TW200414675A - Digital filter design method and device, digital filter design program, and digital filter - Google Patents

Digital filter design method and device, digital filter design program, and digital filter Download PDF

Info

Publication number
TW200414675A
TW200414675A TW092128314A TW92128314A TW200414675A TW 200414675 A TW200414675 A TW 200414675A TW 092128314 A TW092128314 A TW 092128314A TW 92128314 A TW92128314 A TW 92128314A TW 200414675 A TW200414675 A TW 200414675A
Authority
TW
Taiwan
Prior art keywords
filter
string
port
digital filter
number string
Prior art date
Application number
TW092128314A
Other languages
English (en)
Inventor
Yukio Koyanagi
Original Assignee
Neuro Solution Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neuro Solution Corp filed Critical Neuro Solution Corp
Publication of TW200414675A publication Critical patent/TW200414675A/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Picture Signal Circuits (AREA)
  • Complex Calculations (AREA)

Description

200414675 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係關於數位濾波器之設計方法及裝置 波器設計用程式、數位濾波器,特別係關於具備 遲延器所構成具連接埠的延遲線,並在將各連接 別數倍之後,經加計後再輸出的RIF濾波器及其 【先前技術】 對通信、測量、聲音、影像訊號處理、醫療 等各種領域所提供之各種電子機器中,在其內部 數位訊號處理乃屬通常現象。數位訊號處理的最 操作,乃有如從混合著各種訊號或雜訊的輸入訊 僅取出所必要頻段訊號的濾波處理。所以,在執 :號處理的電子機器中,大多採用數位濾波器。 數位濾波器大多採用IIR( Infinite Impulse ,無限脈衝響應)濾波器、或 FIR ( Finite Response,有限脈衝響應)濾波器。其中,FIR 有下述優點。第1,因爲FIR濾波器之轉換函數 在Z平面的原點處才有,因此電路經常處於穩定 若濾波器係數屬於對稱型的話,便可實現完全正 相位特性。 若從濾波器配置於通過區域與阻止區域的狀 類的話,便可分爲:低通濾波器、高通濾波器、 器、帶阻濾波器等四種。在IIR濾波器與FIR濾 、數位據 有由複數 埠信號分 設計法。 、地震學 施行某種 重要基本 號之中, 行數位訊 Response Impulse 濾波器具 的極點僅 。第2, 確的直線 態進行分 帶通濾波 波器中, (2) (2)200414675 構成基本者乃爲低通濾波器,而其他的高通濾波器、帶通 濾波器、帶阻濾波器,則藉由從低通濾波器執行頻率轉換 等處理而導出。 但是,FIR濾波器乃依有限時間長度所表示的脈衝響 應,直接當作濾波器的係數。所以,設計FIR濾波器之事 ,乃指依可獲得期待頻率特性之方式決定濾波器係數之事 〇 習知在設計構成基本的低通濾波器之際,乃藉由採用 取樣頻率與截頻之比率,並利用視窗函數與柴比雪夫近似 法等重疊運算等等,而求取FIR濾波器對各連接埠的濾波 器係數。然後,採用所求得濾波器係數進行模擬,藉此一 邊任頻率特性,一邊適當修正係數値,而獲得所需特性的 低通濾波器。 但是,依習知設計法所獲得濾波器之頻率特性,乃因 爲依存於視窗函數與柴比雪夫近似式,因此若未良好設定 該等的話,將無法獲得良好的頻率特性。可是,在適當設 定視窗函數與近似式方面,一般乃屬困難。換句話說,上 述習知濾波器設計法,熟習此技術者頗爲耗時與繁雜程序 ,造成無法輕易設計所需特性的FIR濾波器之問題。 再者,即便假設可設計出接近所需特性濾波器,仍然 將造成所設計濾波器的連接瑋數量龐大,而且其係數値將 變爲非常複雜且無規的數値。因此,亦將造成爲達成此連 接埠與係數値,而需要大規模電路構造(加法器、乘法器 )的問題。此外,實際使用所設計FIR濾波器之際,演算 (3) (3)200414675 量將變爲非常多,導致處理負荷變重的問題發生。 本發明乃爲解決上述問題,其目的在於提供一種可輕 易設計具所需頻率特性的FIR數位濾波器。 再者,本發明之目的在於提供一種可依較小電路規模 高精度實現所需頻率特性的FIR濾波器。 【發明內容】 本發明的數位濾波器之設計方法,係採用將具有依數 値串總計値非零,且該數値串之跳隔1個的總計値爲相同 符號相等之方式,設定數値的非對稱型濾波器係數之第1 與第2單元濾波器,依整體數値串爲對稱型之方式進行縱 向連接而構成的基本濾波器,藉由將該基本濾波器進行複 數縱向連接而施行濾波器設計。 本發明之另一態樣係,係採用將具有依數値串總計値 非零,且該數値串之跳隔1個的總計値爲符號相反但絕對 値相等之方式,設定數値的非對稱型濾波器係數之第1與 第2單元濾波器,依整體數値串爲對稱型之方式進行縱向 連接而構成的基本濾波器,藉由將該基本濾波器進行複數 縱向連接而施行濾波器設計。 本發明之另一態樣,係藉由在構成上述第1與第2單 元濾波器的非對稱型濾波器係數所對應的各連接璋之間, 插入η時脈分延遲,俾調整濾波器之通過頻段。 再者,本發明的數位濾波器係具備有由複數延遲器所 構成具連接埠的延遲線,將各連接埠的訊號,利用申請專 冬 (4) (4)200414675 利範圍第1〜7項中任一項之濾波器設計法而所求得爐、波器 係數,分別數倍之後’經加計後再輸出。 如上述所說明’依照本發明的目舌’因爲將既疋非^ ▼肖 型數値串設定爲濾波器係數的二個單元濾波器予以縱向連 接而構成基本濾波器’再藉由將此基本濾波器予以複數縱 向連接而設計數位濾波器’因此僅利用將該基本濾、波器的 縱向連接,便可自動地獲得具所需頻率特性的數位濾波器 之濾波器係數,即便非熟習此技術者’仍可極簡單的進行 f 濾波器之設計。 再者,依照本發明的話,上述既定非對稱型數値串, 乃因爲將既定對稱型數値串在其中央處區分各半,因此設 計數位濾波器時所需要的連接痺數量僅要非常少數便可完 成,且對各連接璋輸出所需的濾波器係數種類亦非常少便 可完成。而且,無須採用視窗函數,所獲得濾波器係數上 亦不致發生截斷誤差現象。所以,可大幅削減電路元件數 (特別係乘法器),達削減電路規模、降低消耗功率、減 φ 輕演算負荷等效果,同時可高精度實現數位濾波器所期待 的頻率特性。此外,所設計的數位濾波器乃因爲由基本濾 波器的相同型式重複而構成極單純的構造,因此在積體化 之際便可減少步驟數,亦可將1C化變爲容易。 【實施方式】 以下’根據本發明一實施形態進行說明。 β實施形態的數位濾波器係具備有由複數延遲器所構 -7- (5) (5)200414675 成具連接埠的延遲線,將各連接埠的輸出訊號利用所供應 的濾波器係數分別進行數倍之後,經加計後再輸出型式的 FIR濾波器。 (第1實施形態) 第1實施形態的濾波器設計法,係製作下述所說明的 單元濾波器Lin”,HI η”(本發明之基本濾波器),並形 成可設計僅其中一者具所需頻率特性的FIR濾波器。另外 # ,在表示單元濾波器的元件符號後所附加的”η”文字,係 表示插入於各連接埠間的延遲時脈數(即,插入於各濾波 器係數間的數量)(容後詳述)。 首先,針對理解上述單元濾波器Lin”,Hln”並供參 考的5連接埠單元濾波器L1 η,Η 1 η進行說明。第1圖所 示係5連接埠單元濾波器L 1 0,Η 1 0圖,(a )係其電路 構造,(b )係濾波器係數數値串。 如第1 ( a )圖所示,5連接埠單元濾波器L 1 0,Η 1 0 φ 係利用縱向連接的6個D型正反器1.】〜1 _6,使輸入訊號 依序延遲1時脈CK。對從各D型正反器之既定連 接埠所抽取出的訊號,將第](b )圖所示濾波器係數 H1〜H5,利用5個係數器2.^2.5分別進行乘算,並將該 等乘算結果全部利用4個加法器3.^3-4進行加算後再輸 出。 上述2種5連接埠單元濾波器L】0,Η 1 0的電路構造 均如第1 ( a)圖所示,僅濾波器係數(係數器2.!〜2_5的 -8- (6) (6)200414675 乘數値HI〜H5 )如第1 ( b )圖所示不同。 由第1 ( b )圖得知,5連接埠低通單元濾波器L 1 0的 的濾、波器係數係由極單純的數値串{-1,0,9,1 6,9,〇 ,-1}/32所構成(其中,數値”0”部分係如第1 ( a)圖所 示,非連接埠輸出,並非使用爲濾波器係數)。此種濾波 器係數係其數値串爲對稱型,具有數値串的總計値非零, 且數値串的跳隔1個的總計値爲相同符號相等性質之(-1+9+9-1=16 , 0+16+0=16)。 再者,5連接埠高通單元濾波器Η 1 0的濾波器係數係 由極單純的數値串{ 1,0,- 9,1 6,- 9,0,1 } / 3 2所構成 (其中,數値” 〇π部分係非連接埠輸出,並非使用爲濾波 器係數)。此種濾波器係數係其數値串爲對稱型,具有數 値串的總計値非零,且數値串的跳隔1個的總計値爲符號 相反但絕對値相等性質之(1-9-9+1=-16,0+16 + 0=16)。 在此,針對構成該等濾波器係數的數値串涵義,採用 第2〜4圖進行說明。 第2圖所示係構成5連接埠單元濾波器L 1 0,Η 1 0之 濾波器係數的數値串生成法說明圖。如第2 ( a )圖所示 ,構成5連接埠低通單元濾波器L 1 0之濾波器係數的數値 串’係利用依每1時脈CK將數據値變化爲{-1,1,8,8 ,1,-1}/16的既定數位基本函數,進行1次移動平均演 算而求得。 再者,如第2(b)圖所示,構成5連接璋高通單元 濾波器0之濾波器係數的數値串,係利用依每1時脈 - 9- (7) (7)200414675 C K將數據値變化爲{〗,-1,- 8,8,-1,1 } /1 6的數位基 本函數,進行移動平均演算而求得。 第3圖所示係對構成5連接埠低通單元濾波器L 1 0之 濾波器係數的數値串,施行 4倍超取樣與旋積( convolution)運算的結果圖。另外,在此爲容易淸楚所說 明部分,僅針對例示將原本數値串變爲3 2倍的整數數値 串卜1,〇,9,1 6,9,0,-1 },施行超取樣與旋積運算的 例子。 在第3 ( a )圖中,最左列所示一連串數値串,係指 對原本數値串{-1,0,9,16,9,0,-1}施行4倍過取樣 的數値。此外,從最左邊起朝右側4行份的數値串係將最 左列所不數値串逐一朝下位移1個。第3 ( a )圖的行方 向係指時間軸,而將數値串朝下位移係對應於將最左行所 示數値串逐漸延遲。 換句話說,從左起第2行數値串係表示僅偏移4倍頻 率時脈4 C K之1Μ相位的數値串。此外,從左起第3行的 數値串係表示將從左起第2行所示數値串,僅偏移4倍頻 率時脈4CK之1/4相位的數値串,而從左起第4行的數値 串係表示將從左起第3行所示數値串,再僅偏移4倍頻率 時脈4CK之1Μ相位的數値串。 再者,從左起第5行數値串係將第丨〜4行各數値串的 對應各行間進行加計後的數値。利用截至左起第5行爲止 的處理,便數位式執行隨4相旋積運算所衍生的4倍超取 樣0 -10- (8) (8)200414675 從第5行起朝右側4行份的數値串係將第5行所示數 値串逐一朝下位移1個。此外,從左起第9行數値串係將 第5〜8行各數値串的對應各行間進行加計後的數値。利用 截至左起第9行爲止的處理,便數位式2次執行隨4相旋 積運算所衍生的4倍超取樣。 再者’從左起第1 0行的數値串係將第9行所示數値 串朝下位移1個。此外,從左起第1 1行(最右行)數値 串係將第9行數値串與第1 0行數値串的對應各行間進行 φ 加計後的數値。 將第3 ( a )圖中最右行所示最後獲得數値串予以圖 形化,則如第3 ( b )圖所示。具有此第3 ( b )圖所示波 形的函數,具有沿橫軸的取樣位置僅在從tl至t4間之時 才有’’ 0’'以外的有限數値,在此之外區域的數値全部變爲 的函數,《I卩,在取樣位置tl,t4中,數値將收束於”0” 的函數。將此種函數的數値在局部區域具有"以外的有 限數値,而在此外區域中則變爲的情況,稱之爲「有 φ 限型(finite base)」。 再者,第 3(b)圖所示函數乃具有僅在中央的取樣 位置15成爲極大値,而在11,12,13,14等4個取樣位 置中數値將變爲” ”之特徵的取樣化函數,而爲獲得平滑 波形數據的必要取樣點則全部通過。 其次,第4圖所示係對構成5連接埠高通單元濾波器 Η 1 0之薄膜係數的數値串,施行4倍超取樣與旋積運算的 結果圖。另外,在此亦是爲求容易理解所說明部分’僅針 -11 - (9) (9)200414675 對例示將原本數値串變爲3 2倍的整數數値串{ 1,0,- 9, 1 6,-9,0,1 },施行超取樣與旋積運算的例子。 第4 ( a )圖係如同上述第3 ( a )圖的相同演算過程 。若將第4 ( a )圖中最右列所示之最後獲得數値串予以 圖形化的話,便如第 4 ( b )圖所示。此第4 ( b )圖所示 函數,亦是僅在中央的取樣位置t7’處形成極大値的取樣 化函數,在整個區域中可進行1次微分,而且在取樣位置 t Γ,t 6 '中收束於0的有限型函數。 φ 其次,針對當將插入各連接埠間的延遲時脈數η設定 爲n g 1之情況進行說明。第5圖所示係5連接埠低通單 元濾波器L1 1 ( 1之情況)的濾波器係數圖。如第5圖 所示,5連接埠低通單元濾波器L 1 1的濾波器係數,係利 用在上述5連接埠低通單元濾波器L 1 0的各濾波器係數之 間,逐一插入1個” 0 ”而產生的。 同樣的,5連接埠低通單元濾波器Lin ( η = 2,3,… )的濾波器係數,係在利用在上述5連接埠低通單元濾波 φ 器L 1 0的各濾波器係數之間,逐一插入η個’’ 0 ”而產生的 〇 第6圖所示係將5連接埠低通單元濾波器L 1 0 ’ L 1 1 數値串,施行FFT(Fast Fourier Transfer:高速富立葉轉 換)結果的頻率-增益特性圖。其中,將增益與頻率利用 ”1”基準化。 由此第6圖中得知,將可獲得5連接埠低通單元濾波 器L 1 0,L 1]在中心頻率處增爲0 · 5,且在低頻區域處的 -12 - (10) (10)200414675 過激(ο V e r s h ο 〇 t )或高頻區域處亦未存在振盪的優越低通 濾波器特性。此外,若將插入各濾波器係數間的” 〇,,數量 設定爲η的話,其頻率-增益特性的頻率軸(相對於頻率 方向的週期)將爲1/η。 實現此種低通濾波器特性之基礎的上述第2 ( a )圖 數値串,係構成第3 ( b )圖所示有限型取樣化函數的基 礎。習知一般所採用的取樣化函數基礎係在t = ± 〇〇取樣位 置處收束於”,相對於此,第3 ( b )圖所示取樣化函數 係在t = t 1,t4的有限取樣位置處收束於” 〇 ”。 因此當將上述第2 ( a)圖之數値串施行FFT轉換之 情況時,便具有僅相當於t = tl〜t4範圍內之數據的涵義。 相關相當於t = t 1〜t4範圍外的數據並非可忽視原本應考慮 的對象,因爲理論上並無必要考慮,因此便不致發生截尾 誤差。所以,若將上述第2 ( a )圖所示數値串使用爲濾 波器係數的話,仍可不必要採用視窗函數執行係數截尾, 便可獲得優越的低通濾波器特性。 第7圖所示係將5連接埠高通單元濾波器Η 1 1的濾 波器係數圖。如第7圖所示,5連接埠高通單元濾波器 Η 1 1的濾波器係數,係利用在上述5連接埠高通單元濾波 器Η 1 0之各濾波器係數之間,逐一插入1個” 而產生的 〇 同樣的,5連接埠高通單元濾波器Hln ( η = 2,3,… )的濾波器係數,係在利用在上述5連接埠高通單元濾波 器Η I 0的各濾波器係數之間,逐一插入η個” 〇 "而產生的 (11) (11)200414675 第8圖所示係將5連接璋局通單元濃波器Η 1 0 ’ Η 1 1 數値串的頻率-增益特性圖。其中’將增益與頻率利用π 1 ” 基準化。由此第8圖中得知’將可獲得5連接埠高通單元 濾波器Η1〇,Η11在中心頻率處增爲0.5’且在高頻區域 處的過激或低頻區域處亦未存在振盪的優越高通濾波器特 性。此外,若將插入各濾波器係數間的” 數量設定爲η 的話,其頻率-增益特性的頻率軸(相對於頻率方向的週 φ 期)將爲。 實現此種高通濾波器特性之基礎的上述第2 ( b )圖 數値串,亦是構成第4 ( b )圖所示有限型取樣化函數的 基礎。所以,藉由將此數値串當作濾波器係數使用,便不 必要採用視窗函數執行係數截尾,仍可獲得優越的高通濾 波器特性。 其次,針對5連接埠單元濾波器的縱向連接進行說明 。藉由將5連接埠單元濾波器進行縱向連接,將各單元濾 φ 波器之係數間進行乘算•加計而製作出新的濾波器係數。 在下述中,設定爲將如5連接埠低通單元濾波器L 1 0的縱 向連接數設定爲m,並將其記爲(L10) n。 第9圖所示係5連接埠低通單元濾波器L 1 0, (L 1 0 ) 2, ( L 1 0 ) 4, ( L丨〇 ) 8的頻率-增益特性圖。此 第9圖亦是將增益與頻率以”1”基準化。當5連接埠低通 單元濾波器L 1 0僅1個的情況時,振幅變爲〇. 5之位置處 的時脈爲〇 .2 5 °相對於此,若縱向連接數m變多的話, -14 - (12) (12)200414675 濾波器的帶通寬度將變狹窄。譬如當m = 8之情況時,振 幅爲〇 . 5之位置處的時脈將爲0 . 1 2 5。 第1 0圖所示係5連接璋高通單元濾波器Η 1 0, (Η 1 0 ) 2, ( Η 1 0 ) 4, ( Η 1 0 ) 8的頻率-增益特性圖。此 第1 〇圖亦是將增益與頻率以’’ 1 π基準化。當5連接埠高通 單元濾波器Η 1 0僅1個的情況時,振幅變爲0 · 5之位置處 的時脈爲〇. 2 5。相對於此,若縱向連接數m變多的話, 濾波器的帶通寬度將變狹窄。譬如當πα = 8之情況時,振 幅爲0.5之位置處的時脈將爲0.3 75。 其次,針對所需頻帶的抽取進行說明。第 Π圖所示 係頻帶抽取的說明圖。頻帶的抽取係採用將上述單元濾波 器縱向連接4個以上者而執行。第1 1 ( a )圖所示係將5 連接埠低通單元濾波器(L 1 0 ) 4,( L 1 1 ) 4,( L 1 3 ) 4, (L 1 7 ) 4的頻率-增益特性,整合於1個圖形上的圖式。 此第1 1 ( a )圖亦是將增益與頻率以"1”基準化。 若組合該等5連接埠低通單元濾波器(L10 ) 4,( L 1 1 ) 4, ( L 1 3 ) 4, ( L 1 7 ) 4的話,各特性値間將相互抵 消而執行頻帶抽取。此外,藉由以該等波形爲基本的組合 ,配合需要朝反轉頻率軸方向移動,便可製作出僅所需頻 帶變爲通過頻段的濾波器。 第1 1 ( b )圖所示係當將4種5連接埠低通單元濾波 器(L 1 0 ) 4, ( L 1 1 ) 4, ( L 1 3 ) 4, ( L 1 7 ) 4 縱向連接時 所獲得頻率特性。依此的話,將可獲得低頻極狹窄區域變 爲通過頻段之具有幾乎良好衰退特性的低通濾波器。雖僅 -15- (13) (13)200414675 略微發生振盪,但是因爲此振盪發生於-106dB以上落入 部分,因此幾乎可忽視。 第1 2圖所示係頻帶之另一抽取例圖。如第1 2 ( a ) 圖所示,若組合5連接埠高通單元濾波器(Η 1 0 ) 8、與5 連接瑋低通單元濾波器(L 1 1 ) 8,( L 1 3 ) 8,( L 1 7 ) 8, 並將該等進行縱向連接的話,便可獲得既定頻帶變爲通過 頻段的局通滤波器。 再者,如第12 ( b )圖所示,若組合5連接埠低通單 φ 元濾波器(L10)8, (Lll)8, (L13)8,並將該等進行 縱向連接的話,便可獲得既定頻帶變爲通過頻段的低通濾 波器。此外,如第12 ( c )圖所示,若組合5連接埠高通 單元濾波器(Η 1 1 ) 8、與5連接:t阜低通單元濾波器 (L 1 3 ) 4, ( L 1 7 ) 4, ( L 1 1 5 ) 8,並將該等進行縱向連 :接的話,便可獲得既定頻帶變爲通過頻段的帶通濾波器。 如上述,藉由採用將既定基本數値串設定爲濾波器係 數的5單元濾波器並將該等任意組合,便可僅利用單元濾 φ 波器的組合,便可自動產生具所需頻率特性的FIR濾波器 之濾波器係數。所以,濾波器設計法單純且易思及,即便 非屬熟習此技術者仍可極簡單的進行·波器設計。 再者,因爲在採用上述手法所設計的濾波器電路中, 所需要的連接埠數量僅需非常少數便可完成,且對各連接 埠輸出所需的濾波器係數種類亦僅極少量便可完成,因此 濾波器電路的演算部構造便可形成極簡單狀態。所以,將 大幅削減電路元件數(特別係乘法器),可縮小濾波器電 -16 - (14) 200414675 路的規模,而且可達降低消耗功率,減輕演算 〇 再者,因爲採用上述手法所設計的濾波器 由同一型式重複所構成極簡單的構造,因此在 可縮短步驟數,且具有可輕易1C化的優點。 性面阻斷特性將可獲極大的改善,可獲得相位 線的優越濾波器特性。 相關上述所說明的內容,本案申請人已然 請案(日本專利特願2001-321321號)。本實 更進一步改良此已提出申請之申請案內容,僅 種的單元濾波器L 1 η ’’或Η 1 η ”進行縱向連接, 所需頻率特性的FIR濾波器。 首先,針對構成上述單元濾波器L 1 η π, 要素的3連接埠單元濾波器L 1 η ’,Η 1 η ’進行說 接埠單元濾波器Lin’,HI η’的濾波器係數係將 埠單元濾波器L 1 η,Η 1 η的濾波器係數數値串 處分爲一半之後,更進一步調整單側者。 第1 3圖所示係3連接埠單元濾波器L1 0 (a )係其電路構造,(b )係濾波器係數數 13 ( a)圖所示,3連接j:阜單元濾波器L10’, 縱向連接的3個D型正反器1 1·】〜1 1.3,使輸 延遲1時脈CK。然後,對從各D型正反器1 1 定連接埠所抽取出的訊號,將第1 3 ( b )圖所 數Η 1〜H3 ’利用3個係數器12·】〜12.3分別進 負荷等功效 電路,幾乎 積體化之際 此外,在特 特性亦爲直 提出專利申 φ 施形態乃爲 將如上述1 便可設計具 H In”之構成 明。此3連 上述5連接 ,在其中央 φ ,,H10,圖, 値串。如第 Η 1 0 ’係利用 入訊號依序 .i〜11.3之既 示濾波器係 行乘算,並 -17 - (15) (15)200414675 將該等乘算結果全部利用2個加法器13.^1 3_2進行加算 後再輸出。 上述2種3連接埠單元濾波器L 1 0 ’,Η 1 0’的電路構造 .均如第13 ( a)圖所示,僅濾波器係數(係數器12.^12-3 的乘數値H1〜H3 )如第13 ( b )圖所示不同。 3連接埠低通單元濾波器L101的濾波器係數係其數値 串爲非對稱型,且具有數値串的總計値非零,且數値串的 跳隔1個的總計値爲相同符號相等的性質。此外,3連接 φ 埠高通單元濾波器H10’的濾波器係數係其數値串爲非對 稱型,且具有數値串的總計値非零,且數値串的跳隔1個 的總計値爲符號相反但絕對値相等的性質。 依此,該等3連接埠單元濾波器L10’,H10’的濾波器 係數,便除屬於非對稱型之外,其餘均具有如同上述5連 接埠單元濾波器L 1 0,Η 1 0相同的性質。但是,相較於5 連接埠單元濾波器L 1 0,Η 1 0的濾波器係數之下,多少變 爲較複雜的數値。以下,說明此理由。 φ 第1 4圖所示係將5連接埠高通單元濾波器Η 1 0的濾 波器係數{1,0,-9,16,-9,0,1}/32,在其中央處區分 爲一半,並將相當單側的單純數値串{8,-9,0,1}/16當 作濾波器係數之情況時(其中,數値” 0 ”部分係非連接璋 輸出,並非使用爲濾波器係數)的頻率特性圖。在此將增 益與頻率以” 1 ”基準化。 如第1 4圖所示,若將5連接埠高通單元濾波器Η 1 0 的數値串單純地區分一半之數値串,當作濾波器係數使用 -18 - (16) (16)200414675 的話,在其頻率特性中成爲通過頻段之部分的峰値將成波 浪而產生複數極大値,且其極大値將超過’’ 1 ”。具有此種 頻率特性的單元濾波器,並不適用將其複數縱向連接而設 計所需FIR濾波器的方式。 所以,調整上述單純的數値串{ 8,- 9,0,1 } /1 6。首 先,縮小決定高頻區域側之頻率特性的濾波器係數H3的 絕對値。換句話說,藉由將其數値串從” Γ’變更爲’’ 1-N/8 ” (N = 1,2,…,8任一者)而減少高頻區域成分,俾形成 φ 僅洽位於通過頻段中央處變爲增益最大値的狀態。 第1 5圖所示係針對濾波器係數H3設定爲N = 3之情 況時的頻率特性圖。由此第1 5圖得知,通過波段起浪現 象獲改善,僅中央部分變爲增益最大値。但是,最大値仍 然超過” 1 ”。所以,接著變更進一步調整係數値,俾使此 增益最大値恰好爲"1”。 最大値的調整可利用供高頻區域成分調整用的濾波器 係數H3與相反符號的濾波器係數H2執行。其中,將濾 馨 波器係數H2的數値減小絕對値,俾形成從” -9 ’’變爲”-(9-N/8) ”(N=1’ 2,…,8 任~~~* 者)。 此時,藉由將增益調整用N値(濾波器係數H2之N 値),設定爲如同上述高頻區域調整用N値(濾波器係 數Η 3之N値),便可形成調整後的數値串總計相等於調 整前的數値串總計的狀態(調整前:8-9 + 0+1=0,調整後:8_ (9-N/8 ) +0+ ( 1-N/8 ) =0 )。此外,數値串跳隔1個的 總計値亦是形成調整前後無變化的狀態。 Ί (17) (17)200414675 第1 6圖所示係針對濾波器係數H2,H3,當設定爲 N = 3之情況時的頻率特性圖,(a )係將增益依直線刻度 表示,(b )係將增益依對數刻度表示。此第1 6圖亦是將 增亦與頻率以” 1 ”基準化。 由此第1 6圖中得知,當調整濾波器係數H2,H3之 情況時,在通過頻段中並無起浪且形成僅中央部分處形成 增益最大値狀態,最大値恰好爲” 1 ”。此外,亦可獲得約-5 5 dB的良好衰減量。具此種頻率特性的3連接埠高通單 元濾波器H10’便形成適用於將其縱向連接而設計所需FIR 濾波器的方式。 再者,如同上述5連接埠高通單元濾波器Hlii ( n=l ,2,…),藉由在3連接埠高通單元濾波器HI 0’之各濾 波器係數之間插入η個” 0 ”,便可產生3連接埠高通單元 濾波器Η 1 η ’。 如同上述3連接埠高通單元濾波器Η 1 0 ’,3連接埠低 通單元濾波器L 1 0’之濾波器係數亦是可是到調整。換句話 說,對將5連接埠低通單元濾波器L 1 0的數値串僅單純區 分一半的數値串{ 8,9,0,· 1 } /1 6,將決定高頻區域側之 頻率特性的濾波器係數Η3數値減小絕對値,俾從1 ”改 變爲”-(1-Ν/8 ) ”的狀態。 再者,利用此濾波器係數Η3與相反符號的濾波器係 數Η2,調整增益最大値。換句話說,將濾波器係數Η2値 從’’9”減小爲"9-Ν/8”。此時,藉由將高頻區域調整用Ν値 與增益調整用Ν値設定爲相同,便可使調整後的數値串 -20- (18) (18)200414675 總計與調整前的數値串總計變爲相同數値(調整前 :8 + 9 + 0-1 = 16,調整後:8+ ( 9-N/8) +〇·(卜N/8) =16)。 此外,數値串跳隔1個的總計値亦是形成調整前後均無改 變的狀態。 依此當調整3連接埠低通單元濾波器L 1 0'之濾波器係 數的情況時,亦是可獲得在通過頻段中無起浪且形成僅中 央部分處形成增益最大値狀態,最大値恰好爲’’ 1 "的低通 濾波器特性。具有此種頻率特性的3連接埠低通單元濾波 φ 器L 1 0 ’亦是形成適用於將其縱向連接而設計所需FIR濾 波器的方式。 再者,如同上述5連接埠高通單元濾波器Lln(n=l ,2,…),藉由在3連接埠低通單元濾波器L10’之各濾 波器係數之間插入η個” 0 ”,便可產生3連接璋低通單元 濾波器Lin’。 再者,3連接埠單元濾波器L10’,Η1(Γ的濾波器係數 ,亦可將5連接埠單元濾波器L 1 0 ’ Η 1 0的濾波器係數數 φ 値串,在其中央處區分爲一半後,再調整單側數値串卜1 ,0, 9, 8}/16、 {1, 0, -9, 8}/16 而產生。 藉由將如上述所說明的3連接璋低通單元濾波器L 1 η’ 或HI η’進行縱向連接,亦可設計具所需頻率特性的FIR 濾波器係數。但是,因爲該等濾波器係數均非對稱型’因 此並不保證相位的直線性。所以,在本實施形態中’便採 用減少連接璋的3連接埠單元濾波器Lin’,HI η’,更進一 步調整爲可實現直線相位特性的狀態。 -21 - (19) (19)200414675 第1 7圖所示係利用本實施形態所形成的單元濾波器 L 1 0 ",Η 1 0 ”圖,(a )係電路構造,(b )係濾波器係數的 數値串。 如第1 7 ( a )圖所示,本實施形態的單元濾波器L 1 0 ” ,Η 1 0 ”均具有相同構造。換句話說,低通單元濾波器 L 1 0 ”係將二個3連接埠低通單元濾波器1 L 1 0,2L 1 0縱向 連接而構成。而,高通單元濾波器Η10”係將二個3連接 埠高通單元濾波器1 Η 1 0,2Η 1 0縱向連接而構成。 φ 如第1 7 ( b )圖所示,構成低通單元濾波器L 1 0 ”的其 中一 3連接埠低通單元濾波器2L 10,係將上述5連接埠 低通單元濾波器L 1 0的濾波器係數數値串{- 1,0,9,1 6 ,9,0,- 1 } /3 2區分爲一半後,再進一步調整單側數値串 {8,9,0,-1}/16者,設定爲濾波器係數H4〜H6。即,如 同上述3連接埠低通單元濾波器L 1 0 ’。此外,另一 3連接 埠低通單元濾波器1 L 1 0則如上述,將經區分爲一半後再 進一步調整單側數値串{-1,0,9,8 }/1 6者,設定爲濾波 鲁 器係數H1〜H3 。 再者,構成高通單元濾波器Η 1 0 n的其中一 3連接埠 高通單元濾波器2H 10,係將上述5連接埠高通單元濾波 器 Η1 0的濾波器係數數値串{ 1,〇,- 9,1 6,- 9,0, 1 }/ 3 2區分爲一半後,再進一步調整單側數値串{ 8,- 9,0 ,U /1 6者,設定爲濾波器係數η 4〜Η 6。即,如同上述3 連接璋局通單兀濾波器Η 1 0 ’。此外,另一 3連接璋高通 單兀濾波器1 Η 1 0則如上述,將經區分爲—半後再進一步 -22 - (20) (20)200414675 調整單側數値串{ 1,〇,- 9,8 } /1 6者,設定爲濾波器係數 H1〜H3。 另外,上述二個3連接埠低通單元濾波器1 L 1 0, 2 L 1 〇的連接關係、或上述二個3連接埠高通單元濾波器 1H10,2H10的連接關係,亦可與第17(a)圖所示者呈 左右相反狀態。 如上述,若構成單元濾波器L 1 0 ”,Η 1 0 ”的話,因爲 濾波器係數呈對稱型,因此相位特性將呈直線。第1 8圖 所示係低通單元濾波器L 1 0 ”的頻率特性圖,第1 9圖所示 係高通單元濾波器Η 1 0 ”的頻率特性圖,將增益依對數刻 度表示。此第18圖與第19圖亦是將增益與頻率依”1"基 準化。 由該等圖中得知,頻率-增益特性在通過頻段中並無 起浪,且最大値恰好爲”1”。此外,亦獲得約_55dB的良好 衰減量。此外,頻率-相位特性將獲得非常漂亮的直線相 位特性。所以,藉由將具有此種頻率特性的單元濾波器 Lin” , H1 η”縱向連接,便可依非常少的連接埠數構成係數 爲對稱的直線相位濾波器。 但是,第17圖所示單元濾波器L10”,Η10”整體具備 6連接埠,較5連接埠單元濾波器L 1 0,Η 1 0的連接埠爲 多。可是,相對於5連接埠單元濾波器L1 0,Η10由1段 構成之下,單元濾波器L 1 0 ”,Η 1 0 ”則將二個3連接埠單 元濾波器縱向連接而構成。所以,帶寬便已較5連接埠單 元濾波器L 1 〇,Η 1 0爲之狹窄。 -23- (21) (21)200414675 因此本實施形態在當設計帶寬狹窄的FIR濾波器方面 特別有效。換句話說,在爲實現所需狹窄帶寬方面,整體 所需要的單元濾波器縱向連接數’在相較於採用5連接埠 單元濾波器L 1 0,Η 1 0之情況下,將可大幅減少。藉此整 體觀之,便可縮小電路規模。 其次,例示幾個利用本實施形態所製成的數位濾波器 之設計例。首先例示採用低通單元濾波器L 1 0 ”的低通濾 波器設計例。所設計低通濾波器之目標規格係如下所述。 φ 換句話說,訊號的取樣頻率Fs爲48KHz,-3dB帶寬爲 3.5kHz,-80dB帶寬爲8kHz,帶域外衰減量爲-80 dB以上 〇 實現此目標規格的低通濾波器係可藉由譬如將設定爲 N = 2.6的低通單元濾波器L10”縱向連接64個而構成(此 情況下的構造乃依{1L ( 2.6 ) 10*2L ( 2·6 ) 10}64表示) 〇 目標規格爲配合特性方面,必須調整通過頻段的帶寬 φ 與斜率。相關帶寬可利用增加單元濾波器的縱連接段數而 變狹窄。此外,相關斜率可藉由變更參數値N而進行調 整。此參數値N乃以3爲標準,若N > 3的話則斜率將變 小,若N < 3的話則斜率將變大。在此藉由設定爲N = 2.6 ,並將縱向連接段數設定爲64個,便可獲得滿足上述目 標規格的低通濾波器特性。 第2 0圖所示係依此所構成低通濾波器的頻率特性圖 ,將增益依對數刻度表示。第2 0 ( b )圖所示係第2 0 ( a -24 - (22) (22)200414675 )圖所示特性的部分放大圖。由此第20圖得知,低通濾 波器{1L ( 2.6 ) 10*2L ( 2.6 ) 10}64係滿足上述目標規格 。此外,因爲濾波器係數屬於對稱型,因此相位特性將爲 直線。 再者,依此所構成低通濾波器平均1位元所需要的D 型正反器數爲49個,連接埠數爲49個,濾波器係數種類 (所演算數値的種類)僅爲2 3種。將具6連接埠之單元 濾波器L10”縱向連接64個的話,D型正反器或連接埠數 將較原本的49個爲多。但是,此低通濾波器的過濾器係 數係根據上述有限型函數而產生的,在縱向連接的二側邊 附近處係數値小至可忽略的程度。在有限型性質上,因爲 即便忽略此部份仍未發生截尾誤差,因此此部份便除外。 經除外後的剩餘部分,將變爲相關滿足目標規格的低 通濾波器所求得最終之濾波器係數。所以,實際上,僅要 將此濾波器係數當作硬體而構成的話便可,所需要的D 型正反器與連接璋均只要49個便可完成。藉此便可將整 體所需要的D型正反器數量與連接埠數量變爲非常少, 可將濾波器電路構造變爲極簡單。 其次,例是採用高通單元濾波器Η 1 1 ”的帶通濾波器 設計例。所設計帶通濾波器之目標規格係如下所述。換句 話說,訊號的取樣頻率 Fs爲1.8KHz,-3dB帶寬爲 100kHz,-80dB帶寬爲200kHz,帶域外衰減量爲lOdB以 上。 實現此目標規格的帶通濾波器係可藉由譬如將設定爲 -25· (23) (23)200414675 N = 2.7的高通單元濾波器HI Γ’縱向連接704個而構成。 第2 1圖所示係依此所構成帶通濾波器的頻率特性圖 ,將增益依對數刻度表示。第2 1 ( b )圖所示係第2 1 ( a )圖所示特性的部分放大圖。由此第2 1圖得知,帶通濾 波器{1H ( 2.7 ) 1 1*2H ( 2.7 ) 1 1 }7G4係滿足上述目標規格 。此外,相位特性亦爲直線。 再者,依此所構成帶通濾波器平均1位元所需要的連 接埠數,若除係數値小至可忽略程度之部分的話,僅爲 77連接埠,濾波器係數種類僅爲3 1種。此外,平均1位 元所需的D型正反器數量僅爲161段。 另外,雖在此爲省略圖示,但是藉由複數高通單元濾 波器Η 1 0 ”縱向連接,亦可構成所需特性的高通濾波器。 再者,上述第20圖與第2 1圖雖例示將處理位元數設 定爲1 6位元之情況的例子,但是藉由增加處理位元數便 可獲得具更深衰減的特性。換言之,可獲得衰減量依存於 處理位元數的數位濾波器。 如上所詳述,依照本實施形態的話,藉由將既定基本 數値串設定爲濾波器係數的1種單元濾波器L 1 η ’,或Η 1 η ” 縱向連接,僅利用此縱向連接便可獲得具所需頻率特性的 FIR濾波器之濾波器係數。所以,濾波器設計法非常單純 且易思及,即便非熟習此技術者仍可極簡單的執行濾波器 設計。 再者,因爲採用上述手法而設計的濾波器電路中所需 要的連接埠數,僅要非常少數量便可,且對各連接埠輸出 -26- (24) (24)200414675 所需的濾波器係數種類亦僅要少數便可,因此可將濾波器 電路的演算部構造變爲極簡單。所以,可大幅削減電路元 件數而縮小濾波器電路規模。此外,採用上述手法所設計 的濾波器電路,因爲屬於全部由相同型式重複構成的極單 純構造,因此在積體化之際便可縮短步驟數,亦具有容易 1C化的優點。 再者,相關已經提出申請之申請案的5連接埠單元濾 波器L 1 η,Η 1 η,亦是僅利用1種縱向連接便可設計所需 肇 特性的數位濾波器。但是,在爲設計較狹窄帶寬的數位濾 波器方面,相較於本實施形態之下,便需要非常多的縱向 連接段數,所使用的連接埠或D型正反器數量亦變爲非 常多。 因此並無法實現僅利用1種5連接埠單元濾波器L 1 η ,Η 1 η設計數位濾波器,必須組合複數種單元濾波器並施 行頻帶抽取。相對於此,本實施形態乃因爲利用較少的單 元濾波器Lin”或Hln”縱連接數便可實現較夾窄的帶寬’ 馨 因此僅利用1種單元濾波器L 1 η ”或Η 1 η ”的縱向連接便可 設計數位濾波器。 (第2實施形態) 其次,相關本發明第2實施形態進行說明。第22圖 所示係上述低通濾波器{1L ( 2.6 ) 10*2L ( 2·6 ) 10}64圖 ,(a )係電路構造,(b )係所使用時脈。
第22圖所示低通濾波器係具備有:依照基準時脈CK -27- (25) (25)200414675 而動作的D型正反器5 1,5 6 ;依照1 6倍頻率之時脈 1 6 C K進行動作的D型正反器5 3與4段處理部5 4 ;以及 依照1 /1 6倍頻率之時脈C K 1而進行動作的多工器5 2與數 據選擇器5 5。上述4段處理部5 4係由低通濾波器{ 1 L ( 2.6) 116*2L(2.6) 116}4 所構成。 輸入出段D型正反器51中的數據,將被輸入於多工 器5 2的端子A側。對此多工器5 2的端子B側,輸入經 數據選擇器^端子B所輸出低通濾波器處理結果的數據 鲁 。多工器52係將輸入該等端子A,B中之數據的任一者 ,選擇性的輸出給下一段的D型正反器5 3。 在此例子中,在對多工器5 2提供時脈CK 1的時序下 選擇端子A,而在此外的時序下則選擇端子B,並將其所 選擇到的數據輸出給D型正反器5 3。D型正反器5 3係暫 時保持由多工器52所供應的數據,並輸出給4段處理部 54 ° 4段處理部5 4係對由D型正反器5 3所供應的數據, φ 施行{ 1 L ( 2.6 ) 1 1 6 * 2 L ( 2 · 6 ) 1 1 6 } 4的低通濾波器處理。 由此4段處理部54所輸出的數據,將被輸入於數據選擇 器55中。數據選擇器55便將由4段處理部54所供應的 數據,選擇性的輸出給D型正反器5 6或多工器5 2中任 一者。
換句話說,數據選擇器5 5係在被供應CK 1的時序下 選擇端子A側,並將由4段處理部54所供應的數據輸出 給D型正反器5 6。而在除此之外的時序下便選擇端子B -28- (26) (26)200414675 側,並將由4段處理部5 4所供應的數據輸出給多工器5 2 〇 藉由上述構造,通過D型正反器51所輸入的數據, 在4段處理部5 4中,將重複執行{ 1 L ( 2 .. 6 ) 1 1 6 * 2 L ( 2 · 6 )1 1 6 } 4的低通濾波器處理1 6次,結果所獲得數據將透過 D型正反器5 6而輸出。藉此便對所輸入的數據施行如同 {11^(2.6)1〇*2乙(2.6)10}64的相同處理。 在上述第1實施形態中,僅利用將1種單元濾波器進 $ 行縱向連接便可構成數位濾波器,·該等數位濾波器全部由 相同型式重複而構成。第2實施形態乃藉由將此相同型式 的重複部分利用迴路電路構成,便可更進一步削減所使用 的連接埠數量。在上述第1實施形態中,平均1位元所需 的連接埠數量爲49個,連接璋種類爲23個,相對於此, 在第2實施形態中,連接埠將減爲2 1個,且連接埠種類 將減爲1 1個。 第2 3圖所示係如第2 2圖所示構造的低通濾波器頻率 鲁 特性圖,將增益依對數刻度表示。第2 3 ( b )圖係第2 3 ( Ο所示特性的部分放大圖。若將此第2 3圖與上述第2 0 圖進行比較的話便可得知’當構成如第2 2圖所示低通濾 波器的情況時’亦可獲得大致如同第2 〇圖相同程度的頻 率特性。 再者,在此雖例示相關低通濾波器的構造例,但是相 關高通濾波器或帶通濾波器等,同樣的亦可採用迴路電路 構成,藉此便可更加減少所使用的連接j;阜數量^ -29- (27) (27)200414675 供實現上述所說明第1與第2實施形態的數位濾波器 知設1十方法的裝置,可利用硬體構造、D S P、軟體等任一 者達成。譬如當利用軟體達成的情況時,濾波器設計裝置 係由CPU、MPU、RAM、或ROM等所構成,並利用記憶 於RAM、R0M或硬碟等之中的程式產生動作便可實現。 所以,可藉由將使電腦依具有上述本實施形態功能之 方式而生動作的程式,儲存於如CD-ROM之類的記錄媒 體中’並將其讀入於電腦中便可實現。記錄上述程式的記 錄媒體,除CD-ROM之外,尙可採用如:軟碟、硬碟、磁 碟、光碟、光磁碟、DVD、非揮發性記億卡等。此外,亦 可將上述程式透過網際網路等網路,下載於電腦中而實現 〇 換句話說,將相關各種單元濾波器的濾波器係數當作 資訊,並預先儲存於RAM或ROM等記憶體中,若使用者 指示關於單元濾波器之任意組合的話,C P U便採用上述記 憶體中所儲存的濾波器係數資訊,演算所指示組合所對應 的濾波器係數,便可求得FIR濾波器。 譬如’可預先將各種單元濾波器選項化(將對應各選 項的濾波器係數當作資訊並儲存),使用者便藉由在顯示 器畫面上依任意組合配置該等選項,CPU便自動地演算並 求取對應所排列的濾'波器係數。此外,若將所求得爐波器 係數自動地進行F F T轉換,並將結果當作頻率-增益特性 圖而顯示的話,便可確認所設計濾波器的特性,可更輕易 的進行濾波器設計。 -30 - (28) (28)200414675 再者,藉由電腦執行所供應程式,不僅可實現上述實 施形態的功能’當此程式在電腦中與產生作用的〇 S (作 業系統)或其他應用程式軟體等共同實現上述實施形態功 能的情況時’或者所供應的程式處理全部(或部分),利 用電腦的功能擴充埠或功能擴充單元,而實施達成上述實 施形態功能的情況時,相關程式均涵蓋於本發明實施形態 中 〇 再者,在上述第1與第2實施形態中,第2 ( a )與 φ (b )圖所示,雖將對稱型數値串區分爲半,而形成非對 稱型3連接埠單元濾波器的濾波器係數,但是原本的對稱 型數値串並不僅限於此。亦可採用如:第24 ( a )圖所示產 生的5連接埠低通單元2次濾波器L20、或第24 ( b )圖 所示產生的5連接璋高通單元2次濾波器H2 0的對稱型 數値串。 再者,除上述第2圖與第24圖所示之外,亦可採用 絕對値爲” 1 ”與” 8 ”的數値,將不同於上述數値串的數値串 · 當作5連接埠單元濾波器的濾波器係數,並將此數値串區 分爲半而設定爲3連接瑋單元濾波器的濾波器係數。 此外’上述實施形態,充其量僅不過實施本發明的具 體化一例而已,不可解釋爲限定本發明的技術範圍。換句 話說’本發明在不脫逸其精神或主要特徵之前提下,可依 各種型式實施。 〔產業上可利用性〕 -31 - (29) (29)200414675 本發明係有效使用於具備有由複數延遲器所構成具連 接埠的延遲線,將各連接埠的訊號分別數倍後’經加計並 輸出之型式的FIR數位濾波器。 【圖式簡單說明】 第1圖係5連接埠單元濾波器L 1 0,Η 1 0之電路構造 與濾波器係數的數値串圖。 第2圖係5連接埠單元濾波器L 1 0,Η 1 0之濾波器係 肇 數產生演算法圖。 第3圖係5連接埠單元濾波器L 1 0之濾波器係數涵義 之說明圖。 第4圖係5連接埠單元濾波器Η1 0之濾波器係數涵 義之說明圖。 第5圖係5連接埠單元濾波器L 1 1之濾波器係數產生 演算法圖。 第6圖係5連接璋低通單元濾波器L 1 0,L 1 1之頻率-增益特性圖。 第7圖係5連接埠低通單元濾波器L 1 0,L 1 1之頻率 係數產生演算法圖。 第8圖係5連接埠高通單元濾波器Η10,Η11之頻 率-增益特性圖。 第9圖係5連接璋低通單元濾波器(L 1 0 ) η之頻率-增益特性圖。 第1 〇圖係5連接埠高通單元濾波器(Η 1 0 ) η之頻率- (30) (30)200414675 增益特性圖。 第1 1圖係相關頻段抽取的說明圖。 第1 2圖係相關頻段之其他抽取例圖。 第13圖係利用第1實施形態的濾波器設計法,構成 最基本的2種3連接埠單元濾波器之電路構造及濾波器係 數數値串圖。 第1 4圖係當將單純數値串{ 8,- 9,0,1 }/1 6當作濾 波器係數的情況時,3連接埠高通濾波器H1 0’的頻率特性 φ 圖。 第1 5圖係當僅調整濾波器係數H3之情況時,3連接 埠高通單元濾波器H10’的頻率特性圖。 第1 6圖係當調整濾波器係數H2,H3之情況時,3連 接埠高通單元濾波器H10’的頻率特性圖。 第1 7圖係本實施形態的單元濾波器L 1 0 ”,Η 1 0 ”之電 路構造及濾波器係數數値串圖。 第1 8圖係本實施形態的低通單元濾波器L 1 0 ”之頻率 肇 特性圖。 第1 9圖係本實施形態的高通單元濾波器Η 1 0 ’’之頻率 特性圖。 第2 0圖係根據第1實施形態所設計的低通濾波器頻 率特性圖。 第2 1圖係根據第1實施形態所設計的帶通濾波器頻 率特性圖。 第2 2圖係第2實施形態的低通濾波器圖。 -33· (31) (31)200414675 第2 3圖係根據第2實施形態所設計的低通濾波器頻 率特性圖。 第24圖係5連接埠單元2次濾波器L20,H20之濾 波器係數產生演算法圖。 〔元件符號說明〕 5 2 ··多工器 5 4 : 4段處理部 5 5 :數據選擇器 1-1〜1-6,51,53,56: D 型正反器 1 1-1〜1 1-3 :正反器 12-1〜12-3 , 2-1〜2-5 :係數器 1H10,2H10,H10’: 3連接埠高通單元濾波器 1 L 1 0,2 L 1 0,L 1 0 ’ : 3連接埠低通單元濾波器 3-1〜3-4,13-1〜13-2:力口法器 H1〜H6 :濾波器係數 Η 1 0 ” :高通單元濾波器 Η 1 0,Η 1 1 : 5連接璋高通單元濾波器 Η20 : 5連接埠高通單元2次濾波器 L 1 0 ” :低通單元濾波器 L 1 0,L 1 1 : 5連接埠低通單元濾波器 L 1 η ”,Η 1 η ”,L 1 0 ”,Η 1 0 ” :單元濾波器 L 1 η,Η 1 η,L 1 0,Η 1 0 : 5連接埠單元濾波器 L]nf,H]n’,L]0’,Η10’ : 3連接埠單元濾波器 -34 - (32)200414675 L2 0 : 5連接埠低通單元2次濾波器
-35-

Claims (1)

  1. (1) (1)200414675 拾、申請專利範圍 1 · 一種數位濾波器之設計方法,係設計數位濾波器的 方法,該數位濾波器係將由複數延遲器所構成具連接璋的 延遲線之各連接埠訊號,利用所供應的濾波器係數分別進 行數倍後,經加計後輸出,其特徵在於: 將具有將數値設定爲數値串總計値非零,且該數値串 跳隔1個的總計値爲同符號相等狀態的非對稱型濾波器係 數之第1與第2單元濾波器,採用縱向連接成整體數値串 爲對稱型狀態所構成的基本濾波器,利用將該基本濾波器 進行複數縱向連接而執行濾波器設計。 2 .如申請專利範圍第1項之數位濾波器之設計方法, 其中,構成上述第1與第2單元濾波器的非對稱型濾波器 係數,係由將既定對稱型數値串在中央處區分爲半,並經 更進一步調整二側數値串者所構成; 上述既定對稱型數値串係將數値設定爲其數値串總計 値非零,且該數値串跳隔1個的總計値爲同符號相等狀態 φ 者。 3 ·如申請專利範圍第2項之數位濾波器之設計方法, 其中,上述既定對稱型數値串係由-1,0,9,1 6,9,0 ,-1之比率而構成; 上述非對稱型濾波器係數係由-(卜N/8 ) ,0, (9-N/8) ,8、及 8, (9-N/8) ,0,·(1-Ν/8)之比率 所構成(其中,Ν係〇 S N S 8 )。 4 · 一種數位濾波器之設計方法’係設計數位濾波器的 -36 - (2) (2)200414675 方法,該數位濾波器係將由複數延遲器所構成具連接埠的 延遲線之各連接埠訊號’利用所供應的濾波器係數分別進 行數倍後,經加計後輸出,其特徵在於: 將具有將數値設定爲數値串總計値非零,且該數値串 跳隔1個的總計値爲符號相反但絕對値相等狀態的非對稱 型濾波器係數之第1與第2單元濾波器,採用縱向連接成 整體數値串爲對稱型狀態所構成的基本濾波器,利用將該 基本濾波器進行複數縱向連接而執行濾波器設計。 5 ·如申請專利範圍第4項之數位濾波器之設計方法, 其中,構成上述第1與第2單元濾波器的非對稱型濾波器 係數,係由將既定對稱型數値串在中央處區分爲半,並經 更進一步調整二側數値串者所構成; 上述既定對稱型數値串係將數値設定爲其數値串總計 値非零,且該數値串跳隔1個的總計値爲符號相反但絕對 値相等狀態者。 6 ·如申請專利範圍第5項之數位濾波器之設計方法, 其中,上述既定對稱型數値串係由1,〇,-9,16,-9,0 ’ 1之比率而構成; 上述非對稱型濾波器係數係由(卜N/8) ’ 0 ’ -(9-N/8) ,8、及 8,-(9-N/8) ,〇,(卜 N/8)之比率 所構成(其中,N係0SN$8)。 7 ·如申請專利範圍第1〜6項中任一項之數位濾波器之 設計方法,其中,構成上述第1與第2單元濾波器之非對 稱型濾波器係數所對應的各連接埠之間,藉由插入η時脈 -37- (3) (3)200414675 分延遲,而調整濾波器之通過頻段。 8. —種數位濾波器之設計裝置,係具備有: 基本濾波器儲存機構,係儲存著相關基本濾波器的資 訊,而該基本濾波器係將具有將數値設定爲數値串總計値 非零,且該數値串跳隔1個的總計値爲相同符號相等狀態 的非對稱型濾波器係數之第1與第2單元濾波器,縱向連 接成整體數値串爲對稱型所構成; 縱向連接機構,係指示將上述基本濾波器的縱向連接 φ 數;以及 濾波器係數演算機構,係採用利用上述基本濾波器儲 存機構所儲存的資訊,求取經上述縱向連接機構所指示縱 向連接數所對應的濾波器係數。 9. 一種數位濾波器之設計裝置,係具備有: 基本濾波器儲存機構,係儲存著相關基本濾波器的資 訊,而該基本濾波器係將具有將數値設定爲數値串總計値 非零,且該數値串跳隔1個的總計値爲符號相反但絕對値 φ 相等狀態的非對稱型濾波器係數之第1與第2單元濾波器 ,縱向連接成整體數値串爲對稱型所構成; 縱向連接機構,係指示將上述基本濾波器的縱向連接 數;以及 濾波器係數演算機構’係採用利用上述基本濾波器儲 存機構所儲存的資訊’求取經上述縱向連接機構所指示縱 向連接數所對應的濾波插1係數。 1 0.如申請專利範圍第8或9項之數位濾波器之設計 -38- (4) (4)200414675 裝置,係具備有延遲機構’該延遲機構係、在構成上述第1 與第2單元濾波器之非對稱型濾波器係數所對應的各連接 ί阜之間,藉由插入n時脈分延遲’而調整濾波器之通過頻 段。 η .一種數位濾波器,係具備由複數延遲器所構成具 連接埠的延遲線’並將各連接埠的訊號’利用申請專利範 圍第i〜7項中任一項之濾波器設計法所求得濾波器係數, 分別數倍後,經加計後再輸出。 1 2 . —種數位濾波器,係具備由複數延遲器所構成具 連接埠的延遲線,並將各連接埠的訊號,利用所賦予的濾 波器係數分別數倍後,經加計後再輸出,其特徵在於: 將具有將數値設定爲數値串總計値非零,且該數値串 跳隔1個的總計値爲相同符號相等狀態的非對稱型濾波器 係數之第1與第2單元濾波器,縱向連接成整體數値串爲 對稱型而構成基本濾波器,並將該基本濾波器複數縱向連 接而成。 1 3 ·如申請專利範圍第1 2項之數位濾波器,其中,構 成上述第1與第2單元濾波器的上述非對稱型濾波器係數 ,係由將既定對稱型數値串在中央處區分爲半,並經更進 一步調整二側數値串者所構成; 上述既定對稱型數値串係將數値設定爲其數値串總計 値非零’且該數値串跳隔1個的總計値爲同符號相等狀態 者。 i 4 ·如申請專利範圍第丨3項之數位濾波器,其中,上 -39- (5) (5)200414675 述既定對稱型數値串係由-1’ 0,9,16,9,0,-1之比率 而構成。 i 5 .如申請專利範圍第1 4項之數位濾波器,其中,構 成上述第1與第2單元濾波器的上述非對稱型濾波器係數 ,係由-(;[-N/8) ,0, (9-N/8) ’8、及 8, ( 9-N/8 ) ,0,-(卜N/8 )之比率所構成(其中,N係0 ^ N S 8 )。 1 6 . —種數位濾波器,係具備由複數延遲器所構成具 連接埠的延遲線,並將各連接埠的訊號’利用所賦予的濾 φ 波器係數分別數倍後,經加計後再輸出’其特徵在於: 將具有將數値設定爲數値串總計値非零,且該數値串 跳隔1個的總計値爲符號相反但絕對値相等狀態的非對稱 型濾波器係數之第1與第2單元濾波器,縱向連接成整體 數値串爲對稱型而構成基本濾波器,並將該基本濾波器複 數縱向連接而成。 1 7 .如申請專利範圍第1 6項之數位濾波器,其中,構 成上述第1與第2單元濾波器的上述非對稱型濾波器係數 φ ,係由將既定對稱型數値串在中央處區分爲半,並經更進 一步調整二側數値串者所構成; 上述既定對稱型數値串係將數値設定爲其數値串總計 値非零,且該數値串跳隔1個的總計値爲符號相反但絕對 値相等狀態者。 1 8 .如申請專利範圍第1 7項之數位濾波器,其中,上 述既定對稱型數値串係由1,〇,-9,16,-9,0,;[之比 率而構成。 -40- (6) (6)200414675 1 9 .如申請專利範圍第1 8項之數位濾波器,其中,構 成上述第!與第2單元濾波器的上述非對稱型爐波器係數 ,係由(卜N/8) ,〇, -(9-N/8) ’ 8、及 8’ - (9-N/8) ,〇, ( bN/8)之比率所構成(其中,N係8)。 20.如申請專利範圔第12〜19項中任—項之數位濾'波 器,係具備有延遲機構,該延遲機構係在構成上述第1與 第2單元濾波器之非對稱型濾波器係數所對應的各連接璋 之間,藉由插入η時脈分延遲,而調整濃波器之通 2 1 . —種數位濾波器設計用程式,係使電腦執行申請 專利範圍第1〜7項中任一項之濾波器設計方法所相關處理 順序的程式。 2 2 · —種數位濾波器設計用程式,使電腦產生申請專 利範圍第8〜1 0項中任一項之各機構的功能。
    -41 ^
TW092128314A 2002-10-21 2003-10-13 Digital filter design method and device, digital filter design program, and digital filter TW200414675A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306316 2002-10-21

Publications (1)

Publication Number Publication Date
TW200414675A true TW200414675A (en) 2004-08-01

Family

ID=32105205

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092128314A TW200414675A (en) 2002-10-21 2003-10-13 Digital filter design method and device, digital filter design program, and digital filter

Country Status (6)

Country Link
EP (1) EP1557947A1 (zh)
JP (1) JPWO2004036747A1 (zh)
KR (1) KR20050075365A (zh)
CN (1) CN1706101A (zh)
TW (1) TW200414675A (zh)
WO (1) WO2004036747A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053510A1 (de) * 2006-11-14 2008-05-15 Zinoviy, Lerner, Dipl.-Ing. Verfahren zur digitalen nichtrekursiven Signalverarbeitung
DE102006053508A1 (de) * 2006-11-14 2008-05-15 Zinoviy, Lerner, Dipl.-Ing. Verfahren zur digitalen Signalverarbeitung
DE102006053511A1 (de) * 2006-11-14 2008-05-15 Zinoviy, Lerner, Dipl.-Ing. Verfahren zur digital Bandpaß-FIR-Filterung
WO2009047673A2 (en) * 2007-10-08 2009-04-16 St-Nxp Wireless (Holding) Ag Fir digital to analog converter
JP4472769B2 (ja) * 2007-12-28 2010-06-02 株式会社シグネット リアルタイム震度計とそれを用いた震度等の予知方法
JP2010041311A (ja) * 2008-08-04 2010-02-18 Japan Science & Technology Agency フィルタ、フィルタの構成システム及び構成方法
EP2315353B1 (en) 2008-06-10 2020-07-29 Japan Science and Technology Agency Filter
JP2010021860A (ja) * 2008-07-11 2010-01-28 Japan Science & Technology Agency 帯域分離フィルタ及び帯域分離方法
CN102388534B (zh) * 2010-02-20 2014-04-30 华为技术有限公司 滤波设备和用于提供滤波设备的方法
KR102192991B1 (ko) 2014-04-23 2020-12-18 삼성전자주식회사 가변적인 디지털 필터를 포함하는 아날로그-디지털 컨버터 및 이를 포함하는 이미지 센서
US10135424B2 (en) * 2015-02-27 2018-11-20 Microchip Technology Germany Gmbh Digital filter with confidence input

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE467680B (sv) * 1990-12-19 1992-08-24 Johan Hellgren Digital filterbank med minskad effektfoerbrukning
JPH05243908A (ja) * 1991-12-06 1993-09-21 Nec Corp ろ波器
JPH05235701A (ja) * 1992-02-25 1993-09-10 Nippon Steel Corp 環状畳み込みによるディジタルフィルタバンク処理方法及び装置
GB9226536D0 (en) * 1992-12-21 1993-02-17 Unilever Plc Foodstuffs and other compositions
JPH1079686A (ja) * 1996-09-02 1998-03-24 Ricoh Co Ltd ディジタル相関器

Also Published As

Publication number Publication date
KR20050075365A (ko) 2005-07-20
EP1557947A1 (en) 2005-07-27
CN1706101A (zh) 2005-12-07
WO2004036747A1 (ja) 2004-04-29
JPWO2004036747A1 (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
US7529788B2 (en) Digital filter design method and device, digital filter design program, and digital filter
TW200414675A (en) Digital filter design method and device, digital filter design program, and digital filter
Lyons Understanding cascaded integrator-comb filters
JP4300272B2 (ja) デジタルフィルタおよびその設計方法
JPH0828649B2 (ja) ディジタルフィルタ
JP2008021119A (ja) デジタルフィルタおよびこれを用いた画像処理装置
JP4722266B2 (ja) オーバサンプリングfirフィルタ、オーバサンプリングfirフィルタの制御方法、およびオーバサンプリングfirフィルタを有する半導体集積回路、オーバサンプリングfirフィルタでフィルタリングされたデータを送信する通信システム
JP2002158561A (ja) Firフィルタ及びそのデータ処理方法
TW200529552A (en) Digital filter design method and device, computer readable medium recorded with digital filter design program, and digital filter
EP1533898A1 (en) Digital filter designing method, digital filter designing program, digital filter
JPWO2004036746A1 (ja) デジタルフィルタの設計方法および装置、デジタルフィルタ設計用プログラム、デジタルフィルタ
EP1187333A1 (en) Oversampling circuit and digital/analog converter
US20050171988A1 (en) Digital filter design method and device, digital filter design program, and digital filter
US20050120067A1 (en) Digital filter designing method, digital filter designing program, digital filter
JP2005020554A (ja) デジタルフィルタ
JP4300273B2 (ja) 音質調整装置及びこれに用いるフィルタ装置、音質調整方法、フィルタの設計方法
JPWO2004079905A1 (ja) デジタルフィルタの設計方法および装置、デジタルフィルタ設計用プログラム、デジタルフィルタ
JP4989575B2 (ja) フィルタ及びフィルタの構成方法
JP2007267204A (ja) フィルタ装置
Syed et al. Investigation of Area-Timing Trade off for Merged Delay Transformed Interpolator
EP1164704A1 (en) Oversampling circuit and digital/analog converter
Alle et al. Implementation of two parallel FIR filter structure using LUT less DA
JPH0837444A (ja) オーバサンプルディジタルフィルタ
Lawson Wave digital filters boost DSP applications
TW200405657A (en) Tone quality adjustment device designing method and designing device, tone quality adjustment device designing program, and tone quality adjustment device