RU2627779C2 - Разрушаемое и приспосабливаемое металлическое уплотнение и способ его изготовления - Google Patents

Разрушаемое и приспосабливаемое металлическое уплотнение и способ его изготовления Download PDF

Info

Publication number
RU2627779C2
RU2627779C2 RU2014149137A RU2014149137A RU2627779C2 RU 2627779 C2 RU2627779 C2 RU 2627779C2 RU 2014149137 A RU2014149137 A RU 2014149137A RU 2014149137 A RU2014149137 A RU 2014149137A RU 2627779 C2 RU2627779 C2 RU 2627779C2
Authority
RU
Russia
Prior art keywords
seal
metal
nanomatrix
sleeve
sealing surface
Prior art date
Application number
RU2014149137A
Other languages
English (en)
Other versions
RU2014149137A (ru
Inventor
Чжиюэ СЮЙ
ИнЦин СЮЙ
Грегори Ли ХЕРН
Беннетт М. Ричард
Original Assignee
Бэйкер Хьюз Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бэйкер Хьюз Инкорпорейтед filed Critical Бэйкер Хьюз Инкорпорейтед
Publication of RU2014149137A publication Critical patent/RU2014149137A/ru
Application granted granted Critical
Publication of RU2627779C2 publication Critical patent/RU2627779C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1204Packers; Plugs permanent; drillable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • E21B33/1212Packers; Plugs characterised by the construction of the sealing or packing means including a metal-to-metal seal element
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/128Packers; Plugs with a member expanded radially by axial pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/134Bridging plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/26Sealings between relatively-moving surfaces with stuffing-boxes for rigid sealing rings
    • F16J15/28Sealings between relatively-moving surfaces with stuffing-boxes for rigid sealing rings with sealing rings made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Lubricants (AREA)

Abstract

Группа изобретений относится к уплотнению и к способу временного уплотнения элемента. Техническим результатом является исключение удаления компонентов или инструментов из ствола скважины. Уплотнение содержит металлический композит. Металлический композит включает в себя сотовую наноматрицу, содержащую металлосодержащий материал наноматрицы, металлическую матрицу, размещенную в сотовой наноматрице, и агент разрушения, размещенный в металлической матрице. Агент разрушения содержит: кобальт, медь, железо, никель, вольфрам или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Уплотнение содержит первую уплотняющую поверхность и вторую уплотняющую поверхность, размещенную противоположно первой уплотняющей поверхности. Металлосодержащий материал наноматрицы, металлическая матрица и агент разрушения выбраны так, что уплотнение выполнено с возможностью образования уплотнения металла к металлу в ответ на приложение сжимающей силы. Уплотнение может быть приготовлено с помощью объединения порошка металлической матрицы, агента разрушения и металлического материала наноматрицы с образованием композиции; уплотнения композиции с образованием уплотненной композиции; спекания уплотненной композиции; и прессования спеченной композиции с образованием уплотнения. 3 н. и 21 з.п. ф-лы, 18 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
[0001] Данная заявка испрашивает приоритет по заявке на патент США №13/466311, поданной 8 мая 2012 г., которая включена в эту заявку путем ссылки.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
[0002] В скважинных сооружениях, включающих в себя нефтяные и газовые скважины, стволы скважин удаления CO2 и т.д. часто используют внутрискважинные компоненты или инструменты, для которых функционально требуется только ограниченный срок службы, значительно меньший срока службы скважины. После выполнения компонентом или инструментом своей функции он должен быть удален или уничтожен для восстановления начальных размеров пути текучей среды для эксплуатации, в том числе добычи углеводородов, улавливания или удаления CO2 и т.д. Уничтожение компонентов или инструментов можно выполнять размалыванием или разбуриванием (высверливанием) компонента или инструмента в стволе скважины, что обычно является трудоемкой и дорогостоящей операцией. Отрасли постоянно требуются новые системы, материалы и способы, которые исключали бы удаление компонентов или инструментов из ствола скважины без таких операций размалывания и разбуривания.
КРАТКОЕ ОПИСАНИЕ
[0003] В данном документе раскрыто уплотнение, содержащее: металлический композит, включающий в себя: сотовую наноматрицу содержащую металлосодержащий материал; металлическую матрицу, размещенную в сотовой наноматрице; и агент разрушения; первую уплотняющую поверхность; и вторую уплотняющую поверхность, размещенную противоположно первой уплотняющей поверхности.
[0004] Дополнительно раскрыт процесс приготовления уплотнения, который содержит объединение порошка металлической матрицы, агента разрушения и металлического материала наноматрицы с образованием композиции; уплотнение композиции с образованием уплотненной композиции; спекание уплотненной композиции; и прессование спеченной композиции с образованием уплотнения.
[0005] Также раскрыт способ временного уплотнения скважинного элемента, содержащий: приложение давления для деформации уплотнения (как указано выше); приспосабливание уплотнения к пространству с образованием временного уплотнения; и контактирование временного уплотнения со скважинной текучей средой для разрушения временного уплотнения.
[0006] В дополнение раскрыт агент разрушения, который содержит металл, жирную кислоту, керамическую частицу или комбинацию, содержащую по меньшей мере одно из вышеупомянутого, размещенного среди регулируемого электролитного материала, при этом агент разрушения изменяет скорость разрушения регулируемого электролитного материала.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0007] Следующие описания не следует считать ограничивающими. На прилагаемых чертежах, одинаковые элементы обозначены одинаковыми позициями.
[0008] На Фиг. 1 показан разрез разрушаемой трубной анкерной системы.
[0009] На Фиг. 2 показано поперечное сечение разрушаемого металлического композита.
[0010] На Фиг. 3 показана микрофотография примерного варианта осуществления разрушаемого металлического композита, раскрытого в данном документе.
[0011] На Фиг. 4 показано поперечное сечение композиции, используемой для изготовления разрушаемого металлического композита, показанного на Фиг. 2.
[0012] На Фиг. 5A показана микрофотография технически чистого металла без сотовой наноматрицы.
[0013] На Фиг. 5B показана микрофотография разрушаемого металлического композита с металлической матрицей и сотовой наноматрицей.
[0014] Фиг. 6 является графиком зависимости убывания массы от времени для различных разрушаемых металлических композитов, которые включают в себя сотовую наноматрицу, указывающим избирательно задаваемые скорости разрушения.
[0015] На Фиг. 7A показана электронная микрофотография поверхности излома прессовки, образованной из порошка технически чистого Mg.
[0016] На Фиг. 7B показана электронная микрофотография поверхности излома, являющегося примером варианта осуществления разрушаемого металлического композита с сотовой наноматрицей, описанного в данном документе.
[0017] На Фиг. 8 показан график зависимости прочности на сжатие металлического композита с сотовой наноматрицей от массового процента составляющей (Al2O3) сотовой наноматрицы.
[0018] На Фиг. 9A показан разрез варианта осуществления разрушаемой трубной анкерной системы в стволе скважины.
[0019] На Фиг. 9B показан разрез системы с Фиг. 9A в рабочем положении.
[0020] На Фиг. 10 показан разрез разрушаемой детали в форме усеченного конуса.
[0021] На Фиг. 11 показан разрез разрушаемого нижнего переводника.
[0022] На Фиг. 12A, 12B и 12C соответственно показаны вид в изометрии, разрез и вид сверху разрушаемой втулки.
[0023] На Фиг. 13A и 13B соответственно показаны вид в изометрии и разрез разрушаемого уплотнения.
[0024] На Фиг. 14 показан разрез другого варианта осуществления разрушаемой трубной анкерной системы.
[0025] На Фиг. 15 показан разрез разрушаемой трубной анкерной системы с Фиг. 14 в рабочем положении.
[0026] На Фиг. 16 показан разрез другого варианта осуществления разрушаемой трубной анкерной системы.
[0027] На Фиг. 17 показан разрез другого варианта осуществления разрушаемого уплотнения с эластомерным опорным кольцом в разрушаемой трубной анкерной системе.
[0028] На Фиг. 18A и 18B соответственно показаны разрез и вид в изометрии другого варианта осуществления разрушаемого уплотнения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0029] Подробное описание одного или более вариантов осуществления раскрытого устройства и способа представлены в данном документе в виде примера и без ограничений описанием и прилагаемыми фигурами.
[0030] Изобретатели обнаружили, что высокопрочную, высокопластичную и при этом полностью разрушаемую трубную анкерную систему можно выполнить из материалов, которые избирательно и регулируемо разрушаются в ответ на контакт с некоторыми скважинными текучими средами или в ответ на измененные условия. Такая разрушаемая система включает в себя компоненты, которые являются избирательно корродирующими и имеют избирательно заданную скорость разрушения и избирательно заданные свойства материала. В дополнение, разрушаемая система имеет компоненты, которые имеют изменяющуюся прочность на сжатие и растяжение, которые включают в себя уплотнение (с образованием, например, приспосабливаемого уплотнения металла к металлу), конус, деформируемую втулку (или клинья) и нижний переводник. При использовании в данном документе "разрушаемый" относится к материалу или компоненту, который является расходуемым, корродирующим, разлагаемым, растворяемым, ослабляемым или удаляемым иначе. Следует понимать, что использование в данном документе термина "разрушать" в любой из его форм (например, "разрушение"), включает в себя указанное значение.
[0031] Вариант осуществления разрушаемой трубной анкерной системы показан на Фиг. 1. Разрушаемая трубная анкерная система 110 включает в себя уплотнение 112, элемент 114 в форме усеченного конуса, втулку 116 (показана в данном документе, как держатель клиньев) и нижний переводник 118. Система 110 выполнена так, что продольное перемещение элемента 114 в форме усеченного конуса относительно втулки 116 и относительно уплотнения 112 вызывает радиальные изменения втулки 116 и уплотнения 112 соответственно. Хотя в этом варианте осуществления радиальные изменения направлены радиально наружу, в альтернативных вариантах осуществления радиальные изменения могут иметь другие направления, например, радиально внутрь. В дополнение, продольный размер D1 и толщину T1 участка стенки уплотнения 112 можно изменять в результате приложения к нему сжимающей силы. Уплотнение 112, элемент 114 в форме усеченного конуса, втулка 116 и нижний переводник 118 (т.е. компоненты системы 110) являются разрушаемыми и содержат металлический композит. Металлический композит включает в себя металлическую матрицу, размещенную в сотовой наноматрице, и агент разрушения.
[0032] В варианте осуществления агент разрушения размещен в металлической матрице. В другом варианте осуществления агент разрушения размещен за пределами металлической матрицы. В еще одном варианте осуществления агент разрушения размещен в металлической матрице, а также за пределами металлической матрицы. Металлический композит также включает в себя сотовую наноматрицу, которая содержит металлосодержащий материал наноматрицы. Агент разрушения может быть размещен в сотовой наноматрице среди металлосодержащего материала наноматрицы. Примерный металлический композит и способ, использованный для изготовления металлического композита, раскрыты в заявках на патенты США № 12/633,682, 12/633,688, 13/220,832, 13/220,822 и 13/358,307, описание каждой из этих патентных заявок полностью включено в данный документ в виде ссылки.
[0033] Металлический композит является, например, порошковой прессовкой, показанной на Фиг. 2. Металлический композит 200 включает в себя сотовую наноматрицу 216, содержащую материал 220 наноматрицы, и металлическую матрицу 214 (например, множество диспергированных частиц), содержащую материал 218 ядра частицы, диспергированный в сотовой наноматрице 216. Материал 218 ядра частицы содержит наноструктурированный материал. Такой металлический композит, имеющий сотовую наноматрицу с металлической матрицей, размещенной в ней, называется регулируемым электролитным материалом.
[0034] Как показано на Фиг. 2 и 4, металлическая матрица 214 может включать в себя любой подходящий металлосодержащий материал 218 ядра частицы, который включает в себя наноструктуру, как описано в данном документе. В примерном варианте осуществления металлическая матрица 214 образована из ядер 14 частиц (Фиг. 4) и может включать в себя такие элементы, как алюминий, железо, магний, марганец, цинк или их комбинацию, как наноструктурированный материал 218 ядра частицы. Конкретнее, в примерном варианте осуществления металлическая матрица 214 и материал 218 ядра частицы могут включают в себя различные сплавы Al или Mg в качестве наноструктурированного материала 218 ядра частицы, включающего в себя различные дисперсионно твердеющие сплавы Al или Mg. В некоторых вариантах осуществления материал 218 ядра частицы включает в себя магний и алюминий, где алюминий присутствует в количестве от примерно 1 массового процента (масс. %) до примерно 15 масс. %, конкретно от 1 масс. % до примерно 10 масс. % и более конкретно от примерно 1 масс. % до примерно 5 масс. % в расчете на массу металлической матрицы, остальную часть массы составляет магний.
[0035] В дополнительном варианте осуществления дисперсионно твердеющие сплавы Al или Mg являются особенно полезными, поскольку они могут упрочнять металлическую матрицу 214 с помощью как наноструктурирования, так и дисперсионного твердения, благодаря введению частиц выделений, как описано в данном документе. Металлическая матрица 214 и материал 218 ядра частицы также могут включать в себя редкоземельный элемент или комбинацию редкоземельных элементов. Примеры редкоземельных элементов включают в себя Sc, Y, La, Ce, Pr, Nd или Er. Можно использовать комбинацию, содержащую по меньшей мере один из вышеупомянутых редкоземельных элементов. Редкоземельный элемент, если имеется, может присутствовать в количестве 5 масс. % или меньше и конкретно примерно 2 масс. % или меньше от массы металлического композита.
[0036] Металлическая матрица 214 и материал 218 ядра частицы также могут включать в себя наноструктурированный материал 215. В примерном варианте осуществления наноструктурированный материал 215 является материалом с размером зерна (например, размер субзерна или кристаллического блока), который меньше чем примерно 200 нанометров (нм), конкретно от примерно 10 нм до примерно 200 нм и более конкретно со средним размером зерна меньше чем примерно 100 нм. Наноструктура металлической матрицы 214 может включать в себя большие угловые границы 227, которые обычно используют для определения размера зерна или малые угловые границы 229, которые могут возникать, как субструктура в конкретном зерне, которые в некоторых случаях используют для определения размера кристаллического блока или их комбинации. Понятно, что сотовая наноматрица 216 и зернистая структура (наноструктурированный материал 215, включающий в себя границы 227 и 229 зерна) металлической матрицы 214 являются отличительными признаками металлического композита 200. В частности, сотовая наноматрица 216 не является частью кристаллического или аморфного участка металлической матрицы 214.
[0037] Агент разрушения включен в состав металлического композита 200 для регулирования скорости разрушения металлического композита 200. Агент разрушения может быть размещен в металлической матрице 214, сотовой наноматрице 216 или их комбинации. Согласно варианту осуществления агент разрушения включает в себя металл, жирную кислоту, керамическую частицу или комбинацию, содержащую по меньшей мере одно из вышеупомянутого, причем агент разрушения размещен среди регулируемого электролитного материала для изменения скорости разрушения регулируемого электролитного материала. В одном варианте осуществления агент разрушения размещен в сотовой наноматрице за пределами металлической матрицы. В неограничивающем варианте осуществления агент разрушения увеличивает скорость разрушения металлического композита 200. В другом варианте осуществления агент разрушения уменьшает скорость разрушения металлического композита 200. Агент разрушения может являться металлом, включающим в себя кобальт, медь, железо, никель, вольфрам, цинк или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. В дополнительном варианте осуществления агент разрушения является жирной кислотой, например, жирной кислотой, имеющей от 6 до 40 атомов. Примеры жирных кислот включают в себя: олеиновую кислоту, стеариновую кислоту, лауриновую кислоту, гидроксистеариновую кислоту, бегеновую кислоту, арахидоновую кислоту, линолевую кислоту, линоленовую кислоту, рицинолевую кислоту, пальмитиновую кислоту, монтановую кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. В еще одном варианте осуществления агент разрушения является керамическими частицами, например, нитрида бора, карбида вольфрама, карбида тантала, карбида титана, карбида ниобия, карбида циркония, карбида бора, карбида гафния, карбида кремния, карбида ниобия бора, нитрида алюминия, нитрида титана, нитрида циркония, нитрида тантала или комбинации, содержащей по меньшей мере одно из вышеупомянутого. В дополнение, керамическая частица может быть одним из керамических материалов, рассмотренных ниже в отношении упрочняющего средства. Такие керамические частицы имеют размер 5 мкм или меньше, конкретно 2 мкм или меньше и более конкретно 1 мкм или меньше. Агент разрушения может присутствовать в эффективном количестве, вызывающем разрушение металлического композита 200 с требуемой скоростью разрушения, конкретно от примерно 0,25 масс. % до примерно 15 масс. %, конкретно от примерно 0,25 масс. % до примерно 10 масс. %, конкретно от примерно 0,25 масс. % до примерно 1 масс. % в расчете на массу металлического композита.
[0038] В примерном варианте осуществления сотовая наноматрица 216 включает в себя алюминий, кобальт, медь, железо, магний, никель, кремний, вольфрам, цинк, их оксид, их нитрид, их карбид, их интерметаллическое соединение, их металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Металлическая матрица может присутствовать в количестве от примерно 50 масс. % до примерно 95 масс. %, конкретно от примерно 60 масс. % до примерно 95 масс. % и более конкретно от примерно 70 масс. % до примерно 95 масс. % в расчете на массу уплотнения. Дополнительно, количество металлосодержащего материала наноматрицы составляет от примерно 10 масс. % до примерно 50 масс. %, конкретно, от примерно 20 масс. % до примерно 50 масс. % и более конкретно от примерно 30 масс. % до примерно 50 масс. %, в расчете на массу уплотнения.
[0039] В другом варианте осуществления металлический композит включает в себя вторую частицу. Как показано в общем на Фиг. 2 и 4, металлический композит 200 может быть образован с использованием металлического порошка 10 с покрытием и дополнительного или второго порошка 30, т.е. оба порошка, 10 и 30, могут иметь по существу одинаковую структуру частиц, не имея идентичных химических соединений. Использование дополнительного порошка 30 обеспечивает металлический композит 200, который также включает в себя множество диспергированных вторых частиц 234, описанных в данном документе, которые диспергированы в сотовой наноматрице 216 и также диспергированы относительно металлической матрицы 214. Таким образом, диспергированные вторые частицы 234 извлекаются из частиц 32 второго порошка, размещенных в порошке 10, 30. В примерном варианте осуществления диспергированные вторые частицы 234 включают в себя Ni, Fe, Cu, Co, W, Al, Zn, Mn, Si, их оксид, их нитрид, их карбид, их интерметаллическое соединение, их металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
[0040] Как также показано на Фиг. 2, металлическая матрица 214 и материал 218 ядра частицы также могут включать в себя частицу 222 добавки. Частица 222 добавки обеспечивает механизм дисперсного упрочнения металлической матрицы 214 и обеспечивает препятствие или служит для ограничения перемещения дислокаций в индивидуальных частицах металлической матрицы 214. В дополнение, частица 222 добавки может быть размещена в сотовой наноматрице 216 для усиления металлического композита 200. Частица 222 добавки может иметь любой подходящий размер и в примерном варианте осуществления может иметь средний размер частицы от примерно 10 нм до примерно 1 микрона и конкретно от примерно 50 нм до примерно 200 нм. Здесь, размер относится к самому большому линейному размеру частицы добавки. Частица 222 добавки может включать в себя частицу любой подходящей формы, включая в себя заделанную частицу 224, частицу 226 упрочняющей фазы или частицу 228 дисперсной фазы. Заделанная частица 224 может включать в себя любую подходящую заделанную частицу, включающую в себя различные твердые частицы. Заделанная частица может включать в себя различные металл, углерод, оксид металла, нитрид металла, карбид металла, интерметаллическое соединение, металлокерамику или их комбинаций. В примерном варианте осуществления твердые частицы могут включать в себя Ni, Fe, Cu, Co, W, Al, Zn, Mn, Si, их оксид, их нитрид, их карбид, их интерметаллическое соединение, их металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Частицы добавки могут присутствовать в количестве от примерно 0,5 масс. % до примерно 25 масс. %, конкретно от примерно 0,5 масс. % до примерно 20 масс. % и более конкретно от примерно 0,5 масс. % до примерно 10 масс. % в расчете на массу металлического композита.
[0041] В металлическом композите 200 металлическая матрица 214 диспергированная во всей сотовой наноматрице 216 может иметь равноосную структуру в по существу непрерывной сотовой наноматрице 216 или может по существу продолжаться вдоль оси так, что индивидуальные частицы металлической матрицы 214,например, имеют сплюснутую или вытянутую форму. В варианте, где металлическая матрица 214 имеет по существу удлиненные частицы, металлическая матрица 214 и сотовая наноматрица 216 могут быть непрерывными или прерывающимися. Размер частиц, которые составляют металлическую матрицу 214, может составлять от примерно 50 нм до примерно 800 мкм, конкретно от примерно 500 нм до примерно 600 мкм и более конкретно от примерно 1 мкм до примерно 500 мкм. Размер частиц может являться монодисперсным или полидисперсным, и распределение размеров частиц может быть унимодальным или бимодальным. За размер здесь принимается самое большое линейное измерение частицы.
[0042] На Фиг. 3 показана микрофотография примерного варианта осуществления металлического композита. Металлический композит 300 имеет металлическую матрицу 214, которая включает в себя частицы, имеющие материал 218 ядра частицы. В дополнение, каждая частица металлической матрицы 214 размещена в сотовой наноматрице 216. Здесь сотовая наноматрица 216 показана как белая сеть, которая по существу окружает частицы компонентов металлической матрицы 214.
[0043] Согласно варианту осуществления металлический композит образован из комбинации, например, порошковых составляющих. Как показано на Фиг. 4, порошок 10 включает в себя частицы 12 порошка, которые имеют ядро 14 частицы с материалом 18 ядра и слой 16 металлосодержащего покрытия с материалом 20 покрытия. Данные составляющие порошка могут быть подобраны и выполнены с возможностью уплотнения и спекания с обеспечением металлического композита 200, который является легковесным (т.е. имеющим относительно низкую плотность), высокопрочным и избирательно и регулируемо удаляемым, например, с помощью разрушения из ствола скважины в ответ на изменение свойства в стволе скважины, являющимся селективно и регулируемо разрушаемыми (например, имеющим кривую скорости разрушения с избирательно заданными свойствами) в надлежащей скважинной текучей среде, включая в себя различные скважинные текучие среды, раскрытые в данном документе.
[0044] Наноструктура может быть образована в ядре 14 частицы, используемом для образования металлической матрицы 214 любым подходящим способом, включающим в себя наноструктуру с наведенной деформацией, как, например, посредством шаровой мельницы может быть обеспечен порошок для обеспечения ядер 14 частиц и более конкретно посредством криоразмола (например, размола на шаровой мельнице при криогенной температуре размалываемой среды или в криогенной текучей среде, такой как жидкий азот) порошок для обеспечения ядер 14 частиц, использованных для образования металлической матрицы 214. Ядра 14 частиц могут быть образованы в виде наноструктурированного материала 215 любым подходящим способом, таким как, например, размол или криоразмол частиц порошка сплава материалов, описанных в данном документе. Ядра 14 частиц могут также быть образованы сплавлением при механическом воздействии порошков технически чистого металла различных составляющих сплава в требуемых количествах. Сплавление при механическом воздействии включает в себя размол на шаровой мельнице, включающий в себя криоразмол порошковых составляющих для механического завертывания и перемешивания составляющих и образования ядер 14 частиц. В дополнение к созданию наноструктуры, как описано выше, размол на шаровой мельнице, включающий в себя криоразмол, может способствовать упрочнению твердого раствора ядра 14 частицы и материала 18 ядра, что в свою очередь может способствовать упрочнению твердого раствора металлической матрицы 214 и материала 218 ядра частицы. Упрочнение твердого раствора может являться результатом возможности механического перемешивания более высокой концентрации внедренных или замещающих атомов растворенных веществ в твердом растворе, чем является возможным согласно фазовому равновесию составляющих конкретного сплава, посредством этого обеспечивающим препятствие или служащим для ограничения перемещения дислокаций в частице, что в свою очередь обеспечивает механизм упрочнения в ядре 14 частицы и металлической матрице 214. Ядро 14 частицы может также быть образовано с наноструктурой (границ зерен 227, 229) способами, включающими в себя конденсацию инертных газов, химическую конденсацию паров, импульсное электронное осаждение, плазменный синтез, кристаллизацию аморфных твердых веществ, электроосаждение и интенсивную пластическую деформацию, например. Наноструктура также может включать в себя высокую плотность дислокаций, например, плотность дислокаций между примерно 1017м-2 и примерно 1018 м-2, которая может иметь величину больше на два-три порядка, чем у аналогичных материалов сплавов, деформированных традиционными способами, например, холодной прокаткой.
[0045] По существу непрерывная сотовая наноматрица 216 (см. Фиг. 3) и материал 220 наноматрицы образованы из слоев 16 металлосодержащих покрытий уплотнением и спеканием множества слоев 16 металлосодержащих покрытий с множеством частиц 12 порошка, например, холодным изостатическим прессованием (ХИП), горячим изостатическим прессованием (ГИП) или динамической ковкой. Химический состав материала 220 наноматрицы может отличаться от таковой материала 20 покрытия вследствие диффузионных эффектов, связанных со спеканием. Металлический композит 200 также включает в себя множество частиц, которые составляют металлическую матрицу 214, которая содержит материал 218 ядра частиц. Металлическая матрица 214 и материал 218 ядра частиц соответствуют и образованы из множества ядер 14 частиц и материала 18 ядра из множества частиц 12 порошка, поскольку слои 16 металлосодержащих покрытий спекаются вместе для образования сотовой наноматрицы 216. Химический состав материала 218 ядра частиц может также отличаться от состава материала 18 ядра вследствие действия диффузионных эффектов, связанных со спеканием.
[0046] При использовании в данном документе термин сотовая наноматрица 216 не подразумевает основную составляющую порошковой прессовки, но скорее относится к составляющей или составляющим, которые меньше либо по массе или по объему. Это является отличием от большинства матричных композитных материалов, где матрица содержит главную составляющую по массе или объему. Использование термина «по существу непрерывная сотовая наноматрица» предназначено для описания экстенсивного, регулярного, непрерывного и взаимосвязанного характера распределения материала 220 наноматрицы в металлическом композите 200. При использовании в данном документе термин "по существу непрерывный" описывает протяженность материала 220 наноматрицы по всему металлическому композиту 200, так что он простирается между и окружает по существу всю металлическую матрицу 214. Термин «по существу непрерывный» используется для указания, что полная непрерывность и регулярный порядок сотовой наноматрицы 220 вокруг индивидуальных частиц металлической матрицы 214 не требуются. Например, дефекты в слое 16 покрытия ядра 14 частицы на некоторых частицах 12 порошка могут обусловить образование мостов ядер 14 частиц во время спекания металлического композита 200, вызывающих локализованные неоднородности, в сотовой наноматрице 216, хотя на других участках порошковой прессовки сотовая наноматрица 216 является по существу непрерывной и демонстрирует структуру, описанную в данном документе. В отличие от этого, в случае по существу удлиненных частиц металлической матрицы 214 (т.е. неравноосных форм), например, образованных экструзией, используется термин "по существу прерывающаяся", указывающий, что неполная непрерывность и разрыв (например, ломка или разделение) наноматрицы вокруг каждой частицы металлической матрицы 214 таким образом могут возникать в заданном направлении экструзии. При использовании в данном документе "сотовый" используется для указания, что наноматрица образует сеть в общем повторяющихся, взаимосвязанных отсеков или сот материала 220 наноматрицы, которые заключают в себе, а также соединяют металлическую матрицу 214. При использовании в данном документе термин "наноматрица" используется для описания размера или масштаба матрицы, в частности толщины матрицы между примыкающими частицами металлической матрицы 214. Слои покрытия из металлосодержащего материала, которые спекаются вместе с образованием наноматрицы, сами являются слоями покрытия наноразмерной толщины. Поскольку сотовая наноматрица 216 в большинстве местоположений (локаций) иных чем пересечение более чем двух частиц металлической матрицы 214 обычно содержит взаимодиффузию и связывание двух слоев покрытия 16 у примыкающих частиц 12 порошка, имеющих наноразмерную толщину, образованная сотовая наноматрица 216 также имеет наноразмерную толщину (например, приблизительно двойную толщину слоя покрытия, как описано в данном документе) и, следовательно, описывается, как наноматрица. Дополнительно использование термина металлическая матрица 214 не подразумевает неосновную составляющую металлического композита 200, но вместо этого относится к основной составляющей или составляющим либо по массе, либо по объему. Использование термина «металлическая матрица» предназначено, чтобы передать прерывающееся и дискретное распределение материала 218 ядра частицы в металлическом композите 200.
[0047] Заделанная частица 224 может быть заделана любым подходящим способом, в том числе, например, размолом на шаровой мельнице или криоразмолом твердых частиц вместе с материалом 18 ядра частиц. Частица 226 упрочняющей фазы может включать в себя любую частицу, которая может выделяться в металлической матрице 214, в том числе частицы 226 упрочняющей фазы в соответствии с фазовыми равновесиями составляющих материалов, в частности металлических сплавов, представляющих интерес и их относительными количествами (например, дисперсионно твердеющий сплав) и, в том числе те, которые могут выделяться вследствие неравновесных условий, которые могут возникать, когда составляющая сплава, внедренная в твердый раствор сплава в количестве, превышающем его предел фазового равновесия, которое, как известно, может возникать во время сплавления при механическом воздействии, нагревается достаточно для активирования механизмов диффузии, обеспечивающих возможность выделения. Частицы 228 дисперсной фазы могут включать в себя наноразмерные частицы или кластеры элементов, получающиеся в результате изготовления ядер 14 частиц, такие как связанные с размолом на шаровой мельнице, включающие в себя составляющие размольного средства (например, шаров) или размольной текучей среды (например, жидкого азота) или поверхностей ядер 14 самих частиц (например, металлических оксидов или нитридов). Частицы 228 дисперсной фазы могут включать в себя такие элементы, как Fe, Ni, Cr, Mn, N, O, C, H и т.п. Частицы 222 добавки могут быть расположены в любом месте в сопряжении с ядрами 14 частиц и металлической матрицей 214. В примерном варианте осуществления частицы 222 добавки могут быть расположены в или на поверхности металлической матрицы 214, как показано на Фиг. 2. В другом примерном варианте осуществления множество частиц 222 добавки расположены на поверхности металлической матрицы 214 и также могут быть расположены в сотовой наноматрице 216, как показано на Фиг. 2.
[0048] Аналогично, диспергированные вторые частицы 234 могут быть образованы из покрытых не покрытых частиц 32 второго порошка, например, диспергированием частиц 32 второго порошка с частицами 12 порошка. В примерном варианте осуществления покрытые частицы 32 второго порошка могут быть покрыты слоем 36 покрытия, одинаковым со слоем 16 покрытия частиц 12 порошка, так что слои 36 покрытия также способствуют созданию наноматрицы 216. В другом примерном варианте осуществления частицы второго порошка 232 могут не иметь покрытия, так что диспергированные вторые 234 частицы заделаны в наноматрице 216. Порошок 10 и дополнительный порошок 30 могут быть смешаны с образованием гомогенной дисперсии диспергированных частиц 214 и диспергированных вторых частиц 234 или с образованием негомогенной дисперсии данных частиц. Диспергированные вторые частицы 234 могут быть образованы из любого подходящего дополнительного порошка 30, отличающегося от порошка 10, по составу ядра 34 частицы или слоя 36 покрытия, или каждого из этого, и могут включать в себя любые материалы, раскрытые в данном документе, для использования в качестве второго порошка 30, отличающегося от порошка 10, выбранного для образования порошковой прессовки 200.
[0049] В варианте осуществления металлический композит может включать в себя упрочняющий агент. Упрочняющий агент увеличивает прочность материала металлического композита. Примерные упрочняющие агенты включают в себя керамику, полимер, металл, наночастицы, металлокерамику и т.п. В частности, упрочняющий агент может являться кремнеземом, стекловолокном, углеродным волокном, углеродной сажей, углеродными нанотрубками, боридами, оксидами, карбидами, нитридами, силицидами, боридами, фосфидами, сульфидами, кобальтом, никелем, железом, вольфрамом, молибденом, танталом, титаном, хромом, ниобием, бором, цирконием, ванадием, кремнием, палладием, гафнием, алюминием, медью или комбинацией, содержащей по меньшей мере одно из вышеупомянутого. Согласно варианту осуществления керамику и металл объединяют для образования металлокерамики, например, карбида вольфрама, нитрида кобальта и т.п. Примерные упрочняющие агенты в частности включают в себя оксид магния, муллит, оксид тория, оксид бериллия, оксид урана, шпинели, оксид циркония, оксид висмута, оксид алюминия, оксид магния, двуокись кремния, титанат бария, кордиерит, нитрид бора, карбид вольфрама, карбид тантала, карбид титана, карбид ниобия, карбид циркония, карбид бора, карбид гафния, карбид кремния, карбид ниобия бора, нитрид алюминия, нитрид титана, нитрид циркония, нитрид тантала, нитрид гафния, нитрид ниобия, нитрид бора, нитрид кремния, борид титана, борид хрома, борид циркония, борид тантала, борид молибдена, борид вольфрама, сульфид церия, сульфид титана, сульфид магния, сульфид циркония или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Не ограничивающие примеры полимеров упрочняющего агента включают в себя полиуретаны, полиимиды, поликарбонаты и т.п.
[0050] В одном варианте осуществления упрочняющий агент является частицей с размером примерно 100 микрон или меньше, конкретно от примерно 10 микрон или меньше и более конкретно 500 нм или меньше. В другом варианте осуществления волоконный упрочняющий агент может быть скомбинирован с упрочняющим агентом в виде частиц. Считается, что введение упрочняющего агента может увеличить прочность и изломостойкость металлического композита. Не вдаваясь в теорию, частицы более тонких размеров (т.е. более мелкие) могут создавать более прочный металлический композит в сравнении с частицами больших размеров. Кроме того, форма упрочняющего агента может варьироваться и включает в себя волокно, сферу, стержень, трубку и т.п. Упрочняющий агент может присутствовать в количестве от 0,01 массового процента (масс. %) до 20 масс. %, конкретно от 0,01 масс. % до 10 масс. % и более конкретно от 0,01 масс. % до 5 масс. %.
[0051] Способ приготовления компонента разрушаемой анкерной системы (например, уплотнения, элемента в форме усеченного конуса, втулки, нижнего переводника и т.п.), содержащего металлический композит, включает в себя объединение порошка металлической матрицы, агента разрушения, металлического материала наноматрицы и, необязательно, упрочняющий агент с образованием композиции; уплотнение композиции с образованием уплотненной композиции; спекание уплотненной композиции; и прессование спеченной композиции с образованием компонента разрушаемой системы. Элементы композиции могут быть перемешаны, размолоты, приготовлены в виде смеси и т.п. для образования порошка 10, показанного на Фиг. 4, для примера. Понятно, что материал металлической наноматрицы является материалом покрытия, размещенным на порошке металлической матрицы, который в результате уплотнения и спекания образует сотовую наноматрицу. Прессовка (прессованная порошковая деталь) может быть образована посредством прессования (т.е. уплотнения) композиции под давлением для образования неспеченной прессовки. Неспеченная прессовка может быть последовательно спрессована под давлением от примерно 15000 фунт/дюйм2 до примерно 100000 фунт/дюйм2, конкретно от примерно 20000 фунт/дюйм2 до примерно 80000 фунт/дюйм2 и более конкретно от примерно 30000 фунт/дюйм2 до примерно 70000 фунт/дюйм2, при температуре от примерно 250°C до примерно 600°C и конкретно от примерно 300°C до примерно 450°C для образования порошковой прессовки. Прессование с образованием порошковой прессовки может включать в себя сжатие в форме. Порошковая прессовка может быть дополнительно обработана на станке для придания формы готового изделия порошковой прессовке. Альтернативно, порошковая прессовка может быть спрессована в форме готового изделия. Станочная обработка может включать в себя резку, распиливание, абляцию, измельчение, торцевание, токарную обработку, сверление и т.п. с использованием, например, мельницы, отрезного станка со столом, токарного станка, фасонно-фрезерного станка, электроэрозионного станка и т.п.
[0052] Металлическая матрица 200 может иметь любую требуемую форму или размер, включающие в себя таковые для болванки, прутка, листа, тороида или другой формы, которая может проходить станочную обработку, образовываться или использоваться иначе для образования готовых изделий, в том числе различных скважинных инструментов и компонентов. Прессование используется для образования компонента разрушаемой анкерной системы (например, уплотнения, элемента в форме усеченного конуса, втулки, нижнего переводника и т.п.), благодаря процессам спекания и прессования, применяемым для образования металлического композита 200 с помощью деформирования частиц 12 порошка, включающих в себя ядра 14 частиц и слои 16 покрытия, чтобы обеспечить максимальную плотность и требуемые макроскопическую форму и размер металлического композита 200, а также его микроструктуру. Строение (например, равноосная или по существу удлиненная форма) индивидуальных частиц металлической матрицы 214 и сотовой наноматрицы 216 слоев частиц получается в результате спекания и деформации частиц 12 порошка при их уплотнении и взаимодиффузии, а также деформации для заполнения пространства между частицами металлической матрицы 214 (Фиг. 2). Могут быть выбраны температуры и давления спекания, чтобы гарантировать, что плотность металлического композита 200 достигает по существу полной теоретической плотности.
[0053] Металлический композит имеет полезные свойства для использования, например, во внутрискважинной окружающей среде. В варианте осуществления компонент разрушаемой анкерной системы, изготовленный из металлического композита имеет начальную форму, при которой он может быть спущен в скважину, и в случае уплотнения и втулки может быть впоследствии деформирован под давлением. Металлический композит является прочным и пластичным с относительным удлинением от примерно 0,1% до примерно 75%, конкретно от примерно 0,1% до примерно 50% и более конкретно от примерно 0,1% до примерно 25% от начального размера компонента разрушаемой анкерной системы. Металлический композит имеет предел текучести от примерно 15 тысяч фунтов на квадратный дюйм (тыс.фунт/дюйм2) до примерно 50 тыс.фунт/дюйм2 и конкретно от примерно 15 тыс.фунт/дюйм2 до примерно 45 тыс.фунт/дюйм2. Прочность на сжатие металлического композита составляет от примерно 30 тыс.фунт/дюйм2 до примерно 100 тыс.фунт/дюйм2 и конкретно от примерно 40 тыс.фунт/дюйм2 до примерно 80 тыс.фунт/дюйм2. Компоненты разрушаемой анкерной системы могут иметь одинаковые или отличающиеся свойства материала, такие как относительное удлинение, прочность на сжатие, прочность на растяжение и т.п.
[0054] В отличие от эластомерных материалов, компоненты разрушаемой анкерной системы по данному документу, которые включают в себя металлический композит, имеют температурный номинал до примерно 1200°F, конкретно до примерно 1000°F и более конкретно примерно 800°F. Разрушаемая трубная анкерная система является временной, поскольку система избирательно и с заданными свойствами разрушается в ответ на контакт со скважинной текучей средой или изменение условий (например, pH, температуры, давления, времени и т.п.). Кроме того, компоненты разрушаемой анкерной системы могут иметь одинаковые или отличающиеся скорости разрушения, а также способность вступать в реакцию со скважинной текучей средой. Примеры скважинных текучих сред включают в себя рассол, неорганическую кислоту, органическую кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Рассол может, например, являться морской водой, добываемой водой, рассолом заполнения или их комбинацией. Свойства рассола могут зависеть от назначения и компонентов рассола. Морская вода, например, содержит многочисленные составляющие, такие как сульфат, бром и следы металлов, кроме типичных содержащих галогениды солей. С другой стороны, добываемая вода может быть водой, извлеченной из производственного коллектора (например, углеводородного коллектора), произведенного под землей. Добываемая вода также называется рассолом из коллектора и часто содержит много компонентов, таких как барий, стронций и тяжелые металлы. В дополнение рассолам природного происхождения (морской воде и добываемой воде) можно синтезировать рассол заполнения из пресной воды с добавлением различных солей, таких как KCl, NaCl, ZnCl2, MgCl2 или CaCl2 для увеличения плотности рассола, например, рассола CaCl2 с плотностью 10,6 фунтов/галлон. Рассолы заполнения обычно обеспечивают гидростатическое давление, оптимизированное для противодействия давлению в коллекторе скважины. Вышеупомянутые рассолы могут быть модифицированы для включения в состав дополнительной соли. В варианте осуществления дополнительная соль, включенная в состав рассола представляет собой NaCl, KCl, NaBr, MgCl2, CaCl2, CaBr2, ZnBr2, NH4Cl, формиат натрия, формиат цезия и т.п. Соль может присутствовать в рассоле в количестве от примерно 0,5 масс. % до примерно 50 масс. %, конкретно от примерно 1 масс. % до примерно 40 масс. % и более конкретно от примерно 1 масс. % до примерно 25 масс. % от массы композиции.
[0055] В другом варианте осуществления скважинная текучая среда является неорганической кислотой, которая может включать хлористоводородную кислоту, азотную кислоту, фосфорную кислоту, серную кислоту, борную кислоту, фтористоводородную кислоту, бромистоводородную кислоту, перхлорную кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. В еще одном варианте осуществления скважинная текучая среда является органической кислотой, которая может включать в себя карбоновую кислоту, сульфоновую кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Примерные карбоновые кислоты включают в себя муравьиную кислоту, уксусную кислоту, монохлоруксусную кислоту, дихлоруксусную кислоту, тримонохлоруксусную кислоту, трифторуксусную кислоту, пропионовую кислоту, масляную кислоту, щавелевую кислоту, бензойную кислоту, терефталевую кислоту (в том числе орто-, мета- и пара- изомеры) и т.п. Примерные сульфоновые кислоты включают в себя алкилсульфоновую кислоту или арилсульфоновую кислоту. Алкилсульфоновые кислоты включают в себя, например, метансульфоновую кислоту. Арилсульфоновые кислоты включают в себя, например, бензолсульфоновую кислоту или толуолсульфоновую кислоту. В одном варианте осуществления алкильная группа может быть разветвленной или неразветвленной и может содержать от одного до примерно 20 атомов углерода и может быть замещенной или незамещенной. Арильная группа может быть алкилзамещенной, т.е. может быть алкиларильной группой или может быть прикрепленной к функциональной группе сульфоновой кислоты через алкиленовую группу (т.е. арилалкильную группу). В варианте осуществления арильная группа может быть замещена гетероатомом. Арильная группа может иметь от примерно 3 углеродных атомов до примерно 20 углеродных атомов и включать в состав полициклическую структуру.
[0056] Скорость разрушения (также называется скоростью растворения) металлического композита составляет от примерно 1 миллиграмма на квадратный сантиметр в час (мг/см2/час) до примерно 10000 мг/см2/час, конкретно от примерно 25 мг/см2/час до примерно 1000 мг/см2/час и более конкретно от примерно 50 мг/см2/час до примерно 500 мг/см2/час. Скорость разрушения меняется в зависимости от композиции и условий технологии, применяемой для образования металлического композита по данному документу.
[0057] Не вдаваясь в теорию, неожиданно высокая скорость разрушения металлического композита по данному документу получается вследствие микроструктуры, обеспеченной металлической матрицей и сотовой наноматрицей. Как рассмотрено выше, такая микроструктура обеспечивается с использованием технологии порошковой металлургии (например, уплотнения и спекания) из порошков с покрытием, при этом покрытие создает сотовую наноматрицу, и частицы порошка создают материал ядра частицы металлической матрицы. Считается, что непосредственная близость сотовой наноматрицы к материалу ядра частицы металлической матрицы в металлическом композите создает гальванические площадки для быстрого и с заданными свойствами разрушения металлической матрицы. Такие электролитические площадки отсутствуют в монометаллах и сплавах, которые не имеют сотовой наноматрицы. Для иллюстрации на Фиг. 5A показана прессовка 50, образованная из магниевого порошка. Хотя прессовка 50 демонстрирует частицы 52, окруженные границами 54 частиц, границы частиц составляют физические границы между по существу идентичным материалом (частицы 52). Вместе с тем, на Фиг. 5B показан примерный вариант осуществления композитного металла 56 (порошковая прессовка), который включает в себя металлическую матрицу 58, имеющую материал 60 ядра частицы, размещенный в сотовой наноматрице 62. Композитный металл 56 образован из покрытых оксидом алюминия магниевых частиц, где при обработке по технологии порошковой металлургии покрытие из оксида алюминия создает сотовую наноматрицу 62, и магний создает металлическую матрицу 58, имеющую материал 60 ядра частицы (магний). Сотовая наноматрица 62 является не просто физической границей, как граница 54 частиц на Фиг. 5A, но является также химической границей, установленной между соседними материалами 60 ядер частиц металлической матрицы 58. При том, что частицы 52 и граница 54 частиц в прессовке 50 (Фиг. 5A) не имеют гальванических площадок, металлическая матрица 58, имеющая материал 60 ядра частицы, устанавливает множество гальванических площадок в соединении с сотовой наноматрицей 62. Реакционная способность гальванических площадок зависит от соединений, использованных в металлической матрице 58 и сотовой наноматрице 62, которые получены в результате обработки в условиях, использованных для металлической матрицы и микроструктуры сотовой наноматрицы металлического композита.
[0058] Кроме того, микроструктура металлических композитов по данному документу является регулируемой посредством выбора условий обработки по технологии порошковой металлургии и химических материалов, использованных в порошках и покрытиях. При этом скорость разрушения избирательно задается, как проиллюстрировано для металлических композитов различных составов на Фиг. 6, где показан график зависимости убывания массы от времени для различных металлических композитов, содержащих сотовую наноматрицу. В частности, на Фиг. 6 показаны кривые скорости разрушения для четырех разных металлических композитов (металлического композита A 80, металлического композита B 82 металлического композита C 84 и металлического композита D 86). Наклон каждого сегмента каждой кривой (разделены черными точками на Фиг. 6) предоставляет скорость разрушения для конкретных сегментов кривой. Металлический композит A 80 имеет две неодинаковые скорости (802, 806) разрушения. Металлический композит B 82 имеет три неодинаковые скорости (808, 812, 816) разрушения. Металлический композит C 84 имеет две неодинаковые скорости (818, 822) разрушения и металлический композит D 86 имеет четыре неодинаковые скорости (824, 828, 832 и 836) разрушения. В моменты времени, представленные точками 804, 810, 814, 820, 826, 830 и 834, скорость разрушения металлического композита (80, 82, 84, 86) изменяется вследствие изменения условия (например, pH, температуры, времени, давления, как рассмотрено выше). Скорость может увеличиваться (например, от скорости 818 к скорости 822) или уменьшаться (например, от скорости 802 к 806) вдоль одной кривой разрушения. Кроме того, кривая скорости разрушения может иметь больше двух скоростей, больше трех скоростей, больше четырех скоростей и т.д., что зависит от микроструктуры и компонентов металлического композита. Следовательно, кривая скорости разрушения является избирательно задаваемой и отличается от кривой для чистых металлических сплавов и технически чистых металлов, не имеющих микроструктуры (т.е., металлической матрицы и сотовой наноматрицы) металлических композитов, описанных в данном документе.
[0059] Микроструктура металлического композита не только управляет поведением металлического композита в отношении скорости разрушения, но и влияет на прочность металлического композита. Как следствие, металлические композиты по данному документу также имеют избирательно задаваемый предел текучести материала (и другие свойства материала), где предел текучести материала меняется вследствие условий обработки и материалов, используемых для получения металлического композита. В качестве иллюстрации, на Фиг. 7A показана электронная микрофотография поверхности излома прессовки, образованной из технически чистого порошка Mg, а на Фиг. 7B показана электронная микрофотография поверхности излома примерного варианта металлического композита с сотовой наноматрицей, описанной в данном документе. Микроструктурное строение по существу непрерывной сотовой наноматрицы, которое можно выбирать для обеспечения материала упрочняющей фазы, с металлической матрицей (с материалом ядра частицы), придает металлическим композитам по данному документу улучшенные механические свойства, включая прочность на сжатие и прочность на срез, поскольку получающимся в результате строением сотовой наноматрицы/металлической матрицы можно манипулировать для обеспечения упрочнения через процессы, которые родственны традиционным механизмам упрочнения, таким как уменьшение размера зерна, упрочнение при образовании твердого раствора замещения за счет использования примесных атомов, выделение вторичных фаз или упрочнение при старении и механическое/деформационное упрочнение. Структура сотовой наноматрицы/металлической матрицы стремится ограничить перемещение дислокаций благодаря многочисленным поверхностям раздела частиц наноматрицы, а также поверхностям раздела между дискретными слоями в материале сотовой наноматрицы, как описано в данном документе. Это продемонстрировано на примере поведения при разрушении данных материалов, как показано на Фиг. 7A и 7B. На Фиг. 7A прессовка выполнена с использованием не имеющего покрытия технически чистого порошка Mg и подвергнута сдвигающему напряжению, достаточному, чтобы вызвать разрушение, продемонстрировавшее межзеренный излом. В отличие от этого, на Фиг. 7B, металлический композит, изготовленный с использованием частиц порошка с ядрами из технически чистого Mg для образования металлической матрицы и металлосодержащих слоев покрытий, который включает в себя Al для образования сотовой наноматрицы и подвергается сдвигающему напряжению, достаточному, чтобы вызвать разрушение, продемонстрировавшее внутризеренный (транскристаллитный) излом и существенно более высокое разрушающе напряжение, как описано в данном документе. Поскольку данные материалы имеют высокие прочностные характеристики, материал ядра и материал покрытия можно выбрать, используя материалы низкой плотности или другие материалы низкой плотности, такие как легкие металлы, керамика, стекла или углерод, которые в ином случае не обеспечивают нужных прочностных характеристик для использования в требуемых применениях, в том числе скважинных инструментах и компонентах.
[0060] Для дополнительной иллюстрации избирательно задаваемых свойств материала металлических композитов, имеющих сотовую наноматрицу, на Фиг. 8 показан график зависимости прочности на сжатие металлического композита с сотовой наноматрицей от массового процента составляющей (Al2O3) сотовой наноматрицы. На Фиг. 8 ясно показан эффект изменения массового процента (масс. %), т.е. толщины алюминиевого покрытия на прочность на сжатие при комнатной температуре металлического композита с сотовой наноматрицей, образованной из частиц порошка с покрытием, которые включают в себя многослойное (Al/Al2O3/Al) металлосодержащее покрытие на ядрах частиц из технически чистого Mg. В данном примере оптимальная прочность достигнута при 4 масс. % оксида алюминия, что представляет увеличение на 21% в сравнении с 0 масс. % оксида алюминия.
[0061] Таким образом, металлические композиты по данному документу могут быть выполнены с возможностью обеспечения в широком диапазоне действия избирательной и регулируемой коррозии или поведения разрушения от весьма низких скоростей коррозии до чрезвычайно высоких скоростей коррозии, в частности скоростей коррозии как более низких, так и более высоких, чем таковые у порошковых прессовок, не имеющих в составе сотовой наноматрицы, такой как прессовка, образованная из технически чистого порошка Mg теми же методами уплотнения и спекания, в сравнении с таковой, включающей в себя диспергированные частицы технически чистого Mg в различных сотовых наноматрицах, описанных в данном документе. Данные металлические композиты 200 могут также быть выполнены с возможностью обеспечения существенно улучшенных свойств по сравнению с прессовками, образованными из частиц технически чистого металла (например, технически чистого Mg) которые не включают в себя наноразмерные покрытия, описанные в данном документе. Кроме того, металлические сплавы (образованные, например, отливкой из расплава или образованные по технологии порошковой металлургии) без сотовой наноматрицы также не имеют материала с избирательно задаваемыми свойствами и химическими свойствами, как металлические композиты по данному документу.
[0062] Как упомянуто выше, металлический композит используется для производства изделий, которые могут быть использованы, как инструменты или оснастка, например, во внутрискважинной окружающей среде. В конкретном варианте осуществления изделие является уплотнением, элементом в форме усеченного конуса, втулкой или нижним переводником. В другом варианте осуществления комбинации изделий используются вместе, как разрушаемая трубная анкерная система.
[0063] На Фиг. 9A и 9B проиллюстрирован позицией 510 вариант осуществления разрушаемой трубной анкерной системы, раскрытой в данном документе. Уплотняющая система 510 включает в себя элемент в 514 в форме усеченного конуса (также называется конусом и индивидуально показан на Фиг. 10), имеющий первую часть 516 в форме усеченного конуса и вторую часть 520 в форме усеченного конуса, которые сужаются в противоположных продольных направлениях друг от друга. Нижний переводник 570 (отдельно показан на Фиг. 11) размещается на конце разрушаемой системы 510. Втулка 524 (отдельно показана на Фиг. 12) является радиально расширяющейся в ответ на продольное перемещение в отношении первой части 516 в форме усеченного конуса. Аналогично, уплотнение 528 (отдельно показано на Фиг. 13A и 13B) является радиально расширяющимся в ответ на продольное перемещение в отношении второй части 520 в форме усеченного конуса. Одним способом перемещения втулки 524 и уплотнения 528 относительно частей 516, 520 в форме усеченного конуса является продольное сжатие всей компоновки установочным инструментом 558. Уплотнение 528 включает в себя гнездо 532 с поверхностью 536, которая сужается в данном варианте осуществления и открыто и готово принимать пробку 578, которая может уплотняюще взаимодействовать с поверхностью 536 уплотнения 528.
[0064] Гнездо 532 уплотнения 528 также включает в себя муфту 544, которая устанавливается между уплотнением 528 и второй частью 520 в форме усеченного конуса. Муфта 544 имеет стенку 548, толщина которой сужается вследствие обращенной радиально внутрь поверхности 552 с конфигурацией усеченного конуса на ней. Переменная толщина стенки 548 позволяет на более тонких участках более легкую деформацию, чем на более толстых участках. Это может являться предпочтительным по меньшей мере по двум причинам. Первое, участок 549 более тонкой стенки может быть деформирован, когда муфта 544 перемещается относительно второй части 520 в форме усеченного конуса для радиального расширения уплотнения 528 для уплотняющего взаимодействия с конструкцией 540. Второе, участок 550 более толстой стенки должен сопротивляться деформации вследствие перепада давления на нем, который создается при росте давления на пробку (например, пробку 578), установленную в гнездо 532, например во время операций обработки. Угол сужения поверхности 552 с конфигурацией усеченного конуса может быть выбран совпадающим с углом сужения второй части 520 в форме усеченного конуса, тем самым позволяя второй части 520 в форме усеченного конуса обеспечивать радиальную поддержку муфты 544 по меньшей мере в зонах, где они находятся в контакте друг с другом.
[0065] Разрушаемая трубная анкерная система 510 выполнена с возможностью установки в рабочее положение (т.е., анкер) и уплотнения в конструкции 540, такой как хвостовик, обсадная колонна или обсаженный или необсаженный ствол скважины в подземном пласте, например, которые применяются в добыче углеводородного сырья и удалении двуокиси углерода. Уплотнение и заанкеривание в конструкции 540 позволяет увеличение давления на пробку 578, установленную там, для обработки подземного пласта, как осуществляется во время, например, гидроразрыва и кислотной обработки. В дополнение, гнездо 532 устанавливается в уплотнении 528 так, что давление, приложенное к пробке, установленной в гнездо 532, поджимает уплотнение 528 к втулке 524, чтобы посредством этого увеличить уплотняющее взаимодействие уплотнения 528 с конструкцией 540 и элементом в 514 в форме усеченного конуса, также как увеличение заанкеривающего взаимодействия втулки 524 с конструкцией 540.
[0066] Уплотняющая система 510 может быть выполнена так, что втулка 524 заанкеривается (позиционно фиксируется) в конструкции 540 перед уплотняющим взаимодействием уплотнения 528 с конструкцией 540 или так, что уплотнение 528 уплотняюще взаимодействует с конструкцией 540 до заанкеривания втулки 524 в конструкции 540. Регулирование того, что из уплотнения 528 или втулки 524 первым взаимодействует с конструкцией 540 может быть выбрано на основе соотношений свойств материала (например, относительной прочности на сжатие) или пространственных соотношений между компонентами, участвующими в установке в рабочее уплотнения 528 по сравнению с компонентами, участвующими в установке в рабочее положение втулки 524. Вне зависимости от того, взаимодействует ли втулка 524 или уплотнение 528 с конструкцией 540, первое может быть установлено в рабочее положение в ответ на направления (движения) частей установочного инструмента, который устанавливает разрушаемую трубную анкерную систему 510. Повреждение уплотнения 528 может быть минимизировано посредством уменьшения или исключения относительного перемещения между уплотнением 528 и конструкцией 540 после взаимодействия уплотнения 528 с конструкцией 540. В этом варианте осуществления эта цель может достигаться при наличии взаимодействия уплотнения 528 с конструкцией 540 до взаимодействия втулки 524 с конструкцией 540.
[0067] Поверхность 536 гнезда 532 устанавливается продольно выше по потоку (определяется потоком текучей среды, который поджимает пробку в гнездо 532) от втулки 524. В дополнение, гнездо 536 уплотнения может быть установлено продольно выше по потоку от муфты 544 уплотнения 528. Это относительное положение позволяет силам, произведенным давлением на пробку, посаженную на посадочное место 536, дополнительно поджимать уплотнение 528 в уплотняющем взаимодействии с конструкцией
[0068] Участок муфты 544, который деформируется, приспосабливается ко второй части 520 в форме усеченного конуса в достаточной мере для радиальной поддержки с помощью этого, вне зависимости от совпадения или не совпадения углов сужения. Вторая часть 520 в форме усеченного конуса может иметь углы сужения от примерно 1° до примерно 30°, конкретно от примерно 2° до примерно 20° для обеспечения радиального расширения муфты 544 и предоставления возможности поддержания силами трения между муфтой 544 и второй частью 520 в форме усеченного конуса их относительного положения после снятия продольных сил, вызвавших их относительное перемещение. Первая часть 516 в форме усеченного конуса может также иметь угол сужения от примерно 10° до примерно 30°, конкретно от примерно 14° до примерно 20° по тем же причинам, что и вторая часть 520 в форме усеченного конуса. Любая или обе из поверхности 552 в форме усеченного конуса и второй части 520 в форме усеченного конуса могут включать в себя более чем один угол сужения, как показано в данном документе на второй части 520 в форме усеченного конуса где нос 556 имеет больший угол сужения, чем поверхность 520 имеет дальше от носа 556. Наличие нескольких углов сужения может обеспечивать операторам улучшенное регулирование величины радиального расширения муфты 544 (и, следовательно, уплотнения 528) на единицу продольного перемещения между муфтой 544 и элементом 514 в форме усеченного конуса. Углы сужения в дополнение к другим переменным обеспечивают дополнительное регулирование продольных сил, требуемых для перемещения муфты 544 относительно элемента 514 в форме усеченного конуса. Такое регулирование может давать возможность разрушаемой трубной анкерной системе 510 для расширения муфты 544 уплотнения 528 для установки уплотнения 528 до расширения и установки втулки 224.
[0069] В варианте осуществления установочный инструмент 558 размещен вдоль длины системы 510 от нижнего переводника 570 до уплотнения 528. Установочный инструмент 558 может создавать нагрузки, требуемые, чтобы вызвать перемещение элемента 514 в форме усеченного конуса относительно втулки 524. Установочный инструмент 558 может иметь шпиндель 560 со стопором 562, прикрепленным на одном конце 564 посредством повреждающихся при заданном усилии элементов 566, например, множеством срезных винтов. Стопор 562 размещается в контакте с нижним переводником 570. Плита 568, размещенная с возможностью контакта с уплотнением 528, направляемо перемещающаяся вдоль шпинделя 560 (средством, не показанным в данном документе) в направлении к стопору 562 на нижнем переводнике 570, может продольно поджимать элемент 514 в форме усеченного конуса к втулке 524. Нагрузки, которые приходят к выходу из строя повреждающегося при заданном усилии элемента 566, могут быть установлены возникающими только после радиального изменения втулки 524 на выбранную величину элементом 514 в форме усеченного конуса. После повреждения повреждающегося при заданном усилии элемента 566 стопор 562 может отделяться от шпинделя 560, при этом обеспечивая извлечение на поверхность шпинделя 560 и плиты 568, например.
[0070] Согласно варианту осуществления поверхность 572 втулки 524 включает в себя выступы 574, которые могут называться зубьями, выполненные с возможностью взаимодействовать с врезанием со стенкой 576 конструкции 540, в которой применяется разрушаемая система 510, когда поверхность 572 находится в радиально измененной (т.е., расширенной) конфигурации. Это взаимодействие с врезанием служит для заанкеривания разрушаемой системы 510 в конструкции 540 для предотвращения относительного перемещения между ними. Хотя конструкция 540, раскрытая в данном варианте осуществления является трубным изделием, таким как хвостовик или обсадная колонна в стволе скважины, она может представлять собой необсаженный участок ствола скважины в подземном пласте, например.
[0071] На Фиг. 9B показана разрушаемая система 510 после удаления установочного инструмента 558 из конструкции 540 после установки в рабочее положение разрушаемой системы 510. Здесь, выступы 574 втулки 524 взаимодействуют с врезанием со стенкой 576 конструкции 540 для заанкеривания разрушаемой системы 510 к ней. В дополнение, уплотнение 528 радиально расширено для контакта со стенкой 576 конструкции 540 на наружной поверхности уплотнения 528 вследствие сжатия такового установочным инструментом 558. Уплотнение 528 деформируется так, что длина уплотнения 528 увеличивается с уменьшением толщины 548 во время сжатия уплотнения 528 между элементом 514 в форме усеченного конуса и стенкой 576 конструкции 540. Таким способом, уплотнение 528 образует уплотнение металл к металлу на элементе 514 в форме усеченного конуса и уплотнение металл к металлу на стенке 576. Альтернативно, уплотнение 528 может деформироваться, чтобы заполнить элементы рельефа стенки 576, такие как пустоты, выемки, выступы и т.п. Аналогично, пластичность и прочность на растяжение уплотнения 528 обеспечивает деформацию уплотнения 528, чтобы заполнять элементы рельефа элемента 514 в форме усеченного конуса.
[0072] После установки в рабочее положение разрушаемой системы 510 с помощью выступов 574 втулки 514, пробка 578 может быть установлена на поверхности 536 гнезда 532. Когда пробка 578 уплотняюще взаимодействует с гнездом 536, давление выше по потоку от нее может увеличиваться для выполнения работы, такой как гидроразрыв пласта или приведение в действие скважинного инструмента, например, применяемого в добыче углеводородного сырья.
[0073] В варианте осуществления показанном на Фиг. 9B, пробка 578, например, шар, взаимодействует с гнездом 532 уплотнения 528. Прикладывается давление, например, гидравлически, к пробке 578 для деформации муфты 544 уплотнения 528. Деформация муфты 544 вызывает удлинение материала 548 стенки и уплотняющее взаимодействие с конструкцией 540 (например, обсадной колонной ствола скважины) с образованием уплотнения металла к металлу с первой частью 516 в форме усеченного конуса элемента 514 в форме усеченного конуса и образования другого уплотнения металла к металлу с конструкцией 576. Здесь пластичность металлического композита дает возможность, чтобы уплотнение 528 занимало пространство между конструкцией 540 и элементом в 514 в форме усеченного конуса. В это время может быть выполнена внутрискважинная операцию и тогда пробка 578 удаляется после операции. Удаление пробки 578 из гнезда 532 может происходить при создании перепада давления на пробке 578, так что пробка 578 выбивается из гнезда 532 и перемещается от уплотнения 528 и элемента 514 в форме усеченного конуса. После этого, любое из уплотнения 528, элемента 514 в форме усеченного конуса, втулки 524 или нижнего переводника 570 может быть разрушено при контакте со скважинной текучей средой. Альтернативно, перед перемещением пробки 578 из гнезда 532, скважинная текучая среда может контактировать и разрушать уплотнение 528, а пробка 578 затем может быть перемещена из любого из оставшихся компонентов разрушаемой системы 510. Разрушение уплотнения 528, элемента 514 в форме усеченного конуса, втулки 524 или нижнего переводника 570 является предпочтительным по меньшей мере частично, поскольку путь потока ствола скважины восстанавливается без механического перемещения компонентов разрушаемой системы 510 (например, разбуриванием или размалыванием) или промывки с удалением отходов из ствола скважины. Понятно, что скорости разрушения компонентов разрушаемой системы 510 являются независимо и избирательными заданными, как рассмотрено выше, и что уплотнение 528, элемент 514 в форме усеченного конуса, втулка 524 или нижний переводник 570 имеют независимо и избирательно заданные свойства материала, такие как предел текучести и прочность на сжатие.
[0074] Согласно другому варианту осуществления разрушаемая трубная анкерная система 510 выполнена с возможностью оставлять сквозной канал 580 с внутренним радиальным размером 582 и наружным радиальным размером 584, определяемым самым большим радиальным размером разрушаемой системы 510 при установке в рабочее положение в конструкции 540. В варианте осуществления внутренний радиальный размер 582 может быть достаточно большим для прохода шпинделя 560 установочного инструмента 558 без зазора через систему 510. Стопор 562 установочного инструмента 558 может оставаться в конструкции 540 после установки разрушаемой системы 510 и удаления шпинделя 560. Стопор 562 может быть вытащен из конструкции 540 после разрушения системы 510 по меньшей мере в точке, где стопор 562 может пройти через внутренний радиальный размер 582. Таким образом, компонент разрушаемой системы 510 может быть по существу твердым. При включении сквозного канала 580 в состав разрушаемой системы 510 можно осуществлять циркуляцию текучей среды через разрушаемую систему 510 в направлении от точки ниже или выше по потоку в конструкции 540, чтобы вызвать разрушения компонента (например, втулки).
[0075] В другом варианте осуществления разрушаемая трубная анкерная система 510 выполнена с большим внутренним радиальным размером 582, который больше относительно наружного радиального размера 584. Согласно одному варианту осуществления внутренний радиальный размер 582 составляет больше чем 50% наружного радиального размера 584, конкретно больше 60% и более конкретно больше 70%.
[0076] Уплотнение, элемент в форме усеченного конуса, втулка и нижний переводник могут иметь предпочтительные свойства для применения, например, во внутрискважинной окружающей среде, совместно или раздельно. Данные компоненты являются разрушаемыми и могут являться частью полностью разрушаемой анкерной системы по данному документу. Дополнительно, компоненты имеют механические и химические свойства металлического композита, описанного в данном документе. Компоненты, таким образом, предпочтительно являются избирательно и с заданными свойствами разрушаемыми в ответ на контакт с текучей среды или изменение условия (например, pH, температуры, давления, времени и т.п.). Примерные текучие среды включают в себя рассол, неорганическую кислоту, органическую кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
[0077] Разрез варианта осуществления элемента в форме усеченного конуса показан на Фиг. 10. Как описано выше, элемент 514 в форме усеченного конуса имеет первую часть 516 в форме усеченного конуса, вторую часть 520 в форме усеченного конуса и нос 556. Угол сужения элемента 514 в форме усеченного конуса может меняться вдоль наружной поверхности 584, так что элемент 514 в форме усеченного конуса имеет различные формы сечения, включая в себя показанную форму из двух усеченных конусов. Толщина 586 стенки при этом может меняться вдоль длины элемента 514 в форме усеченного конуса, и внутренний диаметр элемента 514 в форме усеченного конуса может быть выбран с учетом конкретного варианта применения. Элемент 514 в форме усеченного конуса может быть использован в различных вариантах применения, например, в разрушаемой трубной анкерной системе по данному документу, а также в любой ситуации, в которой полезна прочная или разрушаемая деталь в форме усеченного конуса. Примерные варианты применения включают в себя подшипник, конусный штуцер, шпиндель задвижки, кольцевое уплотнение и т.п.
[0078] Разрез нижнего переводника показан на Фиг. 11. Нижний переводник 700 имеет первый конец 702, второй конец 704, необязательную резьбу 706, необязательные сквозные отверстия 708, внутренний диаметр 710 и наружный диаметр 712. В варианте осуществления нижний переводник 700 является концевой частью инструмента (например, разрушаемой системы 510). В другом варианте осуществления нижний переводник 700 размещается на конце колонны. В одном варианте осуществления нижний переводник 700 применяется для прикрепления инструментов к колонне. Альтернативно, нижний переводник 700 может быть использован между инструментами или колоннами и может быть частью звена или соединения. Нижний переводник 700 может быть использован с колонной и изделием, например, мостовой пробкой, пробкой гидроразрыва, гидравлическим забойным двигателем, пакером, скважинным отклонителем и т.п. В одном не ограничивающем варианте осуществления первый конец 702 обеспечивает согласующее устройство, например, с элементом 514 в форме усеченного конуса и втулкой 524. Второй конец 704 взаимодействует со стопором 562 установочного инструмента 558. Резьба 706, когда присутствует, может быть использована для скрепления нижнего переводника 700 с изделием. В варианте осуществления элемент 514 в форме усеченного конуса имеет участок резьбы, которая состыковывается с резьбой 706. В некоторых вариантах осуществления резьба 706 отсутствует, и отверстие внутреннего диаметра 710 может являться прямым каналом или может иметь участки, которые сужаются. Сквозные отверстия 708 могут передавать текучую среду, например, рассол, для разрушения нижнего переводника 700 или других компонентов разрушаемой системы 510. Сквозные отверстия также могут служить точками прикрепления повреждающегося при заданном усилии элемента 566, используемого в соединении с установочным инструментом 558, или аналогичного устройства. Предполагается, что нижний переводник 700 может иметь другую форму сечения, отличающуюся от показанной на Фиг. 11. Примерные формы включают в себя конус, эллипсоид, тороид, сферу, цилиндр их усеченные формы, асимметричные формы, включающие в себя комбинацию из вышеупомянутого и т.п. Дополнительно, нижний переводник 700 может являться твердой деталью или может иметь внутренний диаметр, составляющий по меньшей мере 10% от наружного диаметра, конкретно по меньшей мере 50% и более конкретно по меньшей мере 70%.
[0079] Втулка показана в изометрии, в разрезе и на виде сверху, соответственно на Фиг. 12A, 12B и 12C. Втулка 524 включает в себя наружную поверхность 572, выступы 574, размещенные на наружной поверхности 572, и внутреннюю поверхность 571. Втулка 524 действует, как держатель клиньев с выступами 574, наподобие клиньям, которые взаимодействуют с врезанием с поверхностью, такой как стенка обсадной колонны или необсаженного ствола, когда втулка 524 радиально расширяется в ответ на взаимодействие первого участка 573 внутренней поверхности 571 со стыкуемой поверхностью (например, первой частью 516 в форме усеченного конуса Фиг. 10). Выступы 574 могут окружать по периметру всю втулку 524. Альтернативно, выступы 574 могут быть разнесены друг от друга либо симметрично или асимметрично, как показано на виде сверху на Фиг. 12C. Форма втулки 524 не ограничивается той, что показана на Фиг. 12. Втулка в дополнение к применению в качестве держателя клиньев в разрушаемой трубной анкерной системе, показанной на Фиг. 9, может быть использована для установки многочисленных инструментов, включающих в себя пакер, мостовую пробку или пробку гидроразрыва, или может быть размещена в любой окружающей среде, где предупреждение проскальзывания изделия может быть достигнуто посредством взаимодействия выступов втулки со стыкуемой поверхностью.
[0080] На Фиг. 13A и 13B показано уплотнение 400, включающее в себя внутреннюю уплотняющую поверхность 402, наружную уплотняющую поверхность 404, гнездо 406 и поверхность 408 гнезда 406. Поверхность 408 выполнена (например, приданием формы) с возможностью принимать элемент (например, пробку) для обеспечения усилия на уплотнение 400 для деформации уплотнения так, что внутренняя уплотняющая поверхность 402 и наружная уплотняющая поверхность 404, соответственно, образуют уплотнения металла к металлу со стыкуемыми поверхностями (не показано на Фиг. 13A и 13B). Альтернативно, сжимающая сила прикладывается к уплотнению 400 элементом в форме усеченного конуса и установочным инструментом, размещенными на противоположных концах уплотнения 400 как на Фиг. 9A. В варианте осуществления уплотнение 400 является полезным во внутрискважинной окружающей среде, как приспосабливаемое, деформируемое, высокопластичное и разрушаемое уплотнение. В варианте осуществления уплотнение 400 является мостовой пробкой, прокладкой, заслонкой и т.п.
[0081] В дополнение к исполнению избирательно корродирующим, уплотнение по данному документу деформируется на месте работы, приспосабливаясь к пространству, в котором оно размещается, в ответ на приложенное установочное давление, которое является давлением, достаточно большим для радиального расширения уплотнения или уменьшения толщины стенки уплотнения при увеличении длины уплотнения. В отличие от многих уплотнений, например, эластомерных уплотнений, уплотнение по данному документу изготавливается в форме, которая соответствует стыкуемой поверхности, подлежащей уплотнению, например, обсадной колонне или форме усеченного конуса скважинного инструмента. В варианте осуществления уплотнение является временным уплотнением и имеет начальную форму, которая может быть спущена в скважину и впоследствии деформирована под давлением с образованием уплотнения металла к металлу, которое деформируется к поверхностям, с которыми контактирует уплотнение, и занимает пространства (например, пустоты) в стыкуемой поверхности. Для достижения уплотняющих свойств уплотнение имеет относительное удлинение от примерно 10% до примерно 75%, конкретно от примерно 15% до примерно 50% и более конкретно от примерно 15% до примерно 25% от начального размера уплотнения. Уплотнение имеет предел текучести от примерно 15 тысяч фунтов на квадратный дюйм (тыс.фунт/дюйм2) до примерно 50 тыс.фунт/дюйм2 и конкретно от примерно 15 тыс.фунт/дюйм2 до примерно 45 тыс.фунт/дюйм2. Прочность на сжатие уплотнения составляет от примерно 30 тыс.фунт/дюйм2 до примерно 100 тыс.фунт/дюйм2 и конкретно от примерно 40 тыс.фунт/дюйм2 до примерно 80 тыс.фунт/дюйм2. Для деформации уплотнения давление до примерно 10000 фунт/дюйм2 и конкретно примерно 9000 фунт/дюйм2 может быть приложено к уплотнению.
[0082] В отличие от эластомерных уплотнений уплотнение по данному документу, которое включает в себя металлический композит, имеет температурный номинал до примерно 1200°F, конкретно до примерно 1000°F и более конкретно до примерно 800°F. Уплотнение является временным, поскольку уплотнение является избирательно и с заданными свойствами разрушаемым в ответ на контакт со скважинной текучей средой или изменение условий (например, pH, температуры, давления, времени и т.п). Примерные скважинные текучие среды включают в себя рассол, неорганическую кислоту, органическую кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
[0083] Поскольку уплотнение работает совместно с другими компонентами, например, элементом в форме усеченного конуса, втулкой или нижним переводником, например, в разрушаемой трубной анкерной системе по данному документу, свойства каждого компонента выбираются для соответствующего материала с избирательно заданными механическими и химическими свойствами. Данные свойства являются характеристикой металлического композита и условий обработки для образования металлического композита, который применяется для производства таких изделий, т.е., компонентов. Поэтому в варианте осуществления металлический композит компонента должен отличаться от такового другого компонента разрушаемой системы. При этом компоненты имеют независимые избирательно задаваемые механические и химические свойства.
[0084] Согласно варианту осуществления втулка и уплотнение деформируются под действием силы, приложенной посредством элемента в форме усеченного конуса и нижнего переводника. Для достижения данного результата втулка и уплотнение имеют прочность на сжатие меньше, чем таковая у нижнего переводника или элемента в форме усеченного конуса. В другом варианте осуществления втулка деформируется до, после или одновременно с деформацией уплотнения. Предполагается, что нижний переводник или элемент в форме усеченного конуса деформируется в некоторых вариантах осуществления. В варианте осуществления компонент имеет отличающееся количество упрочняющего агента, чем другой компонент, например, где более прочный компонент имеет большее количество упрочняющего средства, чем компонент меньшей прочности. В конкретном варианте осуществления элемент в форме усеченного конуса имеет большее количество упрочняющего агента, чем таковое для уплотнения. В другом варианте осуществления элемент в форме усеченного конуса имеет большее количество упрочняющего агента, чем таковой для втулки. Аналогично, нижний переводник может иметь большее количество упрочняющего агента, чем уплотнение или чем втулка. В конкретном варианте осуществления элемент в форме усеченного конуса имеет прочность на сжатие больше чем таковое уплотнения или втулки. В дополнительном варианте осуществления элемент в форме усеченного конуса имеет прочность на сжатие больше чем таковая уплотнения или втулки. В одном варианте осуществления элемент в форме усеченного конуса имеет прочность на сжатие от 40 тыс.фунт/дюйм2 до 100 тыс.фунт/дюйм2, в частности от 50 тыс.фунт/дюйм2 до 100 тыс.фунт/дюйм2. В другом варианте осуществления нижний переводник имеет прочность на сжатие от примерно 40 тыс.фунт/дюйм2 до 100 тыс.фунт/дюйм2, в частности от примерно 50 тыс.фунт/дюйм2 до 100 тыс.фунт/дюйм2. В еще одном варианте осуществления уплотнение имеет прочность на сжатие от примерно 30 тыс.фунт/дюйм2 до 70 тыс.фунт/дюйм2, в частности от 30 тыс.фунт/дюйм2 до 60 тыс.фунт/дюйм2. В еще одном варианте осуществления втулка имеет прочность на сжатие от 30 тыс.фунт/дюйм2 до 80 тыс.фунт/дюйм2, в частности от 30 тыс.фунт/дюйм2 до 70 тыс.фунт/дюйм2. Таким образом, под действием сжимающей силы уплотнение или втулка должны деформироваться до деформации либо нижнего переводника, либо элемента в форме усеченного конуса.
[0085] Другие факторы, которые могут влиять на относительную прочность компонентов, включают в себя тип и размер упрочняющего агента в каждом компоненте. В варианте осуществления элемент в форме усеченного конуса включает в себя упрочнение меньшего размера, чем упрочняющий агент либо в уплотнении, либо во втулке. В еще одном варианте осуществления нижний переводник включает в себя упрочняющий агент меньшего размера, чем упрочняющий агент либо в уплотнении, либо во втулке. В одном варианте осуществления элемент в форме усеченного конуса включает в себя упрочняющий агент, такой как керамика, металл, металлокерамика или их комбинацию, при этом размер упрочняющего агента составляет от 10 нм до 200 мкм, в частности от 100 нм до 100 мкм.
[0086] Еще одним фактором, который воздействует на избирательно задаваемые механические и химические свойства материала компонентов, являются компоненты металлического композита, т.е., наноматрица с металлическими свойствами сотовой наноматрицы, металлическая матрица, размещенная в сотовой наноматрице или агент разрушения. Прочность на сжатие и на растяжение и скорость разрушения определяются химической идентичностью и относительным количеством данных компонентов. Таким образом, данные свойства могут быть отрегулированы с помощью составляющих металлического композита. Согласно варианту осуществления компонент (например, уплотнение, элемент в форме усеченного конуса, втулка или нижний переводник) имеет металлическую матрицу металлического композита, которая включает в себя технически чистый металл, и другой компонент имеет металлическую матрицу, которая включает в себя сплав. В другом варианте осуществления уплотнение имеет металлическую матрицу, которая включает в себя технически чистый металл, и элемент в форме усеченного конуса имеет металлическую матрицу, которая включает в себя сплав. В дополнительном варианте осуществления втулка имеет металлическую матрицу, которая является технически чистым металлом. Предполагается, что компонент может быть функционально классифицирован, поскольку металлическая матрица металлического композита может содержать как технически чистый металл, так и сплав, имеющие градиент относительного количества либо технически чистого металла, либо сплава в металлической матрице, размещенного в компоненте. Поэтому, величина избирательно задаваемых свойств изменяется в связи с положением по компоненту.
[0087] В конкретном варианте осуществления скорость разрушения компонента (например, уплотнения, элемента в форме усеченного конуса, втулки или нижнего переводника) имеет большую величину, чем у другого компонента. Альтернативно, каждый компонент может иметь по существу одинаковую скорость разрушения. В дополнительном варианте осуществления втулка имеет скорость разрушения больше, чем у другого компонента, например, элемента в форме усеченного конуса. В другом варианте осуществления количество агента разрушения компонента (например, уплотнения, элемента в форме усеченного конуса, втулки или нижнего переводника) присутствует в количестве большем, чем у другого компонента. В другом варианте осуществления количество агента разрушения, присутствующего во втулке, больше, чем у другого компонента. В одном варианте осуществления количество агента разрушения в уплотнении больше, чем у другого компонента.
[0088] На Фиг. 14 и 15, альтернативный вариант осуществления разрушаемой трубной анкерной системы показан позицией 1110. Разрушаемая система 1110 включает в себя элемент 1114 в форме усеченного конуса, втулку 1118 имеющую поверхность 1122, уплотнение 1126, имеющее поверхность 1130 и гнездо 1134, при этом каждый компонент изготовлен из металлического композита и имеет селективно задаваемые механические и химические свойства по данному документу. Основная разница между системой 510 (Фиг. 9) и системой 1110 заключается в начальном относительном положении уплотнения и элемента в форме усеченного конуса.
[0089] Величина радиального изменения, претерпеваемого поверхностью 1122 втулки 1118, регулируется тем, как далеко элемент 1114 в форме усеченного конуса вдавливается во втулку 1118. Поверхность 1144 усеченного конуса на элементе 1114 в форме усеченного конуса взаимодействует с заклиниванием с поверхностью усеченного конуса 1148 на втулке 1118. При этом чем дальше элемент 1114 в форме усеченного конуса перемещается относительно втулки 1118, тем больше радиальное изменение втулки 1118. Аналогично, уплотнение 1126 устанавливается радиально относительно поверхности 1144 усеченного конуса и продольно фиксируется относительно втулки 1118, так что чем дальше элемент 1114 в форме усеченного конуса перемещается относительно втулки 1118 и уплотнения 1126, тем больше радиальное изменение уплотнения 1126 и поверхности 1130. Вышеупомянутая конструкция обеспечивает определение оператором величины радиального изменения поверхностей 1122, 1130 после установки системы 1110 в конструкции 1150.
[0090] Необязательно, система 1110 может включать в себя муфту 1154, установленную радиально между уплотнением 1126 и элементом 1114 в форме усеченного конуса так, что радиальный размер муфты 1154 также изменяется элементом 1114 в форме усеченного конуса в ответ на перемещение относительно нее. Муфта 1154 может иметь поверхность 1158 усеченного конуса, комплементарную поверхности 1144 усеченного конуса, так что по существу полная продольная протяженность муфты 1154 одновременно радиально изменяется при перемещении элемента 1114 в форме усеченного конуса. Муфта 1154 может быть выполнена из металлического композита, отличающегося от композита уплотнения 1126 или элемента 1114 в форме усеченного конуса. Таким образом, муфта 1154 может поддерживать уплотнение 1126 при изменении радиального размера, даже если поверхность 1144 усеченного конуса позже перемещаются, выходя из взаимодействия с поверхностью 1158 усеченного конуса, при этом поддерживая уплотнение 1126 в уплотняющем взаимодействии с уплотнением со стенкой 1162 конструкции 1150. Это может быть достигнуто путем выбора металлического композита муфты 1154 с более высокой прочностью на сжатие, чем у уплотнения 1126.
[0091] Разрушаемая система 1110 дополнительно включает в себя контактную площадку 1136 элемента 1114 в форме усеченного конуса, уплотняюще взаимодействующую с пробкой 1138. Также в состав разрушаемой системы включены выемка 1166 (в стенке 1058) втулки 1118, которая может принимать выступы 1170 на пальцах 1174, данные детали могут взаимодействовать, когда установочный инструмент 558 сжимает разрушаемую систему 1110 способом аналогичным способу установки разрушаемой системы 510 установочным инструментом 558, как показано на Фиг. 9.
[0092] На Фиг. 16 другой альтернативный вариант осуществления разрушаемой трубной анкерной системы показан позицией 1310. Разрушаемая система 1310 включает в себя первый элемент 1314 в форме усеченного конуса, втулку 1318, установленную и выполненную с возможностью радиального расширения для заанкеривающего взаимодействия в конструкции 1322, показанной в данном документе, как ствол скважины в пласте 1326 горной породы, в ответ на поджатие на поверхность 1330 усеченного конуса первым элементом 1314 в форме усеченного конуса. Муфта 1334 является радиально расширяющейся в уплотняющем взаимодействии с конструкцией 1322 в ответ на продольное поджатие относительно второго элемента 1338 в форме усеченного конуса и имеет гнездо 1342 с поверхностью 1346 для приема с уплотнением пробки 1350 (показана пунктирной линией), направляемой к этой поверхности. Гнездо 1342 размещено в направлении вниз по потоку (вправо на Фиг. 16) от муфты 1334, что определяется текучей средой, которая поджимает пробку 1350 в гнездо 1342. Данная конфигурация и положение поверхности 1346 относительно муфты 1334 содействует поддержанию муфты 1334 в радиально расширенной конфигурации (после расширения) путем минимизации радиальных сил на муфте 1334 вследствие перепада давления на гнезде 1342, закупоренном пробкой 1350.
[0093] Для разъяснения, если поверхность 1346 устанавливается в направлении выше по потоку даже части продольной протяженности муфты 1334 (что не происходит) тогда давление, нарастающее на пробке 1350, установленной в упор к поверхности 1346, должно создавать перепад давления радиально на участке муфты 1334, установленной в направлении вниз по потоку от поверхности 1346. Данный перепад давления должен быть определен большим давлением радиально снаружи муфты 1334, которое больше давления радиально внутри муфты 1334, посредством этого создаются радиально направленные внутрь силы на муфте 1334. Данные радиально направленные внутрь силы, если они достаточно велики, могут вызывать деформацию муфты 1334 радиально внутрь, потенциально нарушая герметичность уплотнения между муфтой 1334 и конструкцией 1322 по ходу процесса. Данное условие, в частности, исключается установкой поверхности 1346 относительно муфты 1334 в нужное положение.
[0094] Необязательно, разрушаемая трубная анкерная система 1310 включает в себя уплотнение 1354, установленное радиально от муфты 1334, выполненной с возможностью способствовать уплотнению муфты 1334 в конструкции 1322 посредством радиального сжатия между ними, когда муфта 1334 радиально расширяется. Уплотнение 1354 произведено из металлического композита, который имеет прочность на сжатие ниже, чем у первого элемента 1314 в форме усеченного конуса, для улучшения герметичности уплотнения 1354 как к муфте 1334, так и к конструкции 1322. В варианте осуществления уплотнение 1354 имеет прочность на сжатие ниже, чем у муфты 1334.
[0095] Таким образом, в данном варианте осуществления разрушаемая система 1310 может включать в себя первый элемент 1314 в форме усеченного конуса, втулку 1318 и необязательное уплотнение 1354. В случае, когда уплотнение 1354 отсутствует, муфта 1334 первого элемента 1314 в форме усеченного конуса может образовывать уплотнение металла к металлу с обсадной колонной или хвостовиком или приспосабливаться к поверхности необсаженного ствола скважины. В некоторых вариантах осуществления первый элемент 1314 в форме усеченного конуса содержит функционально классифицированный металлический композит, так что муфта 1334 имеет значение прочности на сжатие ниже, чем у других частей первого элемента 1314 в форме усеченного конуса. В другом варианте осуществления муфта 1334 имеет прочность на сжатие ниже, чем у второго элемента 1338 в форме усеченного конуса. В еще одном варианте осуществления второй элемент 1338 в форме усеченного конуса имеет прочность на сжатие больше, чем у уплотнения 1354.
[0096] Компоненты данного документа могут быть дополнены различными материалами. В одном варианте осуществления, например, уплотнение 528, может включать в себя резервное уплотнение, например, эластомерный материал 602, показанный на Фиг. 17. Эластомер может быть, например, кольцевой прокладкой круглого сечения, размещенной в сальнике 604 на поверхности уплотнения 528. Эластомерный материал включает в себя без ограничения этим, например, бутадиеновый каучук (BR), бутилкаучук (IIR), хлорсульфонированный полиэтилен (CSM), эпихлоргидриновый каучук (ECH, ECO), каучук на основе этилена-пропилена диенового мономера (EPDM), этиленпропиленовый каучук (EPR), фторэластомер (FKM), нитриловый каучук (NBR, HNBR, HSN), перфторэластомер (FFKM), полиакрилатный каучук (ACM), полихлоропрен (неопрен) (CR), полиизопрен (IR), полисульфидный каучук (PSR), санифлор, силиконовый каучук (SiR), бутадиен-стирольный каучук (SBR) или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
[0097] Как описано в данном документе, компоненты, к примеру, уплотнение, могут быть использованы, например, во внутрискважинной окружающей среде, например, для создания уплотнения металл к металлу. В варианте осуществления способ временного уплотнения скважинного элемента включает в себя размещение компонента в стволе скважины и приложение давления для деформации компонента. Компонент может включать в себя уплотнение, элемент в форме усеченного конуса, втулку, нижнюю часть или комбинацию, содержащую по меньшей мере одно из вышеупомянутого. Способ также включает в себя приспосабливание уплотнения к пространству с образованием временного уплотнения, сжатие втулки для взаимодействия с поверхностью и после этого контактирование компонента со скважинной текучей средой для разрушения компонента. Компонент включает в себя металлический композит, в данном документе имеющий металлическую матрицу, агент разрушения, сотовую наноматрицу и необязательный упрочняющий агент. Металлический композит уплотнения образует внутреннюю уплотняющую поверхность и наружную уплотняющую поверхность, размещенную радиально от внутренней уплотняющей поверхности уплотнения.
[0098] Согласно варианту осуществления процесс изоляции конструкции включает в себя расположение разрушаемой трубной анкерной системы по данному документу в конструкции (например, трубном изделии, трубе, трубной колонне, стволе скважины (обсаженном или необсаженном и т.п.), радиальное изменение втулки для взаимодействия с поверхностью конструкции и радиальное изменение уплотнения для изоляции конструкции. Разрушаемая трубная анкерная система может быть контактирующей с текучей средой для разрушения, например, уплотнения, элемента в форме усеченного конуса, втулки, нижнего переводника или комбинации, содержащей по меньшей мере одно из вышеупомянутого. Процесс дополнительно может включать в себя установку разрушаемой анкерной системы установочным инструментом. В дополнение, на уплотнении может быть размещена пробка. Изолирующая конструкция может быть полностью или по существу препятствующей проходу текучей среды через конструкцию.
[0099] Кроме того, уплотнение может иметь различные формы и уплотняющие поверхности в дополнение к конкретной компоновке, показанной на Фиг. 9 и 13-16. В другом варианте осуществления, показанном на Фиг. 18A и 18B, уплотнение, раскрытое в данном документе, показано позицией 100. Уплотнение 100 включает в себя металлический композит, первую уплотняющую поверхность 102 и вторую уплотняющую поверхность 104, размещенную противоположно первой уплотняющей поверхности 102. Металлический композит включает в себя металлическую матрицу, размещенную в сотовой наноматрице, агент разрушения и необязательно упрочняющий агент. Уплотнение 100 может иметь любую форму и приспосабливается на месте работы под давлением к поверхности с образованием временного уплотнения, селективно разрушаемого в ответ на контакт с текучей средой. В данном варианте осуществления уплотнение 100 имеет кольцевую форму с наружным диаметром 106 и внутренним диаметром 108. В некоторых вариантах осуществления первая поверхность 102, вторая поверхность 104, наружный диаметр 106, внутренний диаметр 108 или комбинация, содержащая по меньшей мере одно из вышеупомянутого, может являться уплотняющей поверхностью.
[0100] Хотя описаны различные варианты разрушаемой трубной анкерной системы, которые включают в себя несколько компонентов, соединенных вместе, предполагается, что каждый компонент является отдельно и независимо применимым, как изделие. Дополнительно, любая комбинация компонентов может быть использована вместе. Кроме того, компоненты могут быть использованы в окружающих средах на поверхности или в скважине.
[0101] Хотя были показаны и описаны один или более вариантов осуществления, в них могут быть выполнены модификации и замены без отхода от сущности и объема изобретения. Соответственно, следует понимать, что настоящее изобретение описано в виде иллюстраций и без ограничений. Варианты осуществления данного документа могут быть использованы независимо или могут быть скомбинированы.
[0102] Все диапазоны, раскрытые в данном документе, включают в себя концевые точки, и концевые точки независимо комбинируемы друг с другом. Окончание множественного числа, использованное в данном документе, показывает применение термина как в единственном, так и во множественном числе, при этом включение в состав по меньшей мере одного термина (например, краситель (красители) включает в себя по меньшей мере один из красителей). "Необязательный" или "необязательно" означает, что далее описанное событие или обстоятельство могут возникать или не возникать, и что описание включает в себя случаи, где событие возникает и случаи, где не возникает. При использовании в данном документе "комбинация" включает в себя композиции, смеси, сплавы, продукты реакции и т.п. Все противопоставленные материалы включены в данном документе в виде ссылки.
[0103] Использование неопределенных и определенных артиклей и подобных указателей в контексте описания изобретения (особенно в приведенной ниже формуле изобретения) следует считать относящимся как к единственным, так и к множественным формам, если иное специально не указано в данном документе или ясно не опровергается контекстом. "Или" означает "и/или". К тому же, следует дополнительно отметить, что термины "первый", "второй" и т.п. в данном документе не указывают порядок, количество (например, несколько, два или больше элементов может присутствовать) или важность, но используются чтобы отличать один элемент от другого. Модифицирующее слово "примерно", применяемое в связи с некой величиной, включает указанное значение и имеет смысловое значение, определяемое по контексту (например, оно включает в себя погрешность, связанную с измерением этой конкретной величины).

Claims (34)

1. Уплотнение, содержащее:
металлический композит, включающий в себя:
сотовую наноматрицу, содержащую металлосодержащий материал наноматрицы;
металлическую матрицу, размещенную в сотовой наноматрице; и
агент разрушения, размещенный в металлической матрице и содержащий кобальт, медь, железо, никель, вольфрам или комбинацию, содержащую по меньшей мере одно из вышеупомянутого;
первую уплотняющую поверхность; и
вторую уплотняющую поверхность, размещенную противоположно первой уплотняющей поверхности,
причем металлосодержащий материал наноматрицы, металлическая матрица и агент разрушения выбраны так, что уплотнение выполнено с возможностью образования уплотнения металла к металлу в ответ на приложение сжимающей силы.
2. Уплотнение по п. 1, в котором первая уплотняющая поверхность размещена на внутренней стороне уплотнения, и вторая уплотняющая поверхность размещена радиально от первой уплотняющей поверхности на внешней стороне уплотнения.
3. Уплотнение по п. 1, в котором агент разрушения содержит кобальт, медь, железо, никель, вольфрам, цинк или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
4. Уплотнение по п. 1, в котором металлосодержащий материал наноматрицы содержит алюминий, кобальт, медь, железо, магний, никель, кремний, вольфрам, цинк, их оксид, их нитрид, их карбид, их интерметаллическое соединение, их металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
5. Уплотнение по п. 1, в котором количество металлической матрицы составляет от примерно 50 масс.% до примерно 95 масс.% в расчете на массу уплотнения.
6. Уплотнение по п. 1, в котором количество агента разрушения составляет от примерно 0,25 масс.% до примерно 15 масс.% в расчете на массу уплотнения.
7. Уплотнение по п. 1, в котором количество металлического материала наноматрицы составляет от примерно 10 масс.% до примерно 50 масс.% в расчете на массу уплотнения.
8. Уплотнение по п. 1, дополнительно содержащее частицы добавки, которая включает в себя металл, углерод, оксид металла, нитрид металла, карбид металла, интерметаллическое соединение, металлокерамику или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
9. Уплотнение по п. 8, в котором количество частиц добавки составляет от примерно 0,5 масс.% до примерно 25 масс.%, в расчете на массу уплотнения.
10. Уплотнение по п. 1, дополнительно содержащее сальник в наружной уплотняющей поверхности.
11. Уплотнение по п. 10, дополнительно содержащее эластомер, размещенный в сальнике.
12. Уплотнение по п. 11, в котором эластомер включает в себя бутадиеновый каучук, бутилкаучук, хлорсульфонированный полиэтилен, эпихлоргидриновый каучук, каучук на основе этилена-пропилена-диенового мономера, этиленпропиленовый каучук, фторэластомер, нитриловый каучук, перфторэластомер, полиакрилатный каучук, полихлоропрен, полиизопрен, полисульфидный каучук, санифлор, силиконовый каучук, бутадиен-стирольный каучук или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
13. Уплотнение по п. 1, при этом уплотнение является временным уплотнением.
14. Уплотнение по п. 1, при этом уплотнение имеет относительное удлинение от примерно 10% до примерно 75%.
15. Уплотнение по п. 1, при этом уплотнение имеет предел текучести от примерно 15 тыс.фунт/дюйм2 до примерно 50 тыс.фунт/дюйм2.
16. Уплотнение по п. 1, при этом уплотнение имеет прочность на сжатие от примерно 30 тыс.фунт/дюйм2 до примерно 80 тыс.фунт/дюйм2.
17. Уплотнение по п. 1, при этом уплотнение имеет температурный номинал до 1000°F.
18. Уплотнение по п. 1, при этом уплотнение является разрушаемым в ответ на контакт с текучей средой.
19. Уплотнение по п. 1, при этом текучая среда содержит рассол, неорганическую кислоту, органическую кислоту или комбинацию, содержащую по меньшей мере одно из вышеупомянутого.
20. Уплотнение по п. 1, при этом уплотнение имеет скорость разрушения от примерно 1 мг/см2/час до примерно 10000 мг/см2/час.
21. Изделие, содержащее уплотнение по п. 1, причем изделие является пробкой гидроразрыва, мостовой пробкой, прокладкой или заслонкой.
22. Способ временного уплотнения элемента, содержащий:
приложение давления для деформации уплотнения по п. 1;
приспосабливание уплотнения к пространству с образованием временного уплотнения; и
контактирование временного уплотнения с текучей средой для разрушения временного уплотнения.
23. Способ по п. 22, в котором временное уплотнение является уплотнением металла к металлу.
24. Способ по п. 22, в котором первая уплотняющая поверхность является внутренней уплотняющая поверхностью, а вторая уплотняющая поверхность является наружной уплотняющей поверхностью, расположенной радиально от внутренней уплотняющей поверхности.
RU2014149137A 2012-05-08 2013-04-04 Разрушаемое и приспосабливаемое металлическое уплотнение и способ его изготовления RU2627779C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/466,311 US9605508B2 (en) 2012-05-08 2012-05-08 Disintegrable and conformable metallic seal, and method of making the same
US13/466,311 2012-05-08
PCT/US2013/035262 WO2013169418A1 (en) 2012-05-08 2013-04-04 Disintegrable and conformable metallic seal, and method of making the same

Publications (2)

Publication Number Publication Date
RU2014149137A RU2014149137A (ru) 2016-06-27
RU2627779C2 true RU2627779C2 (ru) 2017-08-11

Family

ID=49548049

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014149137A RU2627779C2 (ru) 2012-05-08 2013-04-04 Разрушаемое и приспосабливаемое металлическое уплотнение и способ его изготовления

Country Status (9)

Country Link
US (2) US9605508B2 (ru)
CN (1) CN104285032B (ru)
AU (2) AU2013260077B2 (ru)
CA (2) CA2872404C (ru)
CO (1) CO7111254A2 (ru)
MX (1) MX2014013544A (ru)
PL (1) PL237181B1 (ru)
RU (1) RU2627779C2 (ru)
WO (1) WO2013169418A1 (ru)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US20040231845A1 (en) 2003-05-15 2004-11-25 Cooke Claude E. Applications of degradable polymers in wells
US20090107684A1 (en) 2007-10-31 2009-04-30 Cooke Jr Claude E Applications of degradable polymers for delayed mechanical changes in wells
US9587475B2 (en) 2008-12-23 2017-03-07 Frazier Ball Invention, LLC Downhole tools having non-toxic degradable elements and their methods of use
US9217319B2 (en) 2012-05-18 2015-12-22 Frazier Technologies, L.L.C. High-molecular-weight polyglycolides for hydrocarbon recovery
US9506309B2 (en) 2008-12-23 2016-11-29 Frazier Ball Invention, LLC Downhole tools having non-toxic degradable elements
US9500061B2 (en) 2008-12-23 2016-11-22 Frazier Technologies, L.L.C. Downhole tools having non-toxic degradable elements and methods of using the same
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US10337279B2 (en) 2014-04-02 2019-07-02 Magnum Oil Tools International, Ltd. Dissolvable downhole tools comprising both degradable polymer acid and degradable metal alloy elements
US9334702B2 (en) * 2011-12-01 2016-05-10 Baker Hughes Incorporated Selectively disengagable sealing system
US9284803B2 (en) 2012-01-25 2016-03-15 Baker Hughes Incorporated One-way flowable anchoring system and method of treating and producing a well
US9309733B2 (en) 2012-01-25 2016-04-12 Baker Hughes Incorporated Tubular anchoring system and method
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9759035B2 (en) 2012-06-08 2017-09-12 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using galvanic corrosion of a metal alloy in solid solution
US9777549B2 (en) 2012-06-08 2017-10-03 Halliburton Energy Services, Inc. Isolation device containing a dissolvable anode and electrolytic compound
US9085968B2 (en) * 2012-12-06 2015-07-21 Baker Hughes Incorporated Expandable tubular and method of making same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9482071B2 (en) * 2013-10-15 2016-11-01 Baker Hughes Incorporated Seat apparatus and method
US9879511B2 (en) 2013-11-22 2018-01-30 Baker Hughes Incorporated Methods of obtaining a hydrocarbon material contained within a subterranean formation
US10060237B2 (en) 2013-11-22 2018-08-28 Baker Hughes, A Ge Company, Llc Methods of extracting hydrocarbons from a subterranean formation, and methods of treating a hydrocarbon material within a subterranean formation
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
CA2936851A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
WO2015134073A1 (en) * 2014-03-06 2015-09-11 Halliburton Energy Services, Inc. Methods of adjusting the rate of galvanic corrosion of a wellbore isolation device
CA2886988C (en) 2014-04-02 2017-08-29 Magnum Oil Tools International, Ltd. Dissolvable aluminum downhole plug
CN110004339B (zh) 2014-04-18 2021-11-26 特维斯股份有限公司 用于受控速率溶解工具的电化活性的原位形成的颗粒
US10119358B2 (en) 2014-08-14 2018-11-06 Halliburton Energy Services, Inc. Degradable wellbore isolation devices with varying degradation rates
US10526868B2 (en) * 2014-08-14 2020-01-07 Halliburton Energy Services, Inc. Degradable wellbore isolation devices with varying fabrication methods
WO2016036371A1 (en) * 2014-09-04 2016-03-10 Halliburton Energy Services, Inc. Wellbore isolation devices with solid sealing elements
US10427336B2 (en) 2014-11-20 2019-10-01 Baker Hughes, A Ge Company, Llc Periodic structured composite and articles therefrom
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US9999920B2 (en) 2015-04-02 2018-06-19 Baker Hughes, A Ge Company, Llc Ultrahigh temperature elastic metal composites
CN106311881B (zh) * 2015-06-26 2018-03-09 中国科学院金属研究所 一种金属密封套筒的加工方法
WO2017007475A1 (en) * 2015-07-09 2017-01-12 Halliburton Energy Services, Inc. Wellbore plug sealing assembly
US10408012B2 (en) 2015-07-24 2019-09-10 Innovex Downhole Solutions, Inc. Downhole tool with an expandable sleeve
WO2017019500A1 (en) 2015-07-24 2017-02-02 Team Oil Tools, Lp Downhole tool with an expandable sleeve
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
NO340829B1 (no) 2015-08-27 2017-06-26 Tco As Holde- og knuseanordning for en barriereplugg
GB2557064B (en) * 2015-09-02 2021-10-20 Halliburton Energy Services Inc Top set degradable wellbore isolation device
US10059092B2 (en) * 2015-09-14 2018-08-28 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
US10982078B2 (en) 2015-09-21 2021-04-20 Schlumberger Technology Corporation Degradable elastomeric material
US10759092B2 (en) 2015-11-19 2020-09-01 Baker Hughes, A Ge Company, Llc Methods of making high temperature elastic composites
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN105672941A (zh) * 2016-02-02 2016-06-15 四机赛瓦石油钻采设备有限公司 一种可降解免钻桥塞压裂工艺
CN105952412A (zh) * 2016-06-23 2016-09-21 宝鸡市元亨石油设备有限责任公司 锯齿卡瓦
US10450828B2 (en) 2016-10-28 2019-10-22 Baker Hughes, A Ge Company, Llc High temperature high extrusion resistant packer
US10927434B2 (en) * 2016-11-16 2021-02-23 Hrl Laboratories, Llc Master alloy metal matrix nanocomposites, and methods for producing the same
CN106599543A (zh) * 2016-11-21 2017-04-26 胡佳 一种医学检测设备及健康信息存储方法
US10227842B2 (en) 2016-12-14 2019-03-12 Innovex Downhole Solutions, Inc. Friction-lock frac plug
CN106700152A (zh) * 2016-12-30 2017-05-24 安徽京鸿密封件技术有限公司 一种耐高温陶瓷‑橡胶复合密封件材料
CN108571297A (zh) * 2017-03-13 2018-09-25 中国石油化工股份有限公司 金属密封件和井下工具
US10329871B2 (en) * 2017-11-09 2019-06-25 Baker Hughes, A Ge Company, Llc Distintegrable wet connector cover
US10724340B2 (en) 2017-11-27 2020-07-28 Halliburton Energy Services, Inc. Chelating agents and scale inhibitors in degradable downhole tools
US20210095541A1 (en) * 2018-03-21 2021-04-01 Schlumberger Technology Corporation High performance fluoroelastomer bonded seal for downhole applications
CN108912426A (zh) * 2018-07-17 2018-11-30 全椒祥瑞塑胶有限公司 一种仪表盘密封件用抗拉伸橡胶
WO2020018110A1 (en) * 2018-07-20 2020-01-23 Halliburton Energy Services, Inc. Degradable metal body for sealing of shunt tubes
US10989016B2 (en) 2018-08-30 2021-04-27 Innovex Downhole Solutions, Inc. Downhole tool with an expandable sleeve, grit material, and button inserts
US11125039B2 (en) 2018-11-09 2021-09-21 Innovex Downhole Solutions, Inc. Deformable downhole tool with dissolvable element and brittle protective layer
US10876374B2 (en) 2018-11-16 2020-12-29 Weatherford Technology Holdings, Llc Degradable plugs
US11965391B2 (en) 2018-11-30 2024-04-23 Innovex Downhole Solutions, Inc. Downhole tool with sealing ring
US11396787B2 (en) 2019-02-11 2022-07-26 Innovex Downhole Solutions, Inc. Downhole tool with ball-in-place setting assembly and asymmetric sleeve
WO2020171825A1 (en) 2019-02-22 2020-08-27 Halliburton Energy Services, Inc. An expanding metal sealant for use with multilateral completion systems
US11261683B2 (en) 2019-03-01 2022-03-01 Innovex Downhole Solutions, Inc. Downhole tool with sleeve and slip
US11203913B2 (en) 2019-03-15 2021-12-21 Innovex Downhole Solutions, Inc. Downhole tool and methods
BR112021024386A2 (pt) 2019-07-31 2022-02-08 Halliburton Energy Services Inc Método para monitorar a expansão de um vedante metálico de fundo de poço e sistema de medição do vedante metálico de fundo de poço
US10961804B1 (en) 2019-10-16 2021-03-30 Halliburton Energy Services, Inc. Washout prevention element for expandable metal sealing elements
US11519239B2 (en) 2019-10-29 2022-12-06 Halliburton Energy Services, Inc. Running lines through expandable metal sealing elements
US11761290B2 (en) 2019-12-18 2023-09-19 Halliburton Energy Services, Inc. Reactive metal sealing elements for a liner hanger
US11499399B2 (en) 2019-12-18 2022-11-15 Halliburton Energy Services, Inc. Pressure reducing metal elements for liner hangers
US11572753B2 (en) 2020-02-18 2023-02-07 Innovex Downhole Solutions, Inc. Downhole tool with an acid pill
RU2754943C1 (ru) * 2020-12-03 2021-09-08 ООО НПП "Уралавиаспецтехнология" Способ изготовления элемента прирабатываемого уплотнения турбомашины
US11761293B2 (en) 2020-12-14 2023-09-19 Halliburton Energy Services, Inc. Swellable packer assemblies, downhole packer systems, and methods to seal a wellbore
US11572749B2 (en) 2020-12-16 2023-02-07 Halliburton Energy Services, Inc. Non-expanding liner hanger
US11578498B2 (en) * 2021-04-12 2023-02-14 Halliburton Energy Services, Inc. Expandable metal for anchoring posts
US11879304B2 (en) 2021-05-17 2024-01-23 Halliburton Energy Services, Inc. Reactive metal for cement assurance
US20230392472A1 (en) * 2022-06-06 2023-12-07 Halliburton Energy Services, Inc. Method of reducing surge when running casing
US20230416494A1 (en) * 2022-06-23 2023-12-28 Halliburton Energy Services, Inc. Dissolvable downhole hydraulic fracturing tools composed of bulk metal glass and thermoplastic polymer composites
WO2024010611A1 (en) * 2022-07-08 2024-01-11 Halliburton Energy Services, Inc. Self-assembling porous gravel pack in a wellbore
WO2024012718A2 (en) * 2022-07-14 2024-01-18 ISOL8 (Holdings) Limited Plug barrier material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA008390B1 (ru) * 2003-07-29 2007-04-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Система изолирования пространства ствола скважины
EA200870227A1 (ru) * 2006-02-03 2009-02-27 Эксонмобил Апстрим Рисерч Компани Способ и устройство ствола скважины для заканчивания, добычи и нагнетания
RU2373375C2 (ru) * 2004-01-23 2009-11-20 Шлюмбергер Холдингз Лимитед Скважинная система (варианты) и способ использования скважинного компонента

Family Cites Families (780)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1468905A (en) 1923-07-12 1923-09-25 Joseph L Herman Metal-coated iron or steel article
US2189697A (en) 1939-03-20 1940-02-06 Baker Oil Tools Inc Cement retainer
US2222233A (en) 1939-03-24 1940-11-19 Mize Loyd Cement retainer
US2238895A (en) 1939-04-12 1941-04-22 Acme Fishing Tool Company Cleansing attachment for rotary well drills
US2225143A (en) 1939-06-13 1940-12-17 Baker Oil Tools Inc Well packer mechanism
US2261292A (en) 1939-07-25 1941-11-04 Standard Oil Dev Co Method for completing oil wells
US2352993A (en) 1940-04-20 1944-07-04 Shell Dev Radiological method of logging wells
US2294648A (en) 1940-08-01 1942-09-01 Dow Chemical Co Method of rolling magnesium-base alloys
US2301624A (en) 1940-08-19 1942-11-10 Charles K Holt Tool for use in wells
US2394843A (en) 1942-02-04 1946-02-12 Crown Cork & Seal Co Coating material and composition
US2672199A (en) 1948-03-12 1954-03-16 Patrick A Mckenna Cement retainer and bridge plug
US2753941A (en) 1953-03-06 1956-07-10 Phillips Petroleum Co Well packer and tubing hanger therefor
US2754910A (en) 1955-04-27 1956-07-17 Chemical Process Company Method of temporarily closing perforations in the casing
US3066391A (en) 1957-01-15 1962-12-04 Crucible Steel Co America Powder metallurgy processes and products
US2933136A (en) 1957-04-04 1960-04-19 Dow Chemical Co Well treating method
US2983634A (en) 1958-05-13 1961-05-09 Gen Am Transport Chemical nickel plating of magnesium and its alloys
US3057405A (en) 1959-09-03 1962-10-09 Pan American Petroleum Corp Method for setting well conduit with passages through conduit wall
US3106959A (en) 1960-04-15 1963-10-15 Gulf Research Development Co Method of fracturing a subsurface formation
US3142338A (en) 1960-11-14 1964-07-28 Cicero C Brown Well tools
US3316748A (en) 1960-12-01 1967-05-02 Reynolds Metals Co Method of producing propping agent
GB912956A (en) 1960-12-06 1962-12-12 Gen Am Transport Improvements in and relating to chemical nickel plating of magnesium and its alloys
US3196949A (en) 1962-05-08 1965-07-27 John R Hatch Apparatus for completing wells
US3152009A (en) 1962-05-17 1964-10-06 Dow Chemical Co Electroless nickel plating
US3406101A (en) 1963-12-23 1968-10-15 Petrolite Corp Method and apparatus for determining corrosion rate
US3347714A (en) 1963-12-27 1967-10-17 Olin Mathieson Method of producing aluminum-magnesium sheet
US3208848A (en) 1964-02-25 1965-09-28 Jr Ralph P Levey Alumina-cobalt-gold composition
US3242988A (en) 1964-05-18 1966-03-29 Atlantic Refining Co Increasing permeability of deep subsurface formations
US3395758A (en) 1964-05-27 1968-08-06 Otis Eng Co Lateral flow duct and flow control device for wells
US3326291A (en) 1964-11-12 1967-06-20 Zandmer Solis Myron Duct-forming devices
US3347317A (en) 1965-04-05 1967-10-17 Zandmer Solis Myron Sand screen for oil wells
GB1122823A (en) 1965-05-19 1968-08-07 Ass Elect Ind Improvements relating to dispersion strengthened lead
US3343537A (en) 1965-06-04 1967-09-26 James F Graham Burn dressing
US3637446A (en) 1966-01-24 1972-01-25 Uniroyal Inc Manufacture of radial-filament spheres
US3390724A (en) 1966-02-01 1968-07-02 Zanal Corp Of Alberta Ltd Duct forming device with a filter
US3465181A (en) 1966-06-08 1969-09-02 Fasco Industries Rotor for fractional horsepower torque motor
US3489218A (en) 1966-08-22 1970-01-13 Dow Chemical Co Method of killing organisms by use of radioactive materials
US3513230A (en) 1967-04-04 1970-05-19 American Potash & Chem Corp Compaction of potassium sulfate
US3434537A (en) 1967-10-11 1969-03-25 Solis Myron Zandmer Well completion apparatus
GB1280833A (en) 1968-08-26 1972-07-05 Sherritt Gordon Mines Ltd Preparation of powder composition for making dispersion-strengthened binary and higher nickel base alloys
US3660049A (en) 1969-08-27 1972-05-02 Int Nickel Co Dispersion strengthened electrical heating alloys by powder metallurgy
US3602305A (en) 1969-12-31 1971-08-31 Schlumberger Technology Corp Retrievable well packer
US3645331A (en) 1970-08-03 1972-02-29 Exxon Production Research Co Method for sealing nozzles in a drill bit
DK125207B (da) 1970-08-21 1973-01-15 Atomenergikommissionen Fremgangsmåde til fremstilling af dispersionsforstærkede zirconiumprodukter.
DE2223312A1 (de) 1971-05-26 1972-12-07 Continental Oil Co Rohr,insbesondere Bohrgestaengerohr,sowie Einrichtung und Verfahren zum Verhindern von Korrosion und Korrosionsbruch in einem Rohr
US3816080A (en) * 1971-07-06 1974-06-11 Int Nickel Co Mechanically-alloyed aluminum-aluminum oxide
US3768563A (en) 1972-03-03 1973-10-30 Mobil Oil Corp Well treating process using sacrificial plug
US3765484A (en) 1972-06-02 1973-10-16 Shell Oil Co Method and apparatus for treating selected reservoir portions
US3878889A (en) 1973-02-05 1975-04-22 Phillips Petroleum Co Method and apparatus for well bore work
US3894850A (en) 1973-10-19 1975-07-15 Jury Matveevich Kovalchuk Superhard composition material based on cubic boron nitride and a method for preparing same
US4039717A (en) 1973-11-16 1977-08-02 Shell Oil Company Method for reducing the adherence of crude oil to sucker rods
US4010583A (en) 1974-05-28 1977-03-08 Engelhard Minerals & Chemicals Corporation Fixed-super-abrasive tool and method of manufacture thereof
US3924677A (en) 1974-08-29 1975-12-09 Harry Koplin Device for use in the completion of an oil or gas well
US4050529A (en) 1976-03-25 1977-09-27 Kurban Magomedovich Tagirov Apparatus for treating rock surrounding a wellbore
US4157732A (en) 1977-10-25 1979-06-12 Ppg Industries, Inc. Method and apparatus for well completion
US4407368A (en) 1978-07-03 1983-10-04 Exxon Production Research Company Polyurethane ball sealers for well treatment fluid diversion
US4248307A (en) 1979-05-07 1981-02-03 Baker International Corporation Latch assembly and method
US4373584A (en) 1979-05-07 1983-02-15 Baker International Corporation Single trip tubing hanger assembly
US4284137A (en) 1980-01-07 1981-08-18 Taylor William T Anti-kick, anti-fall running tool and instrument hanger and tubing packoff tool
US4292377A (en) 1980-01-25 1981-09-29 The International Nickel Co., Inc. Gold colored laminated composite material having magnetic properties
US4374543A (en) 1980-08-19 1983-02-22 Tri-State Oil Tool Industries, Inc. Apparatus for well treating
US4372384A (en) 1980-09-19 1983-02-08 Geo Vann, Inc. Well completion method and apparatus
US4395440A (en) 1980-10-09 1983-07-26 Matsushita Electric Industrial Co., Ltd. Method of and apparatus for manufacturing ultrafine particle film
US4384616A (en) 1980-11-28 1983-05-24 Mobil Oil Corporation Method of placing pipe into deviated boreholes
US4716964A (en) 1981-08-10 1988-01-05 Exxon Production Research Company Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4422508A (en) 1981-08-27 1983-12-27 Fiberflex Products, Inc. Methods for pulling sucker rod strings
US4373952A (en) 1981-10-19 1983-02-15 Gte Products Corporation Intermetallic composite
US4399871A (en) 1981-12-16 1983-08-23 Otis Engineering Corporation Chemical injection valve with openable bypass
US4452311A (en) 1982-09-24 1984-06-05 Otis Engineering Corporation Equalizing means for well tools
US4681133A (en) 1982-11-05 1987-07-21 Hydril Company Rotatable ball valve apparatus and method
US4534414A (en) 1982-11-10 1985-08-13 Camco, Incorporated Hydraulic control fluid communication nipple
US4526840A (en) 1983-02-11 1985-07-02 Gte Products Corporation Bar evaporation source having improved wettability
US4499048A (en) 1983-02-23 1985-02-12 Metal Alloys, Inc. Method of consolidating a metallic body
US4499049A (en) 1983-02-23 1985-02-12 Metal Alloys, Inc. Method of consolidating a metallic or ceramic body
US4498543A (en) 1983-04-25 1985-02-12 Union Oil Company Of California Method for placing a liner in a pressurized well
US4554986A (en) 1983-07-05 1985-11-26 Reed Rock Bit Company Rotary drill bit having drag cutting elements
US4647304A (en) * 1983-08-17 1987-03-03 Exxon Research And Engineering Company Method for producing dispersion strengthened metal powders
US4539175A (en) 1983-09-26 1985-09-03 Metal Alloys Inc. Method of object consolidation employing graphite particulate
US4524825A (en) 1983-12-01 1985-06-25 Halliburton Company Well packer
FR2556406B1 (fr) 1983-12-08 1986-10-10 Flopetrol Procede pour actionner un outil dans un puits a une profondeur determinee et outil permettant la mise en oeuvre du procede
US4475729A (en) 1983-12-30 1984-10-09 Spreading Machine Exchange, Inc. Drive platform for fabric spreading machines
US4708202A (en) 1984-05-17 1987-11-24 The Western Company Of North America Drillable well-fluid flow control tool
US4709761A (en) 1984-06-29 1987-12-01 Otis Engineering Corporation Well conduit joint sealing system
JPS6167770A (ja) 1984-09-07 1986-04-07 Kizai Kk マグネシウムおよびマグネシウム合金のめつき法
US4674572A (en) 1984-10-04 1987-06-23 Union Oil Company Of California Corrosion and erosion-resistant wellhousing
US4664962A (en) 1985-04-08 1987-05-12 Additive Technology Corporation Printed circuit laminate, printed circuit board produced therefrom, and printed circuit process therefor
US4678037A (en) 1985-12-06 1987-07-07 Amoco Corporation Method and apparatus for completing a plurality of zones in a wellbore
US4668470A (en) 1985-12-16 1987-05-26 Inco Alloys International, Inc. Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications
US4738599A (en) 1986-01-25 1988-04-19 Shilling James R Well pump
US4673549A (en) 1986-03-06 1987-06-16 Gunes Ecer Method for preparing fully dense, near-net-shaped objects by powder metallurgy
US4690796A (en) * 1986-03-13 1987-09-01 Gte Products Corporation Process for producing aluminum-titanium diboride composites
US4693863A (en) 1986-04-09 1987-09-15 Carpenter Technology Corporation Process and apparatus to simultaneously consolidate and reduce metal powders
NZ218154A (en) 1986-04-26 1989-01-06 Takenaka Komuten Co Container of borehole crevice plugging agentopened by falling pilot weight
NZ218143A (en) 1986-06-10 1989-03-29 Takenaka Komuten Co Annular paper capsule with lugged frangible plate for conveying plugging agent to borehole drilling fluid sink
US4805699A (en) 1986-06-23 1989-02-21 Baker Hughes Incorporated Method and apparatus for setting, unsetting, and retrieving a packer or bridge plug from a subterranean well
US4708208A (en) 1986-06-23 1987-11-24 Baker Oil Tools, Inc. Method and apparatus for setting, unsetting, and retrieving a packer from a subterranean well
US4869325A (en) 1986-06-23 1989-09-26 Baker Hughes Incorporated Method and apparatus for setting, unsetting, and retrieving a packer or bridge plug from a subterranean well
US4688641A (en) 1986-07-25 1987-08-25 Camco, Incorporated Well packer with releasable head and method of releasing
US4719971A (en) 1986-08-18 1988-01-19 Vetco Gray Inc. Metal-to-metal/elastomeric pack-off assembly for subsea wellhead systems
US5063775A (en) 1987-08-19 1991-11-12 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US5222867A (en) 1986-08-29 1993-06-29 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US4714116A (en) 1986-09-11 1987-12-22 Brunner Travis J Downhole safety valve operable by differential pressure
US5076869A (en) 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US4817725A (en) 1986-11-26 1989-04-04 C. "Jerry" Wattigny, A Part Interest Oil field cable abrading system
DE3640586A1 (de) 1986-11-27 1988-06-09 Norddeutsche Affinerie Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit
US4741973A (en) 1986-12-15 1988-05-03 United Technologies Corporation Silicon carbide abrasive particles having multilayered coating
US4768588A (en) 1986-12-16 1988-09-06 Kupsa Charles M Connector assembly for a milling tool
US4952902A (en) 1987-03-17 1990-08-28 Tdk Corporation Thermistor materials and elements
USH635H (en) 1987-04-03 1989-06-06 Injection mandrel
US4784226A (en) 1987-05-22 1988-11-15 Arrow Oil Tools, Inc. Drillable bridge plug
US5006044A (en) 1987-08-19 1991-04-09 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US4853056A (en) 1988-01-20 1989-08-01 Hoffman Allan C Method of making tennis ball with a single core and cover bonding cure
US5084088A (en) 1988-02-22 1992-01-28 University Of Kentucky Research Foundation High temperature alloys synthesis by electro-discharge compaction
US4975412A (en) 1988-02-22 1990-12-04 University Of Kentucky Research Foundation Method of processing superconducting materials and its products
FR2642439B2 (ru) 1988-02-26 1993-04-16 Pechiney Electrometallurgie
US4929415A (en) 1988-03-01 1990-05-29 Kenji Okazaki Method of sintering powder
US4869324A (en) 1988-03-21 1989-09-26 Baker Hughes Incorporated Inflatable packers and methods of utilization
US4889187A (en) 1988-04-25 1989-12-26 Jamie Bryant Terrell Multi-run chemical cutter and method
US4938809A (en) 1988-05-23 1990-07-03 Allied-Signal Inc. Superplastic forming consolidated rapidly solidified, magnestum base metal alloy powder
US4932474A (en) 1988-07-14 1990-06-12 Marathon Oil Company Staged screen assembly for gravel packing
US4880059A (en) 1988-08-12 1989-11-14 Halliburton Company Sliding sleeve casing tool
US4834184A (en) 1988-09-22 1989-05-30 Halliburton Company Drillable, testing, treat, squeeze packer
US4909320A (en) 1988-10-14 1990-03-20 Drilex Systems, Inc. Detonation assembly for explosive wellhead severing system
US4850432A (en) 1988-10-17 1989-07-25 Texaco Inc. Manual port closing tool for well cementing
US4901794A (en) 1989-01-23 1990-02-20 Baker Hughes Incorporated Subterranean well anchoring apparatus
US5049165B1 (en) 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Composite material
US4890675A (en) 1989-03-08 1990-01-02 Dew Edward G Horizontal drilling through casing window
US4938309A (en) 1989-06-08 1990-07-03 M.D. Manufacturing, Inc. Built-in vacuum cleaning system with improved acoustic damping design
EP0406580B1 (en) 1989-06-09 1996-09-04 Matsushita Electric Industrial Co., Ltd. A composite material and a method for producing the same
JP2511526B2 (ja) 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
US4977958A (en) 1989-07-26 1990-12-18 Miller Stanley J Downhole pump filter
FR2651244B1 (fr) 1989-08-24 1993-03-26 Pechiney Recherche Procede d'obtention d'alliages de magnesium par pulverisation-depot.
US5456317A (en) 1989-08-31 1995-10-10 Union Oil Co Buoyancy assisted running of perforated tubulars
MY106026A (en) 1989-08-31 1995-02-28 Union Oil Company Of California Well casing flotation device and method
US4986361A (en) 1989-08-31 1991-01-22 Union Oil Company Of California Well casing flotation device and method
US5117915A (en) 1989-08-31 1992-06-02 Union Oil Company Of California Well casing flotation device and method
US5304588A (en) 1989-09-28 1994-04-19 Union Carbide Chemicals & Plastics Technology Corporation Core-shell resin particle
US4981177A (en) 1989-10-17 1991-01-01 Baker Hughes Incorporated Method and apparatus for establishing communication with a downhole portion of a control fluid pipe
US4944351A (en) 1989-10-26 1990-07-31 Baker Hughes Incorporated Downhole safety valve for subterranean well and method
US4949788A (en) 1989-11-08 1990-08-21 Halliburton Company Well completions using casing valves
US5095988A (en) 1989-11-15 1992-03-17 Bode Robert E Plug injection method and apparatus
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
GB2240798A (en) 1990-02-12 1991-08-14 Shell Int Research Method and apparatus for perforating a well liner and for fracturing a surrounding formation
US5178216A (en) 1990-04-25 1993-01-12 Halliburton Company Wedge lock ring
US5271468A (en) 1990-04-26 1993-12-21 Halliburton Company Downhole tool apparatus with non-metallic components and methods of drilling thereof
US5665289A (en) 1990-05-07 1997-09-09 Chang I. Chung Solid polymer solution binders for shaping of finely-divided inert particles
US5074361A (en) 1990-05-24 1991-12-24 Halliburton Company Retrieving tool and method
US5010955A (en) 1990-05-29 1991-04-30 Smith International, Inc. Casing mill and method
US5048611A (en) 1990-06-04 1991-09-17 Lindsey Completion Systems, Inc. Pressure operated circulation valve
US5036921A (en) 1990-06-28 1991-08-06 Slimdril International, Inc. Underreamer with sequentially expandable cutter blades
US5090480A (en) 1990-06-28 1992-02-25 Slimdril International, Inc. Underreamer with simultaneously expandable cutter blades and method
US5188182A (en) 1990-07-13 1993-02-23 Otis Engineering Corporation System containing expendible isolation valve with frangible sealing member, seat arrangement and method for use
US5087304A (en) 1990-09-21 1992-02-11 Allied-Signal Inc. Hot rolled sheet of rapidly solidified magnesium base alloy
US5316598A (en) 1990-09-21 1994-05-31 Allied-Signal Inc. Superplastically formed product from rolled magnesium base metal alloy sheet
US5061323A (en) 1990-10-15 1991-10-29 The United States Of America As Represented By The Secretary Of The Navy Composition and method for producing an aluminum alloy resistant to environmentally-assisted cracking
US5171734A (en) 1991-04-22 1992-12-15 Sri International Coating a substrate in a fluidized bed maintained at a temperature below the vaporization temperature of the resulting coating composition
US5188183A (en) 1991-05-03 1993-02-23 Baker Hughes Incorporated Method and apparatus for controlling the flow of well bore fluids
US5161614A (en) 1991-05-31 1992-11-10 Marguip, Inc. Apparatus and method for accessing the casing of a burning oil well
US5292478A (en) 1991-06-24 1994-03-08 Ametek, Specialty Metal Products Division Copper-molybdenum composite strip
US5453293A (en) * 1991-07-17 1995-09-26 Beane; Alan F. Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects
US5228518A (en) 1991-09-16 1993-07-20 Conoco Inc. Downhole activated process and apparatus for centralizing pipe in a wellbore
US5234055A (en) 1991-10-10 1993-08-10 Atlantic Richfield Company Wellbore pressure differential control for gravel pack screen
US5318746A (en) 1991-12-04 1994-06-07 The United States Of America As Represented By The Secretary Of Commerce Process for forming alloys in situ in absence of liquid-phase sintering
US5252365A (en) 1992-01-28 1993-10-12 White Engineering Corporation Method for stabilization and lubrication of elastomers
US5511620A (en) 1992-01-29 1996-04-30 Baugh; John L. Straight Bore metal-to-metal wellbore seal apparatus and method of sealing in a wellbore
US5394236A (en) 1992-02-03 1995-02-28 Rutgers, The State University Methods and apparatus for isotopic analysis
US5226483A (en) 1992-03-04 1993-07-13 Otis Engineering Corporation Safety valve landing nipple and method
US5285706A (en) 1992-03-11 1994-02-15 Wellcutter Inc. Pipe threading apparatus
US5293940A (en) 1992-03-26 1994-03-15 Schlumberger Technology Corporation Automatic tubing release
US5474131A (en) 1992-08-07 1995-12-12 Baker Hughes Incorporated Method for completing multi-lateral wells and maintaining selective re-entry into laterals
US5454430A (en) 1992-08-07 1995-10-03 Baker Hughes Incorporated Scoophead/diverter assembly for completing lateral wellbores
US5477923A (en) 1992-08-07 1995-12-26 Baker Hughes Incorporated Wellbore completion using measurement-while-drilling techniques
US5417285A (en) 1992-08-07 1995-05-23 Baker Hughes Incorporated Method and apparatus for sealing and transferring force in a wellbore
US5623993A (en) 1992-08-07 1997-04-29 Baker Hughes Incorporated Method and apparatus for sealing and transfering force in a wellbore
US5253714A (en) 1992-08-17 1993-10-19 Baker Hughes Incorporated Well service tool
US5282509A (en) 1992-08-20 1994-02-01 Conoco Inc. Method for cleaning cement plug from wellbore liner
US5647444A (en) 1992-09-18 1997-07-15 Williams; John R. Rotating blowout preventor
US5310000A (en) 1992-09-28 1994-05-10 Halliburton Company Foil wrapped base pipe for sand control
JP2676466B2 (ja) 1992-09-30 1997-11-17 マツダ株式会社 マグネシウム合金製部材およびその製造方法
US5902424A (en) 1992-09-30 1999-05-11 Mazda Motor Corporation Method of making an article of manufacture made of a magnesium alloy
US5380473A (en) 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
US5309874A (en) 1993-01-08 1994-05-10 Ford Motor Company Powertrain component with adherent amorphous or nanocrystalline ceramic coating system
US5392860A (en) 1993-03-15 1995-02-28 Baker Hughes Incorporated Heat activated safety fuse
US5677372A (en) 1993-04-06 1997-10-14 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material
JP3489177B2 (ja) 1993-06-03 2004-01-19 マツダ株式会社 塑性加工成形品の製造方法
US5427177A (en) 1993-06-10 1995-06-27 Baker Hughes Incorporated Multi-lateral selective re-entry tool
US5394941A (en) 1993-06-21 1995-03-07 Halliburton Company Fracture oriented completion tool system
US5368098A (en) 1993-06-23 1994-11-29 Weatherford U.S., Inc. Stage tool
US6024915A (en) 1993-08-12 2000-02-15 Agency Of Industrial Science & Technology Coated metal particles, a metal-base sinter and a process for producing same
US5536485A (en) 1993-08-12 1996-07-16 Agency Of Industrial Science & Technology Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
JP3533459B2 (ja) 1993-08-12 2004-05-31 独立行政法人産業技術総合研究所 被覆金属準微粒子の製造法
US5407011A (en) 1993-10-07 1995-04-18 Wada Ventures Downhole mill and method for milling
KR950014350B1 (ko) 1993-10-19 1995-11-25 주승기 W-Cu 계 합금의 제조방법
US5398754A (en) 1994-01-25 1995-03-21 Baker Hughes Incorporated Retrievable whipstock anchor assembly
US5439051A (en) 1994-01-26 1995-08-08 Baker Hughes Incorporated Lateral connector receptacle
US5411082A (en) 1994-01-26 1995-05-02 Baker Hughes Incorporated Scoophead running tool
US5472048A (en) 1994-01-26 1995-12-05 Baker Hughes Incorporated Parallel seal assembly
US5435392A (en) 1994-01-26 1995-07-25 Baker Hughes Incorporated Liner tie-back sleeve
US5524699A (en) 1994-02-03 1996-06-11 Pcc Composites, Inc. Continuous metal matrix composite casting
US5425424A (en) 1994-02-28 1995-06-20 Baker Hughes Incorporated Casing valve
US5456327A (en) 1994-03-08 1995-10-10 Smith International, Inc. O-ring seal for rock bit bearings
DE4407593C1 (de) 1994-03-08 1995-10-26 Plansee Metallwerk Verfahren zur Herstellung von Pulverpreßlingen hoher Dichte
US5479986A (en) 1994-05-02 1996-01-02 Halliburton Company Temporary plug system
US5826661A (en) 1994-05-02 1998-10-27 Halliburton Energy Services, Inc. Linear indexing apparatus and methods of using same
US5526881A (en) 1994-06-30 1996-06-18 Quality Tubing, Inc. Preperforated coiled tubing
US5707214A (en) 1994-07-01 1998-01-13 Fluid Flow Engineering Company Nozzle-venturi gas lift flow control device and method for improving production rate, lift efficiency, and stability of gas lift wells
US5506055A (en) 1994-07-08 1996-04-09 Sulzer Metco (Us) Inc. Boron nitride and aluminum thermal spray powder
WO1996004409A1 (en) 1994-08-01 1996-02-15 Franz Hehmann Selected processing for non-equilibrium light alloys and products
FI95897C (fi) 1994-12-08 1996-04-10 Westem Oy Kuormalava
US5526880A (en) 1994-09-15 1996-06-18 Baker Hughes Incorporated Method for multi-lateral completion and cementing the juncture with lateral wellbores
US5558153A (en) 1994-10-20 1996-09-24 Baker Hughes Incorporated Method & apparatus for actuating a downhole tool
US5765639A (en) 1994-10-20 1998-06-16 Muth Pump Llc Tubing pump system for pumping well fluids
US5934372A (en) 1994-10-20 1999-08-10 Muth Pump Llc Pump system and method for pumping well fluids
US6250392B1 (en) 1994-10-20 2001-06-26 Muth Pump Llc Pump systems and methods
US5507439A (en) 1994-11-10 1996-04-16 Kerr-Mcgee Chemical Corporation Method for milling a powder
US5695009A (en) 1995-10-31 1997-12-09 Sonoma Corporation Downhole oil well tool running and pulling with hydraulic release using deformable ball valving member
GB9425240D0 (en) 1994-12-14 1995-02-08 Head Philip Dissoluable metal to metal seal
US5829520A (en) 1995-02-14 1998-11-03 Baker Hughes Incorporated Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device
US6230822B1 (en) 1995-02-16 2001-05-15 Baker Hughes Incorporated Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations
JPH08232029A (ja) 1995-02-24 1996-09-10 Sumitomo Electric Ind Ltd Ni基粒子分散型銅系焼結合金とその製造方法
US6403210B1 (en) 1995-03-07 2002-06-11 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for manufacturing a composite material
US5728195A (en) 1995-03-10 1998-03-17 The United States Of America As Represented By The Department Of Energy Method for producing nanocrystalline multicomponent and multiphase materials
CA2215402A1 (en) 1995-03-14 1996-09-19 Takafumi Atarashi Powder having multilayer film on its surface and process for preparing the same
US5607017A (en) 1995-07-03 1997-03-04 Pes, Inc. Dissolvable well plug
US5641023A (en) 1995-08-03 1997-06-24 Halliburton Energy Services, Inc. Shifting tool for a subterranean completion structure
US5636691A (en) 1995-09-18 1997-06-10 Halliburton Energy Services, Inc. Abrasive slurry delivery apparatus and methods of using same
DE69513203T2 (de) 1995-10-31 2000-07-20 Ecole Polytech Batterie-anordnung von fotovoltaischen zellen und herstellungsverfahren
US5772735A (en) 1995-11-02 1998-06-30 University Of New Mexico Supported inorganic membranes
CA2163946C (en) 1995-11-28 1997-10-14 Integrated Production Services Ltd. Dizzy dognut anchoring system
US5698081A (en) 1995-12-07 1997-12-16 Materials Innovation, Inc. Coating particles in a centrifugal bed
US5810084A (en) 1996-02-22 1998-09-22 Halliburton Energy Services, Inc. Gravel pack apparatus
EP0828922B1 (en) 1996-03-22 2001-06-27 Smith International, Inc. Actuating ball
US6007314A (en) 1996-04-01 1999-12-28 Nelson, Ii; Joe A. Downhole pump with standing valve assembly which guides the ball off-center
US5762137A (en) 1996-04-29 1998-06-09 Halliburton Energy Services, Inc. Retrievable screen apparatus and methods of using same
US6047773A (en) 1996-08-09 2000-04-11 Halliburton Energy Services, Inc. Apparatus and methods for stimulating a subterranean well
US5905000A (en) 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US5720344A (en) 1996-10-21 1998-02-24 Newman; Frederic M. Method of longitudinally splitting a pipe coupling within a wellbore
US5782305A (en) 1996-11-18 1998-07-21 Texaco Inc. Method and apparatus for removing fluid from production tubing into the well
US5826652A (en) 1997-04-08 1998-10-27 Baker Hughes Incorporated Hydraulic setting tool
US5881816A (en) 1997-04-11 1999-03-16 Weatherford/Lamb, Inc. Packer mill
DE19716524C1 (de) 1997-04-19 1998-08-20 Daimler Benz Aerospace Ag Verfahren zur Herstellung eines Körpers mit einem Hohlraum
US5960881A (en) 1997-04-22 1999-10-05 Jerry P. Allamon Downhole surge pressure reduction system and method of use
JP4945814B2 (ja) 1997-05-13 2012-06-06 アロメット コーポレイション タフコートされた硬い粉末およびその焼結製品
AU8164898A (en) 1997-06-27 1999-01-19 Baker Hughes Incorporated Drilling system with sensors for determining properties of drilling fluid downhole
US5924491A (en) 1997-07-03 1999-07-20 Baker Hughes Incorporated Thru-tubing anchor seal assembly and/or packer release devices
GB9715001D0 (en) 1997-07-17 1997-09-24 Specialised Petroleum Serv Ltd A downhole tool
CN1092240C (zh) 1997-08-19 2002-10-09 钛坦诺克斯发展有限公司 钛合金基弥散强化的复合物
US6283208B1 (en) 1997-09-05 2001-09-04 Schlumberger Technology Corp. Orienting tool and method
US5992520A (en) 1997-09-15 1999-11-30 Halliburton Energy Services, Inc. Annulus pressure operated downhole choke and associated methods
US6612826B1 (en) 1997-10-15 2003-09-02 Iap Research, Inc. System for consolidating powders
US6095247A (en) 1997-11-21 2000-08-01 Halliburton Energy Services, Inc. Apparatus and method for opening perforations in a well casing
US6397950B1 (en) 1997-11-21 2002-06-04 Halliburton Energy Services, Inc. Apparatus and method for removing a frangible rupture disc or other frangible device from a wellbore casing
US6079496A (en) 1997-12-04 2000-06-27 Baker Hughes Incorporated Reduced-shock landing collar
US6170583B1 (en) 1998-01-16 2001-01-09 Dresser Industries, Inc. Inserts and compacts having coated or encrusted cubic boron nitride particles
GB2334051B (en) 1998-02-09 2000-08-30 Antech Limited Oil well separation method and apparatus
US6076600A (en) 1998-02-27 2000-06-20 Halliburton Energy Services, Inc. Plug apparatus having a dispersible plug member and a fluid barrier
AU1850199A (en) 1998-03-11 1999-09-23 Baker Hughes Incorporated Apparatus for removal of milling debris
US6173779B1 (en) 1998-03-16 2001-01-16 Halliburton Energy Services, Inc. Collapsible well perforating apparatus
CA2232748C (en) 1998-03-19 2007-05-08 Ipec Ltd. Injection tool
AU6472798A (en) 1998-03-19 1999-10-11 University Of Florida Process for depositing atomic to nanometer particle coatings on host particles
US6050340A (en) 1998-03-27 2000-04-18 Weatherford International, Inc. Downhole pump installation/removal system and method
US5990051A (en) 1998-04-06 1999-11-23 Fairmount Minerals, Inc. Injection molded degradable casing perforation ball sealers
US6189618B1 (en) 1998-04-20 2001-02-20 Weatherford/Lamb, Inc. Wellbore wash nozzle system
US6167970B1 (en) 1998-04-30 2001-01-02 B J Services Company Isolation tool release mechanism
WO1999057417A2 (en) 1998-05-05 1999-11-11 Baker Hughes Incorporated Chemical actuation system for downhole tools and method for detecting failure of an inflatable element
US6675889B1 (en) 1998-05-11 2004-01-13 Offshore Energy Services, Inc. Tubular filling system
EP1086293A4 (en) 1998-05-14 2004-11-24 Fike Corp DOWNHOLE DISCHARGE VALVE
US6135208A (en) 1998-05-28 2000-10-24 Halliburton Energy Services, Inc. Expandable wellbore junction
CA2239645C (en) 1998-06-05 2003-04-08 Top-Co Industries Ltd. Method and apparatus for locating a drill bit when drilling out cementing equipment from a wellbore
US6357332B1 (en) 1998-08-06 2002-03-19 Thew Regents Of The University Of California Process for making metallic/intermetallic composite laminate materian and materials so produced especially for use in lightweight armor
FR2782096B1 (fr) 1998-08-07 2001-05-18 Commissariat Energie Atomique Procede de fabrication d'un alliage intermetallique fer-aluminium renforce par des dispersoides de ceramique et alliage ainsi obtenu
US6273187B1 (en) 1998-09-10 2001-08-14 Schlumberger Technology Corporation Method and apparatus for downhole safety valve remediation
US6213202B1 (en) 1998-09-21 2001-04-10 Camco International, Inc. Separable connector for coil tubing deployed systems
US6142237A (en) 1998-09-21 2000-11-07 Camco International, Inc. Method for coupling and release of submergible equipment
US6779599B2 (en) 1998-09-25 2004-08-24 Offshore Energy Services, Inc. Tubular filling system
DE19844397A1 (de) 1998-09-28 2000-03-30 Hilti Ag Abrasive Schneidkörper enthaltend Diamantpartikel und Verfahren zur Herstellung der Schneidkörper
US6161622A (en) 1998-11-02 2000-12-19 Halliburton Energy Services, Inc. Remote actuated plug method
US5992452A (en) 1998-11-09 1999-11-30 Nelson, Ii; Joe A. Ball and seat valve assembly and downhole pump utilizing the valve assembly
US6220350B1 (en) 1998-12-01 2001-04-24 Halliburton Energy Services, Inc. High strength water soluble plug
JP2000185725A (ja) 1998-12-21 2000-07-04 Sachiko Ando 筒状包装体
FR2788451B1 (fr) 1999-01-20 2001-04-06 Elf Exploration Prod Procede de destruction d'un isolant thermique rigide dispose dans un espace confine
US6315041B1 (en) 1999-04-15 2001-11-13 Stephen L. Carlisle Multi-zone isolation tool and method of stimulating and testing a subterranean well
US6186227B1 (en) 1999-04-21 2001-02-13 Schlumberger Technology Corporation Packer
US6561269B1 (en) 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6613383B1 (en) 1999-06-21 2003-09-02 Regents Of The University Of Colorado Atomic layer controlled deposition on particle surfaces
US6241021B1 (en) 1999-07-09 2001-06-05 Halliburton Energy Services, Inc. Methods of completing an uncemented wellbore junction
US6341747B1 (en) 1999-10-28 2002-01-29 United Technologies Corporation Nanocomposite layered airfoil
US6401547B1 (en) 1999-10-29 2002-06-11 The University Of Florida Device and method for measuring fluid and solute fluxes in flow systems
US6237688B1 (en) 1999-11-01 2001-05-29 Halliburton Energy Services, Inc. Pre-drilled casing apparatus and associated methods for completing a subterranean well
US6279656B1 (en) 1999-11-03 2001-08-28 Santrol, Inc. Downhole chemical delivery system for oil and gas wells
US6341653B1 (en) 1999-12-10 2002-01-29 Polar Completions Engineering, Inc. Junk basket and method of use
US6513600B2 (en) 1999-12-22 2003-02-04 Richard Ross Apparatus and method for packing or anchoring an inner tubular within a casing
US6325148B1 (en) 1999-12-22 2001-12-04 Weatherford/Lamb, Inc. Tools and methods for use with expandable tubulars
AU782553B2 (en) 2000-01-05 2005-08-11 Baker Hughes Incorporated Method of providing hydraulic/fiber conduits adjacent bottom hole assemblies for multi-step completions
US6354372B1 (en) 2000-01-13 2002-03-12 Carisella & Cook Ventures Subterranean well tool and slip assembly
CZ302242B6 (cs) 2000-01-25 2011-01-05 Glatt Systemtechnik Dresden Gmbh Zpusob výroby odlehcených konstrukcních prvku
US6390200B1 (en) 2000-02-04 2002-05-21 Allamon Interest Drop ball sub and system of use
US7036594B2 (en) 2000-03-02 2006-05-02 Schlumberger Technology Corporation Controlling a pressure transient in a well
CN1207125C (zh) 2000-03-10 2005-06-22 克里斯铝轧制品有限公司 钎焊板产品及使用钎焊板产品制造组件的方法
US6679176B1 (en) 2000-03-21 2004-01-20 Peter D. Zavitsanos Reactive projectiles for exploding unexploded ordnance
US6699305B2 (en) 2000-03-21 2004-03-02 James J. Myrick Production of metals and their alloys
US6662886B2 (en) 2000-04-03 2003-12-16 Larry R. Russell Mudsaver valve with dual snap action
US6276457B1 (en) 2000-04-07 2001-08-21 Alberta Energy Company Ltd Method for emplacing a coil tubing string in a well
US6371206B1 (en) 2000-04-20 2002-04-16 Kudu Industries Inc Prevention of sand plugging of oil well pumps
US6408946B1 (en) 2000-04-28 2002-06-25 Baker Hughes Incorporated Multi-use tubing disconnect
EP1174385B1 (en) 2000-05-31 2004-10-06 Honda Giken Kogyo Kabushiki Kaisha Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle
EG22932A (en) 2000-05-31 2002-01-13 Shell Int Research Method and system for reducing longitudinal fluid flow around a permeable well tubular
JP3696514B2 (ja) 2000-05-31 2005-09-21 本田技研工業株式会社 合金粉末の製造方法
US6446717B1 (en) 2000-06-01 2002-09-10 Weatherford/Lamb, Inc. Core-containing sealing assembly
US6713177B2 (en) 2000-06-21 2004-03-30 Regents Of The University Of Colorado Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
EP1295011B1 (en) 2000-06-30 2005-12-21 Weatherford/Lamb, Inc. Apparatus and method to complete a multilateral junction
US7600572B2 (en) 2000-06-30 2009-10-13 Bj Services Company Drillable bridge plug
US7255178B2 (en) 2000-06-30 2007-08-14 Bj Services Company Drillable bridge plug
GB0016595D0 (en) 2000-07-07 2000-08-23 Moyes Peter B Deformable member
US6394180B1 (en) 2000-07-12 2002-05-28 Halliburton Energy Service,S Inc. Frac plug with caged ball
AU2001294412A1 (en) 2000-07-21 2002-02-05 Sinvent A/S Combined liner and matrix system, use of the system and method for control and monitoring of processes in a well
US6382244B2 (en) 2000-07-24 2002-05-07 Roy R. Vann Reciprocating pump standing head valve
US7360593B2 (en) 2000-07-27 2008-04-22 Vernon George Constien Product for coating wellbore screens
US6394185B1 (en) 2000-07-27 2002-05-28 Vernon George Constien Product and process for coating wellbore screens
US6390195B1 (en) 2000-07-28 2002-05-21 Halliburton Energy Service,S Inc. Methods and compositions for forming permeable cement sand screens in well bores
US6357322B1 (en) 2000-08-08 2002-03-19 Williams-Sonoma, Inc. Inclined rack and spiral radius pinion corkscrew machine
US6470965B1 (en) 2000-08-28 2002-10-29 Colin Winzer Device for introducing a high pressure fluid into well head components
US6630008B1 (en) 2000-09-18 2003-10-07 Ceracon, Inc. Nanocrystalline aluminum metal matrix composites, and production methods
US6712797B1 (en) 2000-09-19 2004-03-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Blood return catheter
US6439313B1 (en) 2000-09-20 2002-08-27 Schlumberger Technology Corporation Downhole machining of well completion equipment
GB0025302D0 (en) 2000-10-14 2000-11-29 Sps Afos Group Ltd Downhole fluid sampler
GB0026063D0 (en) 2000-10-25 2000-12-13 Weatherford Lamb Downhole tubing
US7090025B2 (en) 2000-10-25 2006-08-15 Weatherford/Lamb, Inc. Methods and apparatus for reforming and expanding tubulars in a wellbore
US6472068B1 (en) 2000-10-26 2002-10-29 Sandia Corporation Glass rupture disk
NO313341B1 (no) 2000-12-04 2002-09-16 Ziebel As Hylseventil for regulering av fluidstrom og fremgangsmate til sammenstilling av en hylseventil
US6491097B1 (en) 2000-12-14 2002-12-10 Halliburton Energy Services, Inc. Abrasive slurry delivery apparatus and methods of using same
US6457525B1 (en) 2000-12-15 2002-10-01 Exxonmobil Oil Corporation Method and apparatus for completing multiple production zones from a single wellbore
US6725934B2 (en) 2000-12-21 2004-04-27 Baker Hughes Incorporated Expandable packer isolation system
US6899777B2 (en) 2001-01-02 2005-05-31 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
US6491083B2 (en) 2001-02-06 2002-12-10 Anadigics, Inc. Wafer demount receptacle for separation of thinned wafer from mounting carrier
US6601650B2 (en) 2001-08-09 2003-08-05 Worldwide Oilfield Machine, Inc. Method and apparatus for replacing BOP with gate valve
US6513598B2 (en) 2001-03-19 2003-02-04 Halliburton Energy Services, Inc. Drillable floating equipment and method of eliminating bit trips by using drillable materials for the construction of shoe tracks
US6668938B2 (en) 2001-03-30 2003-12-30 Schlumberger Technology Corporation Cup packer
US6644412B2 (en) 2001-04-25 2003-11-11 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
US6634428B2 (en) 2001-05-03 2003-10-21 Baker Hughes Incorporated Delayed opening ball seat
US7032662B2 (en) 2001-05-23 2006-04-25 Core Laboratories Lp Method for determining the extent of recovery of materials injected into oil wells or subsurface formations during oil and gas exploration and production
US6712153B2 (en) 2001-06-27 2004-03-30 Weatherford/Lamb, Inc. Resin impregnated continuous fiber plug with non-metallic element system
US6588507B2 (en) 2001-06-28 2003-07-08 Halliburton Energy Services, Inc. Apparatus and method for progressively gravel packing an interval of a wellbore
JP4507598B2 (ja) 2001-07-18 2010-07-21 ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド 表面に無機薄膜を有する非凝集粒子を製造するための方法
US6655459B2 (en) 2001-07-30 2003-12-02 Weatherford/Lamb, Inc. Completion apparatus and methods for use in wellbores
US7017664B2 (en) 2001-08-24 2006-03-28 Bj Services Company Single trip horizontal gravel pack and stimulation system and method
US7331388B2 (en) 2001-08-24 2008-02-19 Bj Services Company Horizontal single trip system with rotating jetting tool
WO2003027431A2 (en) 2001-09-26 2003-04-03 Cooke Claude E Jr Method and materials for hydraulic fracturing of wells
JP3607655B2 (ja) 2001-09-26 2005-01-05 株式会社東芝 マウント材、半導体装置及び半導体装置の製造方法
WO2003031815A2 (en) 2001-10-09 2003-04-17 Burlington Resources Oil & Gas Company Lp Downhole well pump
US20030070811A1 (en) 2001-10-12 2003-04-17 Robison Clark E. Apparatus and method for perforating a subterranean formation
US6601648B2 (en) 2001-10-22 2003-08-05 Charles D. Ebinger Well completion method
WO2003048508A1 (en) 2001-12-03 2003-06-12 Shell Internationale Research Maatschappij B.V. Method and device for injecting a fluid into a formation
US7017677B2 (en) 2002-07-24 2006-03-28 Smith International, Inc. Coarse carbide substrate cutting elements and method of forming the same
CA2471261A1 (en) 2001-12-18 2003-06-26 Sand Control, Inc. A drilling method for maintaining productivity while eliminating perforating and gravel packing
US7051805B2 (en) 2001-12-20 2006-05-30 Baker Hughes Incorporated Expandable packer with anchoring feature
US7445049B2 (en) 2002-01-22 2008-11-04 Weatherford/Lamb, Inc. Gas operated pump for hydrocarbon wells
GB2402443B (en) 2002-01-22 2005-10-12 Weatherford Lamb Gas operated pump for hydrocarbon wells
US6719051B2 (en) 2002-01-25 2004-04-13 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US7096945B2 (en) 2002-01-25 2006-08-29 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US6899176B2 (en) 2002-01-25 2005-05-31 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US6715541B2 (en) 2002-02-21 2004-04-06 Weatherford/Lamb, Inc. Ball dropping assembly
US6776228B2 (en) 2002-02-21 2004-08-17 Weatherford/Lamb, Inc. Ball dropping assembly
US6799638B2 (en) 2002-03-01 2004-10-05 Halliburton Energy Services, Inc. Method, apparatus and system for selective release of cementing plugs
US20040005483A1 (en) 2002-03-08 2004-01-08 Chhiu-Tsu Lin Perovskite manganites for use in coatings
US6896061B2 (en) 2002-04-02 2005-05-24 Halliburton Energy Services, Inc. Multiple zones frac tool
US6883611B2 (en) 2002-04-12 2005-04-26 Halliburton Energy Services, Inc. Sealed multilateral junction system
US6810960B2 (en) 2002-04-22 2004-11-02 Weatherford/Lamb, Inc. Methods for increasing production from a wellbore
US7325443B2 (en) 2002-05-15 2008-02-05 Aahus Universitet Sampling device and method for measuring fluid flow and solute mass transport
US6769491B2 (en) 2002-06-07 2004-08-03 Weatherford/Lamb, Inc. Anchoring and sealing system for a downhole tool
AUPS311202A0 (en) 2002-06-21 2002-07-18 Cast Centre Pty Ltd Creep resistant magnesium alloy
GB2390106B (en) 2002-06-24 2005-11-30 Schlumberger Holdings Apparatus and methods for establishing secondary hydraulics in a downhole tool
US7035361B2 (en) 2002-07-15 2006-04-25 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
US7049272B2 (en) 2002-07-16 2006-05-23 Santrol, Inc. Downhole chemical delivery system for oil and gas wells
EP1546056B1 (en) 2002-07-19 2013-12-11 PPG Industries Ohio, Inc. Article having nano-scaled structures and a process for making such article
US6939388B2 (en) 2002-07-23 2005-09-06 General Electric Company Method for making materials having artificially dispersed nano-size phases and articles made therewith
US6945331B2 (en) 2002-07-31 2005-09-20 Schlumberger Technology Corporation Multiple interventionless actuated downhole valve and method
US7128145B2 (en) 2002-08-19 2006-10-31 Baker Hughes Incorporated High expansion sealing device with leak path closures
US6932159B2 (en) 2002-08-28 2005-08-23 Baker Hughes Incorporated Run in cover for downhole expandable screen
US7028778B2 (en) 2002-09-11 2006-04-18 Hiltap Fittings, Ltd. Fluid system component with sacrificial element
AU2003267184A1 (en) 2002-09-13 2004-04-30 University Of Wyoming System and method for the mitigation of paraffin wax deposition from crude oil by using ultrasonic waves
US6943207B2 (en) 2002-09-13 2005-09-13 H.B. Fuller Licensing & Financing Inc. Smoke suppressant hot melt adhesive composition
US6817414B2 (en) 2002-09-20 2004-11-16 M-I Llc Acid coated sand for gravel pack and filter cake clean-up
US6854522B2 (en) 2002-09-23 2005-02-15 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US6827150B2 (en) * 2002-10-09 2004-12-07 Weatherford/Lamb, Inc. High expansion packer
US6887297B2 (en) 2002-11-08 2005-05-03 Wayne State University Copper nanocrystals and methods of producing same
US7090027B1 (en) 2002-11-12 2006-08-15 Dril—Quip, Inc. Casing hanger assembly with rupture disk in support housing and method
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US8297364B2 (en) 2009-12-08 2012-10-30 Baker Hughes Incorporated Telescopic unit with dissolvable barrier
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US8327931B2 (en) 2009-12-08 2012-12-11 Baker Hughes Incorporated Multi-component disappearing tripping ball and method for making the same
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
CA2511826C (en) 2002-12-26 2008-07-22 Baker Hughes Incorporated Alternative packer setting method
JP2004225084A (ja) 2003-01-21 2004-08-12 Nissin Kogyo Co Ltd 自動車用ナックル
JP2004225765A (ja) 2003-01-21 2004-08-12 Nissin Kogyo Co Ltd 車両用ディスクブレーキのディスクロータ
US7128154B2 (en) 2003-01-30 2006-10-31 Weatherford/Lamb, Inc. Single-direction cementing plug
US7013989B2 (en) 2003-02-14 2006-03-21 Weatherford/Lamb, Inc. Acoustical telemetry
DE10306887A1 (de) 2003-02-18 2004-08-26 Daimlerchrysler Ag Verfahren zur Beschichtung von Partikeln für generative rapid prototyping Prozesse
US7021389B2 (en) 2003-02-24 2006-04-04 Bj Services Company Bi-directional ball seat system and method
UA83655C2 (ru) 2003-02-26 2008-08-11 Ексонмобил Апстрим Рисерч Компани Способ бурения и окончания скважин
US7108080B2 (en) 2003-03-13 2006-09-19 Tesco Corporation Method and apparatus for drilling a borehole with a borehole liner
US7288325B2 (en) 2003-03-14 2007-10-30 The Pennsylvania State University Hydrogen storage material based on platelets and/or a multilayered core/shell structure
NO318013B1 (no) 2003-03-21 2005-01-17 Bakke Oil Tools As Anordning og fremgangsmåte for frakopling av et verktøy fra en rørstreng
US7416029B2 (en) 2003-04-01 2008-08-26 Specialised Petroleum Services Group Limited Downhole tool
US20060102871A1 (en) 2003-04-08 2006-05-18 Xingwu Wang Novel composition
JP4599294B2 (ja) 2003-04-14 2010-12-15 積水化学工業株式会社 合わせガラスの剥離方法
DE10318801A1 (de) 2003-04-17 2004-11-04 Aesculap Ag & Co. Kg Flächiges Implantat und seine Verwendung in der Chirurgie
US7017672B2 (en) 2003-05-02 2006-03-28 Go Ii Oil Tools, Inc. Self-set bridge plug
US6926086B2 (en) 2003-05-09 2005-08-09 Halliburton Energy Services, Inc. Method for removing a tool from a well
US20090107684A1 (en) 2007-10-31 2009-04-30 Cooke Jr Claude E Applications of degradable polymers for delayed mechanical changes in wells
US20040231845A1 (en) 2003-05-15 2004-11-25 Cooke Claude E. Applications of degradable polymers in wells
US6962206B2 (en) 2003-05-15 2005-11-08 Weatherford/Lamb, Inc. Packer with metal sealing element
US8181703B2 (en) 2003-05-16 2012-05-22 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US7097906B2 (en) 2003-06-05 2006-08-29 Lockheed Martin Corporation Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon
WO2004111284A2 (en) 2003-06-12 2004-12-23 Element Six (Pty) Ltd Composite material for drilling applications
CA2530471A1 (en) 2003-06-23 2005-02-17 William Marsh Rice University Elastomers reinforced with carbon nanotubes
US20050064247A1 (en) 2003-06-25 2005-03-24 Ajit Sane Composite refractory metal carbide coating on a substrate and method for making thereof
US7048048B2 (en) 2003-06-26 2006-05-23 Halliburton Energy Services, Inc. Expandable sand control screen and method for use of same
US7032663B2 (en) 2003-06-27 2006-04-25 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
US7111682B2 (en) 2003-07-21 2006-09-26 Mark Kevin Blaisdell Method and apparatus for gas displacement well systems
KR100558966B1 (ko) 2003-07-25 2006-03-10 한국과학기술원 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법
JP4222157B2 (ja) 2003-08-28 2009-02-12 大同特殊鋼株式会社 剛性および強度が向上したチタン合金
GB0320252D0 (en) 2003-08-29 2003-10-01 Caledyne Ltd Improved seal
US7833944B2 (en) 2003-09-17 2010-11-16 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US8153052B2 (en) 2003-09-26 2012-04-10 General Electric Company High-temperature composite articles and associated methods of manufacture
GB0323627D0 (en) 2003-10-09 2003-11-12 Rubberatkins Ltd Downhole tool
US8342240B2 (en) 2003-10-22 2013-01-01 Baker Hughes Incorporated Method for providing a temporary barrier in a flow pathway
US7461699B2 (en) 2003-10-22 2008-12-09 Baker Hughes Incorporated Method for providing a temporary barrier in a flow pathway
CN2658384Y (zh) 2003-10-27 2004-11-24 大庆油田有限责任公司 更换气井油管阀门装置
JP4593473B2 (ja) 2003-10-29 2010-12-08 住友精密工業株式会社 カーボンナノチューブ分散複合材料の製造方法
US20050102255A1 (en) 2003-11-06 2005-05-12 Bultman David C. Computer-implemented system and method for handling stored data
US7078073B2 (en) 2003-11-13 2006-07-18 General Electric Company Method for repairing coated components
US7182135B2 (en) 2003-11-14 2007-02-27 Halliburton Energy Services, Inc. Plug systems and methods for using plugs in subterranean formations
US7316274B2 (en) 2004-03-05 2008-01-08 Baker Hughes Incorporated One trip perforating, cementing, and sand management apparatus and method
US20050109502A1 (en) 2003-11-20 2005-05-26 Jeremy Buc Slay Downhole seal element formed from a nanocomposite material
US7013998B2 (en) 2003-11-20 2006-03-21 Halliburton Energy Services, Inc. Drill bit having an improved seal and lubrication method using same
US7503390B2 (en) 2003-12-11 2009-03-17 Baker Hughes Incorporated Lock mechanism for a sliding sleeve
US7384443B2 (en) 2003-12-12 2008-06-10 Tdy Industries, Inc. Hybrid cemented carbide composites
US7264060B2 (en) 2003-12-17 2007-09-04 Baker Hughes Incorporated Side entry sub hydraulic wireline cutter and method
FR2864202B1 (fr) 2003-12-22 2006-08-04 Commissariat Energie Atomique Dispositif tubulaire instrumente pour le transport d'un fluide sous pression
US7096946B2 (en) 2003-12-30 2006-08-29 Baker Hughes Incorporated Rotating blast liner
US7044230B2 (en) 2004-01-27 2006-05-16 Halliburton Energy Services, Inc. Method for removing a tool from a well
US7210533B2 (en) 2004-02-11 2007-05-01 Halliburton Energy Services, Inc. Disposable downhole tool with segmented compression element and method
US7424909B2 (en) 2004-02-27 2008-09-16 Smith International, Inc. Drillable bridge plug
US7810558B2 (en) 2004-02-27 2010-10-12 Smith International, Inc. Drillable bridge plug
NO325291B1 (no) 2004-03-08 2008-03-17 Reelwell As Fremgangsmate og anordning for etablering av en undergrunns bronn.
GB2428058B (en) 2004-03-12 2008-07-30 Schlumberger Holdings Sealing system and method for use in a well
US7168494B2 (en) 2004-03-18 2007-01-30 Halliburton Energy Services, Inc. Dissolvable downhole tools
US7093664B2 (en) 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7353879B2 (en) 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
US7250188B2 (en) 2004-03-31 2007-07-31 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defense Of Her Majesty's Canadian Government Depositing metal particles on carbon nanotubes
WO2005100743A1 (en) 2004-04-12 2005-10-27 Baker Hughes Incorporated Completion with telescoping perforation & fracturing tool
US7255172B2 (en) 2004-04-13 2007-08-14 Tech Tac Company, Inc. Hydrodynamic, down-hole anchor
WO2006073428A2 (en) 2004-04-19 2006-07-13 Dynamet Technology, Inc. Titanium tungsten alloys produced by additions of tungsten nanopowder
US20050269083A1 (en) 2004-05-03 2005-12-08 Halliburton Energy Services, Inc. Onboard navigation system for downhole tool
US7163066B2 (en) 2004-05-07 2007-01-16 Bj Services Company Gravity valve for a downhole tool
US7723272B2 (en) 2007-02-26 2010-05-25 Baker Hughes Incorporated Methods and compositions for fracturing subterranean formations
US20080060810A9 (en) 2004-05-25 2008-03-13 Halliburton Energy Services, Inc. Methods for treating a subterranean formation with a curable composition using a jetting tool
US8211247B2 (en) 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
JP4476701B2 (ja) 2004-06-02 2010-06-09 日本碍子株式会社 電極内蔵焼結体の製造方法
US7819198B2 (en) 2004-06-08 2010-10-26 Birckhead John M Friction spring release mechanism
US7736582B2 (en) 2004-06-10 2010-06-15 Allomet Corporation Method for consolidating tough coated hard powders
US7287592B2 (en) 2004-06-11 2007-10-30 Halliburton Energy Services, Inc. Limited entry multiple fracture and frac-pack placement in liner completions using liner fracturing tool
US7401648B2 (en) 2004-06-14 2008-07-22 Baker Hughes Incorporated One trip well apparatus with sand control
US8009787B2 (en) 2004-06-15 2011-08-30 Battelle Energy Alliance, Llc Method for non-destructive testing
US7621435B2 (en) 2004-06-17 2009-11-24 The Regents Of The University Of California Designs and fabrication of structural armor
US7243723B2 (en) 2004-06-18 2007-07-17 Halliburton Energy Services, Inc. System and method for fracturing and gravel packing a borehole
US20080149325A1 (en) 2004-07-02 2008-06-26 Joe Crawford Downhole oil recovery system and method of use
US7322412B2 (en) 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
US7141207B2 (en) 2004-08-30 2006-11-28 General Motors Corporation Aluminum/magnesium 3D-Printing rapid prototyping
US7380600B2 (en) 2004-09-01 2008-06-03 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7709421B2 (en) 2004-09-03 2010-05-04 Baker Hughes Incorporated Microemulsions to convert OBM filter cakes to WBM filter cakes having filtration control
JP2006078614A (ja) 2004-09-08 2006-03-23 Ricoh Co Ltd 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
US7303014B2 (en) 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Casing strings and methods of using such strings in subterranean cementing operations
US7234530B2 (en) 2004-11-01 2007-06-26 Hydril Company Lp Ram BOP shear device
US8309230B2 (en) 2004-11-12 2012-11-13 Inmat, Inc. Multilayer nanocomposite barrier structures
US7337854B2 (en) 2004-11-24 2008-03-04 Weatherford/Lamb, Inc. Gas-pressurized lubricator and method
JP5255842B2 (ja) 2004-12-03 2013-08-07 エクソンモービル・ケミカル・パテンツ・インク ナノ複合組成物を製造するための修飾層状フィラーおよびその使用法
US7387165B2 (en) 2004-12-14 2008-06-17 Schlumberger Technology Corporation System for completing multiple well intervals
US20090084553A1 (en) 2004-12-14 2009-04-02 Schlumberger Technology Corporation Sliding sleeve valve assembly with sand screen
US7322417B2 (en) 2004-12-14 2008-01-29 Schlumberger Technology Corporation Technique and apparatus for completing multiple zones
US7513320B2 (en) 2004-12-16 2009-04-07 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US7387578B2 (en) 2004-12-17 2008-06-17 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US20060134312A1 (en) 2004-12-20 2006-06-22 Slim-Fast Foods Company, Division Of Conopco, Inc. Wetting system
US7350582B2 (en) 2004-12-21 2008-04-01 Weatherford/Lamb, Inc. Wellbore tool with disintegratable components and method of controlling flow
US7426964B2 (en) 2004-12-22 2008-09-23 Baker Hughes Incorporated Release mechanism for downhole tool
US20060153728A1 (en) 2005-01-10 2006-07-13 Schoenung Julie M Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
US20060150770A1 (en) 2005-01-12 2006-07-13 Onmaterials, Llc Method of making composite particles with tailored surface characteristics
US7353876B2 (en) 2005-02-01 2008-04-08 Halliburton Energy Services, Inc. Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US8062554B2 (en) 2005-02-04 2011-11-22 Raytheon Company System and methods of dispersion of nanostructures in composite materials
US7926571B2 (en) 2005-03-15 2011-04-19 Raymond A. Hofman Cemented open hole selective fracing system
US7267172B2 (en) 2005-03-15 2007-09-11 Peak Completion Technologies, Inc. Cemented open hole selective fracing system
GB2435656B (en) 2005-03-15 2009-06-03 Schlumberger Holdings Technique and apparatus for use in wells
WO2006101618A2 (en) 2005-03-18 2006-09-28 Exxonmobil Upstream Research Company Hydraulically controlled burst disk subs (hcbs)
US7537825B1 (en) 2005-03-25 2009-05-26 Massachusetts Institute Of Technology Nano-engineered material architectures: ultra-tough hybrid nanocomposite system
US8256504B2 (en) 2005-04-11 2012-09-04 Brown T Leon Unlimited stroke drive oil well pumping system
US20060260031A1 (en) 2005-05-20 2006-11-23 Conrad Joseph M Iii Potty training device
US8231703B1 (en) 2005-05-25 2012-07-31 Babcock & Wilcox Technical Services Y-12, Llc Nanostructured composite reinforced material
FR2886636B1 (fr) 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau inorganique presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
US20070131912A1 (en) 2005-07-08 2007-06-14 Simone Davide L Electrically conductive adhesives
US7422055B2 (en) 2005-07-12 2008-09-09 Smith International, Inc. Coiled tubing wireline cutter
US7422060B2 (en) 2005-07-19 2008-09-09 Schlumberger Technology Corporation Methods and apparatus for completing a well
US7422058B2 (en) 2005-07-22 2008-09-09 Baker Hughes Incorporated Reinforced open-hole zonal isolation packer and method of use
CA2555563C (en) 2005-08-05 2009-03-31 Weatherford/Lamb, Inc. Apparatus and methods for creation of down hole annular barrier
US7509993B1 (en) 2005-08-13 2009-03-31 Wisconsin Alumni Research Foundation Semi-solid forming of metal-matrix nanocomposites
US20070107899A1 (en) 2005-08-17 2007-05-17 Schlumberger Technology Corporation Perforating Gun Fabricated from Composite Metallic Material
US7306034B2 (en) 2005-08-18 2007-12-11 Baker Hughes Incorporated Gripping assembly for expandable tubulars
US7451815B2 (en) 2005-08-22 2008-11-18 Halliburton Energy Services, Inc. Sand control screen assembly enhanced with disappearing sleeve and burst disc
US7581498B2 (en) 2005-08-23 2009-09-01 Baker Hughes Incorporated Injection molded shaped charge liner
US8230936B2 (en) 2005-08-31 2012-07-31 Schlumberger Technology Corporation Methods of forming acid particle based packers for wellbores
JP4721828B2 (ja) 2005-08-31 2011-07-13 東京応化工業株式会社 サポートプレートの剥離方法
US8567494B2 (en) 2005-08-31 2013-10-29 Schlumberger Technology Corporation Well operating elements comprising a soluble component and methods of use
JP5148820B2 (ja) 2005-09-07 2013-02-20 株式会社イーアンドエフ チタン合金複合材料およびその製造方法
US7699946B2 (en) 2005-09-07 2010-04-20 Los Alamos National Security, Llc Preparation of nanostructured materials having improved ductility
US20070051521A1 (en) 2005-09-08 2007-03-08 Eagle Downhole Solutions, Llc Retrievable frac packer
US7776256B2 (en) 2005-11-10 2010-08-17 Baker Huges Incorporated Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US20080020923A1 (en) 2005-09-13 2008-01-24 Debe Mark K Multilayered nanostructured films
WO2007032429A1 (ja) 2005-09-15 2007-03-22 Senju Metal Industry Co., Ltd. フォームはんだとその製造方法
CA2623544A1 (en) 2005-10-06 2007-04-19 International Titanium Powder, Llc Titanium or titanium alloy with titanium boride dispersion
US7363970B2 (en) 2005-10-25 2008-04-29 Schlumberger Technology Corporation Expandable packer
DE102005052470B3 (de) 2005-11-03 2007-03-29 Neue Materialien Fürth GmbH Verfahren zur Herstellung eines Verbundwerkstoffs oder eines Vorprodukts zur Herstellung eines Verbundwerkstoffs
KR100629793B1 (ko) 2005-11-11 2006-09-28 주식회사 방림 전해도금으로 마그네슘합금과 밀착성 좋은 동도금층 형성방법
US8231947B2 (en) 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use
FI120195B (fi) 2005-11-16 2009-07-31 Canatu Oy Hiilinanoputket, jotka on funktionalisoitu kovalenttisesti sidotuilla fullereeneilla, menetelmä ja laitteisto niiden tuottamiseksi ja niiden komposiitit
US20070151769A1 (en) 2005-11-23 2007-07-05 Smith International, Inc. Microwave sintering
US7946340B2 (en) 2005-12-01 2011-05-24 Halliburton Energy Services, Inc. Method and apparatus for orchestration of fracture placement from a centralized well fluid treatment center
US7604049B2 (en) 2005-12-16 2009-10-20 Schlumberger Technology Corporation Polymeric composites, oilfield elements comprising same, and methods of using same in oilfield applications
US7647964B2 (en) 2005-12-19 2010-01-19 Fairmount Minerals, Ltd. Degradable ball sealers and methods for use in well treatment
US7552777B2 (en) 2005-12-28 2009-06-30 Baker Hughes Incorporated Self-energized downhole tool
US7392841B2 (en) 2005-12-28 2008-07-01 Baker Hughes Incorporated Self boosting packing element
US7579087B2 (en) 2006-01-10 2009-08-25 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US7387158B2 (en) 2006-01-18 2008-06-17 Baker Hughes Incorporated Self energized packer
US7346456B2 (en) 2006-02-07 2008-03-18 Schlumberger Technology Corporation Wellbore diagnostic system and method
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
US8220554B2 (en) 2006-02-09 2012-07-17 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US20110067889A1 (en) 2006-02-09 2011-03-24 Schlumberger Technology Corporation Expandable and degradable downhole hydraulic regulating assembly
WO2007095376A2 (en) 2006-02-15 2007-08-23 Kennametal Inc. Method and apparatus for coating particulates utilizing physical vapor deposition
US20070207182A1 (en) 2006-03-06 2007-09-06 Jan Weber Medical devices having electrically aligned elongated particles
EP1994257A2 (en) 2006-03-10 2008-11-26 Dynamic Tubular Systems, Inc. Expandable tubulars for use in geologic structures
NO325431B1 (no) 2006-03-23 2008-04-28 Bjorgum Mekaniske As Opplosbar tetningsanordning samt fremgangsmate derav.
US7325617B2 (en) 2006-03-24 2008-02-05 Baker Hughes Incorporated Frac system without intervention
DE102006025848A1 (de) 2006-03-29 2007-10-04 Byk-Chemie Gmbh Herstellung von Nanopartikeln, insbesondere Nanopartikelkompositen, ausgehend von Pulveragglomeraten
US7455118B2 (en) 2006-03-29 2008-11-25 Smith International, Inc. Secondary lock for a downhole tool
DK1840325T3 (da) 2006-03-31 2012-12-17 Schlumberger Technology Bv Fremgangsmåde og indretning til at cementere et perforeret foringsrør
WO2007118048A2 (en) 2006-04-03 2007-10-18 William Marsh Rice University Processing of single-walled carbon nanotube metal-matrix composites manufactured by an induction heating method
KR100763922B1 (ko) 2006-04-04 2007-10-05 삼성전자주식회사 밸브 유닛 및 이를 구비한 장치
EP2010754A4 (en) 2006-04-21 2016-02-24 Shell Int Research ADJUSTING ALLOY COMPOSITIONS FOR SELECTED CHARACTERISTICS IN TEMPERATURE-LIMITED HEATERS
US7513311B2 (en) 2006-04-28 2009-04-07 Weatherford/Lamb, Inc. Temporary well zone isolation
US8021721B2 (en) 2006-05-01 2011-09-20 Smith International, Inc. Composite coating with nanoparticles for improved wear and lubricity in down hole tools
US7621351B2 (en) 2006-05-15 2009-11-24 Baker Hughes Incorporated Reaming tool suitable for running on casing or liner
CN101074479A (zh) 2006-05-19 2007-11-21 何靖 镁合金工件的表面处理方法、处理所得的工件及用于该方法的各组成物
EP2020956A2 (en) 2006-05-26 2009-02-11 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
CN101605963B (zh) * 2006-05-26 2013-11-20 欧文石油工具有限合伙公司 可配置的井眼层隔离系统和相关方法
US7661481B2 (en) 2006-06-06 2010-02-16 Halliburton Energy Services, Inc. Downhole wellbore tools having deteriorable and water-swellable components thereof and methods of use
US7478676B2 (en) 2006-06-09 2009-01-20 Halliburton Energy Services, Inc. Methods and devices for treating multiple-interval well bores
US7575062B2 (en) 2006-06-09 2009-08-18 Halliburton Energy Services, Inc. Methods and devices for treating multiple-interval well bores
US7441596B2 (en) 2006-06-23 2008-10-28 Baker Hughes Incorporated Swelling element packer and installation method
US7897063B1 (en) 2006-06-26 2011-03-01 Perry Stephen C Composition for denaturing and breaking down friction-reducing polymer and for destroying other gas and oil well contaminants
US8211248B2 (en) 2009-02-16 2012-07-03 Schlumberger Technology Corporation Aged-hardenable aluminum alloy with environmental degradability, methods of use and making
US20130133897A1 (en) 2006-06-30 2013-05-30 Schlumberger Technology Corporation Materials with environmental degradability, methods of use and making
US7607476B2 (en) 2006-07-07 2009-10-27 Baker Hughes Incorporated Expandable slip ring
US7562704B2 (en) 2006-07-14 2009-07-21 Baker Hughes Incorporated Delaying swelling in a downhole packer element
US7591318B2 (en) 2006-07-20 2009-09-22 Halliburton Energy Services, Inc. Method for removing a sealing plug from a well
GB0615135D0 (en) 2006-07-29 2006-09-06 Futuretec Ltd Running bore-lining tubulars
WO2008014607A1 (en) 2006-07-31 2008-02-07 Tekna Plasma Systems Inc. Plasma surface treatment using dielectric barrier discharges
US8281860B2 (en) 2006-08-25 2012-10-09 Schlumberger Technology Corporation Method and system for treating a subterranean formation
US7963342B2 (en) 2006-08-31 2011-06-21 Marathon Oil Company Downhole isolation valve and methods for use
KR100839613B1 (ko) 2006-09-11 2008-06-19 주식회사 씨앤테크 카본나노튜브를 활용한 복합소결재료 및 그 제조방법
US8889065B2 (en) 2006-09-14 2014-11-18 Iap Research, Inc. Micron size powders having nano size reinforcement
US7726406B2 (en) 2006-09-18 2010-06-01 Yang Xu Dissolvable downhole trigger device
US7464764B2 (en) 2006-09-18 2008-12-16 Baker Hughes Incorporated Retractable ball seat having a time delay material
GB0618687D0 (en) 2006-09-22 2006-11-01 Omega Completion Technology Erodeable pressure barrier
US7578353B2 (en) 2006-09-22 2009-08-25 Robert Bradley Cook Apparatus for controlling slip deployment in a downhole device
WO2008038733A1 (fr) 2006-09-29 2008-04-03 Kabushiki Kaisha Toshiba Révélateur liquide, procédé de production de celui-ci et procédé de production d'affichage
US7828055B2 (en) 2006-10-17 2010-11-09 Baker Hughes Incorporated Apparatus and method for controlled deployment of shape-conforming materials
US7565929B2 (en) 2006-10-24 2009-07-28 Schlumberger Technology Corporation Degradable material assisted diversion
GB0621073D0 (en) 2006-10-24 2006-11-29 Isis Innovation Metal matrix composite material
US7559357B2 (en) 2006-10-25 2009-07-14 Baker Hughes Incorporated Frac-pack casing saver
EP1918507A1 (en) 2006-10-31 2008-05-07 Services Pétroliers Schlumberger Shaped charge comprising an acid
US7712541B2 (en) 2006-11-01 2010-05-11 Schlumberger Technology Corporation System and method for protecting downhole components during deployment and wellbore conditioning
EP2082619B1 (en) 2006-11-06 2022-10-12 Agency for Science, Technology And Research Nanoparticulate encapsulation barrier stack
US20080210473A1 (en) 2006-11-14 2008-09-04 Smith International, Inc. Hybrid carbon nanotube reinforced composite bodies
US20080179104A1 (en) 2006-11-14 2008-07-31 Smith International, Inc. Nano-reinforced wc-co for improved properties
US7757758B2 (en) 2006-11-28 2010-07-20 Baker Hughes Incorporated Expandable wellbore liner
US8028767B2 (en) 2006-12-04 2011-10-04 Baker Hughes, Incorporated Expandable stabilizer with roller reamer elements
US8056628B2 (en) 2006-12-04 2011-11-15 Schlumberger Technology Corporation System and method for facilitating downhole operations
US7699101B2 (en) 2006-12-07 2010-04-20 Halliburton Energy Services, Inc. Well system having galvanic time release plug
US7861744B2 (en) 2006-12-12 2011-01-04 Expansion Technologies Tubular expansion device and method of fabrication
US7628228B2 (en) 2006-12-14 2009-12-08 Longyear Tm, Inc. Core drill bit with extended crown height
US20080149351A1 (en) 2006-12-20 2008-06-26 Schlumberger Technology Corporation Temporary containments for swellable and inflatable packer elements
US7909088B2 (en) 2006-12-20 2011-03-22 Baker Huges Incorporated Material sensitive downhole flow control device
US20080169130A1 (en) 2007-01-12 2008-07-17 M-I Llc Wellbore fluids for casing drilling
US7510018B2 (en) 2007-01-15 2009-03-31 Weatherford/Lamb, Inc. Convertible seal
US7617871B2 (en) 2007-01-29 2009-11-17 Halliburton Energy Services, Inc. Hydrajet bottomhole completion tool and process
US20080202764A1 (en) 2007-02-22 2008-08-28 Halliburton Energy Services, Inc. Consumable downhole tools
US20080202814A1 (en) 2007-02-23 2008-08-28 Lyons Nicholas J Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same
JP4980096B2 (ja) 2007-02-28 2012-07-18 本田技研工業株式会社 自動二輪車のシートレール構造
US7909096B2 (en) 2007-03-02 2011-03-22 Schlumberger Technology Corporation Method and apparatus of reservoir stimulation while running casing
US20080216383A1 (en) 2007-03-07 2008-09-11 David Pierick High performance nano-metal hybrid fishing tackle
US7770652B2 (en) 2007-03-13 2010-08-10 Bbj Tools Inc. Ball release procedure and release tool
US20080223587A1 (en) 2007-03-16 2008-09-18 Isolation Equipment Services Inc. Ball injecting apparatus for wellbore operations
US20080236829A1 (en) 2007-03-26 2008-10-02 Lynde Gerald D Casing profiling and recovery system
US20080236842A1 (en) 2007-03-27 2008-10-02 Schlumberger Technology Corporation Downhole oilfield apparatus comprising a diamond-like carbon coating and methods of use
US7708078B2 (en) 2007-04-05 2010-05-04 Baker Hughes Incorporated Apparatus and method for delivering a conductor downhole
US7875313B2 (en) 2007-04-05 2011-01-25 E. I. Du Pont De Nemours And Company Method to form a pattern of functional material on a substrate using a mask material
US8978776B2 (en) 2007-04-18 2015-03-17 Dynamic Tubular Systems, Inc. Porous tubular structures and a method for expanding porous tubular structures
US7690436B2 (en) 2007-05-01 2010-04-06 Weatherford/Lamb Inc. Pressure isolation plug for horizontal wellbore and associated methods
GB2448927B (en) * 2007-05-04 2010-05-05 Dynamic Dinosaurs Bv Apparatus and method for expanding tubular elements
US7938191B2 (en) 2007-05-11 2011-05-10 Schlumberger Technology Corporation Method and apparatus for controlling elastomer swelling in downhole applications
US7527103B2 (en) 2007-05-29 2009-05-05 Baker Hughes Incorporated Procedures and compositions for reservoir protection
US20080314588A1 (en) 2007-06-20 2008-12-25 Schlumberger Technology Corporation System and method for controlling erosion of components during well treatment
US7810567B2 (en) 2007-06-27 2010-10-12 Schlumberger Technology Corporation Methods of producing flow-through passages in casing, and methods of using such casing
JP5229934B2 (ja) 2007-07-05 2013-07-03 住友精密工業株式会社 高熱伝導性複合材料
US7757773B2 (en) 2007-07-25 2010-07-20 Schlumberger Technology Corporation Latch assembly for wellbore operations
US7673673B2 (en) 2007-08-03 2010-03-09 Halliburton Energy Services, Inc. Apparatus for isolating a jet forming aperture in a well bore servicing tool
US20090038858A1 (en) 2007-08-06 2009-02-12 Smith International, Inc. Use of nanosized particulates and fibers in elastomer seals for improved performance metrics for roller cone bits
US7503392B2 (en) 2007-08-13 2009-03-17 Baker Hughes Incorporated Deformable ball seat
US7644772B2 (en) 2007-08-13 2010-01-12 Baker Hughes Incorporated Ball seat having segmented arcuate ball support member
US7637323B2 (en) 2007-08-13 2009-12-29 Baker Hughes Incorporated Ball seat having fluid activated ball support
US9157141B2 (en) 2007-08-24 2015-10-13 Schlumberger Technology Corporation Conditioning ferrous alloys into cracking susceptible and fragmentable elements for use in a well
US7798201B2 (en) 2007-08-24 2010-09-21 General Electric Company Ceramic cores for casting superalloys and refractory metal composites, and related processes
US7703510B2 (en) 2007-08-27 2010-04-27 Baker Hughes Incorporated Interventionless multi-position frac tool
US8191633B2 (en) 2007-09-07 2012-06-05 Frazier W Lynn Degradable downhole check valve
US7909115B2 (en) 2007-09-07 2011-03-22 Schlumberger Technology Corporation Method for perforating utilizing a shaped charge in acidizing operations
NO328882B1 (no) 2007-09-14 2010-06-07 Vosstech As Aktiveringsmekanisme og fremgangsmate for a kontrollere denne
CN101386926B (zh) 2007-09-14 2011-11-09 清华大学 镁基复合材料的制备方法及制备装置
US7775284B2 (en) 2007-09-28 2010-08-17 Halliburton Energy Services, Inc. Apparatus for adjustably controlling the inflow of production fluids from a subterranean well
US20090084539A1 (en) 2007-09-28 2009-04-02 Ping Duan Downhole sealing devices having a shape-memory material and methods of manufacturing and using same
CN101816224A (zh) 2007-10-02 2010-08-25 派克汉尼芬公司 用于电磁干扰(emi)垫片的纳米涂料
US20090090440A1 (en) 2007-10-04 2009-04-09 Ensign-Bickford Aerospace & Defense Company Exothermic alloying bimetallic particles
US7913765B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Water absorbing or dissolving materials used as an in-flow control device and method of use
US7784543B2 (en) 2007-10-19 2010-08-31 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7793714B2 (en) 2007-10-19 2010-09-14 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US8347950B2 (en) 2007-11-05 2013-01-08 Helmut Werner PROVOST Modular room heat exchange system with light unit
US7909110B2 (en) 2007-11-20 2011-03-22 Schlumberger Technology Corporation Anchoring and sealing system for cased hole wells
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
US7806189B2 (en) 2007-12-03 2010-10-05 W. Lynn Frazier Downhole valve assembly
US8371369B2 (en) 2007-12-04 2013-02-12 Baker Hughes Incorporated Crossover sub with erosion resistant inserts
US8092923B2 (en) 2007-12-12 2012-01-10 GM Global Technology Operations LLC Corrosion resistant spacer
US7775279B2 (en) 2007-12-17 2010-08-17 Schlumberger Technology Corporation Debris-free perforating apparatus and technique
US20090152009A1 (en) 2007-12-18 2009-06-18 Halliburton Energy Services, Inc., A Delaware Corporation Nano particle reinforced polymer element for stator and rotor assembly
US9005420B2 (en) 2007-12-20 2015-04-14 Integran Technologies Inc. Variable property electrodepositing of metallic structures
US7987906B1 (en) 2007-12-21 2011-08-02 Joseph Troy Well bore tool
US7735578B2 (en) 2008-02-07 2010-06-15 Baker Hughes Incorporated Perforating system with shaped charge case having a modified boss
US20090205841A1 (en) 2008-02-15 2009-08-20 Jurgen Kluge Downwell system with activatable swellable packer
GB2457894B (en) 2008-02-27 2011-12-14 Swelltec Ltd Downhole apparatus and method
FR2928662B1 (fr) 2008-03-11 2011-08-26 Arkema France Procede et systeme de depot d'un metal ou metalloide sur des nanotubes de carbone
US7686082B2 (en) 2008-03-18 2010-03-30 Baker Hughes Incorporated Full bore cementable gun system
US7798226B2 (en) 2008-03-18 2010-09-21 Packers Plus Energy Services Inc. Cement diffuser for annulus cementing
US7806192B2 (en) 2008-03-25 2010-10-05 Foster Anthony P Method and system for anchoring and isolating a wellbore
US8196663B2 (en) 2008-03-25 2012-06-12 Baker Hughes Incorporated Dead string completion assembly with injection system and methods
US8020619B1 (en) 2008-03-26 2011-09-20 Robertson Intellectual Properties, LLC Severing of downhole tubing with associated cable
US8096358B2 (en) 2008-03-27 2012-01-17 Halliburton Energy Services, Inc. Method of perforating for effective sand plug placement in horizontal wells
US7661480B2 (en) 2008-04-02 2010-02-16 Saudi Arabian Oil Company Method for hydraulic rupturing of downhole glass disc
CA2660219C (en) 2008-04-10 2012-08-28 Bj Services Company System and method for thru tubing deepening of gas lift
US8535604B1 (en) 2008-04-22 2013-09-17 Dean M. Baker Multifunctional high strength metal composite materials
US7828063B2 (en) 2008-04-23 2010-11-09 Schlumberger Technology Corporation Rock stress modification technique
US8277974B2 (en) 2008-04-25 2012-10-02 Envia Systems, Inc. High energy lithium ion batteries with particular negative electrode compositions
US8757273B2 (en) 2008-04-29 2014-06-24 Packers Plus Energy Services Inc. Downhole sub with hydraulically actuable sleeve valve
AU2009244317B2 (en) 2008-05-05 2016-01-28 Weatherford Technology Holdings, Llc Tools and methods for hanging and/or expanding liner strings
US8540035B2 (en) 2008-05-05 2013-09-24 Weatherford/Lamb, Inc. Extendable cutting tools for use in a wellbore
US8171999B2 (en) 2008-05-13 2012-05-08 Baker Huges Incorporated Downhole flow control device and method
EP2300628A2 (en) 2008-06-02 2011-03-30 TDY Industries, Inc. Cemented carbide-metallic alloy composites
US20100055492A1 (en) 2008-06-03 2010-03-04 Drexel University Max-based metal matrix composites
US8631877B2 (en) 2008-06-06 2014-01-21 Schlumberger Technology Corporation Apparatus and methods for inflow control
CA2726207A1 (en) 2008-06-06 2009-12-10 Packers Plus Energy Services Inc. Wellbore fluid treatment process and installation
US20090308588A1 (en) 2008-06-16 2009-12-17 Halliburton Energy Services, Inc. Method and Apparatus for Exposing a Servicing Apparatus to Multiple Formation Zones
US8152985B2 (en) 2008-06-19 2012-04-10 Arlington Plating Company Method of chrome plating magnesium and magnesium alloys
TW201000644A (en) 2008-06-24 2010-01-01 Song-Ren Huang Magnesium alloy composite material having doped grains
US7958940B2 (en) 2008-07-02 2011-06-14 Jameson Steve D Method and apparatus to remove composite frac plugs from casings in oil and gas wells
US8122940B2 (en) 2008-07-16 2012-02-28 Fata Hunter, Inc. Method for twin roll casting of aluminum clad magnesium
US7752971B2 (en) 2008-07-17 2010-07-13 Baker Hughes Incorporated Adapter for shaped charge casing
CN101638786B (zh) 2008-07-29 2011-06-01 天津东义镁制品股份有限公司 一种高电位镁合金牺牲阳极及其制造方法
CN101638790A (zh) 2008-07-30 2010-02-03 深圳富泰宏精密工业有限公司 镁及镁合金的电镀方法
US7775286B2 (en) 2008-08-06 2010-08-17 Baker Hughes Incorporated Convertible downhole devices and method of performing downhole operations using convertible downhole devices
US7900696B1 (en) 2008-08-15 2011-03-08 Itt Manufacturing Enterprises, Inc. Downhole tool with exposable and openable flow-back vents
US8960292B2 (en) 2008-08-22 2015-02-24 Halliburton Energy Services, Inc. High rate stimulation method for deep, large bore completions
US20100051278A1 (en) 2008-09-04 2010-03-04 Integrated Production Services Ltd. Perforating gun assembly
US20100089587A1 (en) 2008-10-15 2010-04-15 Stout Gregg W Fluid logic tool for a subterranean well
US7775285B2 (en) 2008-11-19 2010-08-17 Halliburton Energy Services, Inc. Apparatus and method for servicing a wellbore
US8459347B2 (en) 2008-12-10 2013-06-11 Oiltool Engineering Services, Inc. Subterranean well ultra-short slip and packing element system
US7861781B2 (en) 2008-12-11 2011-01-04 Tesco Corporation Pump down cement retaining device
US7855168B2 (en) 2008-12-19 2010-12-21 Schlumberger Technology Corporation Method and composition for removing filter cake
US8899317B2 (en) 2008-12-23 2014-12-02 W. Lynn Frazier Decomposable pumpdown ball for downhole plugs
US8079413B2 (en) 2008-12-23 2011-12-20 W. Lynn Frazier Bottom set downhole plug
CN101457321B (zh) 2008-12-25 2010-06-16 浙江大学 一种镁基复合储氢材料及制备方法
US9260935B2 (en) 2009-02-11 2016-02-16 Halliburton Energy Services, Inc. Degradable balls for use in subterranean applications
US20100200230A1 (en) 2009-02-12 2010-08-12 East Jr Loyd Method and Apparatus for Multi-Zone Stimulation
US7878253B2 (en) 2009-03-03 2011-02-01 Baker Hughes Incorporated Hydraulically released window mill
US9291044B2 (en) 2009-03-25 2016-03-22 Weatherford Technology Holdings, Llc Method and apparatus for isolating and treating discrete zones within a wellbore
US7909108B2 (en) 2009-04-03 2011-03-22 Halliburton Energy Services Inc. System and method for servicing a wellbore
US9127527B2 (en) 2009-04-21 2015-09-08 W. Lynn Frazier Decomposable impediments for downhole tools and methods for using same
US9109428B2 (en) 2009-04-21 2015-08-18 W. Lynn Frazier Configurable bridge plugs and methods for using same
US8276670B2 (en) 2009-04-27 2012-10-02 Schlumberger Technology Corporation Downhole dissolvable plug
WO2010126889A1 (en) 2009-04-27 2010-11-04 Med Institute, Inc. Stent with protected barbs
US8286697B2 (en) 2009-05-04 2012-10-16 Baker Hughes Incorporated Internally supported perforating gun body for high pressure operations
US8261761B2 (en) 2009-05-07 2012-09-11 Baker Hughes Incorporated Selectively movable seat arrangement and method
US8104538B2 (en) 2009-05-11 2012-01-31 Baker Hughes Incorporated Fracturing with telescoping members and sealing the annular space
US8413727B2 (en) 2009-05-20 2013-04-09 Bakers Hughes Incorporated Dissolvable downhole tool, method of making and using
CA2762826C (en) 2009-05-22 2018-03-13 Mesocoat, Inc. Article and method of manufacturing related to nanocomposite overlays
US8367217B2 (en) 2009-06-02 2013-02-05 Integran Technologies, Inc. Electrodeposited metallic-materials comprising cobalt on iron-alloy substrates with enhanced fatigue performance
US20100314126A1 (en) 2009-06-10 2010-12-16 Baker Hughes Incorporated Seat apparatus and method
EP2440744A1 (en) 2009-06-12 2012-04-18 Altarock Energy, Inc. An injection-backflow technique for measuring fracture surface area adjacent to a wellbore
US8109340B2 (en) 2009-06-27 2012-02-07 Baker Hughes Incorporated High-pressure/high temperature packer seal
US7992656B2 (en) 2009-07-09 2011-08-09 Halliburton Energy Services, Inc. Self healing filter-cake removal system for open hole completions
US8695710B2 (en) 2011-02-10 2014-04-15 Halliburton Energy Services, Inc. Method for individually servicing a plurality of zones of a subterranean formation
US8291980B2 (en) 2009-08-13 2012-10-23 Baker Hughes Incorporated Tubular valving system and method
US8113290B2 (en) 2009-09-09 2012-02-14 Schlumberger Technology Corporation Dissolvable connector guard
US8528640B2 (en) 2009-09-22 2013-09-10 Baker Hughes Incorporated Wellbore flow control devices using filter media containing particulate additives in a foam material
EP2483510A2 (en) 2009-09-30 2012-08-08 Baker Hughes Incorporated Remotely controlled apparatus for downhole applications and methods of operation
US8342094B2 (en) 2009-10-22 2013-01-01 Schlumberger Technology Corporation Dissolvable material application in perforating
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US8528633B2 (en) 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US8573295B2 (en) 2010-11-16 2013-11-05 Baker Hughes Incorporated Plug and method of unplugging a seat
US8425651B2 (en) 2010-07-30 2013-04-23 Baker Hughes Incorporated Nanomatrix metal composite
US20110135805A1 (en) 2009-12-08 2011-06-09 Doucet Jim R High diglyceride structuring composition and products and methods using the same
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US20110139465A1 (en) 2009-12-10 2011-06-16 Schlumberger Technology Corporation Packing tube isolation device
US8408319B2 (en) 2009-12-21 2013-04-02 Schlumberger Technology Corporation Control swelling of swellable packer by pre-straining the swellable packer element
FR2954796B1 (fr) 2009-12-24 2016-07-01 Total Sa Utilisation de nanoparticules pour le marquage d'eaux d'injection de champs petroliers
US8584746B2 (en) 2010-02-01 2013-11-19 Schlumberger Technology Corporation Oilfield isolation element and method
US8424610B2 (en) 2010-03-05 2013-04-23 Baker Hughes Incorporated Flow control arrangement and method
US8230731B2 (en) 2010-03-31 2012-07-31 Schlumberger Technology Corporation System and method for determining incursion of water in a well
US8430173B2 (en) 2010-04-12 2013-04-30 Halliburton Energy Services, Inc. High strength dissolvable structures for use in a subterranean well
GB2492696B (en) 2010-04-16 2018-06-06 Smith International Cementing whipstock apparatus and methods
MX2012012129A (es) 2010-04-23 2012-11-21 Smith International Asiento de bola para alta presion y alta temperatura.
US8813848B2 (en) 2010-05-19 2014-08-26 W. Lynn Frazier Isolation tool actuated by gas generation
US8297367B2 (en) 2010-05-21 2012-10-30 Schlumberger Technology Corporation Mechanism for activating a plurality of downhole devices
US20110284232A1 (en) 2010-05-24 2011-11-24 Baker Hughes Incorporated Disposable Downhole Tool
CN101851716B (zh) 2010-06-14 2014-07-09 清华大学 镁基复合材料及其制备方法,以及其在发声装置中的应用
US8778035B2 (en) 2010-06-24 2014-07-15 Old Dominion University Research Foundation Process for the selective production of hydrocarbon based fuels from algae utilizing water at subcritical conditions
US8579024B2 (en) 2010-07-14 2013-11-12 Team Oil Tools, Lp Non-damaging slips and drillable bridge plug
WO2012011993A1 (en) 2010-07-22 2012-01-26 Exxonmobil Upstream Research Company Methods for stimulating multi-zone wells
US8039422B1 (en) 2010-07-23 2011-10-18 Saudi Arabian Oil Company Method of mixing a corrosion inhibitor in an acid-in-oil emulsion
CN103026035B (zh) 2010-07-23 2015-08-19 日产自动车株式会社 发动机自动停止装置及自动停止方法
US20120067426A1 (en) 2010-09-21 2012-03-22 Baker Hughes Incorporated Ball-seat apparatus and method
US8851171B2 (en) 2010-10-19 2014-10-07 Schlumberger Technology Corporation Screen assembly
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US8561699B2 (en) 2010-12-13 2013-10-22 Halliburton Energy Services, Inc. Well screens having enhanced well treatment capabilities
US8668019B2 (en) 2010-12-29 2014-03-11 Baker Hughes Incorporated Dissolvable barrier for downhole use and method thereof
US9528352B2 (en) 2011-02-16 2016-12-27 Weatherford Technology Holdings, Llc Extrusion-resistant seals for expandable tubular assembly
US20120211239A1 (en) 2011-02-18 2012-08-23 Baker Hughes Incorporated Apparatus and method for controlling gas lift assemblies
US9045953B2 (en) 2011-03-14 2015-06-02 Baker Hughes Incorporated System and method for fracturing a formation and a method of increasing depth of fracturing of a formation
US8584759B2 (en) 2011-03-17 2013-11-19 Baker Hughes Incorporated Hydraulic fracture diverter apparatus and method thereof
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8695714B2 (en) 2011-05-19 2014-04-15 Baker Hughes Incorporated Easy drill slip with degradable materials
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US20130008671A1 (en) 2011-07-07 2013-01-10 Booth John F Wellbore plug and method
US20130024203A1 (en) 2011-07-20 2013-01-24 Nternational Business Machines Corporation Providing dynamic recommendations for points of interest utilizing automatically obtained collective telemetry to enhance user experience
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9027655B2 (en) 2011-08-22 2015-05-12 Baker Hughes Incorporated Degradable slip element
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9163467B2 (en) 2011-09-30 2015-10-20 Baker Hughes Incorporated Apparatus and method for galvanically removing from or depositing onto a device a metallic material downhole
US9765595B2 (en) 2011-10-11 2017-09-19 Packers Plus Energy Services Inc. Wellbore actuators, treatment strings and methods
US20130126190A1 (en) 2011-11-21 2013-05-23 Baker Hughes Incorporated Ion exchange method of swellable packer deployment
MX365745B (es) 2011-11-22 2019-06-12 Baker Hughes Inc Método para utilizar marcadores de liberación controlada.
US9004091B2 (en) 2011-12-08 2015-04-14 Baker Hughes Incorporated Shape-memory apparatuses for restricting fluid flow through a conduit and methods of using same
US8905146B2 (en) 2011-12-13 2014-12-09 Baker Hughes Incorporated Controlled electrolytic degredation of downhole tools
US9617462B2 (en) 2011-12-28 2017-04-11 Schlumberger Technology Corporation Degradable composite materials and uses
US9428989B2 (en) 2012-01-20 2016-08-30 Halliburton Energy Services, Inc. Subterranean well interventionless flow restrictor bypass system
US8490689B1 (en) 2012-02-22 2013-07-23 Tony D. McClinton Bridge style fractionation plug
US9016363B2 (en) 2012-05-08 2015-04-28 Baker Hughes Incorporated Disintegrable metal cone, process of making, and use of the same
US8950504B2 (en) 2012-05-08 2015-02-10 Baker Hughes Incorporated Disintegrable tubular anchoring system and method of using the same
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
CA2816061A1 (en) 2012-05-17 2013-11-17 Encana Corporation Pumpable seat assembly and use for well completion
US8905147B2 (en) 2012-06-08 2014-12-09 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using galvanic corrosion
US9080439B2 (en) 2012-07-16 2015-07-14 Baker Hughes Incorporated Disintegrable deformation tool
US20140060834A1 (en) 2012-08-31 2014-03-06 Baker Hughes Incorporated Controlled Electrolytic Metallic Materials for Wellbore Sealing and Strengthening
US9951266B2 (en) 2012-10-26 2018-04-24 Halliburton Energy Services, Inc. Expanded wellbore servicing materials and methods of making and using same
CA2900728C (en) 2013-02-11 2021-07-27 National Research Council Of Canada Metal matrix composite and method of forming
US9803439B2 (en) 2013-03-12 2017-10-31 Baker Hughes Ferrous disintegrable powder compact, method of making and article of same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA008390B1 (ru) * 2003-07-29 2007-04-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Система изолирования пространства ствола скважины
RU2373375C2 (ru) * 2004-01-23 2009-11-20 Шлюмбергер Холдингз Лимитед Скважинная система (варианты) и способ использования скважинного компонента
EA200870227A1 (ru) * 2006-02-03 2009-02-27 Эксонмобил Апстрим Рисерч Компани Способ и устройство ствола скважины для заканчивания, добычи и нагнетания

Also Published As

Publication number Publication date
CA2953874C (en) 2018-11-06
US10612659B2 (en) 2020-04-07
CA2872404A1 (en) 2013-11-14
AU2017201833B2 (en) 2017-11-23
AU2013260077A1 (en) 2014-10-30
RU2014149137A (ru) 2016-06-27
PL237181B1 (pl) 2021-03-22
PL410368A1 (pl) 2015-11-09
US20130300066A1 (en) 2013-11-14
CA2872404C (en) 2017-03-21
CN104285032A (zh) 2015-01-14
CA2953874A1 (en) 2013-11-14
CO7111254A2 (es) 2014-11-10
CN104285032B (zh) 2018-02-06
AU2017201833A1 (en) 2017-04-06
US20170138479A1 (en) 2017-05-18
US9605508B2 (en) 2017-03-28
AU2013260077B2 (en) 2017-04-06
MX2014013544A (es) 2015-01-16
WO2013169418A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
RU2627779C2 (ru) Разрушаемое и приспосабливаемое металлическое уплотнение и способ его изготовления
RU2598106C2 (ru) Разрушающаяся трубная заанкеривающая система и способ ее применения
RU2598103C2 (ru) Разрушающийся металлический конус, способ его изготовления и применение
US9574415B2 (en) Method of treating a formation and method of temporarily isolating a first section of a wellbore from a second section of the wellbore
US9080439B2 (en) Disintegrable deformation tool
US9016384B2 (en) Disintegrable centralizer
US8297364B2 (en) Telescopic unit with dissolvable barrier
US20120211239A1 (en) Apparatus and method for controlling gas lift assemblies