RU2569722C2 - Узел оси с механизмом привода с распределением крутящего момента - Google Patents

Узел оси с механизмом привода с распределением крутящего момента Download PDF

Info

Publication number
RU2569722C2
RU2569722C2 RU2013106421/11A RU2013106421A RU2569722C2 RU 2569722 C2 RU2569722 C2 RU 2569722C2 RU 2013106421/11 A RU2013106421/11 A RU 2013106421/11A RU 2013106421 A RU2013106421 A RU 2013106421A RU 2569722 C2 RU2569722 C2 RU 2569722C2
Authority
RU
Russia
Prior art keywords
gear
differential
planetary gear
housing
gears
Prior art date
Application number
RU2013106421/11A
Other languages
English (en)
Other versions
RU2013106421A (ru
Inventor
Эрик СТЕН
Original Assignee
Е-Аам Драйвлайн Системс Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Е-Аам Драйвлайн Системс Аб filed Critical Е-Аам Драйвлайн Системс Аб
Publication of RU2013106421A publication Critical patent/RU2013106421A/ru
Application granted granted Critical
Publication of RU2569722C2 publication Critical patent/RU2569722C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/30Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/364Differential gearings characterised by intentionally generating speed difference between outputs using electric or hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

Изобретение относится к узлу оси транспортного средства, снабженному механизмом привода с распределением крутящего момента. Узел оси содержит входной элемент, первую планетарную передачу, узел дифференциала и вторую планетарную передачу. Первая планетарная передача имеет первый вход трансмиссии, приводимый входным элементом. Узел дифференциала содержит корпус, а также первый и второй выходные элементы, размещенные в корпусе дифференциала. Вторая планетарная передача содержит водило, соединенное с корпусом дифференциала для их совместного вращения. Причем солнечная шестерня первой планетарной передачи соединена с солнечной шестерней второй планетарной передачи без возможности вращения относительно нее. В результате достигается ослабление заноса в случаях недостаточной или чрезмерной поворачиваемости. 2 н. и 16 з.п. ф-лы, 10 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
В настоящей заявке испрашивается приоритет по заявке US №13/182,153, поданной 13 июля 2011 г., на полезную модель "Узел оси с механизмом привода с распределением крутящего момента", временной заявке US №61/364,072, поданной 14 июля 2010 г. на изобретение "Механизм привода с распределением крутящего момента" и временной заявке US №61/468,809, поданной 29 марта 2011 г. на изобретение "Механизм привода с распределением крутящего момента". Содержание указанных заявок вводится здесь ссылкой, как если бы здесь был полностью приведен их текст.
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к узлу оси и к транспортному средству, снабженному механизмом привода с распределением крутящего момента.
УРОВЕНЬ ТЕХНИКИ
Одним из устройств корректировки или ослабления заноса в случаях недостаточной или чрезмерной реакции транспортного средства на поворот руля является дифференциал с перераспределением передаваемого крутящего момента (TVD). Устройства TVD обычно представляют собой дифференциалы с электронным управлением, которые могут создавать момент вокруг центра тяжести транспортного средства независимо от скорости его колес и которые используются для корректировки или ослабления заноса в случаях недостаточной или чрезмерной поворачиваемости.
В патенте US №7,491,147 раскрывается дифференциал TVD с приводом от двигателя, в котором используется два механизма регулирования скорости, расположенных по обеим сторонам механизма дифференциала. Каждый механизм регулирования скорости содержит редуктор с прямозубыми шестернями и фрикционную муфту сцепления. Редуктор передает крутящий момент от механизма дифференциала на фрикционную муфту сцепления, и затем крутящий момент передается на соответствующую полуось.
В патенте US №7,238,140 раскрывается дифференциал TVD с приводом от двигателя, в котором используется два устройства отведения крутящего момента, расположенных по обеим сторонам механизма дифференциала. Каждое такое устройство содержит зубчатый редуктор и магнитный порошковый тормоз. Зубчатый редуктор передает крутящий момент от механизма дифференциала на выходной элемент, соединенный с соответствующей полуосью для вращения вместе с ней. Магнитный порошковый тормоз выполнен с возможностью выборочного торможения выходного элемента зубчатого редуктора.
В публикации заявки US №2010/0323837 раскрывается дифференциал TVD с электрическим приводом, содержащий две планетарные передачи, электродвигатель и муфту, управляющую работой планетарных передач. Дифференциал TVD может работать в первом режиме, в котором он представляет собой открытый дифференциал с приводом от электродвигателя, и во втором режиме, в котором дифференциал TVD обеспечивает на выходе перераспределение крутящего момента.
Хотя такие конструкции могут быть эффективными для осуществления функции перераспределения крутящего момента, при котором крутящий момент может быть перераспределен через механизм дифференциала между полуосями, однако в таком дифференциале TVD возможны улучшения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В настоящем разделе рассматриваются лишь общие принципы изобретения без подробного описания полного объема и всех его признаков.
В настоящем изобретении предлагается узел оси, содержащий входной элемент, первую планетарную передачу, узел дифференциала и вторую планетарную передачу. Первая планетарная передача имеет первый вход трансмиссии, приводимый входным элементом. Узел дифференциала содержит корпус, а также первый и второй выходные элементы, размещенные в корпусе дифференциала. Вторая планетарная передача содержит второе водило, соединенное с корпусом дифференциала для их совместного вращения. Солнечная шестерня первой планетарной передачи соединена с солнечной шестерней второй планетарной передачи без возможности вращения относительно нее.
В настоящем изобретении предлагается другой вариант осуществления узла оси, содержащий входной элемент, первую планетарную передачу, узел дифференциала и вторую планетарную передачу. Первая планетарная передача содержит первый вход трансмиссии, первую солнечную шестерню, первую кольцевую шестерню, первые шестерни-сателлиты и первое водило. Первый вход трансмиссии приводится в действие входным элементом. Первые шестерни-сателлиты находятся в зацеплении с первой солнечной шестерней и с первой кольцевой шестерней. Первое водило обеспечивает опору для вращения первых шестерен-сателлитов. Узел дифференциала содержит корпус, а также первый и второй выходные элементы, размещенные в корпусе дифференциала. Вторая планетарная передача содержит второе водило, соединенное с корпусом дифференциала для их совместного вращения; входной элемент, первая планетарная передача и вторая планетарная передача расположены на общем продольном конце корпуса дифференциала. Узел оси может работать в режиме, в котором водила первой и второй планетарных передач могут отсоединяться друг от друга для предотвращения их совместного вращения.
Первая планетарная передача имеет первый вход трансмиссии, приводимый в движение входным элементом. Узел дифференциала содержит корпус, а также первый и второй выходные элементы, размещенные в корпусе дифференциала. Вторая планетарная передача содержит водило, соединенное с корпусом дифференциала для их совместного вращения. Входной элемент, первая планетарная передача и вторая планетарная передача расположены на общем продольном конце корпуса дифференциала
В настоящем изобретении предложен еще один вариант осуществления узла оси, который включает двигатель, входной элемент, приводимый двигателем, узел дифференциала, трансмиссию и переключаемый элемент. Узел дифференциала содержит корпус, а также первый и второй выходные элементы, размещенные в корпусе дифференциала. На трансмиссию передается крутящий момент от входного элемента. Переключаемый элемент выполнен с возможностью перемещения в продольном направлении между первым и вторым положениями. При установке переключаемого элемента в первое положение осуществляется соединение трансмиссии с узлом дифференциала для задания режима векторизации крутящего момента, в котором трансмиссия обеспечивает равные, но противоположно направленные крутящие моменты на первом и втором выходных элементах дифференциала. При установке переключаемого элемента во второе положение осуществляется соединение трансмиссии с узлом дифференциала для непосредственного привода корпуса дифференциала.
В настоящем изобретении дополнительно предложен исполнительный механизм для линейного перемещения части механического устройства, которое выполнено с возможностью переключения по меньшей мере между двумя режимами. Исполнительный механизм содержит входной элемент, который может быть функционально соединен с приводом, выходной элемент, который может быть функционально соединен с переключателем, и преобразующий элемент для преобразования вращательного движения привода в линейное перемещение переключателя. Преобразующий элемент содержит кулачковую шайбу, в которой выполнен направляющий паз, проходящий по меньшей мере по части внешней окружной поверхности кулачковой шайбы, и следящий элемент, установленный с возможностью перемещения в направляющем пазе. Кулачковая шайба функционально соединена с входным элементом, и следящий элемент функционально соединен с выходным элементом. Направляющий паз содержит: первую часть, проходящую параллельно поперечной плоскости, которая перпендикулярна продольной оси кулачковой муфты; вторую часть, проходящую параллельно поперечной плоскости; и третью часть, проходящую между первой частью и второй частью, причем направление третьей части по внешней окружной поверхности цилиндрической части составляет некоторый угол с поперечной плоскостью, который отличен от нуля.
Другие области применения изобретения станут ясными из нижеприведенного описания. Необходимо понимать, что описание и конкретные примеры приведены только с целью иллюстрации и никоим образом не ограничивают объем настоящего изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Нижеописанные чертежи приводятся для целей иллюстрации только некоторых выбранных вариантов осуществления настоящего изобретения и никоим образом не ограничивают его объем.
На Фиг.1 показан вид в поперечном сечении механизма привода с распределением крутящего момента в соответствии с первым вариантом осуществления изобретения.
На Фиг.2 показан вид в поперечном сечении механизма привода с распределением крутящего момента, имеющего несколько режимов работы, в соответствии со вторым вариантом осуществления изобретения.
На Фиг.3 показан вид в поперечном сечении механизма привода с распределением крутящего момента, имеющего несколько режимов работы, в соответствии с третьим вариантом осуществления изобретения.
На Фиг.4 показан вид разобранного исполнительного механизма в соответствии с одним из вариантов осуществления изобретения.
На Фиг.5 показан вид частично разобранного исполнительного механизма, показанного на Фиг.4.
На Фиг.6 показан вид в перспективе исполнительного механизма, показанного на Фиг.4.
На Фиг.7 показан вид в поперечном сечении механизма привода с распределением крутящего момента в соответствии с четвертым вариантом осуществления изобретения.
На Фиг.8 показан вид в перспективе части механизма привода с распределением крутящего момента, показанного на Фиг.7.
На Фиг.9 показан вид сзади вертикальной проекции части механизма привода с распределением крутящего момента, показанного на Фиг.7.
На Фиг.10 показан вид в перспективе части механизма привода с распределением крутящего момента, показанного на Фиг.7.
Соответствующими ссылочными позициями обозначены соответствующие части на нескольких видах чертежей.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
На Фиг.1 узел оси, выполненный в соответствии с настоящим изобретением, обозначен в целом ссылочной позицией 10. Узел 10 оси может быть, например, узлом передней оси или узлом задней оси транспортного средства 12. Узел 10 оси может содержать механизм 14а привода с распределением крутящего момента, который может быть использован для передачи крутящего момента на первый выходной элемент 16 и второй выходной элемент 18, которые в рассматриваемом примере являются первой и второй полуосями. Например, первый выходной элемент 16 может быть соединен с левым колесом 20, а второй выходной элемент 18 может быть соединен с правым колесом 22 узла 10 оси. В частности, как это будет описано ниже, механизм 14а привода с распределением крутящего момента может быть использован для векторизации крутящего момента, а именно, для создания разницы крутящих моментов между первым 16 и вторым 18 выходными элементами.
Механизм 14а привода с распределением крутящего момента может содержать блок 30 двух планетарных передач, и привод 32.
Блок 30 двух планетарных передач может быть расположен коаксиально с первым 16 и вторым 18 выходными элементами и/или узлом 36 дифференциала. Блок 30 двух планетарных передач может содержать первую планетарную передачу 40 и вторую планетарную передачу 42. Первая 40 и вторая 42 планетарные передачи могут иметь одинаковые передаточные числа и могут быть выполнены таким образом, чтобы один или несколько компонентов первой планетарной передачи 40 были взаимозаменяемы с соответствующими компонентами второй планетарной передачи 42.
Первая планетарная передача 40 может содержать первую солнечную шестерню 50, первые шестерни-сателлиты 52, первую кольцевую шестерню 54 и первое водило 56. Первая солнечная шестерня 50 может быть по существу полой частью, которая может быть установлена концентрично вокруг первого выходного элемента 16. Первые сателлиты 52 могут быть расположены по окружности вокруг первой солнечной шестерни 50, так что зубья первых сателлитов 52 входят в зацепление с зубьями первой солнечной шестерни 50. Аналогично, первая кольцевая шестерня 54 может быть установлена концентрично вокруг первых сателлитов 52, так что зубья первых сателлитов 52 входят в зацепление с зубьями первой кольцевой шестерни 54. Первая кольцевая шестерня 54 может быть установлена с возможностью вращения в корпусе 58 коробки передач, который может быть присоединен без возможности вращения к корпусу 60 дифференциала, в котором размещен узел 36 дифференциала. Первое водило 56 может иметь корпус 62 и несколько первых пальцев 64, которые могут быть жестко прикреплены к корпусу 62. Корпус 62 первого водила может быть присоединен к первому выходному элементу 16, так что корпус 62 первого водила и первый выходной элемент 16 могут вращаться вместе. Для присоединения корпуса 62 первого водила к первому выходному элементу 16 могут быть использованы любые подходящие средства, включая сварку, сопряженные зубцы или шлицы. Каждый первый палец 64 может входить в соответствующий первый сателлит 52 и обеспечивать опору для его вращения вокруг продольной оси первого пальца 64.
Вторая планетарная передача 42 может содержать вторую солнечную шестерню 70, вторые шестерни-сателлиты 72, вторую кольцевую шестерню 74 и второе водило 76. Вторая солнечная шестерня 70 может быть полой частью, которая может быть установлена концентрично вокруг первого выходного элемента 16. Вторая солнечная шестерня 70 может быть соединена без возможности вращения с первой солнечной шестерней 50 (например, первая 50 и вторая 70 солнечные шестерни могут быть выполнены как одно целое). Вторые сателлиты 72 могут быть расположены по окружности вокруг второй солнечной шестерни 70, так что зубья вторых сателлитов 72 входят в зацепление с зубьями второй солнечной шестерни 70. Вторая кольцевая шестерня 74 может быть установлена концентрично вокруг вторых сателлитов 72, так что зубья вторых сателлитов 72 входят в зацепление с зубьями второй кольцевой шестерни 74. Вторая кольцевая шестерня 74 может быть соединена без возможности вращения с корпусом 58 коробки передач. Второе водило 76 может иметь корпус 82 и несколько вторых пальцев 84, которые могут быть жестко прикреплены к корпусу 82. Корпус 82 второго водила может быть соединен с корпусом или корпусом (чашкой) 83 узла 36 дифференциала, так что корпус 82 второго водила и корпус 83 дифференциала вращаются вместе. Каждый второй палец 84 может входить в соответствующий второй сателлит 72 и обеспечивать опору для его вращения вокруг продольной оси второго пальца 84.
Первая 40 и вторая 42 планетарные передачи могут быть выровнены вместе вокруг общей продольной оси (а именно, оси, которая проходит через первую 50 и вторую 70 солнечные шестерни) и могут быть смещены друг относительно друга вдоль общей продольной оси 85.
Привод 32 может быть любым средством, обеспечивающим крутящий момент на входе блока 30 двух планетарных передач, например, он может быть электрическим или гидравлическим двигателем, и может быть использован для привода входного элемента 86, который передает крутящий момент на вход первой планетарной передачи 40. В рассматриваемом примере вход первой планетарной передачи выполнен как одно целое с первой кольцевой шестерней 54, и входной элемент 86, соединенный с первой кольцевой шестерней 54 для их совместного вращения, имеет зубья, которые входят в зацепление с зубьями понижающей передачи 88, которая установлена на выходном валу 90 привода 32. Входной элемент 86 может быть отдельной частью, которая соединена без возможности вращения к первой кольцевой шестерне 54, однако в рассматриваемом примере входной элемент 86 и первая кольцевая шестерня 54 выполнены вместе как одно целое.
Кроме корпуса 60 дифференциала и чашки 83 дифференциала узел 36 дифференциала может содержать средство передачи крутящего момента от корпуса 83 дифференциала на первый 16 и второй 18 выходные элементы. Средство передачи крутящего момента может содержать первый выход 100 дифференциала и второй выход 102 дифференциала. В рассматриваемом примере средство передачи крутящего момента содержит дифференциальную передачу 104, размещенную в корпусе 83 дифференциала и содержащую первую полуосевую шестерню 106, вторую полуосевую шестерню 108, крестовину 110 и шестерни-сателлиты 112. Первая 106 и вторая 108 полуосевые шестерни могут быть установлены с возможностью вращения вокруг оси вращения корпуса 83 и могут содержать первый 100 и второй 102 выходы дифференциала, соответственно. Первый выходной элемент 16 может быть соединен с первой полуосевой шестерней 106 для их совместного вращения, а второй выходной элемент 18 может быть соединен со второй полуосевой шестерней 108 для их совместного вращения. Крестовина 110 может быть прикреплена к корпусу 83 дифференциала примерно перпендикулярно оси вращения корпуса 83 дифференциала. Шестерни-сателлиты 112 могут быть установлены на крестовине 110 с возможностью вращения и находятся в зацеплении с первой 106 и второй 108 полуосевыми шестернями.
В то время как в рассматриваемом примере узел 36 дифференциала содержит конические шестерни-сателлиты и конические полуосевые шестерни, следует понимать, что могут быть использованы и другие виды механизмов дифференциала, включая механизмы, в которых используют винтовые сателлиты и полуосевые шестерни, или планетарные передачи.
Узел 36 дифференциала может быть присоединен к основному или первичному приводу транспортного средства 12. В рассматриваемом конкретном варианте осуществления изобретения основной привод транспортного средства включает двигатель 120, который используют для привода узла 36 дифференциала. В этом случае крутящий момент, создаваемый двигателем 120, может передаваться обычным образом на корпус 83 дифференциала для привода первого 16 и второго 18 выходных элементов (а именно, через корпус 83 дифференциала и шестерни 104 дифференциала). При этом привод 32 может быть использован в качестве вспомогательного средства к основному приводу транспортного средства 12, и когда дополнительный крутящий момент вырабатывается приводом 32, он может складываться с крутящими моментами на первом и втором выходах, создаваемыми основным приводом, как это будет описано подробно ниже.
Когда привод 32 включен (а именно, когда в рассматриваемом примере выходной вал 90 привода 32 вращается), привод 32, понижающая передача 88 и входной элемент 86 могут взаимодействовать для подачи крутящего момента на первую кольцевую шестерню 54 первой планетарной передачи 40. Крутящий момент, поступающий на первую кольцевую шестерню 54, передается через первые шестерни-сателлиты 52 и водило 56 первой планетарной передачи на первый выходной элемент 16, в то время как противоположное вращение передается на первую солнечную шестерню 50, так что она вращается в направлении, противоположном направлению вращения водила 56 первой планетарной передачи. Вращение первой солнечной шестерни 50 вызывает соответствующее вращение второй солнечной шестерни 70, в результате чего приводятся во вращение вторые шестерни-сателлиты 72. Поскольку вторая кольцевая передача 74 прикреплена с возможностью вращения к корпусу 58 коробки передач, вращение вторых сателлитов 72 вызывает вращение водила 76 второй планетарной передачи в направлении, которое противоположно направлению вращения водила 56 первой планетарной передачи. Соответственно, величина крутящего момента, который передается от водила 76 второй планетарной передачи к корпусу 83 дифференциала (и через узел 36 дифференциала на второй выходной элемент 18), равна и противоположна величине крутящего момента, который передается от водила 56 первой планетарной передачи на первый выходной элемент 16.
Таким образом, крутящий момент, передаваемый от привода 32 на первый 16 и второй 18 выходные элементы, будет направлен в противоположные стороны. Кроме того, поскольку первая 40 и вторая 42 планетарные передачи соединены функционально через узел 36 дифференциала, величины крутящих моментов, создаваемых на первом 16 и втором 18 выходных элементах, примерно равны. Если, на первый выходной элемент 16 передается крутящий момент, действующий в положительном направлении (при вращении выходного вала 90 привода 32 в первом направлении вращении), то на второй выходной элемент 18 будет передаваться крутящий момент, имеющий такую же величину и действующий в отрицательном направлении. Аналогичным образом, если, на первый выходной элемент 16 передается крутящий момент, действующий в отрицательном направлении (при вращении выходного вала 90 привода 32 во втором направлении вращении, противоположном первому направлению вращения), то на второй выходной элемент 18 будет передаваться крутящий момент, имеющий такую же величину и действующий в положительном направлении. Иными словами, распределение крутящего момента механизмом 14а привода может быть использовано для создания разности крутящих моментов на выходах 100 и 102 дифференциала, которые передаются, соответственно, на левое 20 и правое 22 колеса через первый 16 и второй 18 выходные элементы, соответственно.
Если же привод 32 включен, когда крутящий момент передается на узел 36 дифференциала от основного привода (например, от двигателя 120 в рассматриваемом примере), то крутящий момент, передаваемый механизмом 14а привода с распределением крутящего момента, будет действовать как смещение, которое накладывается на входной крутящий момент, передаваемый на узел 10 оси от первичного привода. Иначе говоря, входной крутящий момент от основного привода распределяется через узел 36 дифференциала таким образом, что первый крутящий момент привода передается через выход 100 дифференциала на первый выходной элемент 16, и второй крутящий момент привода передается через второй выход 102 дифференциала на второй выходной элемент 18, в то время как дополнительный крутящий момент, создаваемый приводом 32, распределяется через блок 30 двух планетарных передач таким образом, что на первый выходной элемент 16 передается первый корректирующий крутящий момент, и на второй выходной элемент 18 через узел 36 дифференциала передается второй корректирующий крутящий момент (который в рассматриваемом примере равен по величине и противоположен по направлению первому корректирующему крутящему моменту). Эффективный крутящий момент, действующий на первом выходном элементе 16, равен сумме первого крутящего момента привода и первого корректирующего крутящего момента, и эффективный крутящий момент, действующий на втором выходном элементе 18, равен сумме второго крутящего момента привода и второго корректирующего крутящего момента.
Например, механизм 14а привода с распределением крутящего момента может уменьшать крутящий момент, передаваемый на левое колесо 20, и увеличивать на соответствующую величину крутящий момент, действующий на правое колесо 22, когда транспортное средство 12 поворачивает влево, и уменьшать крутящий момент, передаваемый на правое колесо 22, и увеличивать на соответствующую величину крутящий момент, действующий на левое колесо 20, когда транспортное средство 12 поворачивает вправо, для улучшения поворачиваемости транспортного средства 12 и уменьшения радиуса поворота.
Специалистам в данной области техники будет понятно, что вышеописанная конфигурация блока 30 двух планетарных передач приводит к тому, что первая 50 и вторая 70 солнечные шестерни вращаются с наибольшей скоростью, в то время как первая кольцевая шестерня 54 вращается с меньшей скоростью, а водило 56 первой планетарной передачи и водило 76 второй планетарной передачи вращаются медленнее, чем первая кольцевая шестерня 54. В этом случае может быть получено подходящее передаточное число, например, от примерно 1:1,5 до примерно 1:2,0 между первой кольцевой шестерней 54 и первым выходным элементом 16. В результате, могут быть использованы шестерни блока 30 двух планетарных передач, имеющие небольшие размеры. Например, диаметр первых 52 и вторых 72 шестерен-сателлитов может быть меньше, чем примерно 30 мм. Таким образом, блок 30 двух планетарных передач может иметь небольшие размеры, и, соответственно, механизм 14а привода с распределением крутящего момента может быть компактным и легким.
Предполагается, что привод 32 будет включаться (например, автоматически или вручную при необходимости), когда транспортное средство 12 поворачивает. При прямолинейном движении привод 32 не включается, и движение транспортного средства 12 обеспечивается двигателем 120. В этом случае узел 36 дифференциала, на который поступает крутящий момент от двигателя 120, передает примерно одинаковые крутящие моменты на первый выходной элемент 16 и второй выходной элемент 18. В свою очередь, примерно одинаковые крутящеие моменты передаются на водило 56 первой планетарной передачи и водило 76 второй планетарной передачи, которые вращаются примерно с одинаковой скоростью. В результате, благодаря тому, что планетарные передачи 40 и 42 идентичны, первая 54 и вторая 74 кольцевые шестерни не будут перемещаться относительно друг друга, то есть, на первую 54 и вторую 74 кольцевые шестерни крутящие моменты практически не передаются. Иными словами, ни первая кольцевая шестерня 54, ни вторая кольцевая шестерня 74 не будут вращаться. Таким образом, выходной вал 90 привода 32 не будет вращаться, и потери энергии при прямолинейном движении минимизируются.
В то время как входной элемент 86 показан и описан, как непосредственно взаимодействующий с понижающей передачей 88, следует понимать, что между входным элементом 86 и понижающей передачей 88 может быть расположена одна или несколько понижающих передач, или же входной элемент 86 может приводиться во вращение напрямую от привода 32.
На Фиг.2 другой узел оси, выполненный в соответствии с настоящим изобретением, указан в целом ссылочной позицией 10b. Узел 10b оси может быть в целом аналогичен узлу 10 оси, схема которого приведена на Фиг.1, за исключением нижеуказанных отличий. В рассматриваемом примере узел 10b оси содержит механизм 14b привода с распределением крутящего момента, который выборочно может работать в разных режимах, включая режим векторизации крутящего момента, режим привода и нейтральный режим. Механизм 14b привода с распределением крутящего момента структурно похож на механизм 14а привода с распределением крутящего момента, схема которого приведена на Фиг.1, за исключением того, что входной элемент 86b может вращаться относительно первой кольцевой передачи 54b, и для управления рабочим режимом механизма 14b привода с распределением крутящего момента используется исполнительный механизм 150. Входной элемент 86b может содержать коронную шестерню, которая может быть установлена с возможностью вращения вокруг первого выходного элемента 16 и первой планетарной передачи 40b. Исполнительный механизм 150 может содержать муфту 152 включения, которая может формировать вход передачи. Муфта 152 включения может иметь зубчатую внешнюю поверхность, которая может входить в зацепление с сопряженной зубчатой внешней поверхностью 156 входного элемента 86b с возможностью продольного скольжения без вращения этих поверхностей относительно друг друга, группу первых внутренних зубцов 160, которые могут входить в зацепление с соответствующими зубцами 162, выполненными на первой кольцевой шестерне 54b, и группу вторых внутренних зубцов 164, которые могут входить в зацепление с соответствующими зубцами 166, выполненными на водиле 76b второй планетарной передачи.
В режиме векторизации крутящего момента муфта 152 включения может быть установлена в первое положение для соединения входного элемента 86b с первой кольцевой передачей 54b (посредством зацепления группы первых внутренних зубцов 160 с зубцами 162 на первой кольцевой передаче 54b), так что входной элемент 86b, муфта 152 включения и первая кольцевая передача 54b могут вращаться вместе. Понятно, что, когда муфта 152 включения находится в первом положении, группа вторых внутренних зубцов 164 выходит из зацепления с зубцами 166 на водиле 76b второй планетарной передачи. Соответственно, следует понимать, что работа механизма 14b привода с распределением крутящего момента в режиме векторизации крутящего момента по существу аналогична работе механизма 14а привода с распределением крутящего момента (Фиг.1). При этом привод 32 может выборочно включаться для создания разницы крутящих моментов на первом 16 и втором 18 выходных элементах, как это уже было описано.
В режиме привода муфта 152 включения может быть установлена во второе положение для соединения входного элемента 86b с водилом 76b второй планетарной передачи (посредством зацепления группы вторых внутренних зубцов 164c зубцами 166 на водиле 76b второй планетарной передачи), так что крутящий момент, обеспечиваемый приводом 32, подается на вход корпуса 83 дифференциала и далее на первый 16 и второй 18 выходные элементы через узел 36 дифференциала. Понятно, что, когда муфта 152 включения находится во втором положении, группа первых внутренних зубцов 160 на муфте 152 включения может быть выведена из зацепления с зубцами 162 на первой кольцевой шестерне 54b. Также будет понятно, что крутящий момент, обеспечиваемый приводом 32, когда механизм 14b привода с распределением крутящего момента работает в режиме привода, используют для обеспечения движущей силы для передвижения транспортного средства 12.
В нейтральном режиме муфта 152 включения может отсоединять входной элемент 86b от первой кольцевой шестерни 54b и от водила 76b второй планетарной передачи, так что входной элемент 86b отсоединяется от первой планетарной передачи 40b, от второй планетарной передачи 42b и от корпуса 83 дифференциала. В рассматриваемом примере муфта 152 включения может быть установлена в третье положение между первым и вторым положениями, так что группы первых 160 и вторых 164 внутренних зубцов будут находиться в продольном направлении между зубцами 162 на первой кольцевой шестерне 54b и зубцами 166 на водиле 76b второй планетарной передачи, то есть, указанные зубцы будут выведены из зацепления. Соответственно, установка муфты 152 включения в третье положение отсоединяет привод 32 от первой планетарной передачи 40b, от второй планетарной передачи 42b и от корпуса 83 дифференциала.
На Фиг.3 еще один узел оси, выполненный в соответствии с настоящим изобретением, обозначен в целом ссылочной позицией 10c. Узел 10c оси может быть в целом аналогичен узлу 10b оси, показанному на Фиг.2, за исключением нижеуказанных отличий. В рассматриваемом примере узел 10c оси содержит механизм 14c привода с распределением крутящего момента, который выборочно может работать в разных режимах, включая режим векторизации крутящего момента, режим привода, нейтральный режим и режим привода с малой скоростью. Механизм 14c привода с распределением крутящего момента может быть структурно аналогичен механизму 14b привода с распределением крутящего момента, схема которого приведена на Фиг.2, за исключением того, что муфта 152c включения может иметь группу третьих внутренних зубцов 170, которые могут выборочно введены в зацепление с зубцами 172 зубчатого элемента 174, который соединен с первой 50 и второй 70 солнечными шестернями для вращения вместе с ними. Группа третьих внутренних зубцов 170 не находится в зацеплении с какой-либо структурой, когда механизм 14c привода с распределением крутящего момента работает в режиме векторизации крутящего момента, режиме привода и нейтрального режима, и в этом случае работа механизма 14c привода с распределением крутящего момента в указанных режимах аналогична работе механизма привода с распределением крутящего момента, схема которого приведена на Фиг.2.
Однако в режиме привода с малой скоростью муфта 152c может быть установлена в четвертое положение для соединения входного элемента 86b с первой 50 и второй 70 солнечными шестернями (посредством зацепления группы третьих внутренних зубцов 170c зубцами 174 на элементе 174), так что входной элемент 86b, муфта 152c включения, элемент 174, а также первая 50 и вторая 70 солнечные шестерни будут вращаться вместе. В этом режиме вторая планетарная передача 42b используется в качестве понижающей передачи, и ее водило 76b вращается со скоростью, которая ниже скорости вращения второй солнечной шестерни 70. Понятно, что, когда муфта 152c включения установлена в четвертое положение, группы первых 160 и вторых 164 внутренних зубцов выводятся из зацепления с зубцами 162 на первой кольцевой шестерне 54b и с зубцами 166 на водиле 76b второй планетарной передачи.
Специалистам в данной области техники будет понятно, что крутящий момент подается на блок 30b двух планетарных передач в разных местах, когда механизм 14c привода с распределением крутящего момента работает в режиме привода и в режиме привода с малой скоростью. При этом крутящий момент подается на водило 76b второй планетарной передачи в режиме привода и на первую 50 и вторую 70 солнечные шестерни в режиме привода с малой скоростью. Соответственно, следует понимать, что корпус 83 дифференциала будет вращаться с меньшей скоростью (для заданной скорости вращения выходного вала 90 привода 32) в режиме привода с малой скоростью по сравнению с режимом привода. При этом вращение первой 50 и второй 70 солнечных шестерен при работе механизма 14c привода с распределением крутящего момента в режиме привода с малой скоростью будет вызывать соответствующее вращение вторых шестерен-сателлитов 72, в результате чего будет вращаться водило 76 второй планетарной передачи и корпус 83 дифференциала. Иначе говоря, когда механизм 14 с привода с распределением крутящего момента работает в режиме привода с малой скоростью, между входом крутящего момента (например, через элемент 174) и корпусом 83 дифференциала используется понижающая передача, а когда механизм 14c привода с распределением крутящего момента работает в режиме привода, понижающая передача между входом крутящего момента (например, через элемент 174) и корпусом 83 дифференциала не используется.
Размер муфты 152 включения в продольном направлении и ширина нескольких групп зубцов и промежутки между этими группами могут быть выбраны таким образом, что в некоторый момент времени только одна группа внутренних зубцов 160, 164 и 170 может находиться в зацеплении с соответствующими зубцами 162, 166 и 173. Кроме того, диаметры сопряженных групп зубцов могут быть разными, чтобы некоторые зубцы свободно проходили над другими зубцами в том случае, когда между ними не должно быть зацепления. Например, диаметр группы вторых внутренних зубцов 164 больше диаметра группы третьих внутренних зубцов 170, так что группа вторых внутренних зубцов 164 может проходить в продольном направлении над зубцами 172 на элементе 174, который соединен с первой 50 и второй 70 солнечными шестернями с возможностью вращения.
Также может быть выполнен механизм привода с распределением крутящего момента, работающий только в режиме привода и в нейтральном режиме. В этом случае может быть исключен блок 30 двух планетарных передач, поскольку его функциональные возможности создания крутящих моментов, направленных в противоположные стороны в режиме векторизации крутящего момента, и в режиме привода с малой скоростью для подачи на вход корпуса 83 дифференциала не нужны.
В этом случае механизм привода с распределением крутящего момента может содержать привод, коронную шестерню, соединенную функционально с приводом, переключающий элемент, соединенный с возможностью вращения с коронной шестерней для переключения между режимом привода и нейтральным режимом, и дифференциал, соединенный функционально с первым и вторым выходными элементами. Муфта 152 включения (или другой переключающий элемент) может быть устроена таким образом, чтобы она была соединена с дифференциалом. В частности, переключающий элемент может быть устроен таким образом, чтобы он соединялся с корпусом дифференциала. Кроме того, переключающий элемент может быть устроен таким образом, чтобы его можно было установить в такое положение, в котором он будет отсоединен от дифференциала.
Так же, как и в вариантах осуществления изобретения, схемы которых приведены на Фиг.2 и 3, переключающий элемент может содержать муфту включения, соединенную с возможностью вращения с коронной шестерней. Кроме того, переключающий элемент может иметь проходящую в радиальном направлении зубчатую структуру, выполненную на муфте включения и предназначенную для зацепления с сопряженной зубчатой структурой на внешней поверхности корпуса дифференциала. Муфта включения может скользить вдоль коронной шестерни в продольном направлении. При перемещении со скольжением муфты включения в направлении дифференциала зубчатая структура муфты может входить в зацепление с сопряженной зубчатой структурой корпуса дифференциала. В этом случае механизм привода с распределением крутящего момента может работать в режиме высоких передач. При перемещении муфты включения в направлении от дифференциала зубчатая структура муфты выходит из зацепления с зубчатой структурой внешней поверхности корпуса дифференциала. В этом случае привод будет "на нейтрали", поскольку он не будет передавать крутящий момент на дифференциал.
Достоинство такой конструкции заключается в том, что она может быть выполнена как модуль. То есть, конструкция может быть выполнена в форме модуля, который можно легко добавить к дифференциалу существующей трансмиссии.
Переключающий элемент или муфта включения в каждом из трех последних примеров может перемещаться в продольном направлении с использованием любого подходящего исполнительного механизма, включая традиционные механизмы с вилкой переключения передач, которые обычно используют в раздаточных коробках. Следует также понимать, что вместе с муфтой включения может быть введен один или несколько синхронизаторов для обеспечения привода муфты (например, посредством первой кольцевой шестерни или водила второй планетарной передачи) перед включением привода 32, так чтобы скорость вращения муфты соответствовала скорости вращения компонента, к которому должна вращательно присоединяться муфта включения.
На Фиг.4 показан вариант осуществления исполнительного механизма 200 для обеспечения прямолинейного перемещения муфты включения. Исполнительный механизм 200 имеет входной элемент в форме вращающегося соединителя 202 для соединения с приводом, таким как электродвигатель 210 постоянного тока (Фиг.6), или в форме другого подходящего вращающегося входного устройства. Вращательный соединитель 202 по существу содержит вращающийся вал 300, который соединен с двигателем 210. Далее, исполнительный механизм 200 содержит выходной элемент 400 в форме поршня или штока. К штоку 400 прикреплен выступ 500. На направляющей части 600 штока 400 форма его сечения отличается от цилиндрической.
На вращающемся валу 300 закреплена кулачковая шайба 700. На поверхности кулачковой шайбы 700 выполнен направляющий паз 800. Направляющий паз 800 делится на три части: 800a, 800b и 800c. Первая часть 800а паза проходит по внешней окружной поверхности кулачковой шайбы 700 в направлении, параллельном поперечной плоскости 710, которая перпендикулярна продольной оси С шайбы 700. Вторая часть 800b паза также проходит по внешней окружной поверхности кулачковой шайбы 700 в направлении, параллельном поперечной плоскости 710. Третья часть 800c паза проходит по внешней окружной поверхности кулачковой шайбы 700 между первой частью 800а паза и второй частью 800b паза, и направление третьей части 800c паза составляет некоторый угол с поперечной плоскостью, который отличен от нуля. Таким образом, первая 800а и вторая 800b части направляющего паза не отклоняются, то есть, они имеют нулевое отклонение в продольном направлении кулачковой шайбы 700 и нулевой угол наклона относительно поперечной плоскости 702, в то время как третья часть 800 с наклонена и проходит в направлении продольной оси С шайбы 700.
На каждой стороне кулачковой шайбы 700 выполнен первый фланец 900 и второй фланец 901. В первом фланце 900 выполнено первое сквозное отверстие 911, и во втором фланце 901 выполнено второе сквозное отверстие 921, которые обеспечивают направление штока 400. Второе сквозное отверстие 921 формирует проход, форма сечения которого отличается от цилиндрической и соответствует форме сечения направляющей части 600 штока 400. В первом фланце 900 выполнено третье сквозное отверстие 931, и во втором фланце 901 выполнено четвертое сквозное отверстие 941, через которые проходят соответствующие концы вращающегося вала 300, опирающегося при вращении на соответствующие подшипники скольжения 951 и 961. Между фланцами 900 и 901 установлены четыре разделительных или распорных элемента 971.
На Фиг.5 показана сборка исполнительного механизма 200. В частности, можно видеть, что выступ 500 входит внутрь направляющего паза 800 кулачковой шайбы 700. Когда кулачковая шайба 700 вращается двигателем 210, выступ 500 будет перемещаться по направляющему пазу 800. Когда выступ 500 перемещается в продольном направлении из первой части 800а по третьей части 800c и далее во вторую часть 800b направляющего паза, шток перемещается линейно в направлении L. Таким образом, вращение кулачковой шайбы 700 в направлении R преобразуется в линейное перемещение штока в направлении L.
Когда выступ 500 находится в первой части 800а направляющего паза, имеющей нулевой наклон, угол между пазом и штоком составляет 90°. При этом на выступ 500 не действуют силы в продольном направлении, и линейное положение штока 400 не будет изменяться. Первая часть 800a направляющего паза соответствует первому положению переключателя 810, функционально соединенного со штоком 400. В этом первом положении переключатель 810 обеспечивает возможность перемещения муфты 152 включения (Фиг.2) в третье положение для обеспечения работы механизма 14b привода с распределением крутящего момента (Фиг.2) в режиме привода.
При включении двигателя 210 кулачковая шайба 700 вращается в направлении R, и выступ 500 перемещается из первой части 800а по отклоняющейся третьей части 800с во вторую часть 800b направляющего паза, в результате чего шток 400 перемещается линейно в направлении L. Поскольку вторая часть 800b направляющего паза имеет нулевое отклонение, то на выступ 500 не будет действовать сила в продольном направлении, и шток 400 будет оставаться в этом положении при остановке двигателя 210. Таким образом, прекращается перемещение штока 400, и переключатель 810 будет удерживаться во втором положении. В этом втором положении переключатель 810 обеспечивает возможность установки муфты 152 включения (Фиг.2) в первое положение для обеспечения работы механизма 14b привода с распределением крутящего момента (Фиг.2) в режиме векторизации крутящего момента.
Специалист в данной области техники поймет, что возможны различные модификации описанных вариантов осуществления изобретения без выхода за пределы его объема, который определяется прилагаемой формулой.
Например, исполнительный механизм 200 был описан в контексте механизма распределения крутящего момента для моторного транспортного средства 12, однако такой исполнительный механизм в равной степени может быть использован и в других конструкциях. Такой исполнительный механизм может быть использован, например, в запирающем устройстве, в котором различные режимы могут соответствовать закрытому положению и открытому положению. Вообще говоря, вышеописанный тип исполнительного механизма может быть использован в любом приложении, в котором некоторую часть необходимо быстро и точно переместить по прямолинейной траектории, и такое перемещение должно быть выполнено с помощью привода, создающего на выходе крутящий момент.
В одном из вышеописанных вариантов осуществления изобретения направляющий паз 800 имеет две части 800а и 800c, которые не смещены в продольном направлении. Разумеется, в кулачковой шайбе 700 может быть выполнено более двух таких частей паза, каждый из которых соответствует положению части, которая соединена со штоком, например, переключателя. Таким образом, в механизме привода с распределением крутящего момента направляющий пазк с тремя частями, которые не смещены в продольном направлении и двумя частями с продольными смещениями может соответствовать трем разным режимам работы, таким как режим привода, режим векторизации крутящего момента и режим нейтрального положения коробки передач.
На Фиг.7-10 показан другой узел 10d оси, выполненный в соответствии с настоящим изобретением. Узел 10d может содержать механизм 14d привода с распределением крутящего момента, который аналогичен механизму 14а привода с распределением крутящего момента, схема которого приведена на Фиг.1, за исключением нижеуказанных отличий. Ссылочные позиции, использованные на Фиг.1, будут использованы для указания соответствующих элементов на Фиг.7-10.
Вместо привода 32 и понижающей передачи 88, которые использованы на Фиг.1 (привод 32 и понижающая передача 88 имеют ось вращения, которая параллельная оси вращения корпуса 83 дифференциала и водила 56 первой планетарной передачи), в примере, представленном на Фиг.7-10, использованы привод 32 и понижающая передача 88d, ось 1300 вращения которых перпендикулярна осям 85 вращения корпуса 83 дифференциала и водила 56 первой планетарной передачи. Например, ось 1300 вращения может быть перпендикулярна оси 1304 вращения двигателя 120 (или другого средства обеспечения крутящего момента, такого как электрический или гидравлический двигатель) и к осям 85 вращения корпуса 83 дифференциала и водила 56 первой планетарной передачи. Двигатель 120 может осуществлять привод первичной шестерни 1306 (например, через карданный вал (не показан)), находящейся в зацеплении с ведомой шестерней 1308, которая обычным образом может быть соединена с корпусом 83 дифференциала.
Такая конфигурация механизма 14d привода с распределением крутящего момента может быть полезна в некоторых ситуациях, в которых ограничено место на транспортном средстве, в котором необходимо разместить этот механизм.
Привод 32d может быть любым двигателем, таким как электрический двигатель переменного или постоянного тока, и может иметь выходной вал 37d-1, к которому может быть присоединена с возможностью вращения понижающая передача 88d.
Понижающая передача 88d может представлять собой червячную шестерню 1312, которая находится в зацеплении с червячным колесом 1314. Червячное колесо 1314 может быть соединено с возможностью вращения с первой кольцевой шестерней 54d (например, выполнено на внешней поверхности первой кольцевой шестерни 54d). Червячная шестерня 1312 и червячное колесо 1314 могут иметь сравнительно небольшие размеры и, тем не менее, будут обеспечивать сравнительно высокое передаточное число. Соответственно, привод 32d может вырабатывать на выходе сравнительно низкий крутящий момент на валу, вращающемся с высокой скоростью, и потому привод 32d может иметь уменьшенный диаметр по сравнению с приводом 32, показанным на Фиг.1.
При необходимости червячная шестерня 1312 и червячное колесо 1314 могут быть выполнены таким образом, чтобы обеспечивалась самоблокировка, когда на привод 32d не подается мощность, для эффективной блокировки узла 36d дифференциала, чтобы предотвращать возможность различия скоростей вращения первого 16 и второго 18 выходных элементов. При этом блокировка червячной шестерни 1312 и червячного колеса 1314 предотвращает вращение первой кольцевой шестерни 54d. Поскольку водило 76d второй планетарной передачи и корпус 83 дифференциала соединены для обеспечения вращения, то вращение корпуса дифференциала (посредством вращения ведомой шестерни 1308 дифференциала, вызываемого вращением первичной шестерни 1306) может обеспечивать передачу вращения на водило 76d второй планетарной передачи, в результате чего шестерни-сателлиты 72 второй планетарной передачи 42 будут вращаться внутри второй кольцевой шестерни 74 и вращать вторую солнечную шестерню 70. Вращение второй солнечной шестерни 70 вызывает вращение первой солнечной шестерни 50, в результате чего будут вращаться шестерни-сателлиты 52 первой планетарной передачи 40, что приводит к вращению водила 56 первой планетарной передачи. Поскольку водило 56 первой планетарной передачи соединено с первым выходным элементом 16, и поскольку первая 40 и вторая 42 планетарные передачи имеют одинаковые передаточные числа, то водило 56 первой планетарной передачи и водило 76 второй планетарной передачи вращаются с одинаковыми скоростями (а именно, со скоростью вращения корпуса 83 дифференциала). В этом случае первый выходной элемент 16 не может вращаться относительно корпуса 83 дифференциала, так что шестерни 104 дифференциала будут зафиксированы относительно корпуса 83 дифференциала.
Для обеспечения самоблокировки червячной шестерни 1312 и червячного колеса 1314 необходимо, чтобы червячное колесо не могло осуществлять "обратное вращение червячной шестерни 1312. Специалистам в данной области техники будет понятно, что возможность блокировки червячной шестерни 1312 и червячного колеса 1314 зависит от нескольких факторов, включая угол подъема винтовой линии, угол давления и коэффициент трения, однако зачастую анализ может быть сведен к приближенной оценке, включающей коэффициент трения и тангенс угла подъема винтовой линии (а именно, самоблокировка будет происходить, когда тангенс угла подъема винтовой линии будет меньше коэффициента трения).
Как показано на Фиг.7-10, блок 30 двух планетарных передач и понижающая передача 88d могут быть размещены в корпусе 1340, который может содержать первую часть 1342 корпуса и вторую часть 1344 корпуса, жестко прикрепляемые друг к другу с использованием комплекта крепежных элементов. Привод 32d может быть прикреплен к фланцу 1348, выполненному на первой части 1342 корпуса. Для уплотнения первого выходного элемента 16 относительно корпуса 1340 и корпуса 1340 относительно части водила 76d второй планетарной передачи, которое соединено с возможностью вращения с корпусом 83 дифференциала, используют уплотнительные элементы 1352. Кроме того, в корпусе 1356, в котором расположен корпус 83 дифференциала, может быть использован уплотнительный элемент 1354, для уплотнения корпуса 1356 относительно части водила 76d второй планетарной передачи, которое соединено с возможностью вращения с корпусом 83 дифференциала.
Следует понимать, что нижеприведенное описание по своему характеру является лишь иллюстративным и никоим образом не ограничивает объем настоящего изобретения и его применения. Хотя в настоящем описании рассмотрены со ссылками на прилагаемые чертежи конкретные варианты осуществления изобретения, однако специалистам в данной области техники будет ясно, что в эти варианты могут быть внесены различные изменения и замены без выхода за пределы объема изобретения, который определяется его формулой. Также, специалисту в данной области техники будет ясно из настоящего описания, даже если это специально не оговорено в тексте, что признаки, элементы и/или функции одного варианта могут быть введены в другой вариант, где это уместно, если в описании не указано однозначно иное. Кроме того, могут быть осуществлены различные модификации для адаптации изобретения к конкретным применениям или конкретным материалам без отклонения от сущности и объема изобретения. Поэтому следует понимать, что настоящее изобретение не ограничивается конкретными вариантами, которые иллюстрируются прилагаемыми чертежами и рассмотрены в описании как наиболее предпочтительные для осуществления изобретения, и объем настоящего изобретения охватывает также любые варианты его осуществления, которые следуют из описания и из пунктов прилагаемой формулы.

Claims (18)

1. Узел оси, содержащий:
входной элемент;
первую планетарную передачу с первым входом трансмиссии, приводимым в действие входным элементом;
узел дифференциала, содержащий корпус, а также первый и второй выходные элементы, размещенные в корпусе дифференциала;
вторую планетарную передачу, содержащую корпус, соединенный с корпусом дифференциала для их совместного вращения, и кольцевую шестерню; и
корпус, в котором размещены первая планетарная передача и вторая планетарная передача;
причем солнечная шестерня первой планетарной передачи соединена с солнечной шестерней второй планетарной передачи без возможности вращения относительно нее; и
причем кольцевая шестерня второй планетарной передачи соединена с корпусом без возможности вращения относительно него.
2. Узел оси по п.1, дополнительно содержащий муфту сцепления для выборочного отсоединения входного элемента от первого входа трансмиссии.
3. Узел оси по п.2, в котором муфта сцепления дополнительно выполнена с возможностью выборочного соединения входного элемента с корпусом дифференциала, так что входной элемент и корпус дифференциала вращаются вместе.
4. Узел оси по п.2, в котором муфта сцепления дополнительно выполнена с возможностью выборочной блокировки первой и второй планетарных передач, так что первый и второй выходные элементы узла дифференциала могут вращаться вместе.
5. Узел оси по п.1, дополнительно содержащий муфту включения, которая выполнена с возможностью перемещения между первым положением и вторым положением, причем, когда муфта включения находится во втором положении, она соединяет входной элемент с водилом второй планетарной передачи.
6. Узел оси по п.5, в котором муфта включения выполнена с возможностью перемещения в третье положение, в котором она блокирует первую и вторую планетарные передачи, так что выходные элементы узла дифференциала вращаются вместе.
7. Узел оси по п.6, в котором, когда муфта включения находится в третьем положении, она соединяет входной элемент с солнечными шестернями первой и второй планетарных передач для их совместного вращения.
8. Узел оси по п.5, в котором муфта включения выполнена с возможностью перемещения в нейтральное положение, причем, когда муфта включения перемещается в нейтральное положение, входной элемент отсоединяется от первой планетарной передачи, от второй планетарной передачи и от корпуса дифференциала.
9. Узел оси по п.5, в котором, когда муфта включения находится в первом положении, она соединяет входной элемент с кольцевой шестерней первой планетарной передачи.
10. Узел оси по п.1, дополнительно содержащий электродвигатель, соединенный с входным элементом с возможностью приведения его в действие посредством вспомогательной понижающей передачи.
11. Узел оси по п.10, в котором вспомогательная понижающая передача включает червячную шестерню и червячное колесо, находящееся в зацеплении с червячной шестерней.
12. Узел оси по п.1, дополнительно содержащий кольцевую шестерню, соединенную с корпусом дифференциала для вращения вместе с ним.
13. Узел оси по п.1, дополнительно содержащий две полуоси, каждая из которых соединена с соответствующим выходным элементом узла дифференциала для обеспечения привода полуоси.
14. Узел оси по п.1, в котором узел дифференциала дополнительно содержит шестерни-сателлиты, установленные в корпусе дифференциала, и в котором выходными элементами узла дифференциала являются полуосевые шестерни, находящиеся в зацеплении с шестернями-сателлитами.
15. Узел оси по п.1, в котором кольцевая шестерня первой планетарной передачи соединена с входным элементом для вращения вместе с ним.
16. Узел оси по п.1, в котором одна из полуосей проходит сквозь солнечные шестерни первой и второй планетарных передач.
17. Узел оси по п.1, в котором водило первой планетарной передачи соединено с одной из полуосей для вращения вместе с ней.
18. Узел оси, содержащий:
входной элемент;
первую планетарную передачу, содержащую первый вход трансмиссии, первую солнечную шестерню, первую кольцевую шестерню, первые шестерни-сателлиты и первое водило, причем первый вход трансмиссии приводится в движение входным элементом, первые шестерни-сателлиты находятся в зацеплении с первой солнечной шестерней и с первой кольцевой шестерней и первое водило обеспечивает опору для вращения первых шестерен-сателлитов;
узел дифференциала, содержащий корпус, а также первый и второй выходные элементы, размещенные в корпусе дифференциала; и
вторую планетарную передачу, содержащую водило, соединенное с корпусом дифференциала для их совместного вращения;
причем входной элемент, первая планетарная передача и вторая планетарная передача расположены на общем продольном конце корпуса дифференциала, и при этом узел оси выполнен с возможностью работы в режиме, в котором водила первой и второй планетарных передач отсоединены друг от друга для предотвращения их совместного вращения.
RU2013106421/11A 2010-07-14 2011-07-14 Узел оси с механизмом привода с распределением крутящего момента RU2569722C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US36407210P 2010-07-14 2010-07-14
US61/364,072 2010-07-14
US201161468809P 2011-03-29 2011-03-29
US61/468,809 2011-03-29
US13/182,153 2011-07-13
US13/182,153 US8663051B2 (en) 2010-07-14 2011-07-13 Axle assembly with torque distribution drive mechanism
PCT/IB2011/001637 WO2012007829A2 (en) 2010-07-14 2011-07-14 Axle assembly with torque distribution drive mechanism

Publications (2)

Publication Number Publication Date
RU2013106421A RU2013106421A (ru) 2014-08-20
RU2569722C2 true RU2569722C2 (ru) 2015-11-27

Family

ID=44674824

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013106421/11A RU2569722C2 (ru) 2010-07-14 2011-07-14 Узел оси с механизмом привода с распределением крутящего момента

Country Status (8)

Country Link
US (1) US8663051B2 (ru)
EP (3) EP3273096B1 (ru)
KR (2) KR101948491B1 (ru)
CN (1) CN103119332B (ru)
BR (1) BR112013000936B1 (ru)
IN (1) IN2013CN00389A (ru)
RU (1) RU2569722C2 (ru)
WO (1) WO2012007829A2 (ru)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341622B (zh) * 2009-03-05 2016-06-08 伯格华纳转矩传送系统有限公司 用于扭矩矢量控制的设备
US8998765B2 (en) * 2010-07-14 2015-04-07 E-Aam Driveline Systems Ab Axle assembly with torque distribution drive mechanism
KR101878849B1 (ko) * 2010-12-15 2018-07-16 보그워너 스웨덴 아베 토크 벡터링 장치
DE102012212268B4 (de) * 2012-07-13 2021-02-18 Schaeffler Technologies AG & Co. KG Antriebssystem für eine Elektrische Achse mit Zwei-Gang-Getriebe
US8651991B1 (en) 2013-01-31 2014-02-18 E-Aam Driveline Systems Ab Drive module with parking brake
DE102013202382B4 (de) 2013-02-14 2016-06-23 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Fahrzeug sowie Fahrzeug mit der Antriebsvorrichtung
DE102013202381B4 (de) * 2013-02-14 2016-06-23 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Fahrzeug sowie Fahrzeug mit der Antriebsvorrichtung
US8998764B2 (en) * 2013-03-13 2015-04-07 E-Aam Driveline Systems Ab Drive module having planetary transmission with nested ring gears
US9306433B2 (en) * 2013-03-13 2016-04-05 E-Aam Driveline Systems Ab Drive module with spray cooling of electric motor
US8554441B1 (en) 2013-03-13 2013-10-08 E-Aam Driveline Systems Ab Phasing of traction control based on vehicle speed and road slope
CN108099878B (zh) 2013-06-03 2020-11-03 E-Aam 传动系统公司 用于确定车速参数的方法
US9109634B2 (en) 2013-10-22 2015-08-18 E-Aam Driveline Systems Ab Actuator with face dog clutch
US9061577B2 (en) * 2013-11-14 2015-06-23 Hyundai Wia Corporation Driving device for rear wheels of four wheel driving electric vehicle
US9353852B2 (en) 2013-12-16 2016-05-31 E-Aam Driveline Systems Ab Actuator coupling mechanism
US20150232070A1 (en) * 2014-02-14 2015-08-20 E-Aam Driveline Systems Ab Park lock for drive module
WO2015169837A1 (en) * 2014-05-06 2015-11-12 Borgwarner Torqtransfer Systems Ab A torque vectoring device
DE102014007940A1 (de) * 2014-05-24 2015-11-26 Audi Ag Kraftfahrzeug
DE102014210549A1 (de) * 2014-06-04 2015-12-17 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Fahrzeug
EP3194808A4 (en) * 2014-07-25 2018-03-14 Eaton Corporation Compact electronically controlled front wheel drive torque vectoring system with single or dual axle modulation
US9394993B2 (en) 2014-09-03 2016-07-19 E-Aam Driveline Systems Ab Park lock mechanism
US9353859B2 (en) 2014-09-03 2016-05-31 E-Aam Driveline Systems Ab Park lock mechanism
US9255640B1 (en) 2014-09-03 2016-02-09 E-Aam Driveline Systems Ab Park lock mechanism
CN107000587B (zh) * 2014-10-15 2019-09-13 伊顿智能动力有限公司 集成式电子驱动单元
RU2618830C2 (ru) * 2014-11-05 2017-05-11 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Механизм распределения мощности в трансмиссии автомобиля
US20160138695A1 (en) 2014-11-18 2016-05-19 E-Aam Driveline Systems Ab Disconnecting awd driveline with torque-vectoring capabilities
US9593721B2 (en) 2014-11-19 2017-03-14 E-Aam Driveline Systems Ab Electronic rear drive module with split halfshaft flange
CN104670010B (zh) * 2015-02-11 2018-04-03 吉林大学 一种具备转矩定向分配功能的电动主动正齿轮差速器
US9783061B2 (en) 2015-03-18 2017-10-10 E-Aam Driveline Systems Ab Method for operating an electric drive module
US9903460B2 (en) 2015-04-17 2018-02-27 E-Aam Driveline Systems Ab Transmission with pinion for reduced backlash
US9637022B2 (en) 2015-04-30 2017-05-02 E-Aam Driveline Systems Ab Electric drive module and method for operating an electric drive module
US9512900B2 (en) 2015-05-08 2016-12-06 E-Aam Driveline Systems Ab Planetary gear mechanism with reduced gear lash
TWI607899B (zh) * 2015-11-04 2017-12-11 財團法人工業技術研究院 電動車用兩速變速箱
US9453564B1 (en) * 2015-11-09 2016-09-27 Borgwarner Inc. Electric all-wheel drive with two-speed double reduction planetary
DE102015223130B4 (de) * 2015-11-24 2020-02-06 Schaeffler Technologies AG & Co. KG Antriebseinrichtung mit einem Differentialgetriebe und einer Torque-Vectoring-Einheit
US20160178040A1 (en) * 2016-03-02 2016-06-23 Caterpillar Inc. Drive assembly for machines
US20160178041A1 (en) * 2016-03-02 2016-06-23 Caterpillar Inc. Drive assembly for machines
CN107152507A (zh) * 2016-03-03 2017-09-12 博格华纳公司 电动全轮驱动双速分离式双级减速行星齿轮
CN107191553B (zh) * 2016-03-14 2021-08-17 博格华纳公司 产品和驱动车桥差速器的方法
EP3452323B1 (en) 2016-05-06 2021-08-18 Allison Transmission, Inc. Axle assembly with electric motor
WO2017207061A1 (de) * 2016-06-03 2017-12-07 Gkn Automotive Ltd. Elektroantriebsanordnung und antriebsstrang mit einer solchen elektroantriebsanordnung
US10190662B2 (en) * 2016-07-19 2019-01-29 Deere & Company Variator for work vehicle drivetrain
RU2634062C1 (ru) * 2016-09-08 2017-10-23 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Механизм распределения мощности в трансмиссии автомобиля
CN106195193B (zh) * 2016-10-09 2018-04-13 吉林大学 一种双离合器行星式电动差速器
DE102017200724B4 (de) 2017-01-18 2020-02-20 Magna powertrain gmbh & co kg Getriebeanordnung zur steuerbaren Verteilung eines Antriebsmoments von einem Eingangselement auf zumindest ein Ausgangselement in einem Allradantriebsstrang eines Allradkraftfahrzeugs
US10006533B1 (en) * 2017-02-08 2018-06-26 E-Aam Driveline Systems Ab Drive module with parallel input axes for propulsive and torque-vectoring inputs
DE102017202692A1 (de) * 2017-02-20 2018-08-23 Magna powertrain gmbh & co kg Getriebeanordnung
JP2018146073A (ja) * 2017-03-08 2018-09-20 三菱自動車工業株式会社 駆動力調整装置
US9958049B1 (en) * 2017-05-15 2018-05-01 E-Aam Driveline Systems Ab Electric drive module with Ravigneaux gearset
US11383597B2 (en) * 2017-06-02 2022-07-12 Dana Heavy Vehicle Systems Group, Llc Electric drive unit assembly
WO2018222988A1 (en) * 2017-06-02 2018-12-06 Dana Heavy Vehicle Systems Group, Llc An axlie assembly
CN108006716B (zh) * 2017-06-27 2023-11-17 宁波方太厨具有限公司 一种家用电器控制面板翻转机构
EP3431811B1 (en) * 2017-07-21 2021-12-22 Ge Avio S.r.l. Transmission device for splitting torque between two coaxial gears, in particular for a planetary gearing for aeronautic applications, and method for manufacturing and assembling said transmission device
JP7035385B2 (ja) * 2017-09-01 2022-03-15 三菱自動車工業株式会社 駆動力調整装置
CN111406168A (zh) * 2017-09-14 2020-07-10 索林·阿克辛特 轨道立方体
EP3685074B1 (en) * 2017-09-21 2023-08-02 BorgWarner Sweden AB Torque vectoring device
US10316946B2 (en) 2017-10-13 2019-06-11 E-Aam Driveline Systems Ab Two mode electric drive module with Ravigneaux gearset
KR102406122B1 (ko) * 2017-12-11 2022-06-07 현대자동차 주식회사 토크 벡터링 장치
CN108253111A (zh) * 2017-12-27 2018-07-06 孝感孝航机电科技有限公司 一种行星齿轮式的减速差速器
CN108189665A (zh) * 2018-02-11 2018-06-22 浙江华亦海汽车电子科技有限公司 一种电动汽车驱动系统构型
DE102018205440A1 (de) * 2018-04-11 2019-10-17 Magna powertrain gmbh & co kg Achsgetriebeanordnung für ein Kraftfahrzeug
WO2019240883A1 (en) 2018-06-14 2019-12-19 American Axle & Manufacturing, Inc. Hybrid axle assembly having inside out motor and ring gear directly supported on an axle housing
KR102588934B1 (ko) * 2018-07-31 2023-10-16 현대자동차주식회사 차량의 파워트레인
WO2020037233A1 (en) 2018-08-16 2020-02-20 Allison Transmission, Inc. Electric axle assembly
DE102018215918A1 (de) * 2018-09-19 2020-03-19 ZF Drivetech (Suzhou) Co.Ltd. Antriebsvorrichtung für eine elektrisch angetriebene Achse eines Kraftfahrzeugs
USD927578S1 (en) 2018-09-27 2021-08-10 Allison Transmission, Inc. Axle assembly
KR102654449B1 (ko) * 2018-12-05 2024-04-03 현대자동차 주식회사 토크 벡터링 장치
KR102654446B1 (ko) * 2018-12-05 2024-04-03 현대자동차 주식회사 토크 벡터링 장치
KR102654454B1 (ko) * 2018-12-18 2024-04-03 현대자동차 주식회사 토크 벡터링 장치
KR102654455B1 (ko) * 2018-12-18 2024-04-03 현대자동차 주식회사 토크 벡터링 장치
KR102654456B1 (ko) * 2018-12-18 2024-04-03 현대자동차 주식회사 토크 벡터링 장치
DE102019103613A1 (de) 2019-02-13 2020-08-13 Kessler & Co. Gmbh & Co. Kg Achsmittengetriebe
US11390264B2 (en) 2019-06-19 2022-07-19 Ford Global Technologies, Llc Methods and system for controlling stopping of an engine
US11209072B2 (en) * 2019-10-07 2021-12-28 Arvinmeritor Technology, Llc Axle assembly having a multi-speed transmission
EP3825581B1 (en) * 2019-11-21 2022-09-28 Ningbo Geely Automobile Research & Development Co., Ltd. Method for performing rotational speed synchronisation
US11293534B2 (en) 2019-12-02 2022-04-05 American Axle & Manufacturing, Inc. Electric drive module with transmission having parallel twin gear pairs sharing load to a final drive gear
DE112021002100T5 (de) 2020-04-02 2023-03-02 E-Aam Driveline Systems Ab Antriebseinheit für kraftfahrzeug
CN111890922B (zh) * 2020-07-07 2021-11-16 江苏理工学院 一种汽车加速跑偏控制装置
US11105287B1 (en) 2020-08-13 2021-08-31 Ford Global Technologies, Llc Methods and system for stopping an engine
US20220376592A1 (en) * 2021-05-19 2022-11-24 GM Global Technology Operations LLC Axial flux motor drive unit with two independent rotors sharing a stator
CN113217600B (zh) * 2021-06-01 2022-05-06 吉林大学 一种具有转矩矢量分配功能的汽车差速器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1118820A2 (ru) * 1983-06-20 1984-10-15 Litvinskij Igor Планетарный распределитель момента
US5518463A (en) * 1993-04-16 1996-05-21 Honda Giken Kogyo Kabishiki Kaisha Torque distributing mechanism for differential
RU2156902C1 (ru) * 1999-03-30 2000-09-27 Кузеванов Виктор Михайлович Способ распределения мощности для дифференциала транспортных средств
JP2001039179A (ja) * 1999-05-25 2001-02-13 Toyota Motor Corp 駆動力分配装置
US20060025273A1 (en) * 2004-07-29 2006-02-02 Mircea Gradu Differential with torque vectoring capabilities
JP2006046495A (ja) * 2004-08-04 2006-02-16 Toyoda Mach Works Ltd 差動装置

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1965847C3 (de) 1969-12-31 1975-07-31 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Fahr- und Lenkgetriebeanordnung für Gleiskettenfahrzeuge
JP2652673B2 (ja) 1988-07-28 1997-09-10 富士重工業株式会社 4輪駆動車の動力分配装置
DE4005588C2 (de) 1990-02-22 1995-03-23 Porsche Ag Schaltvorrichtung für ein automatisches Getriebe
JP2687052B2 (ja) * 1991-04-19 1997-12-08 本田技研工業株式会社 差動装置のトルク分配機構
JP2738225B2 (ja) 1992-06-15 1998-04-08 三菱自動車工業株式会社 車両用左右駆動力調整装置
JP3208866B2 (ja) 1992-09-01 2001-09-17 トヨタ自動車株式会社 電気自動車用駆動装置
JP2876376B2 (ja) * 1993-04-16 1999-03-31 本田技研工業株式会社 差動装置のトルク分配機構
DE19680744B4 (de) 1995-09-11 2011-02-24 Honda Giken Kogyo K.K. Kopplungseinrichtung zwischen dem linken und rechten Rad eines Fahrzeugs
JPH10100701A (ja) 1996-09-25 1998-04-21 Mazda Motor Corp 4輪駆動車の動力伝達装置
JP3103779B2 (ja) 1996-11-22 2000-10-30 建治 三村 差動装置
JP3547582B2 (ja) 1997-04-21 2004-07-28 本田技研工業株式会社 車両の左右輪間の連結装置
JP2001132801A (ja) 1999-11-02 2001-05-18 Mitsubishi Heavy Ind Ltd 車両の動力伝達装置
DE10022319A1 (de) 2000-05-09 2001-11-29 Voith Turbo Kg Antriebseinheit, insbesondere elektrische Antriebseinheit zum Antrieb einer Radachse in Transaxelbauweise
JP2002154343A (ja) 2000-11-20 2002-05-28 Honda Motor Co Ltd 前後輪駆動車両の動力伝達機構
US6569058B2 (en) 2000-12-20 2003-05-27 Daimlerchrysler Corporation Linear motion shifter
JP2002243025A (ja) 2001-02-19 2002-08-28 Exedy Corp 遊星歯車装置の遊星キャリア機構
US6401850B1 (en) 2001-03-14 2002-06-11 New Venture Gear, Inc. Electric drive axle for hybrid vehicle
JP3701014B2 (ja) 2001-10-22 2005-09-28 富士重工業株式会社 車両の駆動装置
AU2003207301A1 (en) 2002-02-08 2003-09-02 Ricardo Mtc Limited Vihicle transmission system
WO2003076825A2 (en) 2002-03-05 2003-09-18 Metal Forming & Coining Corporation Pinion carrier for planetary gear train and method of making same
US7731614B2 (en) 2002-04-29 2010-06-08 Caterpillar Inc. Method and apparatus for an electric drive differential system
US7270205B2 (en) 2002-05-22 2007-09-18 Jtekt Corporation Vehicle drive device, and front-and-rear wheel-driven vehicle formed of the device
DE10241457B4 (de) 2002-09-07 2019-04-18 Robert Bosch Gmbh Verteilergetriebe für Fahrzeuge sowie Verfahren zur Verteilung einer Antriebskraft auf zwei Fahrzeugachsen
FR2844858B1 (fr) 2002-09-25 2006-12-29 Peugeot Citroen Automobiles Sa Differentiel asymetrique a caractere actif pour vehicule automobile
US6892837B2 (en) 2002-10-11 2005-05-17 Caterpillar Inc Electric drive system with differential steering
US6909959B2 (en) 2003-03-07 2005-06-21 Stephen James Hallowell Torque distribution systems and methods for wheeled vehicles
EP1914103B1 (en) 2003-05-08 2009-12-09 DTI Group B.V. Transmission system, in particular for a motor vehicle
JP4066883B2 (ja) 2003-05-26 2008-03-26 日産自動車株式会社 車両の左右輪駆動装置
WO2004106101A1 (en) 2003-05-29 2004-12-09 Gkn Technology Limited Control of the rear wheel drive assist in a front wheel drive vehicle
US7296644B2 (en) 2003-07-09 2007-11-20 Tochigi Fuji Sangyo Kabushiki Kaisha Reduction-drive device
JP2005042846A (ja) 2003-07-24 2005-02-17 Tochigi Fuji Ind Co Ltd 減速駆動装置
JP2005224086A (ja) 2004-02-09 2005-08-18 Exedy Corp 電動機駆動車両の駆動装置
DE102004016642B4 (de) 2004-03-30 2009-03-19 Getrag Driveline Systems Gmbh Verteilergetriebe
DE102004024086A1 (de) 2004-05-14 2005-12-08 Audi Ag Antriebsvorrichtung für Kraftfahrzeuge
US7044880B2 (en) * 2004-05-20 2006-05-16 Magna Powertrain, Inc. Torque distributing differential assembly
US7811194B2 (en) 2004-05-25 2010-10-12 Magna Powertrain Usa, Inc. Differential assembly with torque vectoring drive mechanism
US20050266953A1 (en) 2004-06-01 2005-12-01 Dumitru Puiu Drive axle assembly with torque distributing limited slip differential unit
US20060025267A1 (en) * 2004-07-29 2006-02-02 Mircea Gradu Differential with torque vectoring capabilities
EP1774202B1 (en) 2004-07-30 2010-12-22 Ricardo Uk Limited Variable torque biasing device
WO2006029434A2 (de) 2004-09-15 2006-03-23 Magna Steyr Fahrzeugtechnik Ag & Co Kg Differentialgetriebeeinheit mit steuerbarer drehmoment- und drehzahl verteilung
JP4513492B2 (ja) 2004-10-13 2010-07-28 株式会社ジェイテクト 差動装置およびこれを用いた車両の駆動力伝達ユニット
FR2876652B1 (fr) 2004-10-20 2008-04-18 Giat Ind Sa Systeme de transmission hybride pour vehicule
SE0403113D0 (sv) 2004-12-22 2004-12-22 Haldex Traction Ab All-Wheel Drive Torque Vectoring System
FR2884459B1 (fr) 2005-04-14 2008-09-19 Peugeot Citroen Automobiles Sa Chaine de traction hybride et vehicule hybride equipe d'une telle chaine de traction hybride
DE102005025617B4 (de) 2005-06-03 2024-01-18 Bayerische Motoren Werke Aktiengesellschaft Steuereinrichtung für ein Antriebssystem in einem Kraftfahrzeug mit einem variablen Allradantrieb
US8083636B2 (en) 2005-08-16 2011-12-27 Borgwarner, Inc. Electronic control torque vectoring axle
DE102005049706A1 (de) 2005-10-18 2007-04-26 Zf Friedrichshafen Ag Getriebevorrichtung
KR100717306B1 (ko) 2005-12-09 2007-05-15 현대자동차주식회사 하이브리드 차량용 동력전달장치
GB0600154D0 (en) 2006-01-06 2006-02-15 Qinetiq Ltd Controlled differential
CA2641897C (en) 2006-02-03 2012-11-27 Eaton Corporation Stability-enhanced traction and yaw control using electronically controlled limited-slip differential
JP5034532B2 (ja) 2006-03-10 2012-09-26 日産自動車株式会社 駆動力配分装置
US7873454B2 (en) 2006-05-03 2011-01-18 Eaton Corporation Method of identifying predictive lateral load transfer ratio for vehicle rollover prevention and warning systems
US7491147B2 (en) 2006-05-03 2009-02-17 Gm Global Technology Operations, Inc. Torque vectoring differential apparatus
US7624828B2 (en) 2006-05-04 2009-12-01 Ford Global Technologies, Llc Vehicle power transfer system and method, and vehicle using the same
DE102006022173A1 (de) 2006-05-12 2007-11-15 Zf Friedrichshafen Ag Getriebevorrichtung zum Verteilen eines Antriebsmomentes auf wenigstens zwei Antriebswellen
DE102006023552A1 (de) 2006-05-19 2007-11-22 Zf Friedrichshafen Ag Verfahren zur Ermittlung der Drehzahl der Hauptwelle eines Getriebes und Getriebe mit einer Drehzahlabgriffseinrichtung
DE102006031089A1 (de) 2006-07-05 2008-01-17 Fzgmbh Antriebsvorrichtung für ein Kraftfahrzeug
TWI341264B (en) 2006-09-28 2011-05-01 Mitsubishi Motors Corp Electric motor mounting structure for vehicles
US7955208B2 (en) 2006-11-13 2011-06-07 Jtekt Corporation Torque distributing apparatus
JP2008175392A (ja) 2007-01-18 2008-07-31 Borgwarner Inc 二重クラッチ車軸組立体
US20080176702A1 (en) 2007-01-19 2008-07-24 Showalter Dan J Torque vectoring system
JP4637136B2 (ja) 2007-05-23 2011-02-23 本田技研工業株式会社 動力装置
JP4313828B2 (ja) 2007-05-31 2009-08-12 三菱自動車工業株式会社 左右駆動力配分装置
KR100946492B1 (ko) 2007-10-29 2010-03-10 현대자동차주식회사 4륜 구동 하이브리드 차량의 후륜 구동장치
DE102007055881A1 (de) 2007-12-20 2009-06-25 Forschungsgesellschaft für Zahnräder und Getriebe mbH Getriebevorrichtung
DE102007055883A1 (de) 2007-12-20 2009-06-25 Forschungsgesellschaft für Zahnräder und Getriebe mbH Getriebevorrichtung mit wenigstens zwei Ausgangswellen
DE102007055882A1 (de) * 2007-12-20 2009-06-25 Forschungsgesellschaft für Zahnräder und Getriebe mbH Getriebevorrichtung mit wenigstens zwei Ausgangswellen und mindestens zwei mehrwelligen Planetenradsätzen
US7762366B2 (en) 2008-02-05 2010-07-27 Ford Global Technologies, Llc Axle drive unit for a hybrid electric vehicle
US20090253548A1 (en) 2008-04-03 2009-10-08 Showalter Dan J Torque vectoring axle assembly
SE533094C2 (sv) 2008-04-24 2010-06-29 Haldex Traction Ab Torque vectoring-anordning och medel för dess kontroll
EP2138372B1 (en) 2008-06-26 2012-08-08 Volvo Car Corporation Vehicle-to-road contact estimation
DE102008061946A1 (de) 2008-12-12 2010-06-17 Schaeffler Kg Elektrische Antriebseinheit mit variabler Momentenverteilung
GB2466973B (en) 2009-01-16 2013-09-18 Gm Global Tech Operations Inc Coupling and synchronizing device for electric drive modules
GB2466968A (en) 2009-01-16 2010-07-21 Gm Global Tech Operations Inc Hybrid vehicle with auxiliary drive member providing an offset torque
GB2466967B (en) 2009-01-16 2013-09-25 Gm Global Tech Operations Inc Drive mechanism for selectively switching a drive between propulsion and torque vectoring mode
GB2466975B (en) 2009-01-16 2013-06-19 Gm Global Tech Operations Inc Torque distributing drive mechanism for motorized vehicles
CN102341622B (zh) 2009-03-05 2016-06-08 伯格华纳转矩传送系统有限公司 用于扭矩矢量控制的设备
US8049384B2 (en) 2009-06-19 2011-11-01 GM Global Technology Operations LLC Electronic drive unit
DE102009059903A1 (de) 2009-12-21 2011-06-22 Schaeffler Technologies GmbH & Co. KG, 91074 System zur variablen Momentenverteilung
CN103415435B (zh) 2010-01-25 2016-04-20 博格华纳扭矩输出系统公司 用于控制车辆的偏航力矩的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1118820A2 (ru) * 1983-06-20 1984-10-15 Litvinskij Igor Планетарный распределитель момента
US5518463A (en) * 1993-04-16 1996-05-21 Honda Giken Kogyo Kabishiki Kaisha Torque distributing mechanism for differential
RU2156902C1 (ru) * 1999-03-30 2000-09-27 Кузеванов Виктор Михайлович Способ распределения мощности для дифференциала транспортных средств
JP2001039179A (ja) * 1999-05-25 2001-02-13 Toyota Motor Corp 駆動力分配装置
US20060025273A1 (en) * 2004-07-29 2006-02-02 Mircea Gradu Differential with torque vectoring capabilities
JP2006046495A (ja) * 2004-08-04 2006-02-16 Toyoda Mach Works Ltd 差動装置

Also Published As

Publication number Publication date
EP2593696B1 (en) 2017-08-30
KR101948491B1 (ko) 2019-02-14
KR101839168B1 (ko) 2018-03-15
BR112013000936B1 (pt) 2021-08-31
EP2593696A2 (en) 2013-05-22
WO2012007829A2 (en) 2012-01-19
RU2013106421A (ru) 2014-08-20
US8663051B2 (en) 2014-03-04
KR20130042568A (ko) 2013-04-26
CN103119332A (zh) 2013-05-22
CN103119332B (zh) 2015-10-14
BR112013000936A2 (pt) 2020-11-03
IN2013CN00389A (ru) 2015-07-03
WO2012007829A3 (en) 2012-05-18
EP2662595B1 (en) 2018-01-31
EP2662595A3 (en) 2014-08-27
EP3273096B1 (en) 2023-03-15
EP2662595A2 (en) 2013-11-13
US20120058855A1 (en) 2012-03-08
EP3273096A1 (en) 2018-01-24
KR20180030234A (ko) 2018-03-21

Similar Documents

Publication Publication Date Title
RU2569722C2 (ru) Узел оси с механизмом привода с распределением крутящего момента
US9593754B2 (en) Axle assembly with torque distribution drive mechanism
KR101608132B1 (ko) 토크 분배 구동 기구를 구비하는 차축 조립체
US10557537B2 (en) Axle assembly having a gear reduction unit and an interaxle differential unit
US7824293B2 (en) Vehicle transmission
CN212685116U (zh) 电驱动桥
US9028360B2 (en) Multi ratio drive
US20060011001A1 (en) Differential drive actuator
WO2006103294A1 (en) Continuously variable transmission
CN105073473A (zh) 具有包括连续密封凸缘的多部分外壳组件的动力传输部件
CN111465780B (zh) 动力总成接口模块
CN108891258B (zh) 一种拖拉机传动系统及四驱型拖拉机
US11320033B2 (en) Differential assembly for shifting
US11780329B2 (en) Power transfer assembly with self-locking worm and spur gears
EP4149784B1 (en) Differential unit with different velocities
CN113853492A (zh) 尤其用于单轮驱动单元的传动机构

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200715