RU2670760C9 - ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ - Google Patents

ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ Download PDF

Info

Publication number
RU2670760C9
RU2670760C9 RU2015109149A RU2015109149A RU2670760C9 RU 2670760 C9 RU2670760 C9 RU 2670760C9 RU 2015109149 A RU2015109149 A RU 2015109149A RU 2015109149 A RU2015109149 A RU 2015109149A RU 2670760 C9 RU2670760 C9 RU 2670760C9
Authority
RU
Russia
Prior art keywords
catalyst
component
exhaust gas
catalyst composition
molecular sieve
Prior art date
Application number
RU2015109149A
Other languages
English (en)
Other versions
RU2015109149A (ru
RU2670760C2 (ru
Inventor
Юрген БАУЭР
Ральф ДОТЦЕЛЬ
Йорг ЙОДЛАУК
Райнер ЛЕППЕЛЬТ
Йорг МЮНХ
Ирене ПИРАС
Гудмунд СМЕДЛЕР
Original Assignee
Джонсон Мэтти Паблик Лимитед Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джонсон Мэтти Паблик Лимитед Компани filed Critical Джонсон Мэтти Паблик Лимитед Компани
Publication of RU2015109149A publication Critical patent/RU2015109149A/ru
Publication of RU2670760C2 publication Critical patent/RU2670760C2/ru
Application granted granted Critical
Publication of RU2670760C9 publication Critical patent/RU2670760C9/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/67Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Настоящее изобретение касается катализаторов, систем и способов, которые пригодны для очистки выхлопного газа, происходящего от сгорания углеводородного топлива, и, в частности, выхлопного газа, содержащего оксиды азота, такого как выхлопной газ, производимый дизельными двигателями. Описана каталитическая композиция для очистки выхлопного газа, содержащая смесь первого компонента и второго компонента, где первый компонент представляет собой алюмосиликатный молекулярно-ситовой компонент, где данный молекулярно-ситовой компонент имеет структуру, выбранную из МFI, ВЕА и FЕR, и где данный алюмосиликатный молекулярно-ситовой компонент подвергнут ионному замещению с железом Fe, а второй компонент представляет собой оксид ванадия, нанесенный на диоксид титана, где данная каталитическая композиция содержит от 15 до 25 мас. % первого компонента и и от 85 до 75 мас.% второго компонента в расчете на общую массу каталитически активных компонентов в смеси. Раскрыты пористое каталитическое покрытие типа "washcoat", содержащее указанную каталитическую композицию, дополнительно содержащее один или несколько наполнителей, связующих, технологических добавок, воду и легирующие примеси, и каталитическое изделие, содержащее подложку, покрытую данной каталитической композицией или содержащую внедренную каталитическую композицию, в котором данную подложку выбирают из металлической прямопроточной подложки, керамической прямопроточной подложки, фильтра с проточными стенками, спеченного металлического фильтра, частичного фильтра и экструдированной сотовой структуры катализатора. Способ очистки выхлопного газа по изобретению включает этапы, на которых: а) осуществляют контакт потока выхлопного газа, содержащего NOи/или NН, в присутствии каталитической композиции по п. 1; и b) превращают по меньшей мере часть упомянутого NOв Nи/или превращают по меньшей мере часть NНв по меньшей мере одно вещество из Nи NО. Технический результат - улучшение каталитических характеристик катализатора, улучшение его высокотемпературных параметров, улучшение гидротермальной устойчивости, увеличение устойчивости к сере и улучшение устойчивости к NO. 4 н. и 4 з.п. ф-лы, 4 пр., 5 ил.

Description

Область применения
Настоящее изобретение касается катализаторов, систем и способов, которые пригодны для очистки выхлопного газа, происходящего от сгорания углеводородного топлива, и, в частности, выхлопного газа, содержащего оксиды азота, такого как выхлопной газ, производимый дизельными двигателями.
Описание предшествующего уровня техники
Наибольшие доли большинства выхлопных газов сгорания составляют относительно безвредные азот (N2), водяной пар (Н2О) и диоксид углерода (СО2); но выхлопной газ также содержит в относительно небольшой доле вредные и/или ядовитые вещества, такие как моноксид углерода (СО) от неполного сгорания, углеводороды (НС) от несгоревшего топлива, оксиды азота (NОх) от избыточных температур сгорания и мелкие частицы (главным образом, сажу). Чтобы смягчить воздействие выхлопного газа, выделяющегося в атмосферу, на окружающую среду, желательно устранить или уменьшить количества этих нежелательных компонентов, предпочтительно с помощью способа, который, в свою очередь, не генерирует других вредных или ядовитых веществ.
Одним из самых тяжелых для удаления из выхлопного газа транспортного средства компонентов является NОх, который включает в себя оксид азота (NО), диоксид азота (NО2) и/или закись азота (N2О). Восстановление NO2 в N2 в бедном топливом выхлопном газе, таком как газ, создаваемый дизельными двигателями, является особенно проблематичным, так как данный выхлопной газ содержит достаточно кислорода, чтобы способствовать окислительным реакциям вместо восстановления. Однако NOx может восстанавливаться в дизельном выхлопном газе с помощью способа, обычно называемого избирательным каталитическим восстановлением (SСR). Способ SСR включает в себя превращение NOx в присутствии катализатора и с помощью восстанавливающего агента в элементарный азот (N2) и воду. В способе SСR в поток выхлопного газа до контакта выхлопного газа с катализатором SСR добавляют газообразный восстановитель, такой как аммиак. Восстановитель поглощается на катализаторе, и реакция восстановления NOx происходит, когда газы проходят через каталитическую подложку или над ней.
Несколько химических реакций происходят в системе избирательного каталитического восстановления (SСR) при использовании NН3 в качестве восстановителя, все из которых являются желательными реакциями, которые восстанавливают NOx до элементарного азота. Механизм основной реакции представлен в уравнении (1).
4NО+4NН32→4N2+6Н2О (1)
Параллельные неизбирательные реакции с кислородом могут давать вторичные выбросы или могут непродуктивно расходовать NН3. Одной такой неизбирательной реакцией является полное окисление NН3, представленное в уравнении (2).
4NН3+5О2→4NО+6Н2О (2)
Кроме того, считается, что реакция NО2, присутствующего в NOx, с NН3 происходит согласно реакции (3).
3NО2+4NН3→(7/2)N2+6Н2О (3)
Кроме того, реакция между NН3 и NО и NО2 выражается реакцией (4):
NО+NО2+2NН3→2N2+3Н2О (4)
Хотя скорости реакций (1), (3) и (4) сильно меняются, в зависимости от температуры реакции и сорта используемого катализатора, скорость реакции (4) обычно в 2-10 раз выше, чем скорости реакций (1) и (3).
Применение технологии SСR для очистки выбросов NOx из двигателей внутреннего сгорания (ДВС) транспортных средств, в частности двигателей внутреннего сгорания (ДВС) на бедной смеси, хорошо известно. Типичный SСR-катализатор предшествующего уровня техники, раскрытый для этой цели, включает в себя V2О5/WО3, нанесенный на ТiО2 (смотри WО 99/39809). Однако в некоторых приложениях термическая долговечность и производительность катализатора на основе ванадия может быть неприемлемой.
Один класс катализаторов SСR, который изучили для обработки NOx из выхлопного газа двигателя внутреннего сгорания, представляет собой цеолиты, замещенные переходными металлами (смотри WО 99/39809 и US 4961917). Однако, при применении определенные алюмосиликатные цеолиты, такие как ZSМ-5 и бета цеолиты, имеют ряд недостатков. Они чувствительны к деалюминированию во время высокотемпературного гидротермального старения, приводящему к потере кислотности, особенно для Сu/бета и Сu/ZSМ-5 катализаторов; катализаторы на основе и цеолита бета, и ZSМ-5 также подвергаются воздействию углеводородов, которые адсорбируются на катализаторах при относительно низких температурах и окисляются, когда температура каталитической системы возрастает, вызывая существенную экзотермичность, которая может термически повреждать катализатор. Эта проблема особенно остра при использовании дизельных транспортных средств, где значительные количества углеводорода могут адсорбироваться на катализаторе во время холодного старта. И бета, и ZSМ-5 цеолиты также склонны к закоксовыванию углеводородами, что снижает производительность катализатора. Соответственно, остается потребность в улучшенном катализаторе для процессов избирательного каталитического восстановления.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Заявители обнаружили, что смешение ванадиевых катализаторов SСR или АSС с определенными молекулярными ситами улучшает каталитические характеристики, что не наблюдается, когда каждый из этих компонентов рассматривается в одиночку. В частности, катализатор настоящего изобретения дает улучшенные высокотемпературные параметры, улучшенную гидротермальную устойчивость, высокую устойчивость к сере и улучшенную устойчивость к NO2 по сравнению с известными SСR катализаторами и АSС катализаторами. Такие смеси предпочтительно содержат алюмосиликатные или ферросиликатные молекулярные сита, предпочтительно в Н+ форме или замещенные переходным металлом, таким как Fе. Предпочтительно, данные молекулярные сита имеют структуру, выбранную из МFI, ВЕА или FЕR.
Соответственно предлагается каталитическая композиция для очистки выхлопного газа, содержащая смесь первого компонента и второго компонента, где первый компонент представляет собой алюмосиликатный или ферросиликатный молекулярно-ситовой компонент, где данное молекулярное сито находится в Н+ форме или подвергнуто ионному замещению с одним или несколькими переходными металлами, а второй компонент представляет собой оксид ванадия, нанесенный на металлоксидный носитель, выбранный из оксида алюминия, диоксида титана, диоксида циркония, оксида церия, диоксида кремния и их комбинаций.
Согласно другому аспекту данного изобретения предлагается пористое каталитическое покрытие типа "washcoat", содержащее описанную здесь смесь катализаторов.
Согласно другому аспекту данного изобретения предлагается каталитическое изделие, предпочтительно экструдированные проточные соты, содержащее описанную здесь смесь катализаторов.
Согласно еще одному аспекту данного изобретения предлагается способ обработки NOx или NН3 в выхлопном газе, таком как выхлопной газ, выделяемый дизельным двигателем внутреннего сгорания, где данный способ включает в себя контакт выхлопного газа с описанной здесь смесью катализаторов, вследствие чего концентрация NOx или NН3 в выхлопном газе снижается.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фигура 1 представляет собой график, изображающий данные по конверсии NOx для свежего катализатора согласно одному варианту осуществления настоящего изобретения и сравнительные данные для катализатора, известного в предшествующем уровне техники.
Фигура 2 представляет собой график, изображающий данные по конверсии NOx для свежего катализатора согласно одному варианту осуществления настоящего изобретения и сравнительные данные для катализатора, известного в предшествующем уровне техники.
Фигура 3 представляет собой график, изображающий данные по конверсии NOx для свежего катализатора согласно одному варианту осуществления настоящего изобретения и сравнительные данные для катализатора, известного в предшествующем уровне техники.
Фигура 4 представляет собой график, изображающий данные по конверсии NOx для состарившегося катализатора согласно одному варианту осуществления настоящего изобретения и сравнительные данные для состарившихся катализаторов, известных в предшествующем уровне техники.
Фигура 5 представляет собой график, изображающий данные по конверсии NOx для двух разных катализаторов согласно одному варианту осуществления настоящего изобретения и сравнительные данные для катализатора, известного в предшествующем уровне техники.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ДАННОГО ИЗОБРЕТЕНИЯ
В одном предпочтительном варианте осуществления данное изобретение касается катализатора для улучшения качества окружающего воздуха, в частности, для улучшения выбросов выхлопного газа, выделяемого дизельными и иными двигателями на бедной топливной смеси. Выбросы выхлопного газа улучшаются, по меньшей мере частично, путем снижения проскакивающих концентраций NOx и/или NН3 в бедном выхлопном газе в широком интервале рабочих температур. Пригодными катализаторами являются те, которые избирательно восстанавливают NOx и/или окисляют аммиак (проскок аммиака) в окислительном окружении (т.е. SСR катализатор и/или АSС катализатор).
Согласно одному предпочтительному варианту осуществления обеспечивается каталитическая композиция, содержащая смесь (а) молекулярно-ситового компонента, содержащего алюмосиликатное молекулярное сито, промотированное железом, или ферросиликатное молекулярное сито (также известно как аморфное железосодержащее молекулярное сито), имеющее структуру, выбранную из группы, состоящей из МFI, ВЕА и FЕR; и (b) ванадиевого компонента, содержащего один или несколько оксидов ванадия, нанесенных на металлоксидный носитель, содержащий оксид титана.
Применяемый здесь термин "смесь" означает, по существу, однородную комбинацию двух или более каталитических компонентов, любой из которых может быть использован в одиночку для той же цели, что и смесь. Будучи объединенными в смесь, индивидуальные каталитические компоненты являются трудно разделимыми. И благодаря по меньшей мере частичной синергетической природе данной комбинации, каталитические эффекты составляющих частей неразличимы друг от друга.
В одном предпочтительном варианте осуществления данная каталитическая композиция содержит в основном ванадиевый компонент (включая металлоксидный носитель) относительно молекулярно-ситового компонента (включая железо) в расчете на массу. В определенных вариантах осуществления каталитическая композиция содержит ванадиевый компонент и молекулярно-ситовой компонент в массовом отношении от приблизительно 1:1 до приблизительно 99:1. Предпочтительно, ванадиевый компонент и молекулярно-ситовой компонент присутствуют в массовом отношении от приблизительно 2:1 до приблизительно 4:1, от приблизительно 5:1 до приблизительно 10:1 или от приблизительно 10:1 до приблизительно 50:1. Здесь ванадиевый компонент вычисляют для массового отношения в расчете на количество оксида(-ов): оксида титана, оксида ванадия и, необязательно, оксида вольфрама, которые присутствуют в данной смеси, и не включают другие, некаталитические оксиды металлов, которые присутствуют. Неограничивающие примеры некаталитических оксидов металлов, которые могут присутствовать в данной композиции, включают в себя связующие и другие типы добавок, такие как оксид алюминия, диоксид циркония, оксид церия, диоксид кремния, смеси оксида алюминия с диоксидом циркония или оксидом церия, оксид церия, нанесенный на оксид алюминия, и смешанные оксиды, такие как (нецеолитный) оксид кремния-оксид алюминия, оксид алюминия-диоксид циркония, оксид алюминия-оксид хрома и оксид алюминия-оксид церия. Связующие отличаются от каталитических оксидов металлов в композиции, так как связующие не промотируют металл, который является каталитически активным для процессов SCR, и/или имеют гораздо больший размер частиц по сравнению с каталитическими оксидами металлов. Специалист в данной области техники будет понимать, что данные отношения описывают относительные пропорции каталитически активных компонентов в смеси и не учитывают другие компоненты, такие как наполнители, волокнистые армирующие агенты, технологические добавки, воду и подобные, которые могут присутствовать в различных формах каталитической композиции, таких как суспензии, пористые покрытия или экструдированные пасты.
В другом варианте осуществления каталитическая композиция содержит от приблизительно 60 до приблизительно 99 массовых процентов ванадиевого компонента и от приблизительно 1 до приблизительно 40 массовых процентов молекулярно-ситового компонента в расчете на полную массу каталитически активных компонентов в смеси. В определенных вариантах осуществления каталитическая композиция содержит от приблизительно 60 до приблизительно 70, от приблизительно 75 до приблизительно 85 или от приблизительно 90 до приблизительно 97 массовых процентов ванадиевого компонента и от приблизительно 30 до приблизительно 40, от приблизительно 15 до приблизительно 25 или от приблизительно 3 до приблизительно 10 массовых процентов молекулярно-ситового компонента.
Предпочтительные ванадиевые компоненты включают в себя оксиды ванадия на носителе, содержащем оксиды титана и, возможно, оксиды вольфрама. В определенных вариантах осуществления оксиды титана и оксиды ванадия присутствуют в массовом отношении от приблизительно 30:1 до приблизительно 2:1, более предпочтительно от приблизительно 20:1 до приблизительно 5:1 и еще более предпочтительно от приблизительно 15:1 до приблизительно 7:1. В определенных вариантах осуществления каталитическая композиция содержит приблизительно до 25 массовых процентов оксидов вольфрама, предпочтительно от приблизительно 1 до приблизительно 25 массовых процентов, более предпочтительно от приблизительно 5 до приблизительно 20 массовых процентов и еще более предпочтительно от приблизительно 7 до приблизительно 15 массовых процентов в расчете на полную массу ванадиевого компонента.
Предпочтительным оксидом титана является диоксид титана (ТiО2), который также известен как двуокись титана или оксид титана (IV), и предпочтительно находится в форме анатаза. В определенных вариантах осуществления ТiО2 содержит, по меньшей мере, 90 массовых процентов и более предпочтительно, по меньшей мере, 95 массовых процентов формы анатаза относительно формы рутила. В определенных вариантах осуществления ТiО2 является химически стабилизированным и/или предварительно прокаленным, например, как конечный продукт сульфатной обработки. Такой химически стабилизированный ТiО2 демонстрирует рентгеновские рефлексы, которые специфичны для решетки ТiО2 в рентгеновской дифрактометрии.
Обычно ТiО2 служит в качестве носителя с высокой площадью поверхности для оксида ванадия, который в предпочтительном варианте осуществления представляет собой пентоксид ванадия (V2О5), также известный как оксид ванадия (V) или оксид ванадия. В определенных вариантах осуществления оксид(ы) ванадия представляет(ют) собой один компонент или несколько из пентоксида ванадия, триоксида ванадия, диоксида ванадия или ванадата переходного металла или редкоземельного металла, такого как ванадат железа. Носитель может также включать оксиды вольфрама, предпочтительно триоксид вольфрама (WО3), также известный как оксид вольфрама (VI). Таким образом, V2О5-ТiО2 или V2О5-ТiО2/WО3 существует в форме независимых каталитических частиц. В различных вариантах осуществления каталитический оксид металла будет иметь площадь поверхности (БЭТ) от приблизительно 10 до приблизительно 300 м2/г или больше. В определенных вариантах осуществления ТiО2 или ТiО2/WО3 будет иметь средний размер частиц от приблизительно 10 до приблизительно 250 нанометров (нм), предпочтительно от приблизительно 10 до приблизительно 100 нм.
Предпочтительно, молекулярное сито представляет собой алюмосиликат, предпочтительно без замещенных металлов в структуре, или ферросиликат. Предпочтительные структуры включают FЕR, МFI и ВЕА. В определенных вариантах осуществления данное молекулярное сито не является мелкопористым молекулярным ситом. Молекулярные сита, предпочтительно алюмосиликаты, присутствуют в Н+ форме или ион-замещены переходным металлом. Предпочтительно, данный алюмосиликат, по существу, свободен от щелочных и щелочноземельных металлов. Молекулярные сита в Н+ форме предпочтительно свободны от внеструктурных металлов. Примеры применимых переходных металлов включают Fe, Cu, Ni, Co, Zn, причем Ni, вместе Fе и Сu являются предпочтительными, а Fе является особенно предпочтительным. В определенных вариантах осуществления данное молекулярное сито, по существу, свободно от любого внеструктурного металла, иного чем Fе. Предпочтительно, ионный обмен происходит после синтеза молекулярного сита.
Предпочтительные смеси содержат промотированное железом молекулярное сито или ферросиликатное молекулярное сито, имеющее, по меньшей мере, одну структуру, выбранную из МFI, ВЕА и FЕR. Молекулярные сита могут быть выбраны из цеолитов и нецеолитных материалов. Цеолиты обычно являются алюмосиликатами, тогда как нецеолитное молекулярное сито представляет собой молекулярное сито, имеющее особую цеолитную кристаллическую структуру (например, структурный тип IZА), но не являющееся алюмосиликатом, нецеолитное молекулярное сито содержит один или несколько не алюминиевых/не кремниевых катионов, присутствующих в его кристаллической структуре, например, фосфор, железо и др. Подходящие типы нецеолитного молекулярного сита включают силикоалюмофосфаты (SАРО) и ферросиликаты. Особенно предпочтительными являются железосодержащие алюмосиликатные цеолиты, такие как Fе-содержащие МFI, ВЕА и FЕR, причем МFI является предпочтительным.
Подходящие МFI изотипы включают ZSМ-5, [Fе-Si-О]-МFI, АМS-1В, АZ-1, Воr-С, боралит, энцилит, FZ-1, LZ-105, мутинаит, NU-4, NU-5, силикалит, ТS-1, ТSZ, ТSZ-III, ТZ-01, USС-4, USI-108, ZВН, ZКQ-1В и ZМQ-ТВ, причем ZSМ-5 является особенно предпочтительным. Подходящие FER изотипы включают ферриерит, [Si-О]-FЕR, FU-9, ISI-6, моноклинный ферриерит, NU-23, Sr-D и ZSМ-35. Подходящие ВЕА изотипы включают бета, [Тi-Si-О]-*ВЕА, СIТ-6 и шерничит. Типичные мольные отношения SiО2/Аl2О3 для таких материалов составляют от 30 до 100, а типичные мольные отношения SiО2/Fе2О3 составляют от 20 до 300, например, от 20 до 100.
Предпочтительно, структура ВЕА содержит замещенное железо или представляет собой железо-изоморфную ВЕА молекулярную структуру (также называемую ферросиликат ВЕА-типа), причем железо-изоморфная ВЕА молекулярная структура является особенно предпочтительной. В определенных предпочтительных вариантах осуществления молекулярная структура ферросиликата ВЕА-типа представляет собой кристаллический силикат, имеющий (1) железосодержащую ВЕА-решеточную структуру, которая имеет мольное отношение SiО2/Fе2О3 от приблизительно 20 до приблизительно 300, и/или (2), по меньшей мере, 80% содержащегося железа в виде изолированных ионов железа Fе3+ в свежем состоянии. Предпочтительные ферросиликаты ВЕА-типа, пригодные в настоящем изобретении, имеют состав, представленный следующей формулой:
(х+y)М(2/n)О⋅хFе2О3⋅yАl2О3⋅zSiO2⋅wH2O
где n обозначает атомную величину катиона М; х, y и z обозначают мольные доли Fе2О3, Аl2О3 и SiO2 соответственно; х+y+z=I; w обозначает число, по меньшей мере, 0; z/x составляет от 20 до 300, y может быть 0, и, необязательно, z/y составляет, по меньшей мере, 100.
Предпочтительно, железосодержащая ВЕА-решеточная структура имеет мольное отношение SiО2/Fе2О3 от приблизительно 25 до приблизительно 300, от приблизительно 20 до приблизительно 150, от приблизительно 24 до приблизительно 150, от приблизительно 25 до приблизительно 100 или от приблизительно 50 до приблизительно 80. Верхний предел log(SiО2/Аl2О3) в молях не ограничивается особо при условии, что log(SiО2/Аl2О3) в молях составляет, по меньшей мере, 2 (т.е. отношение SiО2/Аl2О3 в молях составляет, по меньшей мере, 100). log(SiО2/Аl2О3) в молях предпочтительно составляет, по меньшей мере, 2,5 (т.е. отношение SiО2/Аl2О3 в молях составляет, по меньшей мере, 310), более предпочтительно, по меньшей мере, 3 (т.е. отношение SiО2/Аl2О3 в молях составляет, по меньшей мере, 1000). Когда log(SiО2/Аl2О3) в молях превышает 4 (т.е. отношение SiО2/Аl2О3 в молях становится, по меньшей мере, 10000).
В определенных вариантах осуществления Fе-ВЕА алюмосиликатное молекулярное сито предварительно подвергают старению. Предварительно состаренный Fе-ВЕА алюмосиликат может давать результаты существенно лучше, чем обычный Fе-ВЕА. Соответственно, вместо обычной обработки старением при 500°С в течение 1 часа, Fе-ВЕА алюмосиликат предпочтительно подвергают старению при 600-900°С, предпочтительно 650-850°С, более предпочтительно 700-800°С и еще более предпочтительно 725-775°С в течение 3-8 часов, предпочтительно 4-6 часов, более предпочтительно 4,5-5,5 часов и еще более предпочтительно 4,75-5,25 часов. Варианты осуществления, использующие предварительно состаренные Fе-ВЕА алюмосиликаты, являются преимущественными в приложениях, где нежелательно образование N2О.
В определенных вариантах осуществления железо присутствует в молекулярно-ситовом материале в концентрации от приблизительно 0,1 до приблизительно 10 массовых процентов (% масс.) в расчете на полную массу молекулярного сита, например, от приблизительно 0,5% масс. до приблизительно 5% масс., от приблизительно 0,5% масс. до приблизительно 1% масс., от приблизительно 1% масс. до приблизительно 5% масс., от приблизительно 2% масс. до приблизительно 4% масс. и от приблизительно 2% масс. до приблизительно 3% масс. Железо может быть внедрено в молекулярные сита при использовании в настоящем изобретении с использованием технологий, хорошо известных в данной области техники, включая жидкофазный обмен или твердофазный обмен, или с помощью способа появляющейся влажности. Такие материалы называются здесь железосодержащими или железо-промотированными молекулярными ситами. Для изготовления железосодержащих алюмосиликатных цеолитов смотри Journal of Catalysis 232(2) 318-334 (2005); ЕР 2072128; и WО 2009/023202, которые включены сюда посредством ссылки.
Каталитическая композиция по настоящему изобретению может быть приготовлена путем смешения ванадиевого компонента и молекулярно-ситового компонента. Тип технологии смешивания не ограничивается особо. В определенных вариантах осуществления готовят суспензию ТiО2/WО3, к которой добавляют порошок V2О5 и порошок промотированного железом молекулярного сита. Полученная суспензия может быть использована в качестве пористого покрытия или может быть высушена и прокалена в форме порошка, который затем используют для приготовления пористого покрытия или экструдируемого материала.
Каталитические цеолиты, описанные здесь, могут избирательно вызывать реакцию восстановителя, предпочтительно аммиака, с оксидами азота с образованием элементарного азота (N2) и воды (Н2О), в отличие от конкурирующей реакции кислорода и аммиака. В одном варианте осуществления катализатор может иметь состав, благоприятный для восстановления оксидов азота аммиаком (т.е. катализатор SСR). В другом варианте осуществления катализатор может иметь состав для удаления аммиака, который не расходуется в реакции с катализатором SСR (т.е. проскок аммиака). Здесь катализатор проскока аммиака (АSС) имеет состав, благоприятный для окисления аммиака кислородом. В еще одном варианте осуществления катализатор SСR и катализатор АSС применяются последовательно, причем оба катализатора содержат каталитическую смесь, описанную здесь, и SСR катализатор находится выше по ходу от АSС катализатора.
В определенных вариантах осуществления катализатор АSС расположен в виде верхнего слоя на нижележащем окислительном слое, где нижележащий слой содержит катализатор с металлом платиновой группы (РGМ) или катализатор без РGМ. В определенных вариантах осуществления катализатор АSС представляет собой экструдированный сотовый блок или нанесен на подложку, предпочтительно подложки, которые разработаны, чтобы обеспечивать большую контактную поверхность с минимальным противодавлением, такие как проточные металлические или кордиеритовые соты. Например, предпочтительная подложка имеет от приблизительно 25 до приблизительно 300 ячеек на квадратный дюйм (СРSI) (от 4,9 до 59 ячеек на см2), чтобы гарантировать низкое противодавление. Достижение низкого противодавления особенно важно, чтобы минимизировать действие катализатора АSС на параметры ЕGR при низком давлении. АSС катализатор может быть нанесен на подложку в виде пористого покрытия (washcoat), предпочтительно достигая приблизительно от 0,3 до 3,5 г/дюйм3 (от 0,018 до 0,21 г/см3). Чтобы обеспечить дополнительную конверсию NOx, передняя часть подложки может быть покрыта SСR покрытием, а задняя может быть покрыта SСR и АSС катализатором, который может дополнительно включать Pt или Pt/Pd на оксидноалюминиевом носителе.
Согласно другому аспекту данного изобретения обеспечивается способ избирательного каталитического восстановления NOx соединений или окисления NН3 в выхлопном газе, который включает контактирование выхлопного газа с описанной здесь каталитической смесью в течение времени, достаточного, чтобы понизить уровень NOx и/или NН3 соединений в выхлопном газе. В определенных вариантах осуществления оксиды азота восстанавливаются в присутствии каталитической смеси восстановительным агентом при температуре, по меньшей мере, приблизительно 100°С. В определенных вариантах осуществления NOx соединения восстанавливаются при температуре от приблизительно 200°С до приблизительно 650°С. Варианты осуществления, использующие температуры больше чем приблизительно 450°С, особенно подходят для очистки выхлопных газов из мощных и маломощных дизельных двигателей, которые оборудованы выхлопной системой, содержащей мелкозернистые дизельные фильтры (возможно каталитические), которые не регенерируются активно, например, путем введения углеводорода в выхлопную систему выше по ходу от данного фильтра, в которых цеолитный катализатор, применяемый в настоящем изобретении, расположен ниже по ходу от фильтра. В других вариантах осуществления молекулярно-ситовой SСR катализатор нанесен на подложку фильтра. Способы настоящего изобретения могут содержать один или несколько из следующих этапов: (а) накопление и/или сжигание сажи, которая находится в контакте с входом каталитического фильтра; (b) введение азотистого восстанавливающего агента в поток выхлопного газа до контакта с каталитическим фильтром, предпочтительно без промежуточных каталитических этапов, включающих в себя обработку NOx и восстановителя; (с) генерация NН3 над катализатором адсорбции NOx, и предпочтительно использование такого NН3 в качестве восстановителя в SСR реакции ниже по ходу; (d) контакт потока выхлопного газа с DОС с окислением углеводородной растворимой органической фракции (SОF) и/или моноксида углерода в СО2 и/или окислением NО в NО2, который, в свою очередь, может быть использован, чтобы окислять мелкозернистое вещество на фильтре для мелких частиц; и/или восстанавливать мелкие частицы (РМ) в выхлопном газе; (е) контакт выхлопного газа с одним или несколькими проточными SСR каталитическими устройствами в присутствии восстанавливающего агента, чтобы снижать концентрацию NOx в выхлопном газе; и (f) контакт выхлопного газа с АSС катализатором, предпочтительно ниже по ходу от SCR катализатора, чтобы окислять большую часть, если не всего аммиака перед выбросом выхлопного газа в атмосферу или прохождением выхлопного газа через петлю циркуляции до входа/повторного входа выхлопного газа в двигатель.
Восстановитель (также известный как восстанавливающий агент) для SCR процессов в широком смысле означает любое соединение, которое вызывает восстановление NOx в выхлопном газе. Примеры восстановителей, применимых в настоящем изобретении, включают в себя аммиак, гидразин или любой подходящий предшественник аммиака, такой как мочевина ((NН2)2СО), карбонат аммония, карбамат аммония, гидрокарбонат аммония или формиат аммония, и углеводороды, такие как дизельное топливо и подобные. Особенно предпочтительны восстановители на основе азота, причем аммиак является особенно предпочтительным. В определенных вариантах осуществления восстановитель может быть углеводородом, таким как метан, дизельное топливо или подобный.
В определенных вариантах осуществления весь или, по меньшей мере, часть азотистого восстановителя, в частности NН3, может подаваться с помощью катализатора адсорбера NOx (NАС), истощенной ловушки NOx (LNТ) или катализатора сохранения/восстановления NOx (NSRС), расположенных выше по ходу от SСR катализатора, например, SСR катализатора настоящего изобретения, расположенного на фильтре с проточными стенками. NАС компоненты, применимые в настоящем изобретении, включают в себя каталитическую комбинацию из основного материала (такого как щелочной металл, щелочноземельный металл или редкоземельный металл, включая оксиды щелочных металлов, оксиды щелочноземельных металлов и их комбинации) и благородного металла (такого как платина), и, необязательно, компонента катализатора восстановления, такого как родий. Конкретные типы основного материала, применимого в NАС, включают оксид церия, оксид калия, оксид магния, оксид натрия, оксид кальция, оксид стронция, оксид бария и их комбинации. Благородный металл предпочтительно присутствует в количестве от приблизительно 10 до приблизительно 200 г/фут3 (от 353 до 7063 г/м3), например, от 20 до 60 г/фут3 (от 706 до 2119 г/м3). Альтернативно, благородный металл данного катализатора характеризуется средней концентрацией, которая может быть от приблизительно 40 до приблизительно 100 г/фут3 (от 1413 до 3531 г/м3).
В определенных условиях, во время периодических событий богатой регенерации, NН3 может генерироваться над катализатором адсорбером NOx. SСR катализатор ниже по ходу от катализатора адсорбера NOx может улучшать общую эффективность системы снижения NOx. В объединенной системе SСR катализатор способен сохранять NН3, выделившийся из катализатора NАС во время событий богатой регенерации, и использовать сохраненный NН3, чтобы избирательно восстанавливать часть или весь NOx, который проскакивает через NАС катализатор во время обычных условий работы в бедной смеси.
В других вариантах осуществления азотистый восстановительный агент или его предшественник вводят в поток выхлопного газа, предпочтительно выше по ходу от SСR катализатора и ниже по ходу от дизельного катализатора окисления. Введение этого восстановительного агента может осуществляться с помощью инжектора, распыляющего сопла или подобного устройства.
Способы настоящего изобретения могут выполняться с выхлопным газом, происходящим от процесса сгорания, такого как двигатель внутреннего сгорания (подвижный или неподвижный), газовая турбина и электростанции, сжигающие уголь или нефтепродукты. Данный способ также может быть использован для очистки газов из промышленных процессов, таких как перегонка, из нагревателей и бойлеров перегонки, печей, из химической перерабатывающей промышленности, коксовых печей, муниципальных установок для переработки отходов и мусоросжигательных печей, и т.д. В особом варианте осуществления данный способ используется для очистки выхлопного газа из автомобильного двигателя внутреннего сгорания на бедной смеси, такого как дизельный двигатель, бензиновый двигатель на бедной смеси или двигатель на сжиженном газе или природном газе.
Согласно дополнительному аспекту данное изобретение обеспечивает выхлопную систему для автомобильного двигателя внутреннего сгорания на бедной смеси, которая содержит трубу для переноса текущего выхлопного газа, источник азотистого восстановителя и каталитическую смесь, описанную здесь. Данная система может включать в себя контроллер для дозирования азотистого восстановителя в текущий выхлопной газ только тогда, когда определено, что каталитическая смесь способна катализировать восстановление NOx с желаемой эффективностью или выше, например, при температуре выше 100°С, выше 150°С или выше 175°С. Данное определение с помощью средства контроля может выполняться с помощью входных сигналов одного или нескольких подходящих датчиков, показывающих один параметр двигателя, выбранный из группы, состоящей из: температуры выхлопного газа, температуры слоя катализатора, положения акселератора, массового потока выхлопного газа в системе, разрежения в коллекторе, распределения зажигания, скорости двигателя, величины лямбда выхлопного газа, количества топлива, впрыскиваемого в двигатель, положения клапана рециркуляции выхлопного газа (ЕGR) и, тем самым, количества ЕGR и давления наддува.
В особом варианте осуществления дозировка регулируется соответственно количеству оксидов азота в выхлопном газе, определенному прямо (с использованием подходящего датчика NOx) или косвенно, например, используя предварительно установленные, справочные таблицы или карты -- сохраненные в данном средстве контроля -- соотносящие любой один или несколько вышеуказанных входных сигналов, показывающих параметры двигателя, с предсказанным содержанием NOx в выхлопном газе. Дозировка азотистого восстановителя может быть организована так, что от 60% до 200% от теоретического аммиака присутствует выхлопном газе, входящем в SСR катализатор, из расчета 1:1 NН3/NО и 4:3 NН3/NО2. Данное средство контроля может содержать предварительно программированный процессор, такой как электронный контрольный блок (ЕСU).
В дополнительном варианте осуществления дизельный катализатор окисления для окисления моноксида азота в выхлопном газе в диоксид азота может быть расположен выше по ходу от точки дозирования азотистого восстановителя в выхлопной газ. В одном варианте осуществления дизельный катализатор окисления способен давать газовый поток, входящий в SСR цеолитный катализатор, имеющий отношение NО к NО2 от приблизительно 4:1 до приблизительно 1:3 по объему, например, при температуре выхлопного газа на входе катализатора окисления от 250°С до 450°С. В другом варианте осуществления отношение NО к NО2 поддерживается от приблизительно 1:2 до приблизительно 1:5 по объему. Дизельный катализатор окисления может включать в себя, по меньшей мере, один металл платиновой группы (или некоторую комбинацию их), такой как платина, палладий или родий, нанесенный на проточную монолитную подложку. В одном варианте осуществления, по меньшей мере, один металл платиновой группы представляет собой платину, палладий, или комбинацию платины и палладия. Металл платиновой группы может быть нанесен на нанесенный пористый компонент с высокой площадью поверхности (washcoat), такой оксид алюминия, цеолит, такой как алюмосиликатный цеолит, оксид кремния, не цеолитный алюмосиликат, оксид церия, оксид циркония, оксид титана, или смешанный или композитный оксид, содержащий и оксид церия, и оксид циркония.
В дополнительном варианте осуществления подходящая фильтрующая подложка расположена между дизельным катализатором окисления и SСR катализатором. Фильтрующие подложки могут быть выбраны из упомянутых выше, например, фильтры с проточными стенками. Когда фильтр является катализированным, например, катализатором окисления типа обсуждаемого выше, предпочтительно точка дозировки азотистого восстановителя расположена между данным фильтром и SСR каталитической смесью. Альтернативно, если фильтр является некатализированным, средство дозировки азотистого восстановителя может быть расположено между дизельным катализатором окисления и фильтром.
В дополнительном варианте осуществления каталитическая смесь для использования в настоящем изобретении наносится на фильтр, расположенный ниже по ходу от катализатора окисления. Когда фильтр содержит данную каталитическую смесь, точка дозировки азотистого восстановителя предпочтительно расположена между катализатором окисления и фильтром.
В дополнительном аспекте обеспечивается автомобильный двигатель на бедной смеси, содержащий выхлопную систему согласно настоящему изобретению. Автомобильный двигатель внутреннего сгорания на бедной смеси может быть дизельным двигателем, бензиновым двигателем на бедной смеси или двигателем на сжиженном газе или природном газе.
Применяемый здесь термин "состоит, по существу, из" в отношении каталитической композиции означает, что данная композиция содержит указанные каталитические компоненты, но не содержит дополнительных компонентов, которые материально влияют на базовые и новые характеристики заявленного изобретения. То есть, каталитическая композиция не включает в себя дополнительные компоненты, которые будут служить в качестве катализатора рассматриваемой реакции или служить для усиления основной каталитической природы заявленного катализатора.
ПРИМЕРЫ
Пример 1: приготовление катализатора
Каталитическую композицию готовили путем смешения железо-замещенного МFI алюмосиликата с суспензией V2О5-ТiО2/WО3. Полученная композиция содержала приблизительно 20 массовых процентов железо-замещенного МFI алюмосиликата в расчете на объединенную массу железо-замещенного МFI алюмосиликата и твердого V2О5-ТiО2/WО3. Аналогичный способ выполняли, чтобы приготовить катализатор, содержащий 5 массовых процентов железо-замещенного МFI алюмосиликата; катализатор, содержащий 20 массовых процентов железо-замещенного FЕR алюмосиликата; катализатор, содержащий 5 массовых процентов железо-замещенного FЕR алюмосиликата; катализатор, содержащий 20 массовых процентов ВЕА ферросиликата; и катализатор, содержащий 10 массовых процентов ВЕА ферросиликата.
Эти смеси катализаторов формовали в экструдируемую массу, перемешивали, сжимали и затем экструдировали, формируя сотовые блоки диаметром 1 дюйм (2,54 см)×140 мм.
Дополнительно, материал катализатора, содержащий 20 массовых процентов железо-замещенного МFI алюмосиликата, формовали в экструдируемую массу, перемешивали, сжимали и затем экструдировали, формируя сотовые блоки диаметром 10,5 дюйма (26,7 см)×5,0 дюймов 400/11, а также сотовые блоки диаметром 10,5 дюйма (26,7 см)×7,0 дюймов 400/11.
Пример 2: характеристики катализатора (изменение уровней NO2)
Экструдированный сотовый блок диаметром 1 дюйм × 140 мм, содержащий смесь железо-замещенного МFI алюмосиликата и V2О5-ТiО2/WО3 (20% масс. Fе-МFI), приводили в контакт с модельным выхлопным газом дизельного двигателя при объемной скорости приблизительно 60000 час-1. Модельный выхлопной газ содержал приблизительно 9,3% масс. О2, приблизительно 7,0% масс. Н2О, приблизительно 100 ч/млн NOx (только NО), приблизительно 100 ч/млн NН3 и остальное N2. Способность катализатора к конверсии NOx определяли при температурах 180, 215, 250, 300, 400 и 500°С.
Для сравнения, аналогичный каталитический блок готовили, используя только V2О5-ТiО2/WО3. Сравнительный пример также тестировали на конверсию NOx в аналогичных условиях.
Данные по конверсии NOx для этих свежих образцов (т.е. не состаренных) приведены на фигуре 1. Результаты показывают, что при 0% NO2 катализатор, основанный на смеси Fе-МFI и V2О5-ТiО2/WО3, приводит к лучшей конверсии NOx при высоких температурах по сравнению с катализатором, содержащим только V2О5-ТiО2/WО3.
Этот тест повторяли за исключением того, что поток NOx содержал 35 массовых процентов NО2. Данные по конверсии NOx для этих свежих образцов приведены на фигуре 2. Результаты показывают, что при 35% NO2 катализатор, основанный на смеси Fе-МFI и V2О5-ТiО2/WО3, приводит к лучшей конверсии NOx по сравнению с катализатором, содержащим только V2О5-ТiО2/WО3, в широком интервале температур.
Этот тест повторяли снова за исключением того, что поток NOx содержал 65 массовых процентов NО2. Данные по конверсии NOx для этих свежих образцов приведены на фигуре 3. Результаты показывают, что при 65% NO2 катализатор, основанный на смеси Fе-МFI и V2О5-ТiО2/WО3, приводит к лучшей конверсии NOx по сравнению с катализатором, содержащим только V2О5-ТiО2/WО3, в широком интервале температур.
Пример 3: характеристики катализатора (после гидротермального старения)
Экструдированный свежий сотовый блок диаметром 1 дюйм × 140 мм, содержащий смесь железо-замещенного МFI алюмосиликата и V2О5-ТiО2/WО3 (20% масс. Fе-МFI), состаривали в течение 100 часов при 580°С. Также состаривали три дополнительных свежих блока, каждый при одном из наборов следующих условий: 100 часов при 580°С и 10% Н2О; 100 часов при 650°С; и 100 часов при 650°С и 10% Н2О.
Для сравнения, два аналогичных каталитических блока готовили, используя только V2О5-ТiО2/WО3. Каждый из сравнительных примеров состаривали при одном из наборов следующих условий: 100 часов при 580°С и 100 часов при 650°С.
Все блоки приводили в контакт с модельным выхлопным газом дизельного двигателя при объемной скорости приблизительно 60000 час-1. Модельный выхлопной газ содержал приблизительно 9,3% масс. О2, приблизительно 7,0% масс. Н2О, приблизительно 100 ч/млн NOx (только NО), приблизительно 100 ч/млн NН3 и остальное N2. Способность катализатора к конверсии NOx определяли при температурах 180, 215, 250, 300, 400 и 500°С.
Данные по конверсии NOx для этих состаренных образцов приведены на фигуре 4. Результаты показывают, что катализаторы, основанные на смеси Fе-МFI и V2О5-ТiО2/WО3, были гораздо более гидротермически устойчивы по сравнению с катализатором, содержащим только V2О5-ТiО2/WО3, особенно в жестких условиях старения.
Пример 4: характеристики сравнительного катализатора
Экструдированный сотовый блок диаметром 1 дюйм × 140 мм, содержащий смесь железо-замещенного МFI алюмосиликата и V2О5-ТiО2/WО3 (20% масс. Fе-МFI), приводили в контакт с модельным выхлопным газом дизельного двигателя при объемной скорости приблизительно 60000 час-1. Модельный выхлопной газ содержал приблизительно 9,3% масс. О2, приблизительно 7,0% масс. Н2О, приблизительно 100 ч/млн NOx, (65 массовых процентов NО2), приблизительно 100 ч/млн NН3 и остальное N2. Способность катализатора к конверсии NOx определяли при температурах 180, 215, 250, 300, 400 и 500°С.
Другой экструдированный сотовый блок диаметром 1 дюйм × 140 мм, но содержащий смесь железо-замещенного FЕR алюмосиликата и V2О5-ТiО2/WО3 (20% масс. Fе-FЕR), приводили в контакт с модельным выхлопным газом дизельного двигателя при объемной скорости приблизительно 60000 час-1. Модельный выхлопной газ содержал приблизительно 9,3% масс. О2, приблизительно 7,0% масс. Н2О, приблизительно 100 ч/млн NOx, (65 массовых процентов NО2), приблизительно 100 ч/млн NН3 и остальное N2. Способность катализатора к конверсии NOx определяли при температурах 180, 215, 250, 300, 400 и 500°С.
Для сравнения, аналогичный каталитический блок готовили, используя только V2О5-ТiО2/WО3. Сравнительный образец также тестировали на конверсию NOx в аналогичных условиях.
Данные по конверсии NOx для этих образцов приведены на фигуре 5. Результаты показывают, что при 65% NO2 катализатор, основанный на смеси Fе-МFI и V2О5-ТiО2/WО3, приводит к лучшей конверсии NOx при высоких температурах по сравнению с катализатором, содержащим смесь Fе-FЕR и V2О5-ТiО2/WО3, и что катализатор, основанный на смеси Fе-МFI и V2О5-ТiО2/WО3, приводит к лучшей конверсии NOx при высоких температурах по сравнению с катализатором, содержащим только V2О5-ТiО2/WО3.

Claims (10)

1. Каталитическая композиция для очистки выхлопного газа, содержащая смесь первого компонента и второго компонента, где первый компонент представляет собой алюмосиликатный молекулярно-ситовой компонент, где данный молекулярно-ситовой компонент имеет структуру, выбранную из МFI, ВЕА и FЕR, и где данный алюмосиликатный молекулярно-ситовой компонент подвергнут ионному замещению с железом Fe, а второй компонент представляет собой оксид ванадия, нанесенный на диоксид титана, где данная каталитическая композиция содержит от 15 до 25 мас.% первого компонента и от 85 до 75 мас.% второго компонента в расчете на общую массу каталитически активных компонентов в смеси.
2. Каталитическая композиция по п. 1, в которой данный алюмосиликатный молекулярно-ситовой компонент содержит от 1 до 10 мас.% ионзамещенного Fе.
3. Каталитическая композиция по п. 1, в которой второй компонент дополнительно содержит оксид вольфрама.
4. Каталитическая композиция по п. 1, в которой данная смесь содержит от 0,5 до 5 мас.% оксида ванадия в расчете на массу первого и второго компонентов.
5. Пористое каталитическое покрытие типа "washcoat", содержащее каталитическую композицию по п. 1, дополнительно содержащее один или несколько наполнителей, связующих, технологических добавок, воду и легирующие примеси.
6. Каталитическое изделие, содержащее подложку, покрытую каталитической композицией или содержащую внедренную каталитическую композицию по п. 1, в котором данную подложку выбирают из металлической прямопроточной подложки, керамической прямопроточной подложки, фильтра с проточными стенками, спеченного металлического фильтра, частичного фильтра и экструдированной сотовой структуры катализатора.
7. Способ очистки выхлопного газа, включающий этапы, на которых:
а) осуществляют контакт потока выхлопного газа, содержащего NOx и/или NН3, в присутствии каталитической композиции по п. 1; и
b) превращают по меньшей мере часть упомянутого NOx в N2 и/или превращают по меньшей мере часть NН3 в по меньшей мере одно вещество из N2 и NО2.
8. Способ по п. 7, в котором упомянутый выхлопной газ имеет отношение NО к NО2 от 4:1 до 1:3 по объему.
RU2015109149A 2012-08-17 2013-08-16 ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ RU2670760C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261684352P 2012-08-17 2012-08-17
US61/684,352 2012-08-17
PCT/GB2013/052181 WO2014027207A1 (en) 2012-08-17 2013-08-16 Zeolite promoted v/ti/w catalysts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2018136362A Division RU2018136362A (ru) 2012-08-17 2013-08-16 ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ

Publications (3)

Publication Number Publication Date
RU2015109149A RU2015109149A (ru) 2016-10-10
RU2670760C2 RU2670760C2 (ru) 2018-10-25
RU2670760C9 true RU2670760C9 (ru) 2018-12-17

Family

ID=49003939

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2018136362A RU2018136362A (ru) 2012-08-17 2013-08-16 ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ
RU2015109149A RU2670760C9 (ru) 2012-08-17 2013-08-16 ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2018136362A RU2018136362A (ru) 2012-08-17 2013-08-16 ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ

Country Status (12)

Country Link
US (2) US10252252B2 (ru)
EP (2) EP2755764B1 (ru)
JP (2) JP6476115B2 (ru)
KR (2) KR102245483B1 (ru)
CN (2) CN107335425B (ru)
BR (1) BR112015002829B1 (ru)
DE (2) DE112013007779B4 (ru)
DK (1) DK2755764T3 (ru)
GB (1) GB2510284B (ru)
PL (1) PL2755764T3 (ru)
RU (2) RU2018136362A (ru)
WO (1) WO2014027207A1 (ru)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510284B (en) 2012-08-17 2016-01-06 Johnson Matthey Plc Zeolite promoted v/ti/w catalysts
KR101522857B1 (ko) * 2013-05-02 2015-05-26 희성촉매 주식회사 복합형 선택적 환원 촉매
DE102014205760A1 (de) * 2014-03-27 2015-10-01 Johnson Matthey Public Limited Company Verfahren zum Herstellen eines Katalysator sowie Katalysator
DE102014215112A1 (de) 2014-07-31 2016-02-04 Johnson Matthey Public Limited Company Verfahren zur Herstellung eines Katalysators sowie Katalysator-Artikel
DE102015119913A1 (de) * 2014-11-19 2016-05-19 Johnson Matthey Public Limited Company Kombination von SCR mit PNA zur Niedrigtemperaturemissionssteuerung
JP6102907B2 (ja) * 2014-12-26 2017-03-29 トヨタ自動車株式会社 排気浄化装置の劣化診断装置
JP6292159B2 (ja) * 2015-04-13 2018-03-14 トヨタ自動車株式会社 排ガス浄化用触媒
DK3320193T3 (da) * 2015-07-09 2019-06-17 Umicore Ag & Co Kg System til fjernelse af partikulært stof og skadelige forbindelser fra motorudstødningsgas
KR20180030633A (ko) * 2015-07-09 2018-03-23 우미코레 아게 운트 코 카게 Nh3-scr 활성, 암모니아 산화 활성, 및 휘발성 바나듐 및 텅스텐 화합물에 대한 흡착능을 갖는 삼원 촉매
US9764287B2 (en) 2015-11-06 2017-09-19 Paccar Inc Binary catalyst based selective catalytic reduction filter
US10058819B2 (en) 2015-11-06 2018-08-28 Paccar Inc Thermally integrated compact aftertreatment system
US9757691B2 (en) * 2015-11-06 2017-09-12 Paccar Inc High efficiency and durability selective catalytic reduction catalyst
US10188986B2 (en) 2015-11-06 2019-01-29 Paccar Inc Electrochemical reductant generation while dosing DEF
DE102015224370B4 (de) 2015-12-04 2022-05-19 Johnson Matthey Catalysts (Germany) Gmbh Katalysator sowie Verfahren zur Herstellung eines Katalysators
JP6093101B1 (ja) * 2016-09-12 2017-03-08 中国電力株式会社 脱硝触媒、及びその製造方法
EP3558493A1 (de) 2016-12-20 2019-10-30 Umicore AG & Co. KG Scr-katalysatorvorrichtung enthaltend vanadiumoxid und eisen-haltiges molekularsieb
JP7379155B2 (ja) * 2016-12-20 2023-11-14 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 酸化バナジウム及び鉄含有分子篩を収容するscr触媒デバイス
DE102017101507B4 (de) 2017-01-26 2022-10-13 Chemisch Thermische Prozesstechnik Gmbh Verfahren und Vorrichtung zur Abgasreinigung
GB201705158D0 (en) 2017-03-30 2017-05-17 Johnson Matthey Plc Catalyst article for use in a emission treatment system
BR112019020282A2 (pt) * 2017-03-30 2020-04-28 Johnson Matthey Plc artigo catalisador, e, método para reduzir as emissões de uma corrente de escape.
GB201716063D0 (en) * 2017-03-30 2017-11-15 Johnson Matthey Plc A catalyst for treating an exhaust gas, an exhaust system and a method
GB2560990A (en) 2017-03-31 2018-10-03 Johnson Matthey Catalysts Germany Gmbh Composite material
GB201705289D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Catalysts (Germany) Gmbh Selective catalytic reduction catalyst
GB201705241D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Catalysts (Germany) Gmbh Catalyst composition
US11179707B2 (en) 2017-03-31 2021-11-23 Johnson Matthey Catalysts (Germany) Gmbh Composite material
GB201705279D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Plc Selective catalytic reduction catalyst
US10675586B2 (en) 2017-06-02 2020-06-09 Paccar Inc Hybrid binary catalysts, methods and uses thereof
US10835866B2 (en) 2017-06-02 2020-11-17 Paccar Inc 4-way hybrid binary catalysts, methods and uses thereof
US10207253B1 (en) 2017-10-11 2019-02-19 King Abdulaziz University Vanadium oxide catalyst supported on CeO2—ZrO2 for formaldehyde production via partial oxidation of methanol
GB201805312D0 (en) * 2018-03-29 2018-05-16 Johnson Matthey Plc Catalyst article for use in emission treatment system
EP3787789A1 (en) * 2018-04-30 2021-03-10 BASF Corporation Catalyst for the oxidation of no, the oxidation of a hydrocarbon, the oxidation of nh3 and the selective catalytic reduction of nox
BR112020026836A2 (pt) * 2018-07-30 2021-04-06 Basf Corporation Catalisador de redução catalítica, processo de preparação de catalisador, sistema de tratamento de gases e método de redução catalítica
EP3936766B1 (en) * 2019-03-07 2024-01-17 The Chugoku Electric Power Co., Inc. Combustion system having a vanadium oxide denitration catalyst
WO2020179077A1 (ja) * 2019-03-07 2020-09-10 中国電力株式会社 燃焼システム
WO2020179079A1 (ja) * 2019-03-07 2020-09-10 中国電力株式会社 燃焼システム
BR112021017597A2 (pt) 2019-03-08 2021-11-09 Johnson Matthey Plc Catalisador de redução catalítica seletiva, revestimento washcoat, e, método de preparação de um catalisador de redução catalítica seletiva
US11007514B2 (en) 2019-04-05 2021-05-18 Paccar Inc Ammonia facilitated cation loading of zeolite catalysts
US10906031B2 (en) 2019-04-05 2021-02-02 Paccar Inc Intra-crystalline binary catalysts and uses thereof
CN110102338A (zh) * 2019-04-30 2019-08-09 昆明贵研催化剂有限责任公司 一种高氮气选择性的氨氧化催化剂及其制备方法
JP7489761B2 (ja) * 2019-05-07 2024-05-24 株式会社キャタラー アンモニア酸化触媒装置
CN112536061B (zh) * 2019-09-23 2023-05-02 中国石油化工股份有限公司 一种废气处理催化剂及其制备方法
CN114401790A (zh) * 2019-09-27 2022-04-26 庄信万丰催化剂(德国)有限公司 用于处理固定式排放源废气中的CO和NOx的多功能催化剂制品
KR102292551B1 (ko) * 2019-09-30 2021-08-25 주식회사 포스코 황에 대한 내구성이 우수한 scr 촉매
US10934918B1 (en) 2019-10-14 2021-03-02 Paccar Inc Combined urea hydrolysis and selective catalytic reduction for emissions control
GB201917634D0 (en) 2019-12-03 2020-01-15 Johnson Matthey Catalysts Germany Gmbh Element frame assemblies containing monoliths
JP7419107B2 (ja) * 2020-02-28 2024-01-22 いすゞ自動車株式会社 触媒用部材の製造方法
CN113289678A (zh) * 2021-05-31 2021-08-24 大唐环境产业集团股份有限公司 一种适用于高温烟气的蜂窝式脱硝催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255121A2 (en) * 1986-07-29 1988-02-03 Mitsubishi Petrochemical Co., Ltd. Process for removing nitrogen oxides from exhaust gases and catalyst
EP0544282B1 (en) * 1991-11-27 1995-10-25 Babcock-Hitachi Kabushiki Kaisha Catalyst for purifying exhaust gas
EA008338B1 (ru) * 2003-09-27 2007-04-27 Кореа Пауэ Инижиниринг Компани, Инк. Катализатор на основе ванадия, нанесенного на оксид титана, для удаления азота в интервале низких температур и способ удаления оксида азота
WO2008089957A1 (de) * 2007-01-22 2008-07-31 Süd-Chemie AG Katalysatorzusammensetzung zur reduktion von stickoxiden
RU2370308C1 (ru) * 2005-07-12 2009-10-20 Тойота Дзидося Кабусики Кайся Катализатор очистки выхлопных газов и способ его приготовления
RU2406567C1 (ru) * 2007-08-22 2010-12-20 Мицубиси Хеви Индастриз, Лтд. Катализатор для обработки выхлопного газа и система для обработки выхлопного газа

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US255121A (en) * 1882-03-21 Churn-motor
US1558598A (en) * 1918-04-26 1925-10-27 Ellis Foster Co Oxidation of ammonia
JPS5146634B2 (ru) 1971-08-18 1976-12-10
JPS553872A (en) 1978-06-27 1980-01-11 Mitsubishi Heavy Ind Ltd Preparing denitrification catalyst
JPS60106535A (ja) 1983-11-16 1985-06-12 Mitsubishi Heavy Ind Ltd 廃ガス処理用触媒
JPS61171539A (ja) 1985-01-23 1986-08-02 Babcock Hitachi Kk ゼオライトのハニカム状焼成体の製造方法
NO167130C (no) 1985-10-22 1991-10-09 Norton Co Katalysator for selektiv reduksjon av nitrogenoksyder.
US4735927A (en) 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4663300A (en) 1985-12-23 1987-05-05 Uop Inc. Pollution control catalyst
US4798813A (en) 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
JPS63147546A (ja) * 1986-07-29 1988-06-20 Mitsubishi Petrochem Co Ltd 排ガス中の窒素酸化物の除去方法
DE3635284A1 (de) 1986-10-16 1988-04-28 Steuler Industriewerke Gmbh Katalysator zur entfernung von stickoxiden aus abgasen
DE3841990A1 (de) 1988-12-14 1990-06-21 Degussa Verfahren zur reduktion von stickoxiden aus abgasen
JPH02184342A (ja) * 1989-01-10 1990-07-18 Mitsubishi Heavy Ind Ltd 排煙脱硝触媒
US4961917A (en) 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
DE4003515A1 (de) 1990-02-06 1991-08-08 Bayer Ag Verfahren zur reduktion von in abgasen enthaltenen stickoxiden
JP3321190B2 (ja) * 1991-11-27 2002-09-03 バブコック日立株式会社 脱硝機能を備えたアンモニア分解触媒および排ガス浄化方法
JP3712240B2 (ja) * 1993-03-29 2005-11-02 エンゲルハード・コーポレーシヨン 改良されたゼオライト含有酸化触媒および使用方法
ZA963235B (en) * 1995-06-15 1996-10-25 Engelhard Corp Diesel exhaust stream treating catalyst and method of use
JPH10323570A (ja) * 1997-05-26 1998-12-08 Babcock Hitachi Kk 排煙脱硝触媒およびその製造方法
GB9802504D0 (en) 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
DE19806062A1 (de) * 1998-02-13 1999-08-19 Siemens Ag Reduktionskatalysator und Verfahren zur Reinigung dieselmotorischen Abgases
US6852214B1 (en) * 1998-08-31 2005-02-08 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
DE19854502A1 (de) 1998-11-25 2000-05-31 Siemens Ag Katalysatorkörper und Verfahren zum Abbau von Stickoxiden
US7490464B2 (en) 2003-11-04 2009-02-17 Basf Catalysts Llc Emissions treatment system with NSR and SCR catalysts
DE102004030302A1 (de) 2004-06-23 2006-01-12 Adam Opel Ag Abgassystem zur Verbesserung der Wirksamkeit der NOx-Reduktion in Kraftfahrzeugen
KR100765413B1 (ko) * 2005-07-06 2007-10-09 희성촉매 주식회사 암모니아 산화촉매 및 이를 이용한 슬립 암모니아 또는폐암모니아 처리장치
KR100671978B1 (ko) * 2005-07-19 2007-01-24 한국과학기술연구원 탈질환원촉매
US7485272B2 (en) * 2005-11-30 2009-02-03 Caterpillar Inc. Multi-stage system for selective catalytic reduction
DE102006031661B4 (de) 2006-07-08 2016-02-25 Man Truck & Bus Ag Anordnung zur Verminderung von Stickoxiden in Abgasen
GB0617070D0 (en) * 2006-08-30 2006-10-11 Johnson Matthey Plc Low Temperature Hydrocarbon SCR
JP5146634B2 (ja) 2006-12-18 2013-02-20 日本電気株式会社 ストリーミング配信方法及びシステム並びにサーバシステム、端末及びコンピュータプログラム
US8802582B2 (en) * 2007-01-09 2014-08-12 Catalytic Solutions, Inc. High temperature ammonia SCR catalyst and method of using the catalyst
EP1961933B1 (de) * 2007-02-23 2010-04-14 Umicore AG & Co. KG Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
EP2517773B2 (en) * 2007-04-26 2019-08-07 Johnson Matthey Public Limited Company Copper/LEV-zeolite SCR catalyst
JP5110954B2 (ja) * 2007-05-09 2012-12-26 エヌ・イーケムキャット株式会社 選択還元型触媒を用いた排気ガス浄化触媒装置並びに排気ガス浄化方法
EP2689846A1 (en) 2007-08-13 2014-01-29 PQ Corporation Selective catalytic reduction of nitrogen oxides in the presence of iron-containing aluminosilicate zeolites
US7727499B2 (en) * 2007-09-28 2010-06-01 Basf Catalysts Llc Ammonia oxidation catalyst for power utilities
DE102007061005A1 (de) 2007-12-18 2009-06-25 Man Nutzfahrzeuge Ag Verfahren zur Verbesserung der Hydrolyse eines Reduktionsmittels in einem Abgasnachbehandlungssystem
KR101473007B1 (ko) 2007-12-18 2014-12-15 도소 가부시키가이샤 질소 산화물 정화 촉매 및 질소 산화물 정화 방법
DE102008009672B4 (de) 2008-02-18 2016-02-25 Süd-Chemie Ip Gmbh & Co. Kg SCR-Katalysator mit Kohlenwasserstoffspeicherfunktion, dessen Verwendung und Abgasreinigungssystem und dessen Verwendung
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
DE102008055890A1 (de) 2008-11-05 2010-05-12 Süd-Chemie AG Partikelminderung mit kombiniertem SCR- und NH3-Schlupf-Katalysator
US9453443B2 (en) * 2009-03-20 2016-09-27 Basf Corporation Emissions treatment system with lean NOx trap
TWI478767B (zh) * 2009-04-23 2015-04-01 Treibacher Ind Ag 用於使廢氣進行選擇性催化還原反應之催化劑組成物
US8178064B2 (en) * 2009-05-11 2012-05-15 Basf Corporation Treatment of power utilities exhaust
KR20110024599A (ko) * 2009-09-02 2011-03-09 현대자동차주식회사 디젤 엔진 배기가스 후처리 장치
GB2475740B (en) * 2009-11-30 2017-06-07 Johnson Matthey Plc Catalysts for treating transient NOx emissions
EP2518017B1 (en) * 2009-12-22 2019-07-24 Tosoh Corporation Novel metallosilicate and production method thereof
US9347354B2 (en) * 2010-04-14 2016-05-24 Umicore Ag & Co. Kg Reduction-catalyst-coated diesel particle filter having improved characteristics
US20110274607A1 (en) * 2010-05-04 2011-11-10 Technical University Of Denmark Vanadia-supported zeolites for scr of no by ammonia
US20120042631A1 (en) * 2010-08-20 2012-02-23 Gm Global Technology Operations, Inc. Catalyst materials for ammonia oxidation in lean-burn engine exhaust
DE102011012799A1 (de) 2010-09-15 2012-03-15 Umicore Ag & Co. Kg Katalysator zur Entfernung von Stickoxiden aus dem Abgas von Dieselmotoren
US8062601B2 (en) * 2010-10-26 2011-11-22 Ford Global Technologies, Llc Emission SCR NOX aftertreatment system having reduced SO3 generation and improved durability
US8722000B2 (en) * 2011-03-29 2014-05-13 Basf Corporation Multi-component filters for emissions control
CN103842076A (zh) 2011-08-03 2014-06-04 庄信万丰股份有限公司 挤出蜂窝状催化剂
US9999877B2 (en) * 2011-10-05 2018-06-19 Basf Se Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams
GB201200784D0 (en) * 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine including SCR catalyst
GB2510284B (en) 2012-08-17 2016-01-06 Johnson Matthey Plc Zeolite promoted v/ti/w catalysts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255121A2 (en) * 1986-07-29 1988-02-03 Mitsubishi Petrochemical Co., Ltd. Process for removing nitrogen oxides from exhaust gases and catalyst
EP0544282B1 (en) * 1991-11-27 1995-10-25 Babcock-Hitachi Kabushiki Kaisha Catalyst for purifying exhaust gas
EA008338B1 (ru) * 2003-09-27 2007-04-27 Кореа Пауэ Инижиниринг Компани, Инк. Катализатор на основе ванадия, нанесенного на оксид титана, для удаления азота в интервале низких температур и способ удаления оксида азота
RU2370308C1 (ru) * 2005-07-12 2009-10-20 Тойота Дзидося Кабусики Кайся Катализатор очистки выхлопных газов и способ его приготовления
WO2008089957A1 (de) * 2007-01-22 2008-07-31 Süd-Chemie AG Katalysatorzusammensetzung zur reduktion von stickoxiden
RU2406567C1 (ru) * 2007-08-22 2010-12-20 Мицубиси Хеви Индастриз, Лтд. Катализатор для обработки выхлопного газа и система для обработки выхлопного газа

Also Published As

Publication number Publication date
EP2755764A1 (en) 2014-07-23
US20150224486A1 (en) 2015-08-13
RU2018136362A (ru) 2018-12-03
KR102245483B1 (ko) 2021-04-29
GB201406893D0 (en) 2014-05-28
EP2755764B1 (en) 2016-07-27
RU2015109149A (ru) 2016-10-10
RU2670760C2 (ru) 2018-10-25
GB2510284A (en) 2014-07-30
DE112013000477T5 (de) 2014-10-30
BR112015002829B1 (pt) 2020-03-31
KR102143811B1 (ko) 2020-08-12
CN107335425A (zh) 2017-11-10
KR20150044911A (ko) 2015-04-27
CN104582845A (zh) 2015-04-29
US20190299198A1 (en) 2019-10-03
CN107335425B (zh) 2020-12-01
BR112015002829A2 (pt) 2017-08-08
JP6476115B2 (ja) 2019-02-27
GB2510284B (en) 2016-01-06
WO2014027207A1 (en) 2014-02-20
PL2755764T3 (pl) 2017-06-30
CN104582845B (zh) 2018-08-14
KR20200032259A (ko) 2020-03-25
US10252252B2 (en) 2019-04-09
RU2018136362A3 (ru) 2022-03-17
DE112013007779B4 (de) 2023-10-12
DK2755764T3 (en) 2016-11-28
JP2015530921A (ja) 2015-10-29
JP2019048295A (ja) 2019-03-28
EP3088082A1 (en) 2016-11-02
JP6742382B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
RU2670760C9 (ru) ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ
RU2614411C2 (ru) Цеолитный катализатор, содержащий металл
RU2634899C2 (ru) Цеолитные катализаторы, содержащие металлы
EP2785452B1 (en) Catalyst for treating exhaust gas
CN110394188B (zh) 用于处理包含NOx的废气的沸石共混物催化剂
US20160096169A1 (en) Molecular Sieve Catalyst For Treating Exhaust Gas
JP2014506182A5 (ru)
US10807082B2 (en) Zeolite catalyst containing metals
US10226762B1 (en) Alumina binders for SCR catalysts

Legal Events

Date Code Title Description
TH4A Reissue of patent specification