高效地向作為第一磷光化合物113Da的[Ir(tBuppm)2(acac)]轉移能量。它們的關係與發光元件1同樣,因為在實施例1中已詳細說明,所以參照實施例1的記載而省略其重複說明。
另外,圖46示出激態複合物的PL光譜F(λ)、[Ir(tBuppm)2(acac)]的PL光譜F(λ)、[Ir(dmdppr-P)2(dibm)]的PL光譜F(λ)、[Ir(tBuppm)2(acac)]的ε(λ)λ4、[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的曲線。由此可知,利用激態複合物的PL光譜和[Ir(tBuppm)2(acac)]的ε(λ)λ4的重疊(極大值A附近)從激態複合物到[Ir(tBuppm)2(acac)],並且利用[Ir(tBuppm)2(acac)]的PL光譜和[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的重疊(從極大值C到650nm附近)從[Ir(tBuppm)2(acac)]到[Ir(dmdppr-P)2(dibm)]可以分步進行能量轉移。注意,也可以從激態複合物到作為第二磷光化合物的[Ir(dmdppr-P)2(dibm)]直接進行能量轉移。這是因為如下緣故,即,由圖46可知,在[Ir(dmdppr-P)2(dibm)]的三重態MLCT吸收帶(極大值C附近),[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4還與激態複合物的PL光譜F(λ)重疊。
在發光元件5中,作為第一磷光化合物113Da使用 Ir(tBuppm)3,作為第二磷光化合物113Db使用[Ir(dmdppr-P)2(dibm)]。在此說明Ir(tBuppm)3的PL光譜與[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的關係。另外,λ表示波長,ε(λ)表示莫耳吸光係數。
首先,圖47A示出作為發光元件5的第二磷光化合物113Db的[Ir(dmdppr-P)2(dibm)]的莫耳吸光係數ε(λ)和ε(λ)λ4的曲線。在莫耳吸光係數ε(λ)中不存在長波長一側的區域中的明顯的峰值,而在ε(λ)λ4的曲線中存在包括509nm的極大值及具有550nm、605nm附近的肩峰的峰值(高峰)。該峰值是[Ir(dmdppr-P)2(dibm)]的三重態MLCT吸收,藉由使該峰值與第一磷光化合物113Da的發光峰值重疊,可以大幅度地提高能量轉移的效果。
圖47B示出作為發光元件5的第一磷光化合物113Da的Ir(tBuppm)3的PL光譜F(λ)和表示作為第二磷光化合物113Db的[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的曲線。由該曲線可知,Ir(tBuppm)3的PL光譜F(λ)的包括峰值的高峰與[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的包括最長波長一側的極大值的高峰大部分重疊,並且這兩種化合物是能夠高效地進行能量轉移的組合。另外,作為第一磷光化合物113Da的Ir(tBuppm)3的發光峰值在於540nm,作為第二磷光化合物113Db的[Ir(dmdppr-P)2(dibm)]的表示ε(λ)λ4的光譜中的長波長一側的極大值在於509nm,兩者的差異是31nm。 540nm相當於2.30eV,509nm相當於2.44eV,兩者的差異是0.14eV,即小於0.2eV,因此,由該峰值位置可知能夠 高效地進行能量轉移。注意,雖然[Ir(dmdppr-P)2(dibm)]的表示ε(λ)λ4的光譜中的長波長一側的極大(極大值C)與Ir(tBuppm)3的發光光譜F(λ)幾乎不重疊,但是[Ir(dmdppr-P)2(dibm)]的表示ε(λ)λ4的光譜中的包括極大值C的高峰具有在長波長一側很寬的形狀,該長波長一側的光譜與Ir(tBuppm)3的發光光譜F(λ)大部分重疊。因此,可以實現非常良好的能量轉移。
接著,圖48A示出作為發光元件5的第一磷光化合物113Da的Ir(tBuppm)3的莫耳吸光係數ε(λ)和ε(λ)λ4的曲線。在ε(λ)λ4的曲線中,在409nm及465nm處存在具有大強度的極大值,並且在494nm處存在具有肩峰的峰值(高峰)。該峰值(高峰)是Ir(tBuppm)3的三重態MLCT吸收,藉由使該峰值與能量施體的發光峰值重疊,可以大幅度地提高能量轉移的效果。
在此,在本實施例中的發光元件5中,作為第一主體材料的2mDBTPDBq-II和作為第一有機化合物的PCBA1BP形成激態複合物113Ec,從該激態複合物113Ec到第一磷光化合物113Da供應能量。圖23是表示2mDBTPDBq-II、PCBA1BP以及它們的混合膜(2mDBTPDBq-II:PCBA1BP=0.8:0.2的質量比)的PL光譜的圖,由該圖可知,2mDBTPDBq-II和作為第一有機化合物的PCBA1BP形成激態複合物113Ec。另外,圖48B示出該激態複合物的PL光譜F(λ)和作為第一磷光化合物113Da的Ir(tBuppm)3的表示ε(λ)λ4的曲線。由該曲線可 知,激態複合物的PL光譜F(λ)的包括峰值的高峰的一半強度的波長範圍的一部分與Ir(tBuppm)3的ε(λ)λ4的包括最長波長一側的極大值的高峰的一半強度的波長範圍的一部分重疊,並且這兩種化合物是能夠高效地進行能量轉移的組合。
另外,圖49示出激態複合物的PL光譜F(λ)、Ir(tBuppm)3的PL光譜F(λ)、[Ir(dmdppr-P)2(dibm)]的PL光譜F(λ)、Ir(tBuppm)3的ε(λ)λ4、[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的曲線。由圖此可知,利用激態複合物的PL光譜和Ir(tBuppm)3的ε(λ)λ4的重疊(極大值A附近)從激態複合物到Ir(tBuppm)3,並且利用Ir(tBuppm)3的PL光譜和[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4的重疊(從極大值C到650nm附近)從Ir(tBuppm)3到[Ir(dmdppr-P)2(dibm)]可以分步進行能量轉移。注意,也可以從激態複合物到作為第二磷光化合物的[Ir(dmdppr-P)2(dibm)]直接進行能量轉移。這是因為如下緣故,即,由圖49可知,在[Ir(dmdppr-P)2(dibm)]的三重態MLCT吸收帶(極大值C附近),[Ir(dmdppr-P)2(dibm)]的ε(λ)λ4還與激態複合物的PL光譜F(λ)重疊。
對這些發光元件的元件特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖35示出發光元件4的亮度-電流效率特性。圖36示出電壓-亮度特性。圖37示出亮度-外部量子效率特性。圖38示出亮度-功率效率特性。
如上所述可知,發光元件4呈現良好的元件特性。尤其是,由圖35、圖37以及圖38可知,發光元件4具有非常良好的發光效率,並且其外部量子效率在實用亮度(1000 cd/m2)附近呈現20%以上的高數值。並且,與此同樣,電流效率是50cd/A左右,功率效率是50lm/W左右,都是非常良好的數值。
另外,圖39示出對發光元件4流過0.1mA的電流時的發光光譜。在圖39中,橫軸表示波長(nm),縱軸表示發光強度(任意單位)。由圖39可知,發光元件4呈現平衡地包含來源於Ir(tBuppm)2(acac)的綠色的波長的光和來源於[Ir(dmdppr-P)2(dibm)]的紅色的波長的光的發光光譜。
圖40示出發光元件5的亮度-電流效率特性。圖41示出電壓-亮度特性。圖42示出亮度-外部量子效率特性。圖43示出亮度-功率效率特性。
如上所述可知,發光元件5呈現良好的元件特性。尤其是,由圖40、圖42以及圖43可知,發光元件5具有非常良好的發光效率,並且其外部量子效率在實用亮度(1000 cd/m2)附近呈現25%左右的高數值。並且,與此同樣,電流效率是65cd/A左右,功率效率是70lm/W左右,都是非常良好的數值。
另外,圖44示出對發光元件5流過0.1mA的電流時的發光光譜。在圖44中,橫軸表示波長(nm),縱軸表示發光強度(任意單位)。由圖44可知,發光元件5呈 現平衡地包含來源於Ir(tBuppm)2(acac)的綠色的波長的光和來源於[Ir(dmdppr-P)2(dibm)]的紅色的波長的光的發光光譜。
如上所述可知,相當於本發明的一個方式的發光元件4及發光元件5具有良好的發光效率,並且可以平衡地得到來自兩種發光中心物質的光。
(參考例1)
以下示出在上述實施方式中使用的有機金屬錯合物的雙[2-(6-叔丁基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III)(簡稱:[Ir(tBuppm)2(acac)])的合成例。並且,以下示出[Ir(tBuppm)2(acac)]的結構。
<步驟1:4-叔丁基-6-苯基嘧啶(簡稱:HtBuppm)的合成>
首先,在裝有回流管的茄形燒瓶中放入22.5g的4,4-二甲基-1-苯基戊烷-1,3-二酮和50g的甲醯胺,對內部進行氮置換。藉由加熱該反應容器使反應溶液回流5小時。 然後,將該溶液注入到氫氧化鈉水溶液,用二氯甲烷萃取有機層。用水、飽和鹽水洗滌所得到的有機層,用硫酸鎂進行乾燥。過濾乾燥之後的溶液。在蒸餾去除溶液的溶劑之後,藉由使用己烷:醋酸乙酯=10:1(體積比)的展開溶劑的矽膠管柱層析法精製所得到的殘渣,得到了嘧啶衍生物HtBuppm(無色油狀物,產率為14%)。以下示出步驟1的合成方案。
<步驟2:二-μ-氯-雙[雙(6-叔丁基-4-苯基嘧啶根)銥(III)](簡稱:[Ir(tBuppm)2Cl]2)的合成>
接著,在安裝有回流管的茄形燒瓶中放入15mL的2-乙氧基乙醇、5mL的水、1.49g的藉由上述步驟1得到的HtBuppm及1.04g的氯化銥水合物(IrCl3.H2O),並對燒瓶內進行氬置換。然後,照射1小時的微波(2.45GHz,100W)來使其起反應。在蒸餾去除溶劑之後,使用乙醇抽濾所得到的殘渣並進行洗滌,而得到雙核錯合物[Ir(tBuppm)2Cl]2(黃綠色粉末,產率為73%)。以下示出步驟2的合成方案。
<步驟3:(乙醯丙酮根)雙(6-叔丁基-4-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)2(acac)])的合成>
再者,在安裝有回流管的茄形燒瓶中加入40mL的2-乙氧基乙醇、1.61g的藉由上述步驟2得到的雙核錯合物的[Ir(tBuppm)2Cl]2、0.36g的乙醯丙酮及1.27g的碳酸鈉,並對燒瓶內部進行氬置換。然後,照射60分鐘的微波(2.45GHz,120W),來使其起反應。蒸餾去除溶劑,使用乙醇抽濾所得到的殘渣,並使用水、乙醇對該殘渣進行洗滌。使所得到的固體溶解於二氯甲基,並藉由依次層疊有矽藻土(日本和光純藥工業株式會社、目錄號碼:531-16855)、氧化鋁、矽藻土的助濾材過濾該混合物。 藉由使用二氯甲基和己烷的混合溶劑對蒸餾去除溶劑來得到的固體進行再結晶,得到了目的物的黃色粉末(產率為68%)。以下示出步驟3的合成方案。
以下示出利用核磁共振分光法(1H NMR)對藉由上述步驟3得到的黃色粉末進行分析的結果。根據該結果可知獲得了有機金屬錯合物Ir(tBuppm)2(acac)。
1H NMR.δ(CDCl3):1.50(s,18H),1.79(s,6H),5.26(s,1H),6.33(d,2H),6.77(t,2H),6.85(t,2H),7.70(d,2H),7.76(s,2H),9.02(s,2H)。
(參考例2)
在本參考例中,在上述實施例中使用的有機金屬銥錯合物的雙{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O”)銥(III)(簡稱:[Ir(dmdppr-P)2(dibm)])的合成方法。並 且,以下示出[Ir(dmdppr-P)2(dibm)]的結構。
<步驟1:2,3-雙(3,5-二甲基苯基)吡嗪(簡稱:Hdmdppr)的合成>
首先,在裝有回流管的茄形燒瓶中放入5.00g的2,3-二氯吡嗪、10.23g的3,5-二甲基苯硼酸、7.19g的碳酸鈉、0.29g的雙(三苯基膦)二氯化鈀(II)(Pd(PPh3)2Cl2)、20mL的水以及20mL的乙腈,對內部進行氬置換。對該反應容器照射60分鐘的微波(2.45GHz,100W)來進行加熱。在此,在燒瓶中還放入2.55g的3,5-二甲基苯硼酸、1.80g的碳酸鈉、0.070g的Pd(PPh3)2Cl2、5mL的水、5mL的乙腈,再次照射60分鐘的微波(2.45GHz,100W)來進行加熱。
然後,在該溶液中加水,使用二氯甲烷萃取有機層。 使用飽和碳酸氫鈉水溶液、水、飽和食鹽水對所得到的有機層進行洗滌且使用硫酸鎂乾燥。過濾乾燥之後的溶液。 在蒸餾而去除該溶液的溶劑之後,利用己烷:乙酸乙酯=5:1(體積比)的展開溶劑的快速管柱層析法精煉所得到的殘渣。利用二氯甲烷:乙酸乙酯=10:1(體積比)的展開溶劑的快速管柱層析法精煉在蒸餾而去除溶劑之後得到的固體,而得到目的物的吡嗪衍生物Hdmdppr(簡稱)(白色粉末,產率為44%)。此外,使用微波合成裝置(CEM公司製造,Discover)照射微波。以下述(a-1)示出步驟1的合成方案。
<步驟2:2,3-雙(3,5-二甲基苯基)-5-苯基吡嗪(簡稱:Hdmdppr-P)的合成>
首先,在三頸燒瓶中放入4.28g的藉由上述步驟1得到的Hdmdppr(簡稱)和80mL的dryTHF,對內部進行氮置換。在用冰冷卻燒瓶之後,對該燒瓶滴加9.5mL的苯基鋰(1.9M丁醚溶液),並且在室溫下攪拌混合物23.5小時。將反應溶液注入水中,並利用氯仿萃取有機層。使用水和飽和食鹽水對所得到的有機層進行洗滌且利用硫酸鎂乾燥。對所得到的混合物添加氧化錳,攪拌該混合物 30分鐘。然後,過濾溶液,蒸餾而去除溶劑。利用以二氯甲烷為展開溶劑的矽膠柱色譜法精煉所得到的殘渣,而得到目的物的吡嗪衍生物Hdmdppr-P(簡稱)(橙色油,產率為26%)。以下述(a-2)示出步驟2的合成方案。
<步驟3:二-μ-氯-四{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}二銥(III)(簡稱:[Ir(dmdppr-P)2Cl]2)的合成>
接著,在裝有回流管的茄形燒瓶中放入15mL的2-乙氧基乙醇、5mL的水、1.40g的藉由上述步驟2得到的Hdmdppr-P(簡稱)以及0.51g的氯化銥水合物(IrCl3.H2O)(西格瑪奧德里奇公司製造),對內部進行氬置換。照射1小時的微波(2.45GHz,100W)來進行反應。在蒸餾而去除溶劑之後,使用乙醇對所得到的殘渣進行抽濾及洗滌,而得到雙核錯合物[Ir(dmdppr-P)2Cl]2(簡稱)(紅褐色粉末,產率為58%)。以下述(a-3)示出步驟3的合成方案。
<步驟4:雙{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O”)銥(III)(簡稱:[Ir(dmdppr-P)2(dibm)])的合成>
並且,在裝有回流管的茄形燒瓶中放入30mL的2-乙氧基乙醇、0.94g的藉由上述步驟3得到的雙核錯合物[Ir(dmdppr-P)2Cl]2、0.23g的二異丁醯甲基(簡稱:Hdibm)以及0.52g的碳酸鈉,對內部進行氬置換。然後,照射60分鐘的微波(2.45GHz,120W)來進行加熱。在蒸餾而去除溶劑之後,使用乙醇抽濾所得到的殘 渣。藉由使用水、乙醇洗滌所得到的固體並使用二氯甲烷和乙醇的混合溶劑使該固體再結晶,得到本發明的一個方式的有機金屬錯合物[Ir(dmdppr-P)2(dibm)](簡稱)作為深紅色粉末(產率為75%)。以下述(a-4)示出步驟4的合成方案。
此外,以下示出利用核磁共振法(1H-NMR)分析藉由上述合成方法得到的深紅色粉末的結果。從該結果可知,在本合成例中得到了有機金屬錯合物[Ir(dmdppr-P)2(dibm)](簡稱)。
1H-NMR.δ(CDCl3):0.79(d,6H),0.96(d,6H), 1.41(s,6H),1.96(s,6H),2.24-2.28(m,2H),2.41(s,12H),5.08(s,1H),6.46(s,2H),6.82(s,2H),7.18(s,2H),7.39-7.50(m,10H),8.03(d,4H),8.76(s,2H)。
10‧‧‧電極
113Da‧‧‧第一磷光化合物
113Db‧‧‧第二磷光化合物
113a‧‧‧第一發光層
113b‧‧‧第二發光層
11‧‧‧電極
113Ec‧‧‧激態複合物

Claims (14)

  1. 一種發光元件,包括:第一電極;該第一電極上的第一發光層,包括:第一磷光化合物;以及第一主體材料;該第一發光層上的第二發光層,包括:第二磷光化合物;以及第二主體材料;該第二發光層上的第二電極,其中從該第二磷光化合物發射的光具有比從該第一磷光化合物發射的光長的波長,該第二磷光化合物的函數ε(λ)λ4的最長波長一側的峰值與該第一磷光化合物的磷光發光光譜F(λ)重疊,λ表示波長,並且ε(λ)表示該波長λ的莫耳吸光係數。
  2. 根據申請專利範圍第1項之發光元件,其中該第一發光層還包含第一有機化合物,該第一主體材料與該第一有機化合物形成激態複合物,並且從該第一磷光化合物發射的光具有比從該激態複合物發射的光長的波長。
  3. 根據申請專利範圍第2項之發光元件,其中該激態複合物的發光光譜與該第一磷光化合物的 函數ε(λ)λ4的最長波長一側的峰值重疊。
  4. 根據申請專利範圍第1項之發光元件,其中該第一磷光化合物在500nm至600nm的範圍內具有磷光發光峰值,並且該第二磷光化合物在600nm至700nm的範圍內具有磷光發光峰值。
  5. 根據申請專利範圍第1項之發光元件,其中電子與電洞的再結合區域是該第一發光層。
  6. 根據申請專利範圍第1項之發光元件,其中與該第二發光層相比,該第一發光層位於接近陽極一側,並且在該第二發光層中電子傳輸性比電洞傳輸性高。
  7. 根據申請專利範圍第1項之發光元件,其中與該第二發光層相比,該第一發光層位於接近陽極一側,並且該第一主體材料及該第二主體材料都具有電子傳輸性。
  8. 根據申請專利範圍第1項之發光元件,其中與該第二發光層相比,該第一發光層位於接近陰極一側,並且在該第二發光層中電洞傳輸性比電子傳輸性高。
  9. 根據申請專利範圍第1項之發光元件,其中與該第二發光層相比,該第一發光層位於接近陰極一側, 並且該第一主體材料及該第二主體材料都具有電洞傳輸性。
  10. 根據申請專利範圍第1項之發光元件,其中該第一發光層及該第二發光層彼此接觸。
  11. 一種照明設備,該照明設備包括根據申請專利範圍第1項之發光元件。
  12. 一種發光裝置,該發光裝置包括:根據申請專利範圍第1項之發光元件;以及控制該發光元件的單元。
  13. 一種顯示裝置,該顯示裝置包括:顯示部中的根據申請專利範圍第1項之發光元件;以及控制該發光元件的單元。
  14. 一種電子裝置,該電子裝置包括根據申請專利範圍第1項之發光元件。
TW102113622A 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置 TWI586011B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012096808 2012-04-20
JP2013052791A JP6076153B2 (ja) 2012-04-20 2013-03-15 発光素子、発光装置、表示装置、電子機器及び照明装置

Publications (2)

Publication Number Publication Date
TW201349619A true TW201349619A (zh) 2013-12-01
TWI586011B TWI586011B (zh) 2017-06-01

Family

ID=49379264

Family Applications (6)

Application Number Title Priority Date Filing Date
TW111118459A TWI793013B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW110110452A TWI765618B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW106107981A TWI670873B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW109108759A TWI724823B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW102113622A TWI586011B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW107137747A TWI690101B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW111118459A TWI793013B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW110110452A TWI765618B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW106107981A TWI670873B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
TW109108759A TWI724823B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107137747A TWI690101B (zh) 2012-04-20 2013-04-17 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置

Country Status (7)

Country Link
US (8) US8981393B2 (zh)
JP (1) JP6076153B2 (zh)
KR (6) KR20230152798A (zh)
CN (2) CN106784344B (zh)
DE (4) DE112013007588B3 (zh)
TW (6) TWI793013B (zh)
WO (1) WO2013157559A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762183B (zh) * 2014-05-30 2022-04-21 日商半導體能源研究所股份有限公司 發光裝置、顯示裝置及電子裝置
US11387422B2 (en) 2014-05-30 2022-07-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013001468T5 (de) * 2012-03-14 2014-12-04 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, Anzeigevorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
JP6076153B2 (ja) 2012-04-20 2017-02-08 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器及び照明装置
JP6159037B2 (ja) * 2012-04-20 2017-07-05 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
US8916897B2 (en) 2012-05-31 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
TWI733065B (zh) 2012-08-03 2021-07-11 日商半導體能源研究所股份有限公司 發光元件、發光裝置、顯示裝置、電子裝置及照明設備
KR102204794B1 (ko) 2012-08-10 2021-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
KR102046157B1 (ko) * 2012-12-21 2019-12-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN105453294B (zh) 2013-08-14 2018-02-02 国立大学法人九州大学 有机电致发光元件
TWI729686B (zh) 2013-10-16 2021-06-01 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置及照明裝置
KR102327980B1 (ko) 2013-12-02 2021-11-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102523989B1 (ko) 2013-12-02 2023-04-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP5905916B2 (ja) * 2013-12-26 2016-04-20 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10734587B2 (en) 2014-03-13 2020-08-04 Merck Patent Gmbh Formulations of luminescent compounds
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
KR102353647B1 (ko) 2014-08-29 2022-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US20160104855A1 (en) * 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
JP2016082239A (ja) 2014-10-16 2016-05-16 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
KR20160067629A (ko) * 2014-12-04 2016-06-14 서울대학교산학협력단 유기발광소자
DE102015100913B4 (de) * 2015-01-22 2017-08-10 Osram Oled Gmbh Lichtemittierendes Bauelement, Verfahren zum Herstellen eines lichtemittierenden Bauelements und Verfahren zum Betreiben eines lichtemittierenden Bauelements
KR101706752B1 (ko) 2015-02-17 2017-02-27 서울대학교산학협력단 호스트, 인광 도펀트 및 형광 도펀트를 포함하는 유기발광소자
TWI737594B (zh) * 2015-03-09 2021-09-01 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
TWI704706B (zh) * 2015-03-09 2020-09-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設置
CN107710441B (zh) * 2015-06-17 2020-10-16 株式会社半导体能源研究所 铱配合物、发光元件、显示装置、电子设备以及照明装置
KR20240039072A (ko) 2015-08-07 2024-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
EP3353831A1 (en) * 2015-09-21 2018-08-01 SABIC Global Technologies B.V. Whitening method for phosphor's color at off-state in lighting application
CN114743990A (zh) * 2015-10-12 2022-07-12 群创光电股份有限公司 显示面板
US10797113B2 (en) * 2016-01-25 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with layered electrode structures
CN105573555B (zh) * 2016-01-28 2018-06-29 京东方科技集团股份有限公司 一种压力触控结构、触控显示面板、显示装置
CN108886108B (zh) * 2016-03-31 2020-04-24 柯尼卡美能达株式会社 发光性薄膜和有机电致发光元件
WO2017179514A1 (ja) * 2016-04-14 2017-10-19 シャープ株式会社 表示装置およびその製造方法
KR102419770B1 (ko) * 2016-05-20 2022-07-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
CN107799658B (zh) * 2016-08-29 2021-05-28 株式会社半导体能源研究所 发光元件、发光装置、电子设备、照明装置及有机金属配合物
WO2018100476A1 (en) 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN106784354B (zh) * 2016-12-29 2019-02-26 上海天马有机发光显示技术有限公司 有机发光显示器件及其制造方法、以及有机发光显示装置
CN106856205B (zh) * 2016-12-29 2020-01-10 上海天马有机发光显示技术有限公司 有机发光显示器件及其制造方法、以及有机发光显示装置
KR102645149B1 (ko) * 2016-12-30 2024-03-07 엘지디스플레이 주식회사 유기 발광 소자 및 이를 이용한 유기 발광 표시 장치
CN109285953B (zh) * 2017-07-21 2020-10-30 上海和辉光电股份有限公司 一种有机发光显示面板和电子设备
CN108963089A (zh) * 2017-12-19 2018-12-07 广东聚华印刷显示技术有限公司 量子点电致发光器件
JP2019135738A (ja) * 2018-02-05 2019-08-15 株式会社ブイ・テクノロジー フルカラーled表示パネル及びその製造方法
JP2019140361A (ja) * 2018-02-15 2019-08-22 株式会社ブイ・テクノロジー フルカラーled表示パネル及びその製造方法
CN108962062B (zh) * 2018-07-05 2021-01-15 杭州福瀚金融信息服务有限公司 一种新型灯箱
KR20200032294A (ko) 2018-09-17 2020-03-26 삼성디스플레이 주식회사 표시 장치
KR20200077250A (ko) * 2018-12-20 2020-06-30 엘지디스플레이 주식회사 표시 장치 및 그 제조 장치
JP2020104804A (ja) * 2018-12-28 2020-07-09 トヨタ自動車株式会社 電子ミラーシステム
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11785838B2 (en) * 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
DE102020207184B3 (de) * 2020-06-09 2021-07-29 TechnoTeam Holding GmbH Verfahren zur Bestimmung des Relaxationsbeginns nach einem Bildeinbrennvorgang an pixelweise ansteuerbaren optischen Anzeigevorrichtungen
KR20220164129A (ko) * 2021-06-03 2022-12-13 삼성전자주식회사 조성물, 상기 조성물을 포함한 층, 상기 조성물을 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR20230030716A (ko) * 2021-08-25 2023-03-07 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076153U (ja) 1983-10-25 1985-05-28 株式会社渡辺商店 グラブバケツト
JPH03371Y2 (zh) 1984-09-21 1991-01-09
JPS6367386U (zh) 1986-10-23 1988-05-06
JP2892556B2 (ja) 1992-08-28 1999-05-17 株式会社東芝 自動販売機
JP2722987B2 (ja) 1992-09-28 1998-03-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP3321954A1 (en) 1999-05-13 2018-05-16 The Trustees of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
US6911271B1 (en) 2000-08-11 2005-06-28 The University Of Southern California Organometallic platinum complexes for phosphorescence based organic light emitting devices
CN102041001B (zh) 2000-08-11 2014-10-22 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
US6939624B2 (en) 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
EP1202608B2 (en) 2000-10-30 2012-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Organic light-emitting devices
SG138466A1 (en) 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
TW519770B (en) 2001-01-18 2003-02-01 Semiconductor Energy Lab Light emitting device and manufacturing method thereof
KR100888424B1 (ko) 2001-05-16 2009-03-11 더 트러스티즈 오브 프린스턴 유니버시티 고효율 다칼라 전기 유기 발광 장치
ITTO20010692A1 (it) 2001-07-13 2003-01-13 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico basato sull'emissione di ecciplessi od elettroplessi e sua realizzazione.
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
ITBO20020165A1 (it) 2002-03-29 2003-09-29 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico con droganti cromofori
TWI314947B (en) 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
US20030205696A1 (en) 2002-04-25 2003-11-06 Canon Kabushiki Kaisha Carbazole-based materials for guest-host electroluminescent systems
KR100501702B1 (ko) * 2003-03-13 2005-07-18 삼성에스디아이 주식회사 유기 전계 발광 디스플레이 장치
JP4531342B2 (ja) 2003-03-17 2010-08-25 株式会社半導体エネルギー研究所 白色有機発光素子および発光装置
JP3970253B2 (ja) 2003-03-27 2007-09-05 三洋電機株式会社 有機エレクトロルミネッセンス素子
US7862906B2 (en) 2003-04-09 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Electroluminescent element and light-emitting device
JP4578846B2 (ja) 2003-04-09 2010-11-10 株式会社半導体エネルギー研究所 白色発光素子および発光装置
US7175922B2 (en) 2003-10-22 2007-02-13 Eastman Kodak Company Aggregate organic light emitting diode devices with improved operational stability
JP4408382B2 (ja) 2004-03-18 2010-02-03 株式会社 日立ディスプレイズ 有機発光表示装置
JP5076501B2 (ja) * 2004-07-16 2012-11-21 コニカミノルタホールディングス株式会社 白色有機エレクトロルミネッセンス素子、画像表示素子および照明装置
EP1784056B1 (en) 2004-07-23 2011-04-13 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
EP1786242B1 (en) 2004-08-05 2014-08-27 Konica Minolta Holdings, Inc. Organic electroluminescence device, display apparatus and lighting apparatus
US7767316B2 (en) 2004-09-20 2010-08-03 Global Oled Technology Llc Organic electroluminescent devices and composition
US7771844B2 (en) 2004-12-03 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Organic metal complex and photoelectronic device, light-emitting element and light-emitting device using the same
US7597967B2 (en) 2004-12-17 2009-10-06 Eastman Kodak Company Phosphorescent OLEDs with exciton blocking layer
US20060134464A1 (en) 2004-12-22 2006-06-22 Fuji Photo Film Co. Ltd Organic electroluminescent element
US8920940B2 (en) 2005-05-20 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP4912745B2 (ja) 2005-05-20 2012-04-11 株式会社半導体エネルギー研究所 発光素子及び発光装置
KR100713989B1 (ko) 2005-07-15 2007-05-04 삼성에스디아이 주식회사 백색 유기 발광 소자 및 그의 제조방법
US20070090756A1 (en) 2005-10-11 2007-04-26 Fujifilm Corporation Organic electroluminescent element
CN102633820B (zh) 2005-12-01 2015-01-21 新日铁住金化学株式会社 有机电致发光元件用化合物及有机电致发光元件
JP4904821B2 (ja) 2006-01-12 2012-03-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ
JP4910435B2 (ja) * 2006-03-15 2012-04-04 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンスディスプレイ
US20070247061A1 (en) 2006-04-20 2007-10-25 Vadim Adamovich Multiple dopant emissive layer OLEDs
US8330351B2 (en) 2006-04-20 2012-12-11 Universal Display Corporation Multiple dopant emissive layer OLEDs
EP1848042A1 (en) 2006-04-21 2007-10-24 LEXEDIS Lighting GmbH LED package with submount
JP5030742B2 (ja) 2006-11-30 2012-09-19 株式会社半導体エネルギー研究所 発光素子
JP5238227B2 (ja) 2006-12-27 2013-07-17 株式会社半導体エネルギー研究所 有機金属錯体および有機金属錯体を用いた発光素子、発光装置、並びに電子機器
JP5325393B2 (ja) 2007-03-30 2013-10-23 ケミプロ化成株式会社 多環式複素環化合物、該化合物よりなるホール輸送材料、ホール発光材料、該化合物を用いた電界効果トランジスタ及び有機el素子
JP2008288344A (ja) 2007-05-16 2008-11-27 Nippon Hoso Kyokai <Nhk> 有機el素子
US20080284318A1 (en) 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
US8034465B2 (en) 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
JP5325402B2 (ja) * 2007-08-03 2013-10-23 ケミプロ化成株式会社 新規なビカルバゾール誘導体、それを用いたホスト材料および有機エレクトロルミネッセンス素子
KR101427799B1 (ko) * 2008-02-21 2014-08-07 엘지디스플레이 주식회사 유기전계발광소자 및 그 제조방법
JP2009211892A (ja) 2008-03-03 2009-09-17 Fujifilm Corp 有機電界発光素子
JP2010034484A (ja) * 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
JP5325707B2 (ja) * 2008-09-01 2013-10-23 株式会社半導体エネルギー研究所 発光素子
WO2010026859A1 (en) 2008-09-05 2010-03-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2010114070A (ja) 2008-10-10 2010-05-20 Canon Inc 白色有機el素子
JP2011009205A (ja) 2009-05-29 2011-01-13 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及びその作製方法
JP5569522B2 (ja) * 2009-06-03 2014-08-13 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、その駆動方法、及びこれらを含有する照明装置
US8766269B2 (en) 2009-07-02 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, lighting device, and electronic device
JP5486440B2 (ja) 2009-08-27 2014-05-07 日本放送協会 有機el素子、表示装置、照明機器
WO2011042443A1 (en) 2009-10-05 2011-04-14 Thorn Lighting Ltd. Multilayer organic device
KR101352116B1 (ko) 2009-11-24 2014-01-14 엘지디스플레이 주식회사 백색 유기 발광 소자
CN102668157B (zh) 2009-11-27 2014-11-26 夏普株式会社 有机电致发光元件及其制造方法、以及有机电致发光显示装置
JP5124785B2 (ja) 2009-12-07 2013-01-23 新日鉄住金化学株式会社 有機発光材料及び有機発光素子
TWI620747B (zh) 2010-03-01 2018-04-11 半導體能源研究所股份有限公司 雜環化合物及發光裝置
US8993125B2 (en) * 2010-05-21 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
JP2013200939A (ja) 2010-06-08 2013-10-03 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2011162105A1 (en) * 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display, and electronic device
KR101436288B1 (ko) 2010-10-22 2014-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 화합물
WO2012111680A1 (en) 2011-02-16 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting body, light-emitting layer, and light-emitting device
KR102136426B1 (ko) 2011-02-16 2020-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 엘리먼트
KR102345510B1 (ko) 2011-02-16 2021-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
TWI743606B (zh) 2011-02-28 2021-10-21 日商半導體能源研究所股份有限公司 發光元件
JP2012195572A (ja) 2011-02-28 2012-10-11 Semiconductor Energy Lab Co Ltd 発光層および発光素子
KR102112967B1 (ko) 2011-03-23 2020-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
DE112012001504B4 (de) 2011-03-30 2017-09-21 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
KR102479832B1 (ko) 2011-04-07 2022-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR101803537B1 (ko) 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
DE112013001468T5 (de) 2012-03-14 2014-12-04 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, Anzeigevorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
KR101419810B1 (ko) 2012-04-10 2014-07-15 서울대학교산학협력단 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
JP6159037B2 (ja) 2012-04-20 2017-07-05 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
DE112013002110B4 (de) 2012-04-20 2017-09-07 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
JP6076153B2 (ja) * 2012-04-20 2017-02-08 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器及び照明装置
US8916897B2 (en) 2012-05-31 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR102204794B1 (ko) 2012-08-10 2021-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762183B (zh) * 2014-05-30 2022-04-21 日商半導體能源研究所股份有限公司 發光裝置、顯示裝置及電子裝置
US11387422B2 (en) 2014-05-30 2022-07-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11545642B2 (en) 2014-05-30 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
US11832465B2 (en) 2014-05-30 2023-11-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
KR20200090954A (ko) 2020-07-29
US20130277654A1 (en) 2013-10-24
KR20180128992A (ko) 2018-12-04
US9263695B2 (en) 2016-02-16
KR102392530B1 (ko) 2022-04-29
KR20210003954A (ko) 2021-01-12
KR20220059968A (ko) 2022-05-10
US20170271608A1 (en) 2017-09-21
TWI793013B (zh) 2023-02-11
TWI586011B (zh) 2017-06-01
TW202127702A (zh) 2021-07-16
US20150188068A1 (en) 2015-07-02
TW202301721A (zh) 2023-01-01
US9680120B2 (en) 2017-06-13
US10797257B2 (en) 2020-10-06
KR20150002674A (ko) 2015-01-07
DE112013002566T5 (de) 2015-02-05
US8981393B2 (en) 2015-03-17
CN106784344B (zh) 2019-01-01
US20210013442A1 (en) 2021-01-14
DE112013002566B4 (de) 2021-10-07
DE112013007587B3 (de) 2018-05-24
WO2013157559A1 (en) 2013-10-24
TW201731138A (zh) 2017-09-01
DE112013007588B3 (de) 2021-07-22
TWI690101B (zh) 2020-04-01
DE112013007781B4 (de) 2024-01-25
CN104247075A (zh) 2014-12-24
US10164206B2 (en) 2018-12-25
US11778846B2 (en) 2023-10-03
CN104247075B (zh) 2017-01-18
US20190036056A1 (en) 2019-01-31
TWI670873B (zh) 2019-09-01
KR20230152798A (ko) 2023-11-03
TWI765618B (zh) 2022-05-21
KR102047151B1 (ko) 2019-11-20
TW202042420A (zh) 2020-11-16
JP2013239431A (ja) 2013-11-28
CN106784344A (zh) 2017-05-31
US20160240807A1 (en) 2016-08-18
US20220059786A1 (en) 2022-02-24
US20190097152A1 (en) 2019-03-28
TW201909463A (zh) 2019-03-01
US10505135B2 (en) 2019-12-10
TWI724823B (zh) 2021-04-11
US11177451B2 (en) 2021-11-16
KR102594923B1 (ko) 2023-10-30
KR102137595B1 (ko) 2020-07-24
KR102198623B1 (ko) 2021-01-06
JP6076153B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
JP7326535B2 (ja) 発光素子、照明装置、発光装置、表示装置、及び電子機器
JP7345535B2 (ja) 発光素子、照明装置、発光装置、表示装置、および電子機器
TWI586011B (zh) 發光元件、發光裝置、顯示裝置、電子裝置、及照明裝置
JP7274623B2 (ja) 発光素子、照明装置、発光装置、表示装置および電子機器