RU2694305C1 - Способ формирования никелевой пленки и используемый для него никелевый раствор - Google Patents

Способ формирования никелевой пленки и используемый для него никелевый раствор Download PDF

Info

Publication number
RU2694305C1
RU2694305C1 RU2018109614A RU2018109614A RU2694305C1 RU 2694305 C1 RU2694305 C1 RU 2694305C1 RU 2018109614 A RU2018109614 A RU 2018109614A RU 2018109614 A RU2018109614 A RU 2018109614A RU 2694305 C1 RU2694305 C1 RU 2694305C1
Authority
RU
Russia
Prior art keywords
nickel
metal substrate
solution
anode
solid electrolyte
Prior art date
Application number
RU2018109614A
Other languages
English (en)
Inventor
Юки САТО
Original Assignee
Тойота Дзидося Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тойота Дзидося Кабусики Кайся filed Critical Тойота Дзидося Кабусики Кайся
Application granted granted Critical
Publication of RU2694305C1 publication Critical patent/RU2694305C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/028Electroplating of selected surface areas one side electroplating, e.g. substrate conveyed in a bath with inhibited background plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • C25D5/06Brush or pad plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Изобретение относится к области гальванотехники и может быть использовано для формирования никелевой пленки на металлической подложке. Способ включает размещение анода, металлической подложки-катода и мембраны твердого электролита, включающей раствор, который содержит ионы никеля и хлорид-ионы, при этом мембрана твердого электролита размещена между анодом и металлической подложкой в контакте с поверхностью металлической подложки, и приложение электрического напряжения между анодом и металлической подложкой для формирования никелевой пленки, причем концентрация хлорид-ионов в растворе составляет от 0,002 до 0,1 моль/л и раствор имеет уровень рН от 2,5 до менее 4. Раствор для формирования никелевой пленки содержит ионы никеля и хлорид-ионы и предназначен для способа, приведенного выше, причем концентрация хлорид-ионов в растворе составляет от 0,002 до 0,1 моль/л, а раствор имеет уровень рН от 2,5 до менее 4. Технический результат: предотвращение коррозии металлической подложки. 2 н. и 6 з.п. ф-лы, 5 ил., 3 табл., 5 пр.

Description

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Область техники
Примерные варианты осуществления изобретения относятся к способу формирования никелевой пленки и к никелевому раствору, используемому для этого способа формирования никелевой пленки.
Описание уровня техники
Никель имеет превосходные физические свойства. Так, разнообразные подложки имеют сформированные на их поверхностях никелевые пленки.
Например, JP 2013-253306 А раскрывает способ получения детали из нержавеющей стали с покрытием, включающий никелирование подложки из нержавеющей стали с использованием никелевого раствора электролита Вуда для формирования тонкого подслоя и обработку сформированного тонкого никелевого подслоя с нанесением покрытия катионным электроосаждением.
JP 2012-219362 A раскрывает способ формирования пленки металла, включающий приложение напряжения между катодной подложкой и анодной подложкой, размещенных с прокладыванием между ними мембраны твердого электролита, содержащей твердый электролит и ионы металла, так, чтобы восстанавливать ионы металла и обеспечивать осаждение металла на катодной подложке, хотя пленка металла не ограничивается никелевой пленкой.
JP 2015-92012 А описывает, что раскрытый в JP 2012-219362 A способ выполняют с использованием никелевого раствора с заданным уровнем рН, чтобы разрешить проблемы, возникающие при выполнении раскрытого в JP 2012-219362 A способа с использованием никелевого раствора (то есть образование газообразного водорода между мембраной твердого электролита и подложкой).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Когда никелевую пленку формируют на поверхности металлической подложки, удерживая мембрану твердого электролита в контакте с металлической подложкой (в частности, алюминиевой подложкой), как описано, например, в JP 2012-219362 A и JP 2015-92012 A, было обнаружено, что на металлической подложке имела место коррозия.
Соответственно, настоящее изобретение нацелено на формирование никелевой пленки на поверхности металлической подложки с мембраной твердого электролита в контакте с металлической подложкой при предотвращении коррозии, происходящей на металлической подложке.
Причиной коррозии металлической подложки оказались хлорид-ионы, содержащиеся в никелевом растворе. При удалении хлорид-ионов из никелевого раствора было также обнаружено, что значительно снижалась скорость формирования никелевой пленки. Соответственно, в результате подробного изучения концентрации хлорид-ионов была найдена концентрация хлорид-ионов, при которой могла бы быть подавлена происходящая на металлической подложке коррозия с сохранением или улучшением скорости формирования никелевой пленки. Найденная в настоящем изобретении концентрация хлорид-ионов значительно отличалась от концентрации, применяемой в традиционных способах формирования никелевой пленки.
Настоящее изобретение предлагает следующее.
[1] Способ формирования никелевой пленки, включающий: размещение анода, металлической подложки, которая служит катодом, и мембраны твердого электролита, включающей раствор, который содержит ионы никеля и хлорид-ионы, так, что мембрана твердого электролита размещается между анодом и металлической подложкой и в контакте с поверхностью металлической подложки; и приложение электрического напряжения между анодом и металлической подложкой так, чтобы сформировать никелевую пленку на поверхности металлической подложки, которая находится в контакте с мембраной твердого электролита, причем концентрация хлорид-ионов составляет от 0,002 до 0,1 моль/л.
[2] Способ формирования никелевой пленки по пункту [1], причем концентрация хлорид-ионов составляет от 0,01 до 0,06 моль/л.
[3] Способ формирования никелевой пленки по пункту [1] или [2], причем раствор имеет уровень рН от 2,5 до 4,25.
[4] Способ формирования никелевой пленки по пункту [3], причем раствор имеет уровень рН от 3 до 4.
[5] Способ формирования никелевой пленки по любому из пунктов [1]-[4], причем металлическая подложка представляет собой алюминиевую подложку.
[6] Раствор, содержащий ионы никеля и хлорид-ионы, используемый для способа формирования никелевой пленки, включающего: размещение анода, металлической подложки, которая служит катодом, и мембраны твердого электролита, включающей раствор, который содержит ионы никеля и хлорид-ионы, так, что мембрана твердого электролита размещается между анодом и металлической подложкой и в контакте с поверхностью металлической подложки; и приложение электрического напряжения между анодом и металлической подложкой так, чтобы сформировать никелевую пленку на поверхности металлической подложки, находящейся в контакте с мембраной твердого электролита, причем концентрация хлорид-ионов составляет от 0,002 до 0,1 моль/л.
[7] Раствор по пункту [6], причем концентрация хлорид-ионов составляет от 0,01 до 0,06 моль/л.
[8] Раствор по пункту [6] или [7], причем раствор имеет уровень рН от 2,5 до 4,25.
[9] Раствор по пункту [8], причем раствор имеет уровень рН от 3 до 4.
[10] Раствор по любому из пунктов [6]-[9], причем металлическая подложка представляет собой алюминиевую подложку.
Согласно настоящему изобретению никелевая пленка может быть сформирована на поверхности металлической подложки с мембраной твердого электролита в контакте с металлической подложкой при предотвращении коррозии, происходящей на металлической подложке.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1А представляет схематический вид в разрезе устройства 1А формирования пленки.
Фиг. 1В показывает процесс формирования никелевой пленки на поверхности металлической подложки с использованием показанного на Фиг. 1А устройства 1А формирования пленки.
Фиг. 2А показывает фотографию и фазовую диаграмму никелевой пленки, полученной в Сравнительном примере 1.
Фиг. 2В показывает фотографию и фазовую диаграмму никелевой пленки, полученной в Сравнительном примере 2.
Фиг. 2С показывает фотографию и фазовую диаграмму никелевой пленки, полученной в Примере 1.
Фиг. 2D показывает фотографию и фазовую диаграмму никелевой пленки, полученной в Примере 2.
Фиг. 2Е показывает фотографию и фазовую диаграмму никелевой пленки, полученной в Примере 3.
Фиг. 2F показывает фотографию и фазовую диаграмму никелевой пленки, полученной в Примере 4.
Фиг. 2G показывает фотографию и фазовую диаграмму никелевой пленки, полученной в Примере 5.
Фиг. 3 показывает корреляцию между концентрацией хлорид-ионов в никелевом растворе и площадью нормальной никелевой пленки.
Фиг. 4 показывает корреляцию между уровнем рН никелевого раствора и выходом по току при осаждении никеля.
Фиг. 5 показывает результаты оценки остаточного напряжения в никелевых пленках, полученных в Сравнительном примере 1 и Примере 3.
ПОДРОБНОЕ ОПИСАНИЕ
Примерные варианты осуществления относятся к способу формирования никелевой пленки, включающему: размещение анода, металлической подложки, которая служит катодом, и мембраны твердого электролита, включающей раствор, который содержит ионы никеля (Ni2+) и хлорид-ионы (Cl-) (далее также называемый «никелевым раствором»), так, что мембрана твердого электролита размещена между анодом и металлической подложкой и в контакте с поверхностью металлической подложки; и приложение электрического напряжения между анодом и металлической подложкой так, чтобы сформировать никелевую пленку на поверхности металлической подложки, которая находится в контакте с мембраной твердого электролита, и к никелевому раствору, используемому для этого способа формирования никелевой пленки. В примерных вариантах осуществления концентрация хлорид-ионов составляет от 0,002 до 0,1 моль/л.
В примерных вариантах осуществления приложение электрического напряжения в зоне между анодом и металлической подложкой (т.е. катодом) обеспечивает возможность восстановления содержащихся в мембране твердого электролита ионов никеля на той поверхности металлической подложки, которая находится в контакте с мембраной твердого электролита. В результате этого никель осаждается на поверхности металлической подложки, и тогда образуется никелевая пленка. В таком случае коррозия, возникающая на металлической подложке, может быть подавлена путем установления концентрации хлорид-ионов на уровне от 0,002 до 0,1 моль/л.
Ванна Уатта, которую обычно использовали для формирования никелевой пленки, содержит приблизительно 1 моль/л хлорид-ионов. Однако в прошлом коррозия не происходила на металлической подложке, даже если никелевую пленку формировали с использованием ванны Уатта. С другой стороны, при попытках сформировать никелевую пленку, удерживая мембрану твердого электролита в контакте с металлической подложкой, как в случае примерных вариантов осуществления, на металлической подложке происходила коррозия. А значит, такая коррозия рассматривается как специфическая для способа, в котором мембрану твердого электролита приводят в контакт с металлической подложкой. Такая коррозия считается происходящей вследствие того, что поверхность металлической подложки активируется при контакте между металлической подложкой и мембраной твердого электролита.
В примерных вариантах осуществления примеры анода, который может быть использован в них, включают никелевый анод, серосодержащий никелевый анод, углеродсодержащий никелевый анод и деполяризованный никелевый анод. Может быть применен растворимый или нерастворимый анод.
В примерных вариантах осуществления примеры металлической подложки (катода), которая может быть использована в них, включают подложку из основного металла (неблагородного). Примеры основного металла включают алюминий, цинк и железо. В примерных вариантах осуществления предпочтительна алюминиевая подложка, но подложка конкретно не ограничена ею. Это обусловлено тем, что коррозия заметно проявляется на алюминиевой подложке. Подложка из основного металла может содержать основной металл по меньшей мере на своей поверхности.
В примерных вариантах осуществления примеры мембраны твердого электролита, которая может быть использована в них, включают фторированные смолы, такие как Nafion® (фирмы DuPont), углеводородные смолы, смолы полиамидокислоты и смолы, способные к катионному обмену, такие как Selemion (серии CMV, CMD и CMF) (фирмы Asahi Glass Co., Ltd).
В примерных вариантах осуществления толщина мембраны твердого электролита может составлять, например, 50-400 мкм и 100-200 мкм.
В примерных вариантах осуществления мембрана твердого электролита содержит никелевый раствор, содержащий ионы никеля и хлорид-ионы.
В примерных вариантах осуществления концентрация ионов никеля в никелевом растворе может составлять, например, 0,1-8 моль/л, 0,3-4 моль/л или 0,5-2 моль/л. Примеры источников ионов никеля включают соли никеля, такие как хлорид никеля, сульфат никеля и ацетат никеля. Альтернативно, могут быть использованы ионы никеля, образующиеся при растворении никелевых анодов.
В примерных вариантах осуществления концентрация хлорид-ионов в никелевом растворе может составлять, например, от 0,002 до 0,1 моль/л, а предпочтительно она составляет от 0,01 до 0,06 моль/л. Установление концентрации хлорид-ионов в таком диапазоне позволяет увеличить площадь нормально сформированной никелевой пленки. Примеры источников хлорид-ионов включают хлорид никеля, соляную кислоту, хлорид натрия и хлорид калия.
В примерных вариантах осуществления никелевый раствор имеет значение рН предпочтительно от 2,5 до 4,25, а особенно предпочтительно от 3 до 4. Тем самым может быть повышен выход по току при осаждении никеля.
В примерных вариантах осуществления никелевый раствор может содержать любые другие компоненты, в дополнение к ионам никеля и хлорид-ионам. Например, никелевый раствор может содержать растворитель и буферный раствор для контроля рН. Примеры растворителя включают воду и этанол. Примеры буферных растворов для контроля рН включают буферный раствор уксусной кислоты-ацетата никеля и буферный раствор янтарной кислоты-сукцината никеля.
Способ формирования металлической пленки на поверхности металлической подложки посредством приложения электрического напряжения к зоне между анодом и металлической подложкой, с удерживанием мембраны твердого электролита в контакте с металлической подложкой (т.е. катодом), и используемое для такого способа устройство уже были описаны. Например, для реализации способа согласно примерным вариантам осуществления могут быть использованы способы и устройства, раскрытые в JP 2012-219362 A, JP 2015-92012 A и JP 2014-051701 А.
Альтернативно, способ согласно примерным вариантам осуществления может быть реализован с использованием устройств, показанных на Фиг. 1А и Фиг. 1В.
Фиг. 1А показывает схематический вид в разрезе устройства 1А формирования пленки. Устройство 1А формирования пленки включает в себя анод 11, металлическую подложку В, которая служит катодом, мембрану 13 твердого электролита, размещенную между анодом 11 и металлической подложкой В, и блок 16 источника питания, который подает электрическое напряжение в зону между анодом 11 и металлической подложкой В.
Устройство 1А формирования пленки дополнительно включает в себя корпус 20. Корпус 20 содержит первый резервуар 21, в котором размещается никелевый раствор L так, что никелевый раствор L расположен между анодом 11 и мембраной 13 твердого электролита. Никелевый раствор L, размещенный в первом резервуаре 21, находится в контакте с мембраной 13 твердого электролита и анодом 11.
В первом резервуаре 21 предусмотрен первый проем 22, который является более крупным, чем поверхность Ва металлической подложки В. Первый проем 22 закрыт мембраной 13 твердого электролита, и никелевый раствор L уплотнен в первом резервуаре 21, будучи в текучем состоянии.
Устройство 1А формирования пленки дополнительно включает в себя загрузочный столик 40, на котором помещается металлическая подложка В. Загрузочный столик 40 содержит: поверхность Ва; заднюю поверхность Bb на противоположной от поверхности Ва стороне; и второй резервуар 41, в котором размещается текучая среда 45, предусмотренная на задней поверхности Bb через тонкую пленку 43.
Во втором резервуаре 41 предусмотрен второй проем 42, который является более крупным, чем задняя поверхность Bb. Второй проем 42 закрыт тонкой пленкой 43, и текучая среда 45 уплотнена во втором резервуаре 41, будучи в текучем состоянии.
Устройство 1А формирования пленки дополнительно включает в себя блок 30А давления на верху корпуса 20.
Фиг. 1В иллюстрирует процесс формирования никелевой пленки F на поверхности Ba металлической подложки В с использованием показанного на Фиг. 1А устройства 1А формирования пленки.
Как показано на Фиг. 1В, загрузочный столик 40 и корпус 20 выполнены с возможностью перемещаться относительно друг друга при помещении металлической подложки В на загрузочный столик 40, при этом металлическую подложку В сэндвичеобразно прокладывают между мембраной 13 твердого электролита и тонкой пленкой 43, и никелевый раствор L размещается на поверхности Ва металлической подложки В через мембрану 13 твердого электролита.
Затем прикладывают электрическое напряжение от блока 16 источника питания к зоне между анодом 11 и металлической подложкой В, восстанавливают содержащиеся в мембране 13 твердого электролита ионы никеля на поверхности Ва металлической подложки В и осаждают никель на поверхность Ва. Тем самым формируют никелевую пленку F.
Примеры
Далее настоящее изобретение описывается более подробно со ссылкой на примеры и сравнительные примеры, хотя технический объем настоящего изобретения не ограничивается этими примерами.
[Формирование никелевой пленки]
Никелевые пленки сформировали с использованием устройства формирования пленки, показанного на Фиг. 1А и 1В, при условиях, показанных ниже в Таблице 1.
Таблица 1
Анод Фольга из чистого никеля
Катод
(металлическая подложка)
Si-ая подложка с Al-Si (1%) напыленной мембраной*1 (толщина напыления: 5 мкм) (с цинкатной обработкой)
Плотность тока 100 мА/см2
Длительность обработки 2 минуты
Давление примерно 0,5 МПа
*1: Si-ая подложка, состоящая из Si-ой мембраны и размещенной на ней Al-ой мембраны
Подробности относительно никелевых растворов, использованных в примерах и сравнительных примерах, являются такими, как показано в Таблицах 2 и 3.
Таблица 2
Сравн. пример 1 Сравн. пример 2 Пример 1 Пример 2 Пример 3 Пример 4 Пример 5
Хлорид никеля (моль/л) 0,950 0,550 0,050 0,030 0,010 0,005 0,001
Сульфат никеля (моль/л) - 0,450 0,900 0,920 0,940 0,945 0,949
Ацетат никеля (моль/л) 0,050 0,050 0,050 0,050 0,050 0,050 0,050
Cl- (моль/л) 1,900 1,000 0,100 0,060 0,020 0,010 0,002
рН 4,00 4,00 4,00 4,00 4,00 4,00 4,00
Таблица 3
Пример 6 Пример 7 Пример 8 Пример 9 Пример 10 Пример 11
Хлорид никеля (моль/л) 0,010 0,010 0,010 0,010 0,010 0,010
Сульфат никеля (моль/л) 0,940 0,940 0,940 0,940 0,940 0,940
Ацетат никеля (моль/л) 0,050 0,050 0,050 0,050 0,050 0,050
Cl- (моль/л) 0,020 0,020 0,020 0,020 0,020 0,020
рН 2,50 2,75 3,00 3,50 4,25 4,50
[Метод 1 оценки никелевой пленки]
Площадь нормальной никелевой пленки (%) определяли со ссылкой на следующее уравнение.
Площадь нормальной никелевой пленки (%) = [1-(«площадь ненормальной никелевой пленки»/«площадь обработанного катода»)]×100
Термин «площадь ненормальной никелевой пленки» обозначает общую площадь описываемых ниже областей, на которых никелевые пленки (1)-(4) не сформированы нормально.
(1) Область, которая находится в тесном контакте с никелевой пленкой, от которой мембрана твердого электролита не отделяется (далее такая область называется «областью адгезии»);
(2) область, в которой имело место окрашивание вследствие ненормального осаждения гидроксида или т.п. (далее такая область называется «областью окрашивания»);
(3) область, в которой никелевая пленка не сформирована (или не осаждена) (далее такая область называется «непокрытой областью»); и
(4) область, в которой металлическая подложка корродирована (далее такая область называется «областью коррозии»).
Выход по току при осаждении никеля определяли на основе показанного ниже уравнения.
(Выход по току при осаждении никеля) = [(фактический вес осадка (г)/(теоретический вес осадка (г))]×100
Фактический вес осадка определяли полным растворением осажденной никелевой пленки в азотной кислоте, измерением концентрации никеля в растворе азотной кислоты с использованием эмиссионного спектрометра с индуктивно-связанной плазмой (ИСП) и преобразованием измеренной концентрации в весовые единицы.
Теоретический вес осадка определяли в соответствии с показанным ниже уравнением (т.е. по закону электролиза Фарадея).
(Теоретический вес осадка (г)) = [сила тока (А) × время (t)]/[валентность иона × постоянная Фарадея (Кл/моль)] × молекулярная масса никеля (г/моль)
[Результаты оценки 1]
Фигуры 2А-2G показывают фотографии и фазовые диаграммы никелевых пленок, полученных в Сравнительных примерах 1 и 2 и Примерах 1-5.
В Сравнительном примере 1 (концентрация хлорид-ионов: 1,9 моль/л), как показано на Фиг. 2А, область коррозии, область адгезии и область окрашивания были большими. А значит, было нормально сформировать никелевую пленку.
В Сравнительном примере 2 (концентрация хлорид-ионов: 1 моль/л), как показано на Фиг. 2В, была значительно увеличенной область коррозии. А значит, было трудно нормально сформировать никелевую пленку.
В Примере 1 (концентрация хлорид-ионов: 0,1 моль/л), как показано на Фиг. 2С, хотя область коррозии и область адгезии присутствовали, площадь нормально сформированной никелевой пленки увеличилась.
В Примере 2 (концентрация хлорид-ионов: 0,06 моль/л), Примере 3 (концентрация хлорид-ионов: 0,02 моль/л) и Примере 4 (концентрация хлорид-ионов: 0,01 моль/л), как показано на Фигурах 2D-2F соответственно, площади нормально сформированных никелевых пленок значительно возросли.
В Примере 5 (концентрация хлорид-ионов: 0,002 моль/л), как показано на Фиг. 2G, увеличилась область окрашивания. Предполагается, что одной из причин, почему увеличилась область окрашивания, является то, что анод (т.е. фольга из чистого никеля) недостаточно растворялся вследствие сниженной концентрации хлорид-ионов.
Фиг. 3 показывает корреляцию между концентрацией хлорид-ионов в никелевом растворе и площадью нормальной никелевой пленки. Как показано на Фиг. 3, площадь нормально сформированной никелевой пленки увеличивается, когда концентрация хлорид-ионов в никелевом растворе составляет от 0,002 до 0,1 моль/л, и, в частности, от 0,01 до 0,06 моль/л.
Фиг. 4 показывает корреляцию между значением рН никелевого раствора и выходом по току при осаждении никеля. Как показано на Фиг. 4, выход по току при осаждении никеля улучшается, когда рН никелевого раствора составляет от 2,5 до 4,25, и, в частности, от 3 до 4.
[Метод 2 оценки никелевой пленки]
Остаточное напряжение в никелевой пленке определяли в соответствии с методом, описанным в Journal of the Adhesion Society of Japan, том 39, № 1, стр. 24-29, 2003, и в соответствии со следующим уравнением:
Figure 00000001
,
в котором
σr обозначает остаточное напряжение;
Esds/12·F(m,n)/n(n+1) обозначает соотношение жесткостей пленки/подложки; и
1/Ra-1/Rb обозначает радиус кривизны.
[Результаты оценки 2]
Фиг. 5 показывает результаты оценки остаточного напряжения в никелевых пленках, полученных в Сравнительном примере 1 и Примере 3. Термическое напряжение определяли на основе разности (55°С) между температурой во время формирования пленки и комнатной температурой и разности между коэффициентом линейного расширения никелевой пленки и коэффициентом линейного расширения металлической подложки. Как показано на Фиг. 5, остаточное напряжение составляло 296 МПа в Сравнительном примере 1 (концентрация хлорид-ионов: 1,9 моль/л), а, с другой стороны, оно составляло 169 МПа в Примере 3 (концентрация хлорид-ионов: 0,02 моль/л). Остаточное напряжение может быть уменьшено путем снижения концентрации хлорид-ионов в никелевом растворе.
ОПИСАНИЕ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
1А: устройство формирования пленки; 11: анод; 13: мембрана твердого электролита; 16: блок источника питания; 20: корпус; 21: первый резервуар; 22: первый проем; 30А: блок давления; 40: загрузочный столик; 41: второй резервуар; 42: второй проем; 43: тонкая пленка; 45: текучая среда; L: никелевый раствор; В: металлическая подложка (катод); Ва: поверхность металлической подложки; Bb: задняя поверхность металлической подложки; F: никелевая пленка.

Claims (8)

1. Способ формирования никелевой пленки, включающий размещение анода, металлической подложки, которая служит катодом, и мембраны твердого электролита, включающей раствор, который содержит ионы никеля и хлорид-ионы, так, что мембрана твердого электролита размещена между анодом и металлической подложкой и в контакте с поверхностью металлической подложки, и приложение электрического напряжения между анодом и металлической подложкой так, чтобы сформировать никелевую пленку на поверхности металлической подложки, которая находится в контакте с мембраной твердого электролита, отличающийся тем, что концентрация хлорид-ионов в растворе составляет от 0,002 до 0,1 моль/л, и раствор имеет уровень рН от 2,5 до менее 4.
2. Способ по п. 1, отличающийся тем, что концентрация хлорид-ионов в растворе составляет от 0,01 до 0,06 моль/л.
3. Способ по п. 1 или 2, отличающийся тем, что раствор имеет уровень рН от 3 до менее 4.
4. Способ по п. 1 или 2, отличающийся тем, что металлическая подложка представляет собой алюминиевую подложку.
5. Раствор для формирования никелевой пленки, содержащий ионы никеля и хлорид-ионы, используемый для формирования никелевой пленки способом, включающим размещение анода, металлической подложки, которая служит катодом, и мембраны твердого электролита, включающей раствор, который содержит ионы никеля и хлорид-ионы, так, что мембрана твердого электролита размещена между анодом и металлической подложкой и в контакте с поверхностью металлической подложки, и приложение электрического напряжения между анодом и металлической подложкой так, чтобы сформировать никелевую пленку на поверхности металлической подложки, которая находится в контакте с мембраной твердого электролита, отличающийся тем, что концентрация хлорид-ионов в растворе составляет от 0,002 до 0,1 моль/л, и раствор имеет уровень рН от 2,5 до менее 4.
6. Раствор по п. 5, отличающийся тем, что концентрация хлорид-ионов в растворе составляет от 0,01 до 0,06 моль/л.
7. Раствор по п. 5 или 6, отличающийся тем, что раствор имеет уровень рН от 3 до менее 4.
8. Раствор по п. 5 или 6, отличающийся тем, что металлическая подложка представляет собой алюминиевую подложку.
RU2018109614A 2017-03-23 2018-03-20 Способ формирования никелевой пленки и используемый для него никелевый раствор RU2694305C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057862 2017-03-23
JP2017057862A JP6760166B2 (ja) 2017-03-23 2017-03-23 ニッケル皮膜の形成方法及び当該方法に使用するためのニッケル溶液

Publications (1)

Publication Number Publication Date
RU2694305C1 true RU2694305C1 (ru) 2019-07-11

Family

ID=61094302

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018109614A RU2694305C1 (ru) 2017-03-23 2018-03-20 Способ формирования никелевой пленки и используемый для него никелевый раствор

Country Status (7)

Country Link
US (1) US11168405B2 (ru)
EP (1) EP3378974B1 (ru)
JP (1) JP6760166B2 (ru)
KR (2) KR20200067242A (ru)
CN (1) CN108624924A (ru)
BR (1) BR102018001663A2 (ru)
RU (1) RU2694305C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777305C1 (ru) * 2021-11-30 2022-08-02 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ изготовления никелевых толстопленочных контактов на поверхности термоэлектрических материалов

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840310A1 (de) * 1987-12-24 1989-07-06 Bbc Brown Boveri & Cie Verfahren zum beschleunigten auftragen einer dicken erneuerungsschicht auf einem abgenutzten werkstueck
JP2015092012A (ja) * 2013-10-03 2015-05-14 トヨタ自動車株式会社 成膜用ニッケル溶液およびこれを用いた成膜方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2351966A (en) * 1940-10-12 1944-06-20 Hanson Van Winkle Munning Co Nickel depositing bath and method
JPS5121528A (ja) * 1974-08-16 1976-02-20 Furukawa Electric Co Ltd Nitsukerumetsukieki
US4626324A (en) * 1984-04-30 1986-12-02 Allied Corporation Baths for the electrolytic deposition of nickel-indium alloys on printed circuit boards
JPS61147896A (ja) * 1984-12-20 1986-07-05 Nippon Kagaku Sangyo Kk ニツケル及びニツケル系合金電気めつき浴
JP3114253B2 (ja) * 1991-06-26 2000-12-04 東ソー株式会社 金属の電着法
DE19540011C2 (de) 1995-10-27 1998-09-10 Lpw Chemie Gmbh Verfahren zur galvanischen Abscheidung von blendfreien Nickel- oder Nickellegierungsniederschlägen
JP3171117B2 (ja) * 1996-08-14 2001-05-28 上村工業株式会社 ニッケル、コバルト又はニッケル・コバルト合金とリンとの合金めっき浴及びめっき方法
JP3223829B2 (ja) * 1997-01-29 2001-10-29 新光電気工業株式会社 電気ニッケルめっき浴又は電気ニッケル合金めっき浴及びそれを用いためっき方法
US6239948B1 (en) * 1999-07-23 2001-05-29 Headway Technologies, Inc. Non-magnetic nickel containing conductor alloys for magnetic transducer element fabrication
HUP0300706A2 (en) * 2000-05-18 2003-07-28 Corus Aluminium Walzprod Gmbh Method of manufacturing an aluminium product
JP2003193284A (ja) 2001-12-28 2003-07-09 Learonal Japan Inc 電気ニッケルめっき液
JP4085772B2 (ja) * 2002-10-21 2008-05-14 アタカ大機株式会社 水素発生用合金電極およびその製造方法
JP4604463B2 (ja) 2003-06-13 2011-01-05 株式会社村田製作所 導電性ペーストの製造方法、および積層セラミック電子部品の製造方法
KR100828571B1 (ko) * 2006-06-21 2008-05-13 양경준 고압가스용기 나사부 도금 방법 및 도금 장치
ES2452867T3 (es) * 2009-07-07 2014-04-03 Hso Herbert Schmidt Gmbh & Co. Kg Electrolito de níquel
JP5675303B2 (ja) * 2010-11-30 2015-02-25 日東光学株式会社 ニッケルめっき浴およびこれを用いた電鋳型の製造方法
JP5452458B2 (ja) * 2010-12-14 2014-03-26 メルテックス株式会社 ニッケルめっき液及びニッケルめっき方法
JP5708182B2 (ja) 2011-04-13 2015-04-30 トヨタ自動車株式会社 固体電解質膜を用いた金属膜形成方法
US8969122B2 (en) * 2011-06-14 2015-03-03 International Business Machines Corporation Processes for uniform metal semiconductor alloy formation for front side contact metallization and photovoltaic device formed therefrom
US10047452B2 (en) * 2012-02-23 2018-08-14 Toyota Jidosha Kabushiki Kaisha Film formation device and film formation method for forming metal film
JP5690306B2 (ja) 2012-06-08 2015-03-25 ディップソール株式会社 塗装ステンレス鋼部材
CN102719868B (zh) * 2012-07-20 2015-07-29 滨中元川金属制品(昆山)有限公司 一种不锈钢紧固件的镀镍工艺
JP5803858B2 (ja) 2012-09-06 2015-11-04 トヨタ自動車株式会社 金属被膜の成膜装置および成膜方法
TWI510362B (zh) 2013-04-30 2015-12-01 Nippon Steel & Sumitomo Metal Corp 鍍Ni鋼板及鍍Ni鋼板之製造方法
JP6195745B2 (ja) * 2013-06-19 2017-09-13 地方独立行政法人東京都立産業技術研究センター 電気ニッケルめっき液、めっき液の製造方法および電気めっき方法
JP5938426B2 (ja) 2014-02-04 2016-06-22 株式会社豊田中央研究所 電気めっきセル、及び、金属皮膜の製造方法
JP6065886B2 (ja) * 2014-07-22 2017-01-25 トヨタ自動車株式会社 金属皮膜の成膜方法
JP6176235B2 (ja) 2014-12-26 2017-08-09 トヨタ自動車株式会社 金属皮膜の成膜装置およびその成膜方法
JP6162161B2 (ja) * 2015-01-16 2017-07-12 株式会社豊田中央研究所 電気めっきセル及び金属皮膜の製造方法
JP6222145B2 (ja) * 2015-03-11 2017-11-01 トヨタ自動車株式会社 金属皮膜の成膜装置およびその成膜方法
JP6406309B2 (ja) 2016-04-28 2018-10-17 Jfeスチール株式会社 電気亜鉛めっき鋼板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840310A1 (de) * 1987-12-24 1989-07-06 Bbc Brown Boveri & Cie Verfahren zum beschleunigten auftragen einer dicken erneuerungsschicht auf einem abgenutzten werkstueck
JP2015092012A (ja) * 2013-10-03 2015-05-14 トヨタ自動車株式会社 成膜用ニッケル溶液およびこれを用いた成膜方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Л.И. Каданер. Справочник по гальваностегии. Киев, Техника, 1976, с. 155, 156. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777305C1 (ru) * 2021-11-30 2022-08-02 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ изготовления никелевых толстопленочных контактов на поверхности термоэлектрических материалов

Also Published As

Publication number Publication date
EP3378974A1 (en) 2018-09-26
US11168405B2 (en) 2021-11-09
JP6760166B2 (ja) 2020-09-23
JP2018159120A (ja) 2018-10-11
EP3378974B1 (en) 2023-09-20
KR20200067242A (ko) 2020-06-12
BR102018001663A2 (pt) 2018-10-30
CN108624924A (zh) 2018-10-09
KR20200012001A (ko) 2020-02-04
US20180274115A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US20150292098A1 (en) Ionic Liquid Electrolyte and Method to Electrodeposit Metals
US20090311577A1 (en) Corrosion-resistant material and manufacturing method of the same
KR102023363B1 (ko) 니켈 도금용 평탄제 및 이를 포함하는 니켈 도금액
JP6065886B2 (ja) 金属皮膜の成膜方法
WO2015050192A1 (ja) 成膜用ニッケル溶液およびこれを用いた成膜方法
Maizelis et al. Contact displacement of copper at copper plating of carbon steel parts
RU2694305C1 (ru) Способ формирования никелевой пленки и используемый для него никелевый раствор
Jiang et al. Electrodepositing aluminum coating on uranium from aluminum chloride-1-ethyl-3-methylimidazolium chloride ionic liquid
Danilov et al. Electroplating of chromium coatings from Cr (III)-based electrolytes containing water soluble polymer
CN112501595B (zh) 金属镀膜的形成方法
US20220349080A1 (en) Method and system for depositing a zinc-nickel alloy on a substrate
JP6930634B2 (ja) ニッケル皮膜の形成方法及び当該方法に使用するためのニッケル溶液
FR3011853A1 (ru)
CN111094632B (zh) 用于使锌镍合金层电解沉积在至少一个待处理衬底上的方法
FR2680523A1 (fr) Procede d'electrodeposition.
鎌田海 et al. 37-34 Electroplating of zirconium and aluminum hydroxide thin films following anodic dissolution of corresponding metal anodes in organic medium
Kublanovsky et al. Electrodeposition of palladium coatings from iminodiacetate electrolyte
鎌田海 et al. 37-29 Anodic dissolution of tantalum and niobium in acetone solvent with halogen additives for electrochemical synthesis of Ta2O5 and Nb2O5 thin films
WO2021106291A1 (ja) めっき液の亜鉛濃度の上昇を抑制する方法および亜鉛系めっき部材の製造方法
JP2719041B2 (ja) 耐食性に優れる鋼材の下地処理方法
Menzies et al. The Electrodeposition of Cadmium from Non-Aqueous Solutions—1: General Review and Preliminary Studies
Musiani et al. Phenol electropolymerization on phosphated mild steel via zinc electrodeposition
RU2343233C1 (ru) Электролит для осаждения сплава свинец-индий
JPH01176087A (ja) 電極の製造法
JP2022094460A (ja) 金属めっき皮膜の成膜装置及び成膜方法