TW201348699A - 例如血清之複合生物樣本深度maldi tof質譜分析及其用途 - Google Patents

例如血清之複合生物樣本深度maldi tof質譜分析及其用途 Download PDF

Info

Publication number
TW201348699A
TW201348699A TW102112550A TW102112550A TW201348699A TW 201348699 A TW201348699 A TW 201348699A TW 102112550 A TW102112550 A TW 102112550A TW 102112550 A TW102112550 A TW 102112550A TW 201348699 A TW201348699 A TW 201348699A
Authority
TW
Taiwan
Prior art keywords
sample
shots
point
maldi
points
Prior art date
Application number
TW102112550A
Other languages
English (en)
Inventor
Heinrich Roeder
Senait Asmellash
Jenna Allen
Maxim Tsypin
Original Assignee
Biodesix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biodesix Inc filed Critical Biodesix Inc
Publication of TW201348699A publication Critical patent/TW201348699A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • G01N33/6851Methods of protein analysis involving laser desorption ionisation mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0004Imaging particle spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)

Abstract

本發明闡述一種使用MALDI-TOF質譜儀分析生物樣本(例如血清或其他基於血液之樣本)之方法。該方法包括以下步驟:將該樣本施加至MALDI-TOF樣本板上之樣本點,及將多於20,000次雷射射擊引導至該樣本點處的該樣本及自該儀器收集質譜數據。在一些實施例中,將至少100,000次雷射射擊且甚至500,000次射擊引導至該樣本上。已發現,此稱為「深度MALDI」之方法使得質譜中之雜訊位準降低且可自該樣本獲得大量額外光譜資訊。此外,在較低射擊數量下可見之峰變得邊界更清晰且使樣本間之比較可更可靠。

Description

例如血清之複合生物樣本深度MALDI TOF質譜分析及其用途 相關申請案的交叉參照
此申請案根據35 U.S.C.§ 119主張對2012年5月29日提出申請的美國臨時申請案第61/652,394號之優先權益,其內容以引用的方式併入本文中。
本發明係關於質譜、生物標記發現、分析發展及臨床測試之領域。
在MALDI(基質輔助雷射脫附游離,matrix assisted laser desorption ionization)TOF(飛行時間,time-of-flight)質譜中,將樣本/基質混合物置於金屬板(稱為MALDI板)上之界定位置(在本文中「點」或「樣本點」)上。將雷射束引導至點上之位置上持續極短暫瞬間(稱為「「射擊」),此使得樣本的分子或其他組份脫附並游離。樣本組份「飛行」至離子偵測器。儀器以質譜形式量測樣本中之組份(分子)的質荷比(m/z)及相對強度。
通常,在MALDI-TOF量測中,將數百次射擊施加至MALDI板上之每一點且對所得光譜(每一射擊一個光譜)進行加和或平均以產生每一點之總體質譜。美國專利第7,109,491號揭示用於MALDI-TOF質譜中之代表性MALDI板。板包括樣本所施加至板的多個個別位置或 點,其通常配置成可能數百個此等點之陣列。
至少在複合生物樣本(例如血清和血漿)之質譜領域中,常規觀點認為不需要使樣本經受多於大約1,000次射擊,否則蛋白質含量將耗盡,儀器中之雷射及偵測器遭受過度磨損,且此外額外射擊將不會揭露關於樣本之大量額外資訊。因此,當自複合生物樣本獲得質譜數據時(例如,在生物標記發現研究期間),通常使用500-1000次射擊/樣本點。
據信在血清或血漿之標準MALDI-TOF MS中可偵測蛋白質之數量受限於循環中蛋白質之豐度的大的動態範圍。(Hortin G.L.,The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome.Clin.Chem.2006;52:1223-37)。因此,通常相信血清之MALDI-TOF MS僅可能用於在微莫耳/升之範圍中之高豐度蛋白質。此與MALDI-TOF質譜可係用以偵測甚至純化樣本中之痕量之極敏感技術之觀察結果相反。(Albrethsen J.The first decade of MALDI Protein profiling:A lesson in translational biomarker research.J.Proteomics 2011 74:765-73)。本申請案解釋此矛盾且提供方法以將MALDI-TOF MS之高靈敏度自簡單樣本擴展至複合生物樣本(例如血清或血漿)。
美國專利第7,736,905號(指派給本發明之受讓人)尤其闡述了生物(例如,血清)樣本之質譜的峰識別、光譜對準、正規化及其他預處理技術之方法及其在預測患者對投與抗癌藥物之反應中的用途。該‘905專利之全文係以引用方式併入本文中。
在最近的探索性研究中,本發明者已發現收集來自相同MALDI點之多次(多於20,000次,且通常100,000次至500,000次)射擊或來自相同樣本之多個點的累積光譜之組合並進行平均,此使得雜訊對信號之 相對位準降低且自複合生物樣本之質譜揭露大量額外光譜資訊。此外,使用MALDI TOF MS之各種標準範例似乎是完全錯誤的。首先,在點上之蛋白質含量完全耗盡之前,可對單一點運行數十萬次射擊。第二,經由將多次射擊平均降低雜訊使得先前不可見的峰(即,在1,000次射擊時未出現的峰)出現。第三,當樣本經受大量的射擊(遠多於1,000次)時,甚至先前可見的峰變得邊界更清晰且使峰強度之量測及樣本間之比較可更可靠。
作為實例,本發明者已驚訝的發現,當血清或其他基於血液之樣本使用多個MALDI點以大於20,000次射擊/點且通常250,000次或更多次射擊/點且甚至2,800,000次射擊經受MALDI-TOF時,每一試驗展示並未使得點之蛋白質含量不可使用。進一步發現,該等多次射擊所獲得之光譜中含有極大量的光譜資訊(峰),該等資訊在樣本經受典型的500次或1,000次射擊時並未揭露。據信在(例如)200,000次射擊時所揭露之峰對應於血清樣本中存在之極少量完整(未經消化)蛋白質。使用本文所闡述且在本文中稱為「深度MALDI」方法(即,每一點大於20,000次射擊,且較佳來自相同點或來自多個點之組合的大約250,000次至750,000次或更多次射擊)之技術,相信可以半定量及可重現方式偵測非常大量之蛋白質且可能血清樣本中所存在所有蛋白質的至少一半。以半定量方式偵測意味著強度之量測值(峰高度、峰下面積)與樣本中蛋白質之絕對豐度或濃度有關。以可重現方式偵測意味著可多次量測相同樣本且在某一可接受變異係數內獲得相同結果。
獲得來自單一MALDI點之多於20,000次射擊可超過現代MALDI-TOF機器之參數;然而,吾人在此文件中闡述若干種在此限制附近工作之方法。理想地,MALDI-TOF儀器經設計以適應本文件中所闡述之「深度MALDI」方法,且在以下描述中提供關於此機器之若干具體建議,包括自動化光柵掃描特徵及對單一點執行更多次射擊的能 力。
使用來自MALDI樣本點之幾十萬次射擊的最迫切問題係在通常的點製備中,僅點內的一些射擊位置獲得足夠的離子流而實質上有助於組合光譜中之信號。儘管已使用勞動密集型手動過程獲得初始結果以目視地在MALDI板上之給定點內選擇高離子產量位置用於雷射射擊,且可利用此方法繼續進行,但使選擇用於雷射射擊之位置的過程自動化係可能的且較佳用於本發明之高通量實施方案(否則出於不浪費太多次雷射射擊且使雷射使用壽命實質上退化的簡單原因)。替代方法係以大多數隨機選擇之位置產生高離子流之方式改良MALDI點之品質。兩種方法均可用於深度MALDI光譜之生成中。
此文件中闡述多種用於光譜獲取之自動化的方法。獲取之自動化可包括以光柵方式界定點之雷射掃描的最佳運動圖案,並生成用於在點內之離散X/Y座標位置處進行多次光柵掃描之規定序列,以產生來自一或多個點之所謂750,000次或3,000,000次射擊。舉例而言,自四個樣本點中之每一者之250,000次射擊所獲取之光譜可組合成1,000,000射擊光譜。如先前所提及,在含有相同樣本之多個點上所收集之數十萬次射擊至數百萬次射擊可一起進行平均以產生一個光譜。一種自動化之方法涉及生成用於樣本點之非相鄰X/Y光柵掃描之光柵檔案。另一種方法涉及將點分成子點(sub-spot)網格(例如,3×3或5×5網格)並針對在子點之離散X/Y座標位置處之光柵掃描生成光柵檔案。所揭示之第三種方法使用影像分析技術來識別含有相對較高濃度之樣本材料用於光譜獲取(多次射擊)之所關注區域及/或彼等蛋白質濃度相對較低之區域,並在具有相對較高蛋白質濃度之區域中執行光譜獲取。
本發明之其他態樣係關於最佳化樣本至MALDI板之施加過程(「點樣」)以在單一點內產生樣本/基質之均勻、均質晶體。此過程有 助於使用自動化方法自MALDI板上之單一點獲得數十萬次射擊。
本發明之此發現及方法具有許多應用,包括生物標記發現、測試發展、物質測試、現有測試之驗證及假設生成(例如在生物標記發現努力中)。該等方法藉由其與現有方法相比以高通量方式可重現地量化複合樣本中更多種蛋白質之量的能力進一步增強質譜研究中之「稀釋並照射(dilute and shoot)」方法的潛力。舉例而言,該等方法可用於體育運動員之禁藥測試、藥物測試(例如,用於偵測THC分析物)、代謝物測試、用於癌症抗原125(CA-125)、前列腺特異性抗原(PSA)或C-反應性蛋白質之存在及量的測試以及環境或食物測試。應用之其他實例包括基於來自患者之回溯樣本之臨床樣本之蛋白質含量經由相關性研究及隨訪臨床驗證開發臨床測試。
此文件中所使用之術語:
1.術語「瞬態光譜」係指自引導至MALDI點中之單一位置或x/y定位之雷射射擊的單一封包(每一封包係由所界定射擊次數組成,例如100次、500次、800次射擊等)所獲得之光譜。
2.術語「位置光譜」係指當雷射在MALDI點中之相同位置處照射x次時一或多個瞬態光譜之累積和。
3.術語「點光譜」係指在整個單一MALDI點上方照射期間所獲取之所有位置光譜之總和。點光譜可僅使用加和操作以對位置光譜進行加和來獲得,或在對位置光譜執行對準及/或正規化操作(例如,總離子流正規化)之後使用加和操作來獲得。點光譜通常可自MALDI點上之100,000次至500,000次射擊獲得。獲得點光譜之其他選項係可能的,包括a)對位置光譜執行背景減除及正規化且然後加和;b)對位置光譜執行背景減除及對準且然後加和;c)對位置光譜執行背景減除、對準及正規化且然後加和。已發現,最佳動態範圍係藉由位置光譜之總離子流正規化(關於細節參見美國專利第7,736,905號)且然後加 和達成;將在點光譜中實施任何背景減除。
4.術語「射擊位置」係指雷射束截斷MALDI點用於照射之給定位置。為獲得每一MALDI點200,000次或500,000次射擊,例如,手動地或更佳以自動化方式在點上方使用雷射束之光柵掃描將雷射束在MALDI點上方引導至眾多(例如,數百)個別射擊位置。如下文所解釋,光柵圖案設計很重要,此乃因通常不期望順序地照射緊毗鄰點位置。因此,光柵圖案設計順序地選擇具有一定空間間隔之射擊位置並在整個MALDI點上方以空間移位方式重複掃描以避免點中緊毗鄰位置的順序照射。
5.術語「瞬態光譜過濾」係指用於接受或拒絕瞬態光譜之過濾或選擇過程。作為實例,在瞬態光譜過濾中,為使瞬態光譜被接受,瞬態光譜中在預定m/z範圍內必須存在最小數量(例如,5)的峰,且瞬態光譜中之信雜比必須高於規定臨限值。亦可使用其他過濾準則,例如光譜之總離子流需要超過某一預定義臨限值,或藉由使用下文所解釋之排除列表或納入列表。光譜過濾接受或拒絕整個瞬態光譜。
6.如本文所用,術語「複合生物樣本」係定義為含有數百種或數千種豐度覆蓋大的動態範圍、通常許多數量級之分析物(例如完整蛋白質)的樣本。該等複合生物樣本之實例包括血液或其組份(血清或血漿)、淋巴液、導管液、腦脊髓液及前列腺擠出液(expressed prostatic secretion)。該等複合生物樣本亦可由環境或食物樣本組成。
10‧‧‧峰
12‧‧‧MALDI-TOF靶板
12’‧‧‧佈局
14‧‧‧樣本點或「點」
14’‧‧‧點F17
16‧‧‧位置座標系統
18‧‧‧個別子點/矩形網格
30‧‧‧明亮位置
32‧‧‧暗位置
120‧‧‧相對較高產量之區域/晶體結構/晶體
122‧‧‧相對較高產量之區域/晶體結構
124‧‧‧左下方之區域/黑色區域
126‧‧‧基質區域/黑色區域
130‧‧‧儀器工作站
132‧‧‧影像
134‧‧‧一組點
150‧‧‧評估頁面
400‧‧‧光柵掃描圖案
圖1A-1C係在所選質量/電荷範圍(m/z比為7,000至8,000)內之相同樣本之三個MALDI質譜的圖解說明,其圖解說明可偵測峰含量隨射擊次數增加而增加。圖1A之光譜係自2,000次射擊產生,圖1B之光譜係自100,000次射擊產生,且圖1C之光譜係自500,000次射擊產生。注意自本發明方法產生之圖1B及1C的光譜如何揭露在圖1A之光譜(其基 本上表現為雜訊)中不存在之關於該樣本的大量光譜資訊。
圖1D及1E係質譜之其他實例,其展示本發明之深度MALDI方法中所獲得光譜之巨大動態範圍。在圖1D中,在圖1D之插圖中放大展示在7140Da至7890Da的m/z範圍中之光譜之一部分,其展示在大約500,000次射擊時所獲得之大量光譜資訊。在圖1E中,在插圖中展示Y軸經放大之光譜,以展示額外光譜資訊及在m/z為約9520之區中的峰,該等峰係利用深度MALDI方法揭露但其在典型的約1,000次射擊光譜中不可見。
圖2A係含有配置成矩形陣列之384個樣本點或「點」之MALDI-TOF靶板的平面圖。點係由行編號1……24及列A……P識別,例如,左上方點識別為A1。圖2B係個別樣本點P1之放大視圖,展示其被分成具有X/Y位置座標及在點中心之原點(0,0)之5×5矩形網格。矩形網格及位置座標用於自動化光柵掃描方法中以自該點之100,000次或更多次射擊獲取光譜,如本文所詳細闡述。
圖3係沈積於圖2A之MALDI板中單一點之生物樣本/基質混合物之相片。理想地,點含有在該點內之均勻均質結晶樣本,如圖3中所示。
圖4係一種用於自圖3之點獲得100,000次或更多次射擊之可能的光柵掃描圖案之圖解說明。點經光柵掃描多次,例如25次。圖4中所示之每一符號集合(三角形、正方形、X等)描繪其中在單一光柵掃描中掃描(射擊)點之個別離散X/Y位置之集合。在每一位置處,點可經受多次射擊,例如,700次或800次射擊。
圖5係展示圖4之光柵掃描圖案在圖3之樣本點上之疊加的圖解說明。
圖6係來自MALDI-TOF儀器使用者介面之螢幕擷取畫面,其展示對每一位置/光柵來自800次雷射射擊(例如,在圖2B或5之光柵掃描 中)之累積光譜進行加和之命令。
圖7係樣本點之一部分之影像,其展示樣本/基質混合物未以空間均勻方式結晶之區域。
圖8係來自MALDI-TOF儀器使用者介面之螢幕擷取畫面,其展示由儀器中之相機捕獲之點的一部分之影像及用於點之自動化光柵掃描之點群組之選擇。
圖9係來自MALDI-TOF儀器使用者介面之另一螢幕擷取畫面,其展示用於光譜評估、光譜累積及雷射跨越點移動用於以不同圖案觸發之工具。
圖10係用於在數據獲取期間接受或拒絕瞬態光譜之評估頁面的螢幕擷取畫面。
圖11係展示用於消除背景峰之排除列表的螢幕擷取畫面。
1.概述
已發現,在MALDI-TOF質譜中在單一點上使複合生物樣本(例如基於血液之樣本)經受多次射擊(>20,000次且甚至100,000次或500,000次射擊)使得雜訊位準降低並揭露先前不可見的峰(即,在2,000次射擊時未出現的峰)。此外,可實施此而不耗盡樣本之蛋白質含量。另外,先前可見之峰變得邊界更清晰且使樣本間之比較可更可靠。在基於血液之樣本之標準光譜中(約1,000次射擊),通常60-80個峰係可見的,而利用200,000次射擊通常約200-220個峰係可見的,利用500,000次射擊通常約450-480個峰係可見的,且利用2,800,000次射擊通常約760個峰係可見的。應瞭解,此處所報告峰之數量係與MALDI-TOF儀器設定有關且該等數量僅係大致指導;取決於儀器設定以及特定峰偵測演算法(且當然實際樣本),更多或更少的峰將可見。亦必須注意,峰之品質及強度之量化(相對於豐度)亦至少在一定程度上較佳,如下 文所論述之圖1A-1D中所圖解說明。
圖1A-1C係展示相同樣本(血清)之三個光譜在所選質量/電荷範圍(m/z比為7,000至8,000)內之曲線圖,其圖解說明隨射擊次數增加可偵測峰含量增加。圖1A之光譜係自2,000次射擊產生,圖1B之光譜係自100,000次射擊產生,且圖1C之光譜係自500,000次射擊產生。特別地注意圖1A之光譜如何基本上表現為雜訊且表現為含有很少或沒有所關注之可辨別光譜資訊。將圖1A與1B相比較,其中圖1B之光譜(自100,000次射擊獲得之光譜)含有許多圖1A之光譜中不存在之個別峰(例如,在10處所識別之峰)。在圖1C之光譜中,在光譜中展示許多在其他光譜中未展示或者可能在底部光譜中已被視為雜訊之峰。將圖1C及1B與圖1A相比較,很明顯在100,000次射擊及500,000次射擊時揭露大量圖1A之光譜(2,000次射擊)中不存在之光譜資訊,且藉由深度MALDI方法降低雜訊位準,如圖1B及1C中所展示。
圖1B及1C之光譜的光譜之靈敏度增加至所規定且可允許峰強度與豐度相關聯之動態範圍。可使用峰強度來分析複合生物樣本是否存在給定濃度之分子。舉例而言,在此方法中,將界定樣本中所關注之分子(具有已知質量),將樣品摻雜至目標豐度位準(莫耳濃度,或ppm)並施加至MALDI板;對板執行多次射擊(例如,多於100,000次)直至分子以特定豐度(強度)可靠地存在於光譜中(在已知m/z定位處之峰),並記錄射擊次數(「x」)。此用以生成稱為「參考光譜」之程序將經受常規鑒定及標準化方法以確保可靠性,如對所屬技術領域之技術人員顯而易見的。然後,用於測試之所關注樣本將經受MALDI-TOF及x次射擊。若所得光譜揭露在對應於所關注分子之已知定位處之峰強度小於參考光譜中之峰強度,則樣本中所關注分子之濃度小於用於生成參考光譜之樣本中之分子濃度。此方法可同時用於多種分析物。此外,可獲得在已知濃度範圍內之關注分子在x次射擊時的多個 參考光譜且測試光譜可與參考光譜相比較以測定測試樣本中關注分子之近似濃度。此方法可用於許多目的,例如,藥物測試(例如,針對運動員)、代謝物濃度之測試、環境樣本測試等。關注分子可為質量範圍為約1K道爾頓(Dalton)至50K道爾頓之蛋白質,例如代謝物、癌症抗原(CA)125、前列腺特異性抗原(PSA)、C反應性蛋白質等。
圖1D係深度MALDI方法中所揭露光譜之巨大動態範圍之圖解說明。圖1D中之插圖係m/z範圍介於7140kDa與7890kDa之間之光譜的一部分,其展示在約~500,000次射擊時所獲得之光譜及眾多峰10。將背景估計(虛線)疊加於光譜上,將其減去以產生背景減除光譜。注意,插圖且特定而言眾多峰10中之光譜資訊在圖1D之主要部分中並不可見。在圖1E中,在插圖中展示Y軸經放大之光譜,以展示額外光譜資訊及特定而言在m/z為約9520之區中之峰的強度資訊,該等峰係利用深度MALDI方法揭露但其在典型約1,000次射擊光譜中不可見。
圖2A係含有配置成矩形陣列之384個樣本點或「點」14之MALDI-TOF靶板12的平面圖。點係由行編號1……24及列A……P識別,例如,左上方點識別為A1。圖2B係疊加於具有原點(0,0)之X/Y座標系統16上之個別樣本點P1(14)之放大視圖。樣本點14展示分成5×5矩形網格25個個別子點18。矩形網格18及位置座標系統16係用於自動化光柵掃描方法中以自該點之100,000次或更多次射擊獲取光譜,如本文所詳細闡述。
最初注意到,多次射擊(>20,000)之自動化生成並非絕對必需的且可使用當前可用MALDI-TOF儀器之現有特徵。一般而言,在本發明深度MALDI技術中,重要的是選擇在MALDI點上當暴露於雷射射擊時產生高蛋白質產量之位置。現有質譜儀器之標準軟體允許使用正則預定義路徑(即,正方形圖案、六邊形圖案、螺旋圖案(自點之中心))在點上方移動。MALDI板上之射擊位置係在稱為「教示 (teaching)」(Bruker公司之現有MALDI-TOF儀器中存在之FlexControlTM(Bruker)質譜儀控制軟體之一部分)之過程中定義。(儘管在本文偶爾提及Bruker公司儀器之特徵,但本發明之方法當然不限於任何特定儀器或特定製造商之儀器。)
含有均勻地分佈於點內之樣品/基質混合物之MALDI點的實例展示於圖3中。Bruker公司之質譜儀包括展示MALDI點之各區域之內置相機;在手動選擇中將挑選明亮位置30以使雷射瞄準此處。應避免暗位置32。有時明亮位置並不產生良好產量,此可與鹽晶體之存在有關。在照射之過程中,點中之區域可變得耗盡;因此需要避免暗區域(具有低產量之耗盡區域)。手動方法將繼續進行以在照射過程期間獲取並展示點之影像。
在初步試驗之過程中,發現當使用越來越多次射擊時變得越來越難以發現良好位置。當重複使用同一點時亦發現此效應,例如在先前50萬次射擊之後增加第二個50萬次射擊。第二輪並未使得質譜之雜訊位準的降低如所預期的那樣多。實際上,所得平均光譜可具有更差之總體品質,此可能係由對來自太多空白位置之射擊進行平均引起的。如僅使用肉眼來選擇射擊位置並接受或拒絕光譜而不使用瞬態光譜過濾,此可能導致針對早期位置之獲取偏差,且需要控制該等偏差。若使用自動化光柵掃描及位置光譜過濾,此偏差消除。
然而,為增加通量,期望使位置選擇之過程自動化並獲得來自給定點之高射擊次數。在以下章節中闡述若干種方法。下文所闡述之方法能夠在13-15分鐘內自位於MALDI板之三個點(250,000次射擊/點)上之樣本獲取750,000次射擊,其中樣本要求係3微升血清。
2.光譜收集之自動化
儘管已使用勞動密集型手動過程獲得結果以目視地在MALDI板上之給定點內選擇位置用於多次射擊以獲得100,000次或500,000次射 擊/點,且可利用此方法繼續進行,但使選擇用於雷射射擊之位置的過程自動化係可能的且此文件中闡述若干種方法。獲取之自動化可包括以光柵方式界定點之雷射掃描的最佳運動圖案,及在點內之離散X/Y位置處用於多次光柵掃描之序列生成,以產生來自樣本點之(例如)100,000次、250,000次或500,000次射擊。一種自動化之方法涉及生成用於樣本點之非相鄰X/Y光柵掃描之光柵檔案。光柵圖案設計很重要,此乃因通常不期望順序地照射緊毗鄰點位置。因此,光柵圖案設計順序地選擇具有一定空間間隔之射擊位置並在整個MALDI點上方以空間移位方式重複掃描以避免順序照射點中之緊毗鄰位置並選擇新的射擊位置。
另一種方法涉及將點分成子點網格(例如,3×3或5×5網格)(參見圖2B)並針對在子點之離散X/Y位置處之光柵掃描生成光柵檔案。
所揭示之第三種方法使用影像分析技術來識別含有相對較高濃度之樣本材料用於光譜獲取(多次射擊)之所關注區域及/或彼等樣本(例如,蛋白質)濃度相對較低之區域,並避免在具有相對較低樣本(例如,蛋白質)濃度之區域中進行光譜獲取。
A.非相鄰X-Y座標之光柵掃描
一種獲得來自點之多次射擊之過程的自動化方法涉及生成用於樣本點之非相鄰X/Y光柵掃描之光柵檔案。此將結合圖4及5闡述。
圖4係用於自圖3之點14獲得100,000次或更多次射擊之光柵掃描圖案400之圖解說明。點14以順序方式經光柵掃描多次,例如25次。圖4中所示之每一符號集合描繪其中點以單一光柵掃描掃描(射擊)之個別離散X/Y位置。X/Y位置係根據在中心處具有原點(定位0,0)之圖中所示的座標系統來定義。在掃描期間,當將雷射引導至每一位置時,在該位置處之樣本可經受多次射擊,例如,每一定位/位置700次或800次射擊。自圖4中所示之圖案應注意到,每一光柵掃描係由點內 之個別離散位置處之照射組成。個別光柵掃描係順序地實施,由此避免照射點中之緊毗鄰位置。圖5展示將圖4之光柵圖案疊加於圖3之點上方。
生成具有如圖4中所示非相鄰X/Y座標用於光柵掃描之25個光柵檔案之程序闡述於附錄1中,其係本揭示內容之一部分。
B.使用網格將點分成子點並光柵掃描子點
此方法之目的係使在樣本點(即,點A1、點A2等)上手動選擇位置/光柵之過程自動化,以在數據獲取期間產生「可接受」光譜並繼續進行直到幾十萬個光譜添加至加和緩衝器為止。對幾十萬個光譜進行加和/平均增加信雜比,且因此允許偵測明顯更多的峰,如先前所闡述。
如上文所闡述利用非相鄰光柵掃描之情況一樣,當如圖3中所示樣本/基質混合物實質上均勻且均質地分佈於整個點上方時,使用本章節中所述之網格工作良好。達成此之目前較佳方法稍後在此文件中針對稀釋並照射血清及芥子酸(基質)闡述。由於此均勻分佈,因此可自樣本點上之實質上所有位置/光柵獲取光譜,此消除針對「可接受」光譜預先評估所有位置/光柵之需要。
在樣本點上收集幾十萬個光譜可藉由以下達成:定義將點14細分成子點或網格元件18且覆蓋樣本點之網格(圖2B),及自每一子點18內之每一位置/網格點/光柵收集定義數量之光譜,直至期望數量之光譜添加至加和緩衝器為止。Bruker軟體之先前版本在自動模式中僅允許對每一樣本點最大20,000個總光譜進行加和(圖6)。
為避開此限制,最初定義5×5網格區域(圖2B,16),其將每一樣本點分成25個8×8網格或子點18(圖2B)。針對每一網格或子點18生成單獨的光柵檔案。儀器經指示以在網格18內之每一位置/光柵處獲取800個光譜(射擊),直至將20,000個光譜添加至(光譜)加和緩衝器為 止。此時,自動化方法1指示儀器移動至下一網格或子點18且使用下一光柵檔案並生成另一20,000個光譜。在實踐中,設計25個光柵檔案,其一者用於每一子點18,其中之每一者附接至單獨的autoExecuteTM(Bruker)方法,其根據方法內之評估準則設定獲取數據。
此程序容許使用Bruker's flexcontrolTM軟體工具每批20,000次射擊獲取500,000個射擊光譜(20,000個射擊光譜/網格×25個網格),而無需使用成像應用(例如flexImagingTM(Bruker))。此程序之結果係一個樣本點25個光譜檔案,每一者含有一個包含20,000個射擊光譜之加和光譜。然後可對該25個光譜檔案進行加和以產生自500,000次射擊所獲得的MALDI板上之單一點之總體光譜,例如如圖1C、1D及1E中所示。
最新版本之flexcontrol TM(Bruker)允許累積來自高達500,000次射擊之加和光譜。舉例而言,在圖6中,autoExecuteTM(Bruker)方法編輯器允許對800個射擊步驟(每一位置/光柵800次射擊)中之20,000次射擊加和。
然而,每一樣本點只能收集一個加和光譜(x個瞬態光譜之總和)。為自單一樣本點獲取若干批次之加和光譜,吾人不得不對MS儀器中之現有軟體特徵進行調整。利用該等調整,可自一個或若干個組成網格之光柵(例如上文所闡述者)獲取光譜,並個別地保存每一瞬態或位置光譜。舉例而言,儀器可經指示以收集並保存在圖2B中之網格或子點18中之每一光柵(x,y定位)處所獲取之每一800射擊位置光譜,而無需添加至加和緩衝器。對樣本點A1、A2、A3等內之所有子點重複相同過程(例如,可自250個光柵/樣本點獲取800個射擊光譜=200,000次射擊/樣本點)。可在應用或不應用光譜過濾之情況下在autoExecute TM(Bruker)中獲取位置光譜。
C.影像分析
光譜獲取自動化之一個選項係影像處理技術以識別具有高蛋白質產量/高樣本濃度之點上之空間位置,尤其在樣本未空間均勻地分佈於點上而是集中於離散區域中之情形中。在一個可能實施例中,使用儀器中所包括之相機獲取訓練點(training spot)之光學影像。然後,自訓練點上之多個位置的光柵獲取質譜。使用所得質譜結合點之光學影像生成分類機制,以根據光學影像偵測自給定樣本製備製得之其他點之高產量位置。此分類然後將應用於實際樣本點。儘管此係一種完美的解決方案,但會遇到捕獲相機原始數據(camera feed)及相機影像之位置至雷射射擊位置之重複校準的問題。
一種替代方法係使用質譜儀直接以質譜成像方法之形式研究點。此想法係首先在點上之小尺度(正方形)圖案之每一位置處以低數量之射擊(數十次)運行初步掃描及照射。將收集該等光柵位置中之每一者的光譜,且將記錄每一位置之總離子流或在某一預界定m/z範圍內之離子流。將基於來自初步掃描運行之N個最高強度位置生成新的光柵檔案,並用於最終質譜獲取中。此方法利用Bruker FlexImagingTM軟體作為最可行解決方案來在質譜成像運行中生成多個光譜。用軟體分析該等光譜,並生成最終光柵掃描圖案。儘管此方法對於使用芥子酸作為基質之標準稀釋並照射過程可能係有用的,但對於其他基質及預分餾樣本集合(例如CLCCA,參見Leszyk,J.D.Evaluation of the new MALDI Matrix 4-Chloro-a-Cyanocinnamic Acid,J.Biomolecular Techniques,21:81-91(2010))及諸如NOG沈澱等其他方法而言將係次最佳的(Zhang N.等人,Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation.Rapid Commun.Mass Spectrom.18:889-896(2004))。此替 代方法之重要態樣係查找MS成像部分中之獲取設定以便不會生成太大的檔案。標準獲取檔案大約為1百萬位元組,且對於400×400光柵掃描(400個位置,每一位置400次射擊)而言生成16,000個光譜。由於對該等光譜之要求並不繁重,且僅需要估計總離子流,因此可以低解析度設定工作。可自自動光譜獲取設定直接獲得可用位置列表,即,獲得成功獲取或獲取失敗的列表。根據吾人的研究,似乎可使用質量過濾作為MS成像包之一部分以生成符合一定準則之位置列表(經由檔案列表辨識)。儘管此將極大地有助於生成原型工作流程,但其將需要經由專用軟體最佳化以避免半手動過程。
圖7展示使用CLCCA作為基質之MALDI點之區,其中高產量區域係由線性結構組成且低產量之區域展示為暗區域。對於該等情況而言,在基質樣本結晶極不均勻之地方(如圖7中所示),影像分析方法似乎最敏感。影像分析識別相對較高產量之區域(120,122)。相對較低產量之區域(例如左下方之區域124)及基質區域126係藉由影像分析軟體識別並在照射期間忽略。
識別點上之相對高級低產量之區域的影像分析軟體可採取多種形式,且可由熟悉此項技術者開發。舉例而言,點之黑色及白色影像(圖7)係由像素陣列組成,每一者具有8位元量化值,其中0為黑色(無信號)且255為白色(飽和)。過濾可用於識別相對較高產量之區域,例如藉由識別像素值大於(例如)100之像素之別為「高產量」且像素值低於40之像素識別為相對「低產量」。然後可對對應像素具有100或以上之值的樣本點之該等區域進行掃描。當該等區域經測定具有鹽晶體或導致低產量之其他性質時,亦可將像素值為240-255之點位置濾除。再參照圖7,晶體結構120、122之像素的像素值在100至240的範圍內且因此將被掃描,而黑色區域124及126將不被掃描。亦可使用形態處理技術來識別諸如圖7之晶體120等結構。影像分析軟體可包括形 態處理即過濾二者以測定掃描區域。另外,在掃描過程期間點可改變(由於樣本耗盡)且在掃描期間可運行影像處理以最佳化自點生成100,000次或更多次射擊之過程期間的照射,及在照射期間避免彼等低樣本濃度之位置。
圖8係MALDI-TOF儀器之螢幕擷取畫面,其展示包括點14(在此情況中板之點F17)之影像132之儀器工作站130的顯示器。板之佈局展示於12’處,其中點F17在14’處指示。選擇一組點134(D9至F20)以自動化模式使用上述影像分析方法運行。
圖9係來自儀器之另一螢幕擷取畫面。當前儀器允許使用者設定評估區以接受或拒絕瞬態光譜(使用評估標籤),設定每一點累積多少個光譜(使用累積標籤)及跨越該點「移動」以便可以某一圖案觸發雷射(使用「移動」標籤,如所示)。選項包括隨機行進或以圖案(例如,六邊形或螺旋形)移動。軟體亦允許使用者持續觸發雷射且根據該等參數獲取並添加至總光譜,直到自射擊位置收集750次射擊之光譜為止,且然後移動至下一射擊位置。可設置在射擊位置被認為係失敗點之前的嘗試次數。識別可能的低產量之區域並避免在該等區域中照射之影像分析方法幫助明顯減少或消除該等失敗判斷。
圖10展示選擇用於接受或拒絕瞬態光譜之質量範圍的評估頁面,如在150處所指示。在獲取期間,若瞬態光譜不具有在預界定範圍內(在此情況中5,000Da至18,000Da)且超過臨限值集合(基於解析度、信號強度或其他因素)之峰,則其將被拒絕。換言之,瞬態光譜將不會添加至加和緩衝器以形成位置光譜(對來自所有射擊之光譜進行加和)。
圖11展示若存在不想納入評估中之特定峰,則可製作排除列表並將該等峰標記為「背景峰」之評估頁面。軟體具有用於界定背景峰之基質的預定義「對照列表」,或可輸入峰列表。
3.收集來自多個點之光譜
一般而言,深度MALDI技術可擴展以將來自多個點之光譜組合。舉例而言,可自標準MALDI板上之點A1、A2、A3、A4及A5(參見圖2A)之每一者獲得樣本之500,000次射擊,並將所得光譜組合(加和)成一個由2,500,000個光譜(射擊)之和組成之總體光譜。根據先驗,沒有理由相信不能將來自多個點之光譜組合以達到極高的射擊次數,即100個點×1百萬次射擊,每一者可給出來自100百萬次射擊之結果。此程序存在實際限制,例如,雷射可能經常會失敗。
實例
在此方法之一個實例中,可使用先前所闡述之技術使用用於掃描多個點之手動或自動生成光柵自MALDI板上之相同血清的多個點收集5百萬次射擊之光譜。在此方法中,較佳在MALDI板上可重現地獲得單一樣本之均質點。此可使用本文所闡述之方法達成。
1.將經稀釋血清點樣於MALDI靶板上。 程序:
將血清1:10利用HPLC級水稀釋並渦旋。將樣本與基質(20mg/ml芥子酸存於50%ACN/0.1%TFA中)以1:1(v/v)在0.5ml microfuge試管中混合並渦旋。將4μl基質/樣本混合物點樣於MALDI靶之一或多個點上。
在此實例中使用MALDI板中之36個點(位置):
試管1:在MALDI板之位置E13、E14及E15上點樣(參見圖2A)
試管2:在位置E16、E17及E18上點樣
試管3:在位置E19、E20及E21上點樣
試管4:在位置E22、E23及E24上點樣
試管5:在位置F1、F2及F3上點樣
試管6:在位置F4、F5及F6上點樣
試管7:在位置F7、F8及F9上點樣
試管8:在位置F10、F11及F12上點樣
試管9:在位置F13、F14及F15上點樣
試管10:在位置F16、F17及F18上點樣
試管11:在位置F19、F20及F21上點樣
試管12:在位置F22、F23及F24上點樣
樣本點E13至F18(試管1-10)係在渦旋之後使用同一移液管尖端直接施加3次(3×每一試管的15μl中的4ul;而最後六個樣本點F19-F24(試管11及12)係如點E13-F18一樣施加,而且在板上用移液管上下吸取。
藉由將靶板置於試驗臺上使MALDI板上之點於環境溫度下乾燥。
結果:
對於點E13至F17(直接施加至板上而無進一步板上混合)而言,每一試管之第三點明顯比前兩個點均質。肉眼評價均質性:第三點最佳,第二點係第二佳,第一點具有最小均質,除來自試管4之三個點的第二者但是看起來比第二點樣更像來自每一試管之第三點樣之E23以外。
試管中藉由渦旋混合並在板上用移液管上下吸取之樣本點F18、F19、F20、F21、F23及F24相當相似且具有與E13至F17之集合中之第三點相同之均勻外觀。F22看起來大約與E23相同。
2.自5百萬次射擊獲取光譜
來自大約312,500次射擊/點之質譜數據係在執行以上程序之後自16個MALDI點獲得:E15、E18、E21、E23、E24、F3、F6、F9、F12、F15、F18、F19、F20、F21、F23及F24。
使用以上及附錄中所闡述之光柵掃描檔案,對來自每一點之光譜進行加和以產生自大約5,000,000次射擊獲得之樣本之總體光譜。
4.最佳化樣本至MALDI板之施加(點樣)
最佳化樣本至MALDI板之施加以提供結晶樣本至MALDI板上之每一樣本點之均質且均勻分佈,其一個實例展示於圖3中。如下所述執行若干試驗以尋找將樣本混合物供應至MALDI板上之點(「點樣」)之最佳程序。該等試驗闡述於此章節中。
初始,製備具有血清之若干不同製劑。除非另有說明,否則將2μl基質進行點樣。除非另有說明,否則將稀釋樣本及基質介質在樣本製備試管中混合。除非另有說明,否則不會自單一製備試管點樣1個點以上,此乃因自樣本製備試管取出多個等份試樣會影響結晶。
實施產生均質點之磨光鋼板(Ground Steel Plate)試驗。該等程序係如下:
1.將樣本1:10稀釋(2μl樣本+18μl水),然後1:1(v/v)與存於50%ACN/0.1%TFA中之基質(芥子酸25mg/ml)混合並將2μl基質點樣。此程序不能產生良好的均質晶體。
2.用基質裝填尖端。將2μl基質吸取至點樣尖端並使其停留30秒。將樣本1:10稀釋(2μl樣本+18μl水),然後1:1(v/v)與存於50%ACN/0.1%TFA中之基質(芥子酸25mg/ml)混合。將過量基質自移液管尖端排除。將移液管尖端置於樣本基質混合物中並用移液管上下吸取3次。在不更換尖端之情形下將2μl樣本基質混合物進行點樣。此程序形成均質之良好晶體。由於此係磨光鋼板,因此樣本基質混合物的展開程度不會如在拋光鋼板上般高。留在移液管尖端之乾燥晶體可藉由作為進一步晶體形成之晶種而改良結晶。
3.研究溫度對結晶之影響。將樣本1:10稀釋(2μl樣本+18μl水),然後1:1(v/v)與存於50%ACN/0.1%TFA中之基質(芥子酸25 mg/ml)混合。將試樣置於37℃水浴中達5分鐘。將樣本自水浴移除並立即點樣。此程序不能產生良好的均質晶體。
4.重複以上試驗2,只是將4μl樣本混合物而非2μl進行點樣。此程序形成均質之良好晶體。將4μl進行點樣完全覆蓋點直徑並產生良好晶體及數據。此係目前認為最佳之程序。
注釋:此處用於點樣之程序係以舉例方式而非以限制方式提出,且當然所揭示方法的變化係可能的。舉例而言,可將基質與樣本材料在試管中混合並在點樣之前將其放置數分鐘。已注意到,獲得的均質晶體越多,自同一試管使用同一移液管尖端獲得之點越多。舉例而言,可自同一試管使用同一移液管尖端點樣10個點並僅收集最後5個左右點之數據;或者可在開始在MALDI板上點樣之前丟棄來自該試管之前5份4μl等份試樣。
亦已發現根據1中之程序但使用同一移液管尖端在拋光之鋼靶板上對同一試樣試管點樣10次(每一點2.5μl)獲得類似結果(光譜品質)。
5.分析性能評估 技術可重現性
可實施技術可重現性研究以(例如)每天以100個批次運行1,000次技術重複。可研究對樣本(點)製備(在板上或脫離板)之依賴,尤其看製備方法是否產生更均勻離子流產量,例如樣本稀釋度之變化。亦可監測點至點間之高產量位置的數量如何變化以及如何將此變化最小化。在高粒度位準下監測及記錄所有獲取及製備係良好實踐。
樣本間可重現性
樣本間可重現性之類似問題可關於樣本間變化來研究。可出現的新現象:一些樣本可能富含蛋白質,且導致具有更多高產量位置之點。可獲得來自一些樣本屬性方式(光學密度及色彩)之多種量度或使樣本獲取裝置(例如,針對血清)標準化以生成更多可重現程序。可使 用儘可能具有異質源之組合樣本集合以試圖涵蓋大部分變化。此一集合將自研究現有集合且根據已知樣本收集及條件匹配來獲得,此增強現有樣本數據庫之使用。
靈敏度
觀察光譜中之多個峰引起在此方法中可看見之豐度範圍及實際可見之蛋白質類型之問題。此涉及在複合樣本之MALDI MS中由於「離子抑制」(來自較豐富蛋白質之離子抑制來自較不豐富蛋白質之離子信號,因此使得較不豐富蛋白質不可偵測的概念)而無法觀察較低豐度離子之「常規觀點」。此想法似乎僅基於未觀察到較低豐度離子。實際上,峰含量增加之觀察結果(參見例如圖1C)對此解釋提出質疑。相反,看起來必須重視MALDI MS之(半)定量性質。若吾人贊同蛋白質豐度跨越在多個數量級內之寬範圍,則將期望相應質譜藉由展現峰高度(更確切地說峰下面積)之巨大差異模擬此行為。吾人並不期望在MALDI光譜中觀察到低豐度蛋白質,並非因為其不能離子化,而是因為對應於低豐度蛋白質之峰的振幅將極低。由於質譜中之慣常做法係集中於大的峰,且由於較低豐度峰的數量級將較小,因此之前沒有觀察到該等峰並不奇怪。此並非說諸如離子抑制等現象不發生,或離子化概率不起作用,而是說該等現象並未完全抑制源自低豐度蛋白質之峰,且若在光譜之低密度區中找到低豐度蛋白質峰,則確實變得可觀測。因此,對覆蓋顯著百分比之血清蛋白質體之探索可視為對擴展質譜之動態範圍的探索。正如任何其他基於計數之技術,此問題之簡單解決方案係藉由增加所偵測離子之數量(每飛行時間方格)增加統計。
為在此與常規觀點相悖之簡單解釋中獲得更多信心,可希望建立質譜之動態範圍並將其與蛋白質之豐度相關聯。此根據分析化學觀點將實施以下二者:建立靈敏度曲線(作為m/z之函數),以及識別對 應於一些峰之蛋白質及經由諸如ELISA等正交技術進行該等蛋白質之相對豐度量測。
經由摻加試驗(spiking experiment)分析靈敏度
此想法係將各種濃度之經表徵蛋白質摻加至血清樣本中,看是否能看到相應峰,並降低濃度直至摻加峰消失為止。應在跨越自5kDa至30kDa之質量範圍內選擇蛋白質標準物,理想地相隔1kDa間隔。可能需要折衷,但將以所關注質量範圍之某一適當緊密覆蓋為目標。可能在更高質量下較不嚴格。可執行對照試驗,其中使蛋白質標準物在水中複水以評估血清存在之效應。可用曲線圖表示峰強度對豐度隨射擊次數之變化。此將讓吾人知道該方法之動態範圍。亦可生成作為m/z之函數之靈敏度曲線,其繪示對於不同射擊次數可觀測到摻加物之最低濃度(藉由S/N截止值參數化)。
使用預分餾樣本
本發明之方法可與用於分餾樣本之沈澱方法(例如NOG沈澱、脫脂質化等)組合使用。該等方法亦可與諸如CLCCA等其他基質一起使用。很可能該等方法亦可極大地受益於深度MALDI方法。使用樣本預分餾之初步數據指示確實看到不同峰,但峰含量遠達不到最佳。此可預期一個目的係除去高豐度蛋白質。
在過去試圖使用耗盡及/或質量過濾來降低如白蛋白及血紅蛋白等不期望蛋白質之含量,但該等方法均未能完全移除,且該等峰之殘餘仍可見。針對經耗盡或質量過濾樣本使用本文所闡述之深度MALDI方法將產生較佳結果,因為大的峰之降低亦將降低看到較低豐度蛋白質所需之動態範圍。
6.其他考慮因素 a.獲得光譜獲取設定之敏感選擇
在autoExecuteTM(Bruker)方法中,可定義過濾設定以僅收集符 合一定準則之瞬態光譜;在吾人之情況中,希望僅添加總離子流大於外部界定之臨限值的瞬態光譜(由<xx>次射擊引起)。儘管此在簡單方式中看起來不可能,但處理方法標籤中之過濾準則可用於類似目的。另一選擇為,峰評估方法中可存在可針對此目的調整之參數。儘管此不降低射擊次數,但其可克服初期射擊之射擊偏差問題,即,不獲取僅由雜訊組成之瞬態。在加和瞬態光譜中使用自動化過濾操作以生成位置光譜避免該偏差問題。
b.使用標準方法來評估光譜,例如,預處理、背景減除、對準等等。參見美國專利第7,736,905號,其以引用的方式併入本文中。
c.最佳化除光譜過濾以外之光譜獲取參數:
‧每一位置之最佳雷射射擊次數。
‧最佳雷射功率(且此之定義係經由標準)。
‧在一個可可靠地探測之點上位置之最佳數量。
‧上述質量範圍應經最佳化。
所有該等參數均可經最佳化。
d.測定多個點之組合光譜之極限(參見以上討論)
e.改良解析度。
當更多峰自大量雜訊顯現時(圖1C與圖1A相比),峰將重疊太多以致難以以可靠方式解析個別物種。儘管吾人不可能將看到給定道爾頓之多個峰,但目標將係在所關注m/z範圍內具有約1-5Da解析度。此可需要改變電壓及延遲抽取設定,以及最佳化數據獲取電子器件。當然,若使得飛行時間方格寬度太小,則此將導致每一飛行時間方格之較少偵測事件,且因此每一方格中之較高雜訊位準。需要尋找解析度與方格計數之增加(經由多次射擊)之間之合理折衷。
f.評價峰含量隨射擊次數之變化 1. S/N比率(振幅)之可達成範圍
深度MALDI方法之主要概念係基於以下簡單觀察:僅包含雜訊之飛行時間方格之絕對強度與射擊次數之平方根成比例,而含有信號之TOF方格之絕對強度將與射擊次數成線性比例(具有一些提示)。因此,增加射擊次數將導致每一TOF方格之更多事件且最終甚至小的峰變得與雜訊區別開。所偵測離子之數量與峰下面積成比例;根據對於給定m/z範圍峰具有相似寬度之假設,且根據峰近似高斯分佈之假設,峰下面積與峰高度乘以形狀因子成比例,形狀因子取決於峰在最大值一半之寬度(半峰全寬,FWHM)。其將有助於獲得使峰值振幅與豐度相關之標準曲線(作為m/z之函數)以能夠達成給定靈敏度,即,以使射擊次數與揭露給定強度位準處之已知峰相關聯。
2.峰數量隨S/N截止值而變;邊界更清晰之峰
量測峰含量之最簡單想法係量測隨S/N截止值而變之所偵測峰之數量;利用此方法之初步試驗並未獲得預期行為,主要針對小的S/N截止值。此可係由吾人之峰偵測器在低S/N截止值下之過度靈敏(或伴有雜訊估計之問題)造成。此行為之一些其他證據係由針對較小射擊次數之一些所偵測峰對於較高射擊次數消失之觀察結果給出。可能相關TOF方格中之事件數量對於雜訊估計器而言太小而不適於較小射擊次數。根據在光譜(參見圖1)中所看到,很明顯峰目視地在較多次射擊時(100,000此或500,000次射擊,圖1B及1C)比較少次射擊(圖1A,2,000次射擊)更佳地界定;可期望附加額外峰界定準則以使此評估更具定量性。
g.量測方法之可重現性
可量測深度MALDI方法之技術可重現性,即,以比較來自技術重複(相同樣本之多個點)之深度MALDI光譜隨射擊次數之變化。此應藉由重疊變異係數(CV)對振幅曲線、理想地針對相同峰來測量。在第一遍,100次技術重複應足以初步測定技術可重現性。亦可量測CV以 測定個別峰之m/z,來獲得可達成質量精確度之量度。此應在有或沒有光譜對準下進行。
具有100次技術重複之深度MALDI光譜能夠進一步分析:可將10次重複之群組組合,並在此量測峰含量及可重現性。原則上將所有技術重複組合應生成類似於自每一點之100次個別射擊次數所獲得光譜之光譜。
h.發現樣本間之共有峰
建立技術可重現性之後,可研究由不同血清(或其他)樣本引起之峰含量之變化。可評估樣本間(STS)可重現性以發現個體間共有之峰。利用含有「健康」個體之無偏樣本集合來發現共有峰可能係有利的。兩個選項係顯而易見的:早期診斷集合(例如在標準稀釋及照射設定中未展示太多之前列腺癌集合中之一者),及「健康」對照與各種癌症案例之混合物。需要分析以界定大小為約100個樣本之最合適集合。
i.對準、正規化及峰定義
本發明方法之一種用途係使用深度MALDI光譜發現並列舉共有峰。峰含量將使用CV對振幅曲線、理想地隨射擊次數之變化(或任何其他適宜量度,例如每一TOF方格之事件數量...)來評估。此工作亦可產生一系列對準峰。吾人可希望以相同方式評估各種正規化程序。由於現在具有更多遍佈於整個可觀察m/z範圍內之峰,因此不可能存在足夠大的不提供資訊區以促進基於區之正規化。相反,可開發基於峰之部分離子流(PIC)正規化。此需要識別血清中存在之穩定(定位及振幅二者)峰。由於用於此之過程因演算法中缺少停止準則而稍嫌武斷,因此將有利的係預定義此一峰列表,其類似於光譜對準中所用之預定義峰之列表。
本發明方法之額外用途係在生物標記發現中,但其具有遠比目 前所用大的特徵集合。由於特徵集大得多,因此可導致演算法之一些部分之性能更佳,例如錯誤發現率之估計。自深度MALDI光譜可獲得之更佳峰定義可導致資訊特徵與雜訊特徵之間之更佳辨別。然而,具有更多特徵使得特徵選擇問題更繁瑣,且突出對特徵預先過濾之需要。
j.增加MALDI點之大小
考慮到由雷射照明之大小以及預光柵化步驟之最小網格大小之限制,很可能在標準點上具有足夠離子產量之射擊位置不充足。解決此之簡單途徑係增加點大小。FlexImagingTM(Bruker)軟體將使此極為簡單。還存在可能適用於此目的之MS成像應用中所用之正方形點樣區域的選項。使用較大點之額外益處將係不必擔心是否可定位類似數量之適宜射擊位置並生成在點間具有類似品質之光譜。樣本體積看來並不存在問題。若較大點係可能的,則將減少後勤以用於處理同一獲取之多個點,此可係高射擊次數所需要的。
附錄
此附錄闡述利用非相鄰x,y座標生成25個光柵檔案之方法。該等步驟參考Bruker質譜儀所提供之工具,但該等方法十分普通而使其可應用於其他製造商之儀器。
使用以下步驟來闡述25單元網格-基於六邊形圖案:
1)以記事本打開Bruker之光柵檔案「hexagon.raster」。此圖案具有889個分佈於MALDI靶樣本點上方之座標點。
2)移除邊緣附近之點並將來自hexagon.raster之座標點數量從889減少至750並保存為「hexagon750.raster」。參見圖2。
3)將750個x,y點分成25個批次,每一批次30個x,y點,將其保存為25個單獨的光柵檔案:「5x5_1.raster」、「5x5_2.raster」....「5x5_25.raster」。檔案以此方式命名,以便名稱將與原本使用順序產 生器所生成25單元網格之彼等相同(參見以下項目6)。結果類似於上述圖4。
4)將25個光柵檔案(「5x5_1.raster」、「5x5_2.raster」....「5x5_25.raster」)拷貝至Methods\AutoXRasterFile。
5)在AutoXecute Method編輯器中產生AutoXecute方法「120411_375shots.axe」。新方法(「120411_375shots.axe」)類似於「120315_100kshot.axes」,唯總光譜累積及每一位置之射擊次數除外(表1)。
6)為「迫使」順序產生器原型使用如上所述產生的25個光柵(「5x5_1.raster」、「5x5_2.raster」....「5x5_25.raster」)生成AutoX方法:
1.針對「生成方法」選擇「正方形」且行以及列之單元及網格尺寸值=5(圖4)。
2.當提示時,若想要重寫光柵,選擇「No」。由於已利用原本已由順序產生器生成(「5x5_1.raster」、「5x5_2.raster」....「5x5_25.raster」)且已保存在目標資料夾(Methods\AutoXRasterFile)中之相同檔案名稱預定義光柵,因此會彈出提示。
7)使用順序產生器原型版本:20120406.1產生AutoSequence檔案。
(步驟1-7之說明在優先臨時申請案中找到且感興趣的讀者可定向 至該等說明)。
測試新光柵的結果
吾人在兩個不同點上嘗試新的非相鄰光柵且分別對於第一及第二點25種情況中之23者及25種情況中之24者能夠以極少拒絕光譜獲取數據。對兩個樣本點之運行均實施少於10分鐘。與此相比,使用吾人早期正方形網格花費數小時收集最後一組約248k次射擊。
使用菱形網格限制至通常看到較佳信號之樣本點中心之光柵點。但當使用菱形生成25單元網格時,能夠僅自單一樣本點上之25個單元中之8者收集數據。樣本點上由新光柵覆蓋之總面積稍微較大且當使用順序產生器之菱形生成方法產生網格時存在很少重疊光柵,但吾人認為解釋利用上述新光柵之較佳結果的關鍵因素係雷射擊中之連續位置之間之距離。
吾人獲得之結果到目前為止指示最佳選項係每一樣本點收集250,000次射擊,且若需要多於250k次射擊,則針對多次重複收集光譜。
可使用以「手動方式」生成之25個光柵檔案中之20者以每一樣本點收集250,000(20×12,500)至300,000(20×15,000)次射擊。

Claims (38)

  1. 一種使用MALDI-TOF質譜儀分析施加至MALDI-TOF樣本板上之樣本點的複合生物樣本之方法,其包含以下步驟:將多於20,000次雷射射擊引導至該樣本點處之該樣本;及自該儀器收集質譜數據。
  2. 如請求項1之方法,其中將至少100,000次雷射射擊引導至該樣本點。
  3. 如請求項1之方法,其中將至少500,000次雷射射擊引導至該樣本點。
  4. 如請求項1、2或3中任一項之方法,其中該生物樣本包含基於血液之樣本。
  5. 如請求項1之方法,其進一步包含以下步驟:使用該樣本板之影像分析來識別該點內相對較高或相對較低樣本含量之區,及將該大於20,000次雷射射擊至該樣本之該引導自動控制至該點中具有相對較高樣本含量之區。
  6. 如請求項1之方法,其中該方法進一步包含以下步驟:將該點分成多個子點;生成每一子點之光柵檔案,該光柵檔案指定該子點內之多個離散X/Y位置用於使用複數次射擊自該樣本獲取質譜;在網格中之每一位置處收集多個光譜並對該等光譜進行加和以生成每一子點之加和光譜;及對來自該等子點中每一者之該等加和光譜進行加和以產生該樣本之總體質譜。
  7. 如請求項1之方法,其進一步包含以下步驟:將該樣本施加至 MALDI-TOF板上之多個點,自施加至該多個點中之每一者之至少20,000次射擊獲得質譜,及對來自該多個點中之每一者之該質譜進行加和。
  8. 如請求項7之方法,其中該獲得步驟包含自施加至該多個點中之每一者之至少100,000次射擊獲得質譜。
  9. 如請求項7之方法,其中自該多個點中之每一者加和之該等質譜係由將介於1百萬次與1千萬次之間之射擊施加至該樣本所獲得之質譜組成。
  10. 如請求項1至3及5至9中任一項之方法,其中該複合生物樣本包含基於血液之樣本。
  11. 如請求項10之方法,其進一步包含藉助參考光譜及所記錄之施加至一或多個點上之該基於血液之樣本之射擊次數量測該基於血液之樣本中全蛋白之豐度。
  12. 一種獲取質譜之方法,其包含以下步驟:自動地光柵掃描MALDI-TOF樣本板上含有複合生物樣本之點,及自該點獲取多於20,000次射擊。
  13. 如請求項12之方法,其進一步包含以下步驟:將該點細分成多個子點,自動地光柵掃描該等子點並在每一子點獲得至少20,000個瞬態光譜,及對來自該等子點中每一者之該等瞬態光譜進行加和以產生該點之總體光譜。
  14. 如請求項12之方法,其中該方法在離散X/Y位置中光柵掃描該點至少10次並自該點之每次光柵掃描之至少10,000次射擊獲得光譜。
  15. 如請求項14之方法,其中該方法在離散X/Y位置中光柵掃描該點至少10次並自介於100,000與1百萬次之間之射擊獲得該點之光譜。
  16. 如請求項14或15之方法,其中該等光柵掃描中每一者之該等X/Y位置不重疊。
  17. 如請求項12之方法,其中該方法使用影像分析來識別該點內相對較高樣本濃度之區域並自動地掃描該點中之該等區域。
  18. 如請求項1至3、5至9、12至15及17中任一項之方法,其進一步包含以下步驟:將該樣本以在該樣本點內均質且空間均勻分佈之方式沈積於MALDI TOF樣本板上。
  19. 如請求項18之方法,其中該MALDI-TOF樣本板包含磨光鋼板。
  20. 如請求項1至3、5至9、12至15及17中任一項之方法,其中該複合生物樣本係選自由以下組成之樣本群:基於血液之樣本、淋巴液、導管液、腦脊髓液及前列腺擠出液。
  21. 如請求項20之方法,其中該複合生物樣本係自人類獲得。
  22. 如請求項21之方法,其中該複合生物樣本係自患有疾病之人類獲得。
  23. 如請求項22之方法,其中該疾病係癌症。
  24. 一種MALDI-TOF質譜儀系統,其包含雷射,其用於照射MALDI-TOF樣本板之一或多個樣本點;自動光柵掃描系統,其用於在利用該雷射照射該樣本的同時光柵掃描該樣本板,其中該質譜儀經組態以自施加至該樣本之多於20,000次射擊獲得質譜。
  25. 如請求項24之系統,其中該質譜儀經組態以利用該雷射自動地照射該點至少100,000次並將所得瞬態光譜加和成質譜。
  26. 如請求項24之系統,其中該質譜儀經組態以利用該雷射自動地照射該MALDI-TOF樣本板之多個點,每一點照射至少20,000次,並將所得瞬態光譜加和成質譜。
  27. 如請求項24之系統,其中該質譜儀經組態以利用該雷射自動地照射該MALDI-TOF樣本板之多個點,每一點照射至少100,000次,並將所得瞬態光譜加和成質譜。
  28. 一種藉由MALDI-TOF質譜術生成參考光譜用於分析樣本中所存在之所關注分子之豐度的方法,其包含以下步驟:a)將該樣本摻雜至該所關注分子之目標豐度位準(莫耳濃度,或ppm);b)將在該目標豐度位準之該經摻雜樣本施加至MALDI-TOF樣本板之一或多個點;c)藉由在該MALDI-TOF板之該一或多個點上執行大於20,000次射擊來實施質譜術並生成參考光譜,其中該所關注分子係可靠地存在於該參考光譜中,及d)記錄該射擊次數。
  29. 如請求項28之方法,其進一步包含以下步驟:藉由使該所關注分子之未知濃度的樣本以該記錄射擊次數經歷MALDI-TOF質譜術並生成所得質譜來對該樣本實施質譜術,及將該所得質譜或其特徵與該參考光譜或其特徵相比較。
  30. 如請求項28之方法,其進一步包含針對兩種或兩種以上所關注之分子執行步驟a)、b)及c)之步驟。
  31. 如請求項29之方法,其中該未知濃度之樣本係自人類獲得。
  32. 如請求項29之方法,其中該未知濃度之樣本係食品或環境樣本。
  33. 如請求項28之方法,其中該參考光譜係自至少100,000次射擊獲 得。
  34. 如請求項28之方法,其中該參考光譜係自至少500,000次射擊獲得。
  35. 如請求項28之方法,其中該參考光譜係自該MALDI-TOF樣本板上之兩個或兩個以上點獲得,該等點之每一者經受多於20,000次射擊。
  36. 如請求項28之方法,其中該所關注分子包含質量範圍在約1K道爾頓(Dalton)至50K道爾頓中之蛋白質。
  37. 如請求項28之方法,其中該所關注分子包含代謝物。
  38. 如請求項28之方法,其中該所關注分子係選自由癌症抗原125、前列腺特異性抗原(PSA)及C反應性蛋白質組成之分子列表。
TW102112550A 2012-05-29 2013-04-09 例如血清之複合生物樣本深度maldi tof質譜分析及其用途 TW201348699A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261652394P 2012-05-29 2012-05-29

Publications (1)

Publication Number Publication Date
TW201348699A true TW201348699A (zh) 2013-12-01

Family

ID=48014370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102112550A TW201348699A (zh) 2012-05-29 2013-04-09 例如血清之複合生物樣本深度maldi tof質譜分析及其用途

Country Status (10)

Country Link
US (2) US9279798B2 (zh)
EP (1) EP2856495A2 (zh)
JP (1) JP2015518167A (zh)
KR (1) KR20150015531A (zh)
CN (1) CN104380430A (zh)
AU (1) AU2013267976B2 (zh)
CA (1) CA2874989A1 (zh)
HK (1) HK1208284A1 (zh)
TW (1) TW201348699A (zh)
WO (1) WO2013180818A2 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2874989A1 (en) * 2012-05-29 2013-12-05 Biodesix, Inc. Deep-maldi tof mass spectrometry of complex biological samples, e.g., serum, and uses thereof
CN104685360B (zh) * 2012-06-26 2018-02-13 比奥德希克斯股份有限公司 用于选择和去选择用产生免疫应答的疗法治疗的癌症患者的质谱方法
JP5971184B2 (ja) * 2013-04-22 2016-08-17 株式会社島津製作所 イメージング質量分析データ処理方法及びイメージング質量分析装置
AU2014318499B2 (en) * 2013-09-16 2019-05-16 Biodesix, Inc Classifier generation method using combination of mini-classifiers with regularization and uses thereof
WO2015178946A1 (en) 2014-04-04 2015-11-26 Biodesix, Inc. Treatment selection for lung cancer patients using mass spectrum of blood-based sample
JP6665163B2 (ja) 2014-08-18 2020-03-13 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Maldi用の試料調製方法およびそのための自動化システム
EP3201812B1 (en) 2014-10-02 2021-02-17 Biodesix, Inc. Predictive test for aggressiveness or indolence of prostate cancer from mass spectrometry of blood-based sample
US10037874B2 (en) 2014-12-03 2018-07-31 Biodesix, Inc. Early detection of hepatocellular carcinoma in high risk populations using MALDI-TOF mass spectrometry
US11594403B1 (en) 2014-12-03 2023-02-28 Biodesix Inc. Predictive test for prognosis of myelodysplastic syndrome patients using mass spectrometry of blood-based sample
WO2016160511A1 (en) * 2015-03-30 2016-10-06 Virgin Instruments Corporation Maldi-tof ms method and apparatus for assaying an analyte in a bodily fluid from a subject
US10359440B2 (en) 2015-03-30 2019-07-23 Virgin Instruments Corporation Mass spectrometry method and apparatus for clinical diagnostic applications
WO2016175990A1 (en) 2015-04-30 2016-11-03 Biodesix, Inc. Bagged filtering method for selection and deselection of features for classification
CN112710723A (zh) 2015-07-13 2021-04-27 佰欧迪塞克斯公司 受益于pd-1抗体药物的肺癌患者的预测性测试和分类器开发方法
USD781135S1 (en) * 2015-11-25 2017-03-14 Caterpillar Inc. Key
WO2017136139A1 (en) 2016-02-01 2017-08-10 Biodesix, Inc. Predictive test for melanoma patient benefit from interleukin-2 (il2) therapy
WO2017176423A1 (en) * 2016-04-08 2017-10-12 Biodesix, Inc. Classifier generation methods and predictive test for ovarian cancer patient prognosis under platinum chemotherapy
JP6699735B2 (ja) * 2016-08-24 2020-05-27 株式会社島津製作所 イメージング質量分析装置
US11150238B2 (en) 2017-01-05 2021-10-19 Biodesix, Inc. Method for identification of cancer patients with durable benefit from immunotherapy in overall poor prognosis subgroups
CN107271533B (zh) * 2017-06-29 2019-09-13 浙江和谱生物科技有限公司 基于maldi-tof质谱数据鉴定细菌混合样品的算法
CL2017002194A1 (es) 2017-08-29 2019-04-22 Univ Pontificia Catolica Chile Biomaterial particulado que contiene partículas con formas geodésicas, método de obtención y uso para relleno o substitución de tejido óseo
DE102017129891B4 (de) * 2017-12-14 2024-05-02 Bruker Daltonics GmbH & Co. KG Massenspektrometrische Bestimmung besonderer Gewebezustände
CA3085765A1 (en) 2017-12-15 2019-06-20 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
EP3773691A4 (en) 2018-03-29 2022-06-15 Biodesix, Inc. DEVICE AND METHOD FOR IDENTIFICATION OF PRIMARY IMMUNORESISTANCE IN CANCER PATIENTS
CN109060935B (zh) * 2018-07-09 2020-09-08 广州禾信康源医疗科技有限公司 Maldi-tof-ms解吸电离控制方法、装置、计算机设备和存储介质
JP7164350B2 (ja) * 2018-08-06 2022-11-01 浜松ホトニクス株式会社 試料支持体、試料のイオン化方法、及び質量分析方法
US20220146527A1 (en) * 2019-09-17 2022-05-12 Chang Gung University Method of creating characteristic profiles of mass spectra and identification model for analyzing and identifying features of microorganisms
WO2023141569A1 (en) 2022-01-21 2023-07-27 Biodesix, Inc. Sensitive and accurate feature values from deep maldi spectra

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60237196D1 (de) 2001-03-29 2010-09-16 Wisconsin Alumni Res Found Piezoelektrisch geladene tröpfchenquelle
US6804410B2 (en) * 2001-04-17 2004-10-12 Large Scale Proteomics Corporation System for optimizing alignment of laser beam with selected points on samples in MALDI mass spectrometer
US7306925B2 (en) * 2001-11-09 2007-12-11 Vanderbilt University Phage antibodies to radiation-inducible neoantigens
AUPR892101A0 (en) * 2001-11-16 2001-12-13 Proteome Systems Ltd High resolution automated maldi data analysis
US7166425B2 (en) * 2002-04-12 2007-01-23 Colorado School Of Mines Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
US6900061B2 (en) * 2002-08-23 2005-05-31 Perseptive Biosystems, Inc. MALDI plate and process for making a MALDI plate
US7846748B2 (en) * 2002-12-02 2010-12-07 The University Of North Carolina At Chapel Hill Methods of quantitation and identification of peptides and proteins
US6956208B2 (en) * 2003-03-17 2005-10-18 Indiana University Research And Technology Corporation Method and apparatus for controlling position of a laser of a MALDI mass spectrometer
US20040183009A1 (en) * 2003-03-17 2004-09-23 Reilly James P. MALDI mass spectrometer having a laser steering assembly and method of operating the same
US7858387B2 (en) * 2003-04-30 2010-12-28 Perkinelmer Health Sciences, Inc. Method of scanning a sample plate surface mask in an area adjacent to a conductive area using matrix-assisted laser desorption and ionization mass spectrometry
AU2003903317A0 (en) * 2003-06-27 2003-07-10 Proteome Systems Intellectual Property Pty Ltd Method of isolating a protein
US20050164402A1 (en) * 2003-07-14 2005-07-28 Belisle Christopher M. Sample presentation device
WO2005028620A2 (en) * 2003-09-16 2005-03-31 The Rockefeller University Histone modifications as binary switches controlling gene expression
JP2007516448A (ja) * 2003-12-23 2007-06-21 アプレラ コーポレイション ノイズを減少する添加剤を含む改善されたマトリクスおよびそれを含む使い捨てターゲット
US20050236564A1 (en) * 2004-04-26 2005-10-27 Ciphergen Biosystems, Inc. Laser desorption mass spectrometer with uniform illumination of the sample
US20060023808A1 (en) * 2004-05-17 2006-02-02 Hajivandi Mahbod R Compositions, kits, and methods for calibration in mass spectrometry
CA2591926A1 (en) * 2004-09-20 2006-03-30 Proteogenix, Inc. Diagnosis of fetal aneuploidy
US20060214104A1 (en) * 2004-10-26 2006-09-28 Invitrogen Corporation Compositions and methods for analyzing biomolecules using mass spectroscopy
JP4604741B2 (ja) 2005-01-31 2011-01-05 コニカミノルタエムジー株式会社 カセッテ型放射線画像検出器
JP2006226717A (ja) * 2005-02-15 2006-08-31 Shiseido Co Ltd 非イオン性界面活性剤の定量方法
US20060247863A1 (en) * 2005-04-28 2006-11-02 Bui Huy A Optimizing maldi mass spectrometer operation by sample plate image analysis
WO2007022248A2 (en) * 2005-08-16 2007-02-22 Sloan Kettering Institute For Cancer Research Methods of detection of cancer using peptide profiles
DE102005039560B4 (de) * 2005-08-22 2010-08-26 Bruker Daltonik Gmbh Neuartiges Tandem-Massenspektrometer
DE102005041655B4 (de) * 2005-09-02 2010-05-20 Bruker Daltonik Gmbh Erzeugung mehrfach geladener Ionen für die Tandem Massenspektrometrie
EP1979746A2 (en) * 2005-12-20 2008-10-15 The Ohio State University Research Foundation Nanoporous substrates for analytical methods
US7736905B2 (en) 2006-03-31 2010-06-15 Biodesix, Inc. Method and system for determining whether a drug will be effective on a patient with a disease
DE102006019530B4 (de) * 2006-04-27 2008-01-31 Bruker Daltonik Gmbh Probenvorbereitung für massenspektrometrische Dünnschnittbilder
US8173956B2 (en) * 2006-07-19 2012-05-08 Dh Technologies Pte. Ltd. Dynamic pixel scanning for use with MALDI-MS
JP4998473B2 (ja) * 2006-12-05 2012-08-15 株式会社島津製作所 質量分析装置
JP2008261825A (ja) * 2007-04-13 2008-10-30 Shimadzu Corp 液体マトリックスを用いた高感度maldi質量分析法
JP4820444B2 (ja) * 2007-04-17 2011-11-24 公益財団法人野口研究所 プレート上での測定対象分子の局在化方法、およびこれを用いた質量分析法
JP5030166B2 (ja) * 2007-05-01 2012-09-19 独立行政法人産業技術総合研究所 レーザー脱離イオン化質量分析に使用される試料支持用基板の試験方法
GB0709312D0 (en) 2007-05-15 2007-06-20 Micromass Ltd Mass spectrometer
US20080318332A1 (en) * 2007-05-29 2008-12-25 Mechref Yehia S Disease diagnosis by profiling serum glycans
GB2452239B (en) * 2007-06-01 2012-08-29 Kratos Analytical Ltd Method and apparatus useful for imaging
JP4883540B2 (ja) * 2007-06-21 2012-02-22 国立大学法人福井大学 同位体化合物を標識として使用するタンパク質の分析方法
DE102007043456B4 (de) * 2007-07-31 2012-02-09 Bruker Daltonik Gmbh Matrixunterstützte Laserdesorption hoher Ionisierungsausbeute
DE102008008634B4 (de) * 2008-02-12 2011-07-07 Bruker Daltonik GmbH, 28359 Automatische Reinigung von MALDI-Ionenquellen
JP2009216393A (ja) * 2008-03-06 2009-09-24 Nec Corp ラスタースキャン方法
AU2009258038A1 (en) * 2008-03-14 2009-12-17 Eastern Virginia Medical School Imaging mass spectrometry for improved prostate cancer diagnostics
JP5092861B2 (ja) * 2008-04-14 2012-12-05 株式会社島津製作所 混合液体マトリックスを用いたmaldi質量分析法
JP2011524159A (ja) * 2008-05-26 2011-09-01 ティリアン・ダイアグノスティックス・リミテッド マイコバクテリウムによる感染の診断方法およびそのための試薬
EP2286437A1 (en) * 2008-06-02 2011-02-23 Bio-Rad Laboratories, Inc. Mass spectrometric detection of material transferred to a surface
GB0811574D0 (en) * 2008-06-24 2008-07-30 Trillion Genomics Ltd Characterising planar samples by mass spectrometry
US8160819B2 (en) * 2008-08-22 2012-04-17 The United States Of America, As Represented By The Secretary Of Agriculture Rapid identification of proteins and their corresponding source organisms by gas phase fragmentation and identification of protein biomarkers
JP2012517588A (ja) * 2009-02-06 2012-08-02 マイクロマス・ユー・ケイ・リミテツド 質量分析方法
NZ594751A (en) * 2009-02-26 2013-01-25 Tyrian Diagnostics Ltd Method of diagnosis of infection by mycobacteria and reagents therefor
DE102009013653B4 (de) * 2009-03-18 2014-09-18 Bruker Daltonik Gmbh Protein-Sequenzierung mit MALDI-Massenspektrometrie
WO2010123452A1 (en) * 2009-04-24 2010-10-28 Nahid Amini Particle-loaded membrane for solid-phase-extraction and method for performing saldi-ms analysis of an analyte
EP2267459A1 (en) * 2009-06-25 2010-12-29 Universite Pierre Et Marie Curie - Paris VI Method for determining the susceptibility of a cell strain to drugs
US8685755B2 (en) * 2009-07-20 2014-04-01 The Board Of Regents Of The University Of Texas System Combinatorial multidomain mesoporous chips and a method for fractionation, stabilization, and storage of biomolecules
JP5443156B2 (ja) * 2009-12-28 2014-03-19 公益財団法人野口研究所 前立腺癌を判定する方法
JP2011149755A (ja) * 2010-01-20 2011-08-04 Canon Inc 飛行時間型質量分析における質量誤差補正方法
AU2011219069C1 (en) 2010-02-24 2014-07-17 Biodesix, Inc. Cancer patient selection for administration of therapeutic agents using mass spectral analysis
WO2011144743A1 (en) * 2010-05-21 2011-11-24 Eidgenössische Technische Hochschule Zürich High-density sample support plate for automated sample aliquoting
EP2426499A1 (en) * 2010-09-03 2012-03-07 Bruker Daltonik GmbH Immunosuppressant monitoring by MALDI mass spectrometry
WO2012109460A1 (en) * 2011-02-09 2012-08-16 Adeptrix Corp. Devices and methods for producing and analyzing microarrays
DE102011013653B4 (de) * 2011-03-11 2024-05-08 Bruker Daltonics GmbH & Co. KG Verfahren zur Beurteilung der Verschmutzung einer MALDI-Ionenquelle in einem Massenspektrometer
EP2530701B1 (en) * 2011-06-02 2020-12-09 Bruker Daltonik GmbH Quantitative peptide analysis by mass spectrometry
US20140206094A1 (en) * 2011-08-31 2014-07-24 The Noguchi Institute Maldi mass spectrometry method
DE102011112649B4 (de) * 2011-09-06 2014-02-27 Bruker Daltonik Gmbh Laserspotsteuerung in MALDI-Massenspektrometern
CA2874989A1 (en) * 2012-05-29 2013-12-05 Biodesix, Inc. Deep-maldi tof mass spectrometry of complex biological samples, e.g., serum, and uses thereof
US8467988B1 (en) * 2013-01-02 2013-06-18 Biodesix, Inc. Method and system for validation of mass spectrometer machine performance

Also Published As

Publication number Publication date
EP2856495A2 (en) 2015-04-08
US9606101B2 (en) 2017-03-28
KR20150015531A (ko) 2015-02-10
US20160018410A1 (en) 2016-01-21
US20130320203A1 (en) 2013-12-05
CN104380430A (zh) 2015-02-25
AU2013267976A1 (en) 2015-01-22
JP2015518167A (ja) 2015-06-25
US9279798B2 (en) 2016-03-08
WO2013180818A2 (en) 2013-12-05
WO2013180818A3 (en) 2014-11-13
CA2874989A1 (en) 2013-12-05
AU2013267976B2 (en) 2016-06-02
HK1208284A1 (zh) 2016-02-26

Similar Documents

Publication Publication Date Title
TW201348699A (zh) 例如血清之複合生物樣本深度maldi tof質譜分析及其用途
US20190236397A1 (en) Intensity normalization in imaging mass spectrometry
US8569690B2 (en) Method of forming mass image
US8119982B2 (en) Method and system for mass spectrometry data analysis
CN109596698B (zh) 用于评价质谱成像制备质量的方法及其套件
US9123504B2 (en) Semiconductor inspection device and semiconductor inspection method using the same
US20180003651A1 (en) Devices and systems for spatial aggregation of spectral analysis from electron microscopes
JP2013040808A (ja) 質量分析データ解析方法及び解析装置
US11348771B2 (en) Mass spectrometric determination of particular tissue states
US20240321565A1 (en) Processing of spatially resolved, ion-spectrometric measurement signal data to determine molecular content scores in two-dimensional samples
CN113518919B (zh) 成像质量分析装置
WO2013084905A1 (ja) X線分析装置
CN108663437B (zh) 一种快速筛查标的物的方法
CN101865880B (zh) 质谱成像数据的差异分析方法及系统
US20210202223A1 (en) Method and device for processing imaging-analysis data
Zhang et al. HR/AM targeted peptide quantitation on a Q Exactive MS: a unique combination of high selectivity, sensitivity and throughput
WO2023058234A1 (ja) 質量分析データ解析方法及びイメージング質量分析装置
Bracht et al. Quantitative Proteomics Techniques in Biomarker Discovery
JP4839254B2 (ja) 質量分析データ解析方法