RU2467769C2 - Материалы для офтальмологических и оториноларингологических устройств - Google Patents

Материалы для офтальмологических и оториноларингологических устройств Download PDF

Info

Publication number
RU2467769C2
RU2467769C2 RU2010117690/15A RU2010117690A RU2467769C2 RU 2467769 C2 RU2467769 C2 RU 2467769C2 RU 2010117690/15 A RU2010117690/15 A RU 2010117690/15A RU 2010117690 A RU2010117690 A RU 2010117690A RU 2467769 C2 RU2467769 C2 RU 2467769C2
Authority
RU
Russia
Prior art keywords
absent
polymer material
formula
macromer
acrylate
Prior art date
Application number
RU2010117690/15A
Other languages
English (en)
Other versions
RU2010117690A (ru
Inventor
Дуглас К. ШЛЮТЕР
Original Assignee
Алькон, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алькон, Инк. filed Critical Алькон, Инк.
Publication of RU2010117690A publication Critical patent/RU2010117690A/ru
Application granted granted Critical
Publication of RU2467769C2 publication Critical patent/RU2467769C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Abstract

Изобретение относится к медицине. Описываются мягкие, имеющие высокий коэффициент преломления акриловые материалы для офтальмологических или оториноларингологических устройств. Материалы содержат макромер с гидрофильной боковой цепью для придания стойкости к появлению блеска. 2 н. и 18 з.п. ф-лы, 6 табл., 1 пр.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к улучшенным материалам для офтальмологических и оториноларингологических устройств. В частности, настоящее изобретение относится к мягким, имеющим высокий коэффициент преломления акриловым материалам для устройств, которые имеют улучшенную стойкость к появлению блеска.
Уровень техники
В связи с недавними успехами в хирургии катаракты с малыми разрезами повышенное внимание уделяется разработке мягких, складывающихся материалов, подходящих для применения в искусственных хрусталиках. Как правило, эти материалы попадают в одну из трех категорий: гидрогели, силиконы и акриловые соединения.
Как правило, гидрогелевые материалы имеют относительно низкий коэффициент преломления, что делает их менее желательными, чем другие материалы, поскольку при этом для достижения данной преломляющей способности необходима более толстая линзовая оптика. Традиционные силиконовые материалы, как правило, имеют более высокий коэффициент преломления, чем гидрогели, но имеют тенденцию к внезапному распрямлению после того, как их помещают в глаз в сложенном положении. Внезапное распрямление может потенциально повредить эндотелий роговицы и/или разорвать капсулу естественного хрусталика. Акриловые материалы являются желательными, поскольку они обычно имеют высокий коэффициент преломления и распрямляются медленнее или более контролируемым образом, чем традиционные силиконовые материалы.
В патенте США № 5290892 описаны акриловые материалы с высоким коэффициентом преломления, подходящие для использования в качестве материала для внутриглазных линз ("IOL"). Эти акриловые материалы содержат в качестве главных компонентов два арилакриловых мономера. IOL, изготовленные из этих акриловых материалов, могут быть свернуты в рулон или сложены для вставки через малые разрезы.
В патенте США № 5331073 также описаны мягкие акриловые материалы для IOL. Эти материалы содержат в качестве главных компонентов два акриловых мономера, которые могут быть определены по свойствам их соответствующих гомополимеров. Первый мономер определяют как мономер, в котором его гомополимер имеет коэффициент преломления, по меньшей мере, примерно 1,50. Второй мономер определяют как мономер, в котором его гомополимер имеет температуру стеклования менее чем примерно 22°C. Эти материалы для IOL также содержат компонент для поперечной сшивки. В дополнение к этому эти материалы могут необязательно содержать четвертое составляющее, отличное от первых трех составляющих, которое получают из гидрофильного мономера. Эти материалы предпочтительно имеют в целом менее чем примерно 15% по массе гидрофильного компонента.
В патенте США № 5693095 описаны складывающиеся материалы с высоким коэффициентом преломления для офтальмологических линз, содержащие, по меньшей мере, примерно 90 мас.% только двух главных компонентов: одного арилакрилового гидрофобного мономера и одного гидрофильного мономера. Арилакриловый гидрофобный мономер имеет формулу
Figure 00000001
где X представляет собой H или CH3;
m равно 0-6;
Y отсутствует или представляет собой O, S или NR, где R является H, CH3,
CnH2n+1 (n=1-10), изо-OC3H7, C6H5 или CH2C6H5; и
Ar представляет собой любое ароматическое кольцо, которое может быть незамещенным или замещенным группами CH3, C2H5, n-C3H7, изо-C3H7, OCH3, C6H11, Cl, Br, C6H5 или CH2C6H5.
Материалы для линзы, описанные в патенте '095, предпочтительно имеют температуру стеклования («Тс») примерно от -20 до +25°C.
Гибкие внутриглазные линзы можно складывать и вставлять через малый разрез. Как правило, более мягкий материал может деформироваться в большей степени, так что его можно вставлять через меньший разрез. Мягкие акриловые или метакриловые материалы обычно не имеют соответствующего сочетания прочности, гибкости и свойств нелипкой поверхности, чтобы обеспечить возможность вставки IOL через разрез настолько малый, как разрез, который требуется для силиконовых IOL.
Диметакрилаты полиэтиленгликоля (PEG), как известно, повышают стойкость к появлению блеска у гидрофобных акриловых композиций. См., например, патенты США №№ 5693095; 6528602; 6653422 и 6353069. Как концентрация, так и молекулярная масса диметакрилатов PEG оказывают влияние на качество блеска. Как правило, использование диметакрилатов PEG с более высокой молекулярной массой (М.м. 1000) дает сополимеры с улучшенным качеством блеска при низких концентрациях PEG (10-15 мас.%), по сравнению с диметакрилатами PEG с меньшей молекулярной массой (М.м. <1000). Однако низкие концентрации диметакрилата PEG желательны для поддержания сополимера с высоким коэффициентом преломления. Добавление диметакрилатов PEG также направлено на уменьшение модуля упругости и прочности на разрыв получаемого сополимера. Также диметакрилаты PEG с более высокой молекулярной массой, как правило, не смешиваются с гидрофобными акриловыми мономерами.
Сущность изобретения
Были открыты улучшенные мягкие, складывающиеся акриловые материалы для устройств, которые являются особенно подходящими для применения в качестве внутриглазных линз (IOL), но которые также являются пригодными для применения в качестве других офтальмологических или оториноларингологических устройств, таких как контактные линзы, кератопротезы, корнеальные кольца или импланты, отологические вентиляционные трубки и назальные импланты. Эти полимерные материалы включают макромеры, содержащие гидрофильные боковые цепи.
Рассматриваемые макромеры с гидрофильной боковой цепью делают возможным синтез стойких к появлению блеска, имеющих низкое равновесное содержание воды, имеющих высокий коэффициент преломления IOL. Использование макромера, имеющего гидрофильную боковую цепь, позволяет включать гидрофильные ингредиенты с более высокой молекулярной массой в композицию гидрофобного сополимера. Гидрофильные ингредиенты с более высокой молекулярной массой являются более эффективными ингредиентами, придающими стойкость к появлению блеска, чем сравнимые массовые доли гидрофильных полимеров с более низкой молекулярной массой. Это получаемое в результате уменьшение концентрации гидрофильного ингредиента приводит к понижению равновесного содержания воды, к повышению коэффициента преломления и к уменьшению массы внутриглазной линзы, которую можно вставить через меньший разрез.
Подробное описание изобретения
Если не указано иное, все количества компонентов представлены как % (мас./мас.) («мас.%»).
Материалы для устройства согласно настоящему изобретению представляют собой сополимеры, содержащие: a) монофункциональный акрилатный или метакрилатный мономер [1]; b) дифункциональный акрилатный или метакрилатный кросс-линкер [2] и c) макромер [3} с гидрофильной боковой цепью, который может представлять собой макромер формулы [3a], [3b], [3c], [3d] или [3e]. Материалы для устройства могут содержать более одного мономера [1], более одного мономера [2] и более одного макромера [3]. Если не указано иное, ссылки на каждый ингредиент предназначены для охвата множества мономеров или макромеров одной и той же формулы, и ссылки на количества предназначены для указания общего количества всех мономеров каждой формулы.
Figure 00000002
где B представляет собой -O(CH2)n-, -(OCH2CH2)n-, -NH(CH2)n- или -NCH3(CH2)n-;
R1 является H, CH3, CH2CH3 или CH2OH;
n=0-12;
A представляет собой C6H5 или O(CH2)mC6H5, где группа C6H5 необязательно замещена -(CH2)nH, -O(CH2)nH, -CH(CH3)2, -C6H5, -OC6H5, CH2C6H5, F, Cl, Br или I; и
m=0-18;
Figure 00000003
где R2, R3 независимо являются H, CH3, CH2CH3 или CH2OH;
W, W' независимо представляют собой O(CH2)d, NH(CH2)d, NCH3(CH2)d, O(CH2)dC6H4, O(CH2CH2O)dCH2, O(CH2CH2CH2O)dCH2, O(CH2CH2CH2CH2O)dCH2 или отсутствуют;
J представляет собой (CH2)a, O(CH2CH2O)b, O или отсутствует, при условии, что если W и W'отсутствуют, тогда J также отсутствует;
d=0-12;
a=1-12;
b=1-24;
Figure 00000004
Figure 00000005
где для формул [3a], [3b], [3c], [3d] и [3e] (в совокупности, "формула [3]")
e=1-50;
X является -O-, NH-, -N(CH3)-, -N(CH2CH3)- или -N(C6H5)-;
Y представляет собой -H, -(CH2)pOH, -CH2CH2N(CH3)2, -CH2CH2N(CH2CH3)2, -CH2CH(OH)CH2OH, -(CH2CH2O)qCH3, -(CH2CH2O)qH, -(CH2CH2O)qC6H5 или
Figure 00000006
p=1-12;
q=1-230;
T, T' независимо представляют собой O(CH2)d', NH(CH2)d', NCH3(CH2)d', O(CH2)d'C6H4, O(CH2CH2O)d'CH2, O(CH2CH2CH2O)d'CH2, O(CH2CH2CH2CH2O)d'CH2 или отсутствуют;
K представляет собой (CH2)a', O(CH2CH2O)b', O или отсутствует, при условии, что если T и T' отсутствуют, тогда K также отсутствует;
d'=0-12;
a'=1-12;
b'=1-24;
L представляет собой H, Cl, Br, -CH2C(O)CH3, CH2C(O)C(CH3)3, -CH2C(O)C6H5, -CH2C(O)C6H4OH, -CH2C(O)C6H4OCH3,
Figure 00000007
или -CH2CH=CH2;
R4, R5 независимо являются H, CH3, CH2CH3, CH2CH2CH3, CH(CH3)2, CH2CH2CH2CH3 или CH2CH(CH3)2;
R6 является -CO2CH3, -CO2CH2CH3, -CN или -CONHCH2CH2CH2CH3;
R7, R8 независимо представляют собой H, CH3, CH2CH3 или CH2OH;
M является -(CH2)a"-; и
a”=2-20.
Предпочтительные мономеры формулы [1] представляют собой такие мономеры, где:
B представляет собой -O(CH2)n- или -(OCH2CH2)n;
R1 является -H или -CH3;
n=1-5;
A представляет собой -C6H5, O(CH2)mC6H5; и
m=0-4.
Предпочтительные мономеры формулы [2] представляют собой такие мономеры, где:
R2, R3 независимо являются H или CH3;
W, W' независимо представляют собой O(CH2)d, O(CH2)dC6H4 или отсутствуют;
J представляет собой O(CH2CH2O)b или отсутствует, при условии, что если W и W'отсутствуют, тогда J также отсутствует;
d=0-6; и
b=1-10.
Предпочтительные макромеры формулы [3] представляют собой такие макромеры, где:
e=2-40;
X является -O- или -N(CH3)-;
Y представляет собой (CH2CH2O)qCH3, -(CH2CH2O)qH или -(CH2CH2O)qC6H5;
q=2-23;
T, T' независимо представляют собой O(CH2)d' или отсутствуют;
K представляет собой O(CH2CH2O)b' или отсутствует, при условии, что если T и T' отсутствуют, тогда K также отсутствует;
d'=0-6;
b'=1-10;
L представляет собой H, Cl, Br, -CH2C(O)C6H5, -CH2C(O)C6H4OH, -CH2C(O)C6H4OCH3 или -CH2CH=CH2;
R4, R5 независимо являются H, CH3 или CH2CH3;
R6 является -CO2CH3, -CO2CH2CH3, -CN или -CONHCH2CH2CH2CH3;
R7, R8 независимо представляют собой H или CH3; и
a”=2-12.
Наиболее предпочтительные макромеры формулы [3] представляют собой такие макромеры, где:
e=5-30;
X является -O-;
Y представляет собой (CH2CH2)qCH3;
q=4-15;
T, T' независимо представляют собой O(CH2)d', O(CH2)d'C6H4 или отсутствуют;
K представляет собой O(CH2CH2O)b' или отсутствует, при условии, что если T и T'отсутствуют, тогда K также отсутствует;
d'=0-6;
b'=1-10;
L представляет собой H, -CH2C(O)C6H5, -CH2C(O)C6H4OCH3 или -CH2CH=CH2;
R4, R5 независимо являются H, CH3 или CH2CH3;
R6 является -CO2CH3, -CO2CH2CH3, -CN или -CONHCH2CH2CH2CH3;
R7, R8 независимо представляют собой H или CH3; и
a”=2-12.
Мономеры формулы [1] известны и могут быть получены известными способами. См., например, патенты США №№ 5331073 и 5290892. Многие мономеры формулы [1] являются коммерчески доступными из различных источников. Предпочтительные мономеры формулы [1] включают бензилметакрилат; 2-фенилэтилметакрилат; 3-фенилпропилметакрилат; 4-фенилбутилметакрилат; 5-фенилпентилметакрилат; 2-феноксиэтилметакрилат; 2-(2-феноксиэтокси)этилметакрилат; 2-бензилоксиэтилметакрилат; 2-(2-(бензилокси)этокси)этилметакрилат; и 3-бензилоксипропилметакрилат; и их соответствующие акрилаты.
Мономеры формулы [2] известны и могут быть получены известными способами. Многие из них являются коммерчески доступными. Предпочтительные мономеры формулы [2] включают этиленгликольдиметакрилат; диэтиленгликольдиметакрилат; триэтиленгликольдиметакрилат; 1,6-гександиолдиметакрилат; 1,4-бутандиолдиметакрилат; 1,4-бензолдиметанолдиметакрилат; и их соответствующие акрилаты. Наиболее предпочтительным является 1,4-бутандиолдиакрилат.
Макромеры формулы [3] могут быть получены известными способами. Они являются коммерчески доступными в некоторых случаях и могут быть получены известными способами. Макромономеры формулы [3] могут быть получены путем ковалентного присоединения полимеризуемой группы к функциональной конечной группе линейного или разветвленного акрилового или метакрилового полимера. Например, поли(алкилметакрилат) с гидроксильным окончанием может быть синтезирован путем анионной полимеризации с использованием инициатора, содержащего защищенную гидроксильную группу, которая после снятия защиты взаимодействует, например, с метакрилоилхлоридом или метакриловой кислотой с получением макромера [3a]. Конечная гидроксильная группа может также взаимодействовать с другими реагентами, например с изоцианатоэтилметакрилатом или винилбензилхлоридом, с получением конечной полимеризуемой группы. См., в целом, патенты США №№ 6221991, 3862077 и 3842059, полное содержание которых включено посредством ссылки. Альтернативно полимеризацию можно завершить с помощью альдегида и последующего взаимодействия с метакрилоилхлоридом, получая функциональный макромер [3b]. См., например, патенты США №№ 6221991 и 5391628.
Figure 00000008
Макромеры формулы [3c] можно также получить, используя условия радикальной полимеризации с переносом атома (ATRP). Например, гидроксильный инициатор завершения цепи (гидроксиэтилбромизобутират) может быть объединен с галогенидом меди(I) и солюбилизирующим аминовым лигандом. Это можно использовать для инициирования полимеризации акрилатного или метакрилатного мономера. Полученный в результате поли(акрилат) или поли(метакрилат) с гидроксильным окончанием может затем взаимодействовать с метакрилоилхлоридом или изоцианатоэтилметакрилатом. См., в целом, патенты США №№ 5852129, 5763548 и 5789487 и публикации Neugebauer, et al., "Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers," Macromolecules 2003, 36, 6746-6755; Ishizu, et al., "Aggregation behaviors of AB-type brush-block-brush amphiphilic copolymers in aqueous media," Journal of Materials Science 2004, 39, 4295-4300; Kurjata, et al., "Synthesis of poly[dimethylsiloxane-block-oligo(ethylene glycol) methyl ether methacrylate]: an amphiphilic copolymer with comb-like block," Polymer 2004, 45, 6111-6121; и Wang, et al., "Facile Atom Transfer Radical Polymerization of Methoxy-Capped Oligo(ethylene glycol) Methacrylate in Aqueous Media at Ambient Temperature," Macromolecules 2000, 33, 6640-6647. Альтернативно реагент каталитического переноса цепи можно использовать в сочетании с методами полимеризации по механизму «живых» цепей, получая метакриловые макромономеры формулы [3d]. См., например, публикации Norman, J. et al. Macromolecules 2002, 35, 8954-8961 или Bon, S. A. F. et al. J. Polym. Sci, Polym. Chem. 2000, 38, 2678. Макромеры формулы [3e] могут быть получены, например, путем полимеризации в присутствии агента переноса цепи с тиольной функциональной группой, с последующей реакцией с метакрилоилхлоридом или изоцианатоэтилметакрилатом. Например, см. публикацию Chen, G.-F. et al. Macromolecules 1991, 24, 2151.
Figure 00000009
Сополимерные материалы согласно настоящему изобретению содержат общее количество мономера [1] в количестве от 70 до 98%, предпочтительно от 80 до 95%. Концентрация дифункционального кросс-линкера [2] может составлять от 0,5 до 3% от общей концентрации и предпочтительно от 1 до 2%.
Материалы согласно настоящему изобретению содержат, по меньшей мере, один макромер формулы [3]. Общее количество макромера [3] зависит от желаемых физических свойств материалов для устройств. Сополимерные материалы согласно настоящему изобретению содержат в целом, по меньшей мере, 0,5 мас.% и могут содержать вплоть до 15% макромера [3]. Предпочтительно, сополимерные материалы для устройств будут содержать 1-10 мас.% макромера [3]. Более предпочтительно, материалы для устройств будут содержать 1-5 мас.% макромера [3]. Наиболее предпочтительно, материалы для устройств будут содержать 2-4 мас.% макромера [3].
Сополимерные материалы для устройств согласно настоящему изобретению необязательно содержат один или несколько ингредиентов, выбранных из группы, состоящей из полимеризуемых поглотителей УФ и полимеризуемых красящих веществ. Предпочтительно материал для устройства согласно настоящему изобретению не содержит других ингредиентов кроме мономеров формул [1] и [2], макромера [3] и необязательных полимеризуемых поглотителей УФ и полимеризуемых красящих веществ.
Реакционно-способные поглотители УФ известны. Подходящий реакционно-способный поглотитель УФ представляет собой 2-(2'-гидрокси-3'-металлил-5'-метилфенил)бензотриазол, коммерчески доступный как o-металлил Tinuvin P ("oMTP") от Polysciences, Inc., Warrington, Pennsylvania. Поглотители УФ обычно присутствуют в количестве примерно от 0,1 до 5%. Подходящие реакционно-способные соединения, поглощающие синий свет, включают такие соединения, которые описаны в патенте США № 5470932. Поглотители синего света обычно присутствуют в количестве примерно от 0,01 до 0,5%. Если их используют для изготовления IOL, то материалы для устройств согласно настоящему изобретению предпочтительно содержат как реакционно-способный поглотитель УФ, так и реакционно-способное красящее вещество.
В целях получения материала для устройства согласно настоящему изобретению выбранные ингредиенты [1], [2] и [3], вместе с любыми необязательными ингредиентами, объединяют и полимеризуют с использованием радикального инициатора для инициирования полимеризации под действием либо тепла, либо радиации. Материал для устройства предпочтительно полимеризуют в дегазированных полипропиленовых формах в атмосфере азота или в стеклянных формах.
Подходящие инициаторы полимеризации включают термические инициаторы и фотоинициаторы. Предпочтительные термические инициаторы включают свободнорадикальные инициаторы на основе пероксисоединений, такие как трет-бутил(перокси-2-этил)гексаноат и ди-(трет-бутилциклогексил)пероксидикарбонат (коммерчески доступный как Perkadox® 16 от Akzo Chemicals Inc., Chicago, Illinois). В частности, в случаях, когда материалы согласно настоящему изобретению не содержат хромофор, поглощающий синий свет, предпочтительные фотоинициаторы включают бензоилфосфиноксидные инициаторы, такие как 2,4,6-триметилбензоилдифенилфосфиноксид, коммерчески доступный как Lucirin® TPO от BASF Corporation (Charlotte, North Carolina). Инициаторы обычно присутствуют в количестве, равном примерно 5% или менее от общей массы композиции, а более предпочтительно менее чем 2% от композиции в целом. Как принято для целей вычисления количеств компонентов, массу инициатора не включают при вычислениях массового % композиции.
Конкретную комбинацию ингредиентов, описанных выше, идентичность и количество любых дополнительных компонентов определяют по желаемым свойствам конечного материала для устройства. В предпочтительном варианте осуществления материалы для устройств согласно настоящему изобретению используют для изготовления IOL, имеющих оптический диаметр 5,5 или 6 мм, которые конструируют с возможностью сжимать или растягивать и вставлять через хирургический разрез размером 2 мм или меньше. Например, макромономер [3] объединяют с монофункциональным акрилатным или метакрилатным мономером [1], многофункциональным акрилатным или метакрилатным кросс-линкером [2], реакционно-способным поглотителем УФ и реакционно-способным красящим веществом и сополимеризуют, используя радикальный инициатор, в подходящей форме для формования линзы.
Материал для устройства предпочтительно имеет коэффициент преломления в гидратированном состоянии, по меньшей мере, примерно 1,50 и более предпочтительно, по меньшей мере, примерно 1,53, как измерено с помощью рефрактометра Abbe при 589 нм (Na источник света) и при 25°C. Оптические изделия, изготовленные из материалов, имеющих коэффициент преломления ниже, чем 1,50, обязательно толще, чем оптические изделия с такой же преломляющей способностью, которые изготавливаются из материалов, имеющих более высокий коэффициент преломления. Как таковые, оптические IOL, изготовленные из материалов со сравнимыми механическими свойствами и коэффициентом преломления ниже, чем примерно 1,50, как правило, требуют относительно больших разрезов для имплантации IOL.
Пропорции мономеров и макромера, которые должны быть включены в сополимеры согласно настоящему изобретению, должны быть выбраны так, чтобы сополимер имел температуру стеклования (Тс) не больше, чем примерно 37°C, которая представляет собой нормальную температуру тела человека. Сополимеры, имеющие температуры стеклования выше, чем 37°C, не подходят для применения в складывающихся IOL; такие линзы можно было бы сворачивать в рулон или складывать только при температурах выше 37°C, и невозможно было бы разворачивать или распрямлять при нормальной температуре тела. Предпочтительным является использование сополимеров, имеющих температуру стеклования несколько ниже нормальной температуры тела и не больше, чем нормальная комнатная температура, например, примерно 20-25°C, чтобы IOL, изготовленные из таких сополимеров, было удобно сворачивать или складывать при комнатной температуре. Температуру стеклования (Тс) измеряют с помощью дифференциальной сканирующей калориметрии при 10°C/мин и определяют в средней точке перехода кривой теплового потока.
Для IOL и других областей применения материалы согласно настоящему изобретению должны проявлять достаточную прочность, чтобы позволить манипулировать с устройствами, изготовленными из них, или складывать без образования трещин. Таким образом, сополимеры согласно настоящему изобретению будут иметь удлинение, по меньшей мере, 80%, предпочтительно, по меньшей мере, 100% и наиболее предпочтительно более чем 110%. Это свойство показывает, что линзы, изготовленные из таких материалов, как правило, не растрескиваются, не рвутся или не расслаиваются, когда складываются. Удлинение полимерных образцов определяют на образцах в форме гантелей для исследования растяжения с 20 мм общей длиной, длиной участка захвата 4,88 мм, общей шириной 2,49 мм, шириной в узкой части 0,833 мм, с радиусом утолщения 8,83 мм и толщиной 0,9 мм. Исследования осуществляют на образцах в условиях окружающей среды с использованием Instron Material Tester (Model No. 4442 или эквивалент) с датчиком силы на 50 Ньютон. Расстояние захвата устанавливают при 14 мм, скорость поперечной головки устанавливают при 500 мм/минута и образец вытягивают до разрушения. Удлинение (деформацию) выражают как отношение смещения при разрушении к исходному расстоянию захвата. Поскольку материалы, подлежащие исследованию, представляют собой в основном мягкие эластомеры, загрузка их в устройство Instron имеет тенденцию к созданию на них прогиба. Для удаления провисания в образце материала к образцу прикладывается предварительная нагрузка. Это помогает уменьшить провисание и обеспечить более согласованные данные. После того как образец предварительно нагрузят до желаемого значения (обычно 0,03-0,05 Н), деформацию устанавливают на ноль и начинают исследование. Модуль упругости вычисляют как мгновенную крутизну кривой натяжение-деформация при 0% деформации ("модуль Юнга"), 25% деформации ("25% модуль") и 100% деформации ("100% модуль).
IOL, изготовленные из материалов для офтальмологических устройств согласно настоящему изобретению, являются более стойкими к появлению блеска, чем другие материалы. Блеск измеряют в соответствии со следующим исследованием. Наличие блеска измеряют, помещая линзу или образец в виде диска во флакон или герметичную стеклянную камеру и добавляя деионизованную воду или сбалансированный солевой раствор. Затем флакон или стеклянную камеру помещают на водяную баню, предварительно нагретую до 45°C. Образцы необходимо выдерживать на бане в течение минимум 16 часов, а предпочтительно 24±2 часа. Затем флакон или стеклянную камеру охлаждают до температуры окружающей среды в течение минимум 60 минут, а предпочтительно 90±30 минут. Образец проверяют визуально при различных углах падения или углах отражения света для оценки чистоты. Визуализацию блеска осуществляют при температуре окружающей среды с помощью световой микроскопии, используя увеличение от 50 до 200×. Считается, что образец имеет много участков блеска, если при увеличении 50-200× имеется приблизительно от 50 до 100% участков блеска от того, что наблюдается для контрольных образцов на основе 65 мас.% 2-фенилэтилакрилата, 30 мас.% 2-фенилэтилметакрилата, 3,2 мас.% 1,4-бутандиолдиакрилата и 1,8 мас.% оМТР. Аналогично, считается, что образец имеет мало участков блеска, если имеется приблизительно 10% или более участков блеска по отношению к количеству, наблюдаемому для контрольных образцов. Считается, что образец имеет очень мало участков блеска, если имеется приблизительно 1% или более участков блеска по отношению к контрольному образцу. Считается, что образец не имеет участков блеска, если количество участков блеска, определяемое в окуляре, равно нулю. Считается, что образец по существу не содержит участков блеска при увеличении 50-200×, если количество участков блеска, определяемое в окуляре, меньше, чем примерно 2/мм3. Часто очень сложно определить участки блеска, особенно на поверхностях и на краях, где образуется больше дефектов и загрязнений, так что образец сканируют по всему объему линзы, изменяя уровни увеличения (50-200×), апертуру ирисовой диафрагмы и условия поля (используя условия как светлого, так и темного поля) в попытке определения наличия участков блеска.
Сополимеры согласно настоящему изобретению наиболее предпочтительно имеют равновесное содержание воды (EWC) от 0,5 до 3 мас.%. EWC можно определять гравиметрически путем сравнения массы сухого и гидратированного образца. Сначала получают массу сухого образца, затем образец помещают в соответствующий контейнер и уравновешивают в деионизованной H2O при предписанной температуре в течение, по меньшей мере, 24 часов. Затем образец извлекают из деионизованной H2O, избыток воды с поверхности удаляют и образец взвешивают. EWC определяют по следующей формуле: %EWC=[(Wtгидр-Wtсухая)/Wtгидр]×100.
IOL, сконструированные из материалов для устройств согласно настоящему изобретению, могут иметь любую конструкцию, которая может растягиваться или сжиматься до малого поперечного сечения, которое может пройти через 2-мм разрез. Например, IOL могут иметь конструкцию, которая известна как цельная или сборная конструкция, и содержать оптические и гаптические компоненты. Оптической является та часть, которая служит в качестве линзы, а гаптические элементы соединяются с оптическими и подобны рукам, которые удерживают оптику на ее соответствующем месте в глазу. Оптика и гаптический элемент (элементы) могут состоять из одинакового материала или различных материалов. Сборные линзы называют так, поскольку оптика и гаптический элемент (элементы) изготавливают отдельно, а затем гаптические элементы соединяют с оптикой. В цельной линзе оптика и гаптические элементы формируются из одного куска материала. В зависимости от материала гаптические элементы затем вырезают или вытачивают из материала для изготовления IOL.
В дополнение к IOL материалы согласно настоящему изобретению являются также подходящими для применения в качестве других офтальмологических или оториноларингологических устройств, таких как контактные линзы, кератопротезы, корнеальные импланты или кольца, отологические вентиляционные трубки и назальные импланты.
Настоящее изобретение будет дополнительно проиллюстрировано следующими примерами, которые, как предполагается, являются иллюстративными, но не ограничивающими.
Пример 1
Все мономеры, кросс-линкеры и инициаторы были приобретены из коммерческих источников. Макромер [3] ("PolyPEG-MA") синтезируют из монометакрилата простого монометилового эфира поли(этиленгликоля) 550 ("PEG-MA 550"). Используют два макромера [3] с молекулярной массой: "PolyPEG-MA 4.1k" (GPC, Mn 4112; Mw/Mn=1,80; e=7 (вычисляют как 4112/550)) и "PolyPEG-MA 10.3k" (GPC, Mn 10300; Mw/Mn=1,44; e=19). 2-Фенилэтилметакрилат (PEMA) и бензилметакрилат (BzMA) пропускают, каждый, через основной оксид алюминия и дегазируют с помощью N2 перед использованием. 2-Фенилэтилакрилат ("PEA"), бензилакрилат ("BzA") и 1,4-бутандиолдиакрилат ("BDDA") очищают методом колоночной хроматографии перед использованием. 2,2-Азобисизобутиронитрил ("AIBN") перекристаллизовывают из метанола перед использованием. Ди-(4-трет-бутилциклогексил)пероксидикарбонат ("Perkadox®16S"), 2-(2'-гидрокси-3'-трет-бутил-5'-(3”-(2”'-гидрокси-3”'-метакрилоилоксипропокси)пропокси)фенил)-5-метокси-2H-бензотриазол ("UV13") и орто-металлил Tinuvin®P ("oMTP") используют, как получено.
Полипропиленовые формы для формования дегазируют в вакууме при 90°C перед использованием. Форму помещают в перчаточную камеру с атмосферой азота непосредственно после дегазирования. Мономер (мономеры), макромер и кросс-линкер объединяют, как указано в таблице 1. Добавляют инициатор AIBN или Perkadox®16S (0,5-2,0 мас.%), раствор тщательно перемешивают, затем помещают в низкий вакуум для удаления любых захваченных пузырьков воздуха, повторно продувают азотом и сразу помещают в перчаточную камеру. Композицию мономера распределяют в дегазированные в вакууме полипропиленовые формы для формования с использованием шприца, снабженного 0,2-мкм фильтром из PTFE. Заполненные формы помещают в конвекционную печь на 1 час при 70°C, затем на 2 часа при 110°C. Полученные образцы полимера извлекают из форм для формования и экстрагируют ацетоном с обратным холодильником в течение 6 часов, промывают и сушат на воздухе, затем помещают в вакуум при 70°C, по меньшей мере, на 15 часов. Свойства при разрыве, Тс, EWC, стойкость к появлению блеска и коэффициент преломления определяют в соответствии со способами, описанными выше. Результаты перечислены в таблице 2.
Таблица 1
Компоненты композиции
ID PEA (мас.%) BzA (мас.%) РЕМА (% мас.) BzMA (мас.%) BDDA (мас.%) UV13 (мас.%) ОМТР (мас.%) PolyPEG-MA4, 1k (мас.%) PolyPEG-MA 10.3k (мас.%)
0 65,0 - 30,0 - 3,2 - 1,8 0,0 -
1 63,1 - 29,1 - 3,1 - 1,7 3,0 -
2 61,1 - 28,2 - 3,0 - 1,7 6,0 -
3 59,2 - 27,3 - 2,9 - 1,6 9,0 -
4 89.00 - - - 1,00 - - 10,00 -
5 78,99 - - - 1,01 - - 20,00 -
6 67,48 - 20,00 10,00 1,52 - - 1,00 -
7 66,47 - 19,99 10,00 1,52 - - 2,02 -
8 65,48 - 19,99 9,99 1,52 - - 3,02 -
9 64,47 - 20,02 9,99 1,51 - - 4,01 -
10 63,50 - 19,99 10,00 1,50 - - 5,01 -
11 - 97,99 - - 1,01 - - 1,00 -
12 10,00 88,00 - - 1,00 - - 1,00 -
13 - 96,50 - - 1,50 - - 2,00 -
14 - 95,49 - - 1,50 - - 3,01 -
15 - 95,98 - - 2,00 - - 2,02 -
16 - 94,96 - - 2,03 - - 3,01 -
17 - 90,48 - 5,00 1,50 - - 3,02 -
18 - 95,47 - - 1,51 - - - 3,02
19 - 93,46 - 2,01 1,51 - - 3,02 -
20 - 93,24 - 2,25 1,51 - - 3,00 -
21 - 92,49 - 3,00 1,51 - - 3,00 -
22 - 91,47 - 4,00 1,51 - - 3,01 -
23 - 87,99 - 7,50 1,51 - - 3,00 -
24 - 85,49 - 10,01 1,50 - - 3,00 -
25 - 83,68 - 10,01 1,50 1,80 - 3,01 -
Таблица 2
Свойства при разрыве и термические свойства, % EWC и результаты исследований блеска
ID Прочность на разрыв (МПа) Деформация при разрыве (МПа) Модуль Юнга (МПа) 100% секущий модуль (МПа) EWC (%) Участки блеска Тс (°C) RI (22°C, сухой)
0 8,12 104 57,30 7,51 0,30 Много 9,5 -
1 8,34 114 40,87 6,39 0,66 Нет 6,6 1,5537
2 6,23 110 19,89 4,94 1,68 Нет 2,4 1,5513
3 - - - - 2,69 Нет -0,9 1,5480
4 1,56 163 1,56 0,65 3,92 Нет - 1,5457
5 0,92 132 1,02 0,63 9,78 Нет - 1,5375
6 8,53 174 48,07 3,63 0,50 Мало - 1,5562
7 8,57 177 37,57 3,22 0,75 Нет 7,5 1,5553
8 7,65 173 28,43 2,78 1,00 Нет - 1,5545
9 7,39 174 23,99 2,52 1,32 Нет - 1,5536
10 6,42 167 18,53 2,27 1,61 Нет - 1,5528
11 9,77 252 39,94 2,20 0,46 Мало - 1,5644
12 8,53 246 25,62 1,73 0,48 Мало - 1,5633
13 6,20 183 12,90 1,62 0,85 Очень мало - 1,5633
14 6,24 183 10,25 1,51 1,10 Нет - 1,5621
15 6,91 160 12,39 2,11 0,81 Очень мало - 1,5630
16 6,69 158 11,64 2,10 1,06 Нет - 1,5615
17 10,73 201 56,72 3,40 0,89 Нет - 1,5620
18 9,41 197 38,55 2,72 1,37 Очень мало - 1,5610
19 8,91 190 38,54 2,75 1,08 Нет - 1,5620
20 8,91 190 30,52 2,39 0,91 Нет - -
21 9,60 192 45,32 2,95 1,02 Нет - 1,5622
22 9,86 191 50,74 3,19 1,00 Нет - 1,5622
23 9,70 184 56,25 3,56 1,25 Нет - -
24 10,29 184 62,28 4,03 1,06 Нет 13,347 -
25 - - - - 0,93 Нет - 1,5636
Пример 2
Сополимеры, показанные в таблице 3, которые включают добавку, содержащую PEG различных размеров (PEG-MA 550, PolyPEG-MA 4.1k и PolyPEG-MA 10.3k), получают способом, описанным в примере 1. Свойства при разрыве, EWC, стойкость к появлению блеска и коэффициент преломления определяют в соответствии со способами, описанными выше. Результаты перечислены в таблице 4.
Таблица 3
Компоненты композиций сравнительных примеров
ID BzA (мас.%) BDDA (мас.%) PEG-MA 550 (мас.%) PolyPEG-MA 4.1k (мас.%) PolyPEG-MA 10.3k (мас.%)
26 93,47 1,51 5,02 - -
27 93,47 1,51 - 5,02 -
28 93,49 1,51 - - 5,00
Таблица 4
Свойства при разрыве и термические свойства, % EWC и результаты исследований блеска для сравнительных композиций
ID Прочность на разрыв (МПа) Деформация при разрыве (МПа) Модуль Юнга (МПа) 100% секущий модуль (МПа) EWC (%) Участки блеска RI (22°C, сухой)
26 6,87 191 12,79 1,64 0,59 Много 1,5598
27 7,49 189 16,25 1,85 1,50 Нет 1,5604
28 8,92 199 25,32 2,22 2,35 Нет 1,5595
Пример 3
Сополимеры, показанные в таблице 5, которые содержат добавки PolyPEG-MA с различными молекулярными массами: "PolyPEG-MA 3570" (GPC Mn 3570; Mw/Mn 1,42; e=6), "PolyPEG-MA 4012" (GPC, Mn 4012; Mw/Mn 1,54; e=7), "PolyPEG-MA 4141" (GPC Mn 4141; Mw/Mn 1,50; e=8) и PolyPEG-MA 3708 (GPC Mn 3708; Mw/Mn 1,49; e=7) получают способом, описанным в примере 1. Свойства при разрыве, EWC, стойкость к появлению блеска и коэффициент преломления определяют в соответствии со способами, описанными выше. Результаты перечислены в таблице 6.
Таблица 5
Компоненты композиции
ID BzA (мас.%) BZMA (мас.%) BDDA (мас.%) PEG-MA 550 (мас.%) PolyPEG-MA 3670 (мас.%) PolyPEG-MA 4012 (мас.%) PolyPEG-MA 4141 (мас.%) PolyPEG-MA 3708 (мас.%)
29 85,47 9,99 1,52 3,02 - - - -
30 83,46 9,99 1,52 5,03 - - - -
31 78,49 10,01 1,50 10,00 - - - -
32 73,50 10,00 1,50 15,00 - - ' -
33 68,50 10,00 1,50 20,00 - - - -
34 85,46 10,00 1,53 - 3,01 - - -
35 83,47 10,02 1,50 - 5,01 - - -
36 85,38 9,99 1,61 - - 3,02 - -
37 85,47 10,00 1,50 - - - 3,03 -
38 85,40 10,01 1,52 - - - - 3,07
Таблица 6
Свойства при разрыве и термические свойства, % EWC и результаты исследования блеска
Прочность на разрыв (МПа) Деформация при разрыве (МПа) Модуль Юнга (МПа) 100% Секущий модуль (МПа) EWC (%) Участки блеска RI (22°С, сухой)
29 8,26 175 38,99 3,42 0,46 Много 1,5631
30 6,67 170 18,07 2,33 0,55 Много 1,5611
31 3,94 151 9,25 1,51 0,79 Мало 1,5566
32 2,79 134 8,44 1,42 1,19 Очень мало 1,5518
33 2,41 126 2,59 1,47 3,38 Нет 1,5493
34 8,23 167 46,35 3,94 0,74 Нет 1,5630
35 7,47 169 26,69 3,04 1,21 Нет 1,5608
36 8,60 163 45,02 4,29 0,88 Нет 1,5626
37 8,19 167 45,24 4,04 0,90 Нет 1,5627
38 8,94 173 44,30 4,07 0,79 Нет 1,5626
Настоящее изобретение описывается путем ссылок на определенные предпочтительные варианты осуществления; однако следует понять, что оно может воплощаться в других конкретных формах или их вариантах без отклонения от их специальных или основных характеристик. Варианты осуществления, описанные выше, следовательно, рассматриваются как иллюстративные во всех аспектах и неограничивающими, объем настоящего изобретения указан прилагаемой формулой изобретения, а не предыдущим описанием.

Claims (20)

1. Полимерный материал для офтальмологического или оториноларингологического устройства, содержащий:
а) 70-98% (мас./мас.) монофункционального акрилатного или метакрилатного мономера формулы [1]
Figure 00000010

где В представляет собой -O(CH2)n-, -(OCH2CH2)n-, -NH(CH2)n- или -NCH3(CH2)n-;
R1 является Н, СН3, CH2СН3 или СН2ОН;
n=0-12;
А представляет собой С6Н5 или O(СН2)mС6Н5, где группа С6Н5 необязательно замещена -(СН2)nН, -O(СН2)nН, -СН(СН3)2, -С6Н5, -ОС6Н5, -СН2С6Н5, F, Cl, Вr или I; и
m=0-18;
b) 0,5-3% (мас./мас.) дифункционального акрилатного или метакрилатного мономера для поперечной сшивки формулы [2]
Figure 00000011

где R2, R3 независимо являются Н, СН3, СН2СН3 или СН2ОН;
W, W' независимо представляют собой O(CH2)d, NH(CH2)d, NСН3(СН2)d, O(CH2)dC6H4, O(CH2CH2O)dCH2, O(CH2CH2CH2O)dCH2, O(СН2СН2СН2СН2O)dСН2 или отсутствуют;
J представляет собой (СН2)а, O(СН2СН2O)b, О или отсутствует, при условии, что если W и W' отсутствуют, тогда J также отсутствует;
d=0-12;
а=1-12; и
b=1-24;
и
с) 0,5-15% (мас./мас.) макромера с гидрофильной боковой цепью формулы [3а],
[3b], [3с], [3d] или [3е]
Figure 00000012

Figure 00000013

где для формул [3а], [3b], [3c], [3d] и [3е]:
е=1-50;
Х является -O-, NH-, -N(CH3)-, -N(СН2СН3)- или -N(C6H5)-;
Y представляет собой -Н, -(CH2)pОН, -CH2CH2N(CH3)2, -CH2CH2N(CH2CH3)2, -CH2CH(OH)CH2OH, -(CH2CH2O)qCH3, -(CH2CH2O)qH, -(CH2CH2O)qC6H5 или
Figure 00000014
;
p=1-12;
q=1-230;
Т, Т' независимо представляют собой O(CH2)d', NH(CH2)d', NCH3(CH2)d', O(СН2)d'С6Н4, O(СН2СН2O)d'СН2, O(CH2CH2CH2O)d'CH2, O(CH2CH2CH2CH2O)d'CH2 или отсутствуют;
K представляет собой (СН2)а', O(СН2СН2O)b', О или отсутствует, при условии, что если Т и Т' отсутствуют, тогда K также отсутствует;
d'=0-12;
а'=1-12;
b'=1-24;
L представляет собой Н, Сl, Вr, -СН2С(O)СН3, СН2С(O)С(СН3)3, -СН2С(O)С6Н5, -СН2С(O)С6Н4OН, -СН2С(O)С6Н4OСН3,
Figure 00000015
,
Figure 00000016
или -СН2СН=СН2;
R4, R5 независимо являются Н, СН3, СН2СН3, CH2CH2СН3, СН(СН3)2, СН2СН2СН2СН3 или СН2СН(СН3)2;
R6 является -СO2СН3, -СO2СН2СН3, -CN или -СОNНСH2CH2CH2СН3;
R7, R8 независимо представляют собой Н, СН3, СН2СН3 или СН2OН;
М является -(СН2)а''- и
a''=2-20.
2. Полимерный материал для устройства по п.1, в котором для мономера формулы [1]:
В представляет собой -O(СН2)n- или -(ОСН2СН2)n-;
R1 является -Н или -СН3;
n=1-5;
А представляет собой -С6Н5, O(СН2)mС6Н5; и
m=0-4.
3. Полимерный материал для устройства по п.1, в котором для мономера формулы [2]:
R2, R3 независимо являются Н или СН3;
W, W' независимо представляют собой O(CH2)d, O(CH2)dC6H4 или отсутствуют;
J представляет собой O(СН2СН2О)b или отсутствует, при условии, что если W и W' отсутствуют, тогда J также отсутствует;
d=0-6; и
b=1-10.
4. Полимерный материал для устройства по п.1, в котором для макромера формулы [3]:
е=2-40;
Х является -O- или -N(СН3)-;
Y представляет собой (СH2СН2O)qСН3, -(CH2CH2O)qH или -(CH2CH2O)qC6H5;
q=2-23;
Т, Т' независимо представляют собой O(СН2)d' или отсутствуют;
K представляет собой О(CН2СН2О)b' или отсутствует, при условии, что если Т и Т' отсутствуют, тогда K также отсутствует;
d'=0-6;
b'=1-10;
L представляет собой Н, Сl, Вr, -СН2С(O)С6Н5, -СН2С(O)С6Н4OН, -СН2С(O)С6Н4OСН3 или -CH2CH=CH2;
R4, R5 независимо являются Н, СН3 или СН2СН3;
R6 является -СO2СН3, -СO2СН2СН3, -CN или -CONHCH2CH2CH2CH3;
R7, R8 независимо представляют собой Н или СН3; и
a''=2-12.
5. Полимерный материал для устройства по п.4, в котором для макромера формулы [3]:
е=5-30;
Х является -O-;
Y представляет собой (СН2СН2O)qСН3;
q=4-15;
Т, Т' независимо представляют собой O(CH2)d', O(СН2)d'С6Н4 или отсутствуют;
K представляет собой O(СН2СН2O)b' или отсутствует, при условии, что если Т и Т' отсутствуют, тогда K также отсутствует;
d'=0-6;
b'=1-10;
L представляет собой Н, -СН2С(O)С6Н5, -СН2С(O)С6Н4OСН3 или -СН2СН=СН2;
R4, R5 независимо являются Н, СН3 или СН2СН3;
R6 является -СO2СН3, -СO2СН2СН3, -CN или -СONHCH2СН2СН2СН3;
R7, R8 независимо представляют собой Н или СН3; и
a''=2-12.
6. Полимерный материал для устройства по п.1, в котором мономер формулы [1] выбран из группы, состоящей из бензилметакрилата; 2-фенилэтилметакрилата; 3-фенилпропилметакрилата; 4-фенилбутилметакрилата; 5-фенилпентилметакрилата; 2-феноксиэтилметакрилата; 2-(2-феноксиэтокси)этилметакрилата; 2-бензилоксиэтилметакрилата; 2-(2-(бензилокси)этокси)этилметакрилата; 3-бензилоксипропилметакрилата; бензилакрилата; 2-фенилэтилакрилата; 3-фенилпропилакрилата; 4-фенилбутилакрилата; 5-фенилпентилакрилата; 2-феноксиэтилакрилата; 2-(2-феноксиэтокси)этилакрилата; 2-бензилоксиэтилакрилата; 2-(2-(бензилокси)этокси)этилакрилата; и 3-бензилоксипропилакрилата.
7. Полимерный материал для устройства по п.1, в котором мономер формулы [2] выбран из группы, состоящей из этиленгликольдиметакрилата; диэтиленгликольдиметакрилата; триэтиленгликольдиметакрилата; 1,6-гександиолдиметакрилата; 1,4-бутандиолдиметакрилата; 1,4-бензолдиметанолдиметакрилата; этиленгликольдиакрилата; диэтиленгликольдиакрилата; триэтиленгликольдиакрилата; 1,6-гександиолдиакрилата; 1,4-бутандиолдиакрилата; и 1,4-бензолдиметанолдиакрилата.
8. Полимерный материал для устройства по п.1, в котором количество мономера [1] составляет 80-95% (мас./мас.).
9. Полимерный материал для устройства по п.1, в котором количество макромера с гидрофильной боковой цепью составляет 1-10% (мас./мас.).
10. Полимерный материал для устройства по п.9, в котором количество макромера с гидрофильной боковой цепью составляет 1-5% (мас./мас.).
11. Полимерный материал для устройства по п.10, в котором количество макромера с гидрофильной боковой цепью составляет 2-4% (мас./мас.).
12. Полимерный материал для устройства по п.1, в котором макромер с гидрофильной боковой цепью представляет собой макромер формулы [3а].
13. Полимерный материал для устройства по п.1, в котором макромер с гидрофильной боковой цепью представляет собой макромер формулы [3b].
14. Полимерный материал для устройства по п.1, в котором макромер с гидрофильной боковой цепью представляет собой макромер формулы [3с].
15. Полимерный материал для устройства по п.1, в котором макромер с гидрофильной боковой цепью представляет собой макромер формулы [3d].
16. Полимерный материал для устройства по п.1, в котором макромер с гидрофильной боковой цепью представляет собой макромер формулы [3е].
17. Полимерный материал для устройства по п.1, дополнительно содержащий ингредиент, выбранный из группы, состоящей из полимеризуемых поглотителей УФ и полимеризуемых красящих веществ.
18. Полимерный материал для устройства по п.18, содержащий 0,1-5% (мас./мас.) полимеризуемого поглотителя УФ и 0,01-0,5% (мас./мас.) полимеризуемого красящего вещества.
19. Офтальмологическое или оториноларингологическое устройство, содержащее полимерный материал для устройства по п.1, в котором офтальмологическое или оториноларингологическое устройство выбрано из группы, состоящей из внутриглазных линз; контактных линз; кератопротезов; корнеальных имплантов или колец; отологических вентиляционных трубок и назальных имплантов.
20. Офтальмологическое или оториноларингологическое устройство по п.19, в котором офтальмологическое или оториноларингологическое устройство представляет собой внутриглазные линзы.
RU2010117690/15A 2007-10-05 2008-10-03 Материалы для офтальмологических и оториноларингологических устройств RU2467769C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US97800007P 2007-10-05 2007-10-05
US60/978,000 2007-10-05
PCT/US2008/078646 WO2009046235A1 (en) 2007-10-05 2008-10-03 Ophthalmic and otorhinolaryngological device materials

Publications (2)

Publication Number Publication Date
RU2010117690A RU2010117690A (ru) 2011-11-10
RU2467769C2 true RU2467769C2 (ru) 2012-11-27

Family

ID=39938175

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010117690/15A RU2467769C2 (ru) 2007-10-05 2008-10-03 Материалы для офтальмологических и оториноларингологических устройств

Country Status (25)

Country Link
US (4) US8048154B2 (ru)
EP (1) EP2192933B1 (ru)
JP (2) JP5623280B2 (ru)
KR (1) KR101513131B1 (ru)
CN (1) CN101815541B (ru)
AR (1) AR068661A1 (ru)
AT (1) ATE510568T1 (ru)
AU (1) AU2008308607B2 (ru)
BR (1) BRPI0817627B8 (ru)
CA (1) CA2700150C (ru)
CY (1) CY1112248T1 (ru)
DK (1) DK2192933T3 (ru)
ES (1) ES2364892T3 (ru)
HK (1) HK1139339A1 (ru)
HR (1) HRP20110420T1 (ru)
IL (1) IL204609A (ru)
MX (1) MX2010003183A (ru)
NZ (1) NZ585017A (ru)
PL (1) PL2192933T3 (ru)
PT (1) PT2192933E (ru)
RU (1) RU2467769C2 (ru)
SI (1) SI2192933T1 (ru)
TW (1) TWI426932B (ru)
WO (1) WO2009046235A1 (ru)
ZA (1) ZA201002393B (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148445B1 (en) 2009-01-14 2012-04-03 Novartis Ag Ophthalmic and otorhinolaryngological device materials containing a multi-arm PEG macromer
US8293858B1 (en) 2009-01-14 2012-10-23 Novartis Ag Ophthalmic and otorhinolaryngological device materials containing a reactive NVP macromer
TWI487690B (zh) 2009-07-06 2015-06-11 Alcon Inc 用於眼用鏡片材料之可見光吸收劑
TWI464151B (zh) * 2009-07-06 2014-12-11 Alcon Inc 用於眼用鏡片材料之uv/可見光吸收劑
EP2470578B1 (en) * 2009-08-24 2014-11-12 Novartis AG Ophthalmic and otorhinolaryngological device materials
US8883051B2 (en) * 2009-12-07 2014-11-11 Novartis Ag Methods for increasing the ion permeability of contact lenses
TWI473629B (zh) * 2010-01-18 2015-02-21 Alcon Inc 用於眼用晶體材料之可見光吸收劑
US8362177B1 (en) 2010-05-05 2013-01-29 Novartis Ag High refractive index ophthalmic device materials with reduced tack
TWI473823B (zh) 2010-06-21 2015-02-21 Novartis Ag 具有經降低的閃光之高折射率、丙烯酸系眼科裝置材料
TWI517861B (zh) 2011-02-08 2016-01-21 諾華公司 低黏度疏水性眼科裝置材料
TWI513768B (zh) 2011-06-01 2015-12-21 Novartis Ag 疏水性丙烯酸系眼內水晶體材料
TWI551646B (zh) 2011-06-03 2016-10-01 諾華公司 疏水性丙烯酸系眼內水晶體材料
WO2014062151A1 (en) 2012-10-15 2014-04-24 Novartis Ag High refractive index ophthalmic device materials with reduced tack
CA2964767C (en) * 2014-10-17 2024-01-30 Key Medical Technologies, Inc. Polymers and methods for opthalmic applications
ES2750562T3 (es) 2014-12-16 2020-03-26 Alcon Inc Copolímeros hidrofóbicos de acrilato-acrilamida para dispositivos oftálmicos
JP6371480B2 (ja) * 2014-12-16 2018-08-08 ノバルティス アーゲー 眼科用装具のための低含水率アクリレート−アクリルアミドコポリマー
CN116925281A (zh) * 2019-12-24 2023-10-24 爱博诺德(北京)医疗科技股份有限公司 眼科材料及其制备方法
MX2022011571A (es) 2020-03-19 2022-10-18 Alcon Inc Materiales de insercion con alta permeabilidad al oxigeno y alto indice de refraccion.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2238283C2 (ru) * 1999-04-12 2004-10-20 Сургидев Корпорейшн Способный к гидратации сополимер (варианты), офтальмологическое устройство, способ изготовления интраокулярной линзы, способ имплантации офтальмологического устройства в глаз
WO2006138188A1 (en) * 2005-06-13 2006-12-28 Alcon, Inc. Ophthalmic and otorhinolaryngological device materials
WO2006138213A1 (en) * 2005-06-13 2006-12-28 Alcon, Inc. Ophthalmic and otorhinolaryngological device materials

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862077A (en) * 1971-02-22 1975-01-21 Cpc International Inc Stable latexes of a chemically joined, phase separated thermoplastic graft copolymer and method for preparing the same
US3842059A (en) * 1971-02-22 1974-10-15 M Chiang Acrylate and methacrylate terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
DE69121602T2 (de) * 1990-02-14 1997-03-27 Atochem Elf Sa Funktionalisierte Multiblockmakromonomere und Verfahren zur Herstellung
US5290892A (en) * 1990-11-07 1994-03-01 Nestle S.A. Flexible intraocular lenses made from high refractive index polymers
US5331073A (en) * 1992-11-09 1994-07-19 Allergan, Inc. Polymeric compositions and intraocular lenses made from same
US5763548A (en) * 1995-03-31 1998-06-09 Carnegie-Mellon University (Co)polymers and a novel polymerization process based on atom (or group) transfer radical polymerization
CN1171642C (zh) * 1995-06-07 2004-10-20 阿尔康实验室公司 改进的高折光指数眼科透镜材料
US5900464A (en) * 1995-07-25 1999-05-04 Fmc Corporation Processes for making methacrylate and acrylate polymers
SE9600006D0 (sv) 1996-01-02 1996-01-02 Pharmacia Ab Foldable intraocular lens materials
US5789487A (en) 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
CN1128164C (zh) * 1996-11-28 2003-11-19 钟渊化学工业株式会社 末端为羟基的(甲基)丙烯酸类聚合物的生产方法
KR20010033659A (ko) * 1998-04-15 2001-04-25 제임스 에이. 아노 안과 장치용 고굴절율 물질
US6353069B1 (en) * 1998-04-15 2002-03-05 Alcon Manufacturing, Ltd. High refractive index ophthalmic device materials
BR9912404A (pt) * 1998-07-24 2001-04-24 Optical Molding Systems Inc Método e composições para manufaturar artigos fotocromáticos revestidos
DE60018766T2 (de) 1999-09-07 2005-08-11 Alcon Inc. Material für faltbare ophtalmische und otorhinolaryngologische gegenstände
CA2381177A1 (en) * 1999-09-07 2001-03-15 Charles Freeman Ophthalmic and otorhinolaryngological device materials
ES2301830T3 (es) * 2002-07-16 2008-07-01 Alcon, Inc. Materiales para dispositivos oftalmicos y otorrinolaringologicos.
US6872793B1 (en) * 2003-08-07 2005-03-29 Alcon, Inc. Ophthalmic and otorhinolaryngological device materials
JP2008506453A (ja) * 2004-07-16 2008-03-06 アルコン,インコーポレイテッド 眼科および耳鼻咽喉科用装置材料
US8197841B2 (en) * 2004-12-22 2012-06-12 Bausch & Lomb Incorporated Polymerizable surfactants and their use as device forming comonomers
US7446157B2 (en) 2004-12-07 2008-11-04 Key Medical Technologies, Inc. Nanohybrid polymers for ophthalmic applications
US7495061B2 (en) 2005-05-27 2009-02-24 Bausch + Lomb Incorporated High refractive-index, hydrophilic monomers and polymers, and ophthalmic devices comprising such polymers
US7390863B2 (en) * 2005-08-30 2008-06-24 Bausch & Lomb Incorporated Polymeric materials having enhanced ion and water transport property and medical devices comprising same
TWI461186B (zh) * 2007-10-05 2014-11-21 Alcon Inc 眼科與耳鼻喉科裝置材料(二)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2238283C2 (ru) * 1999-04-12 2004-10-20 Сургидев Корпорейшн Способный к гидратации сополимер (варианты), офтальмологическое устройство, способ изготовления интраокулярной линзы, способ имплантации офтальмологического устройства в глаз
WO2006138188A1 (en) * 2005-06-13 2006-12-28 Alcon, Inc. Ophthalmic and otorhinolaryngological device materials
WO2006138213A1 (en) * 2005-06-13 2006-12-28 Alcon, Inc. Ophthalmic and otorhinolaryngological device materials

Also Published As

Publication number Publication date
HK1139339A1 (en) 2010-09-17
KR101513131B1 (ko) 2015-04-21
CY1112248T1 (el) 2015-12-09
MX2010003183A (es) 2010-04-07
DK2192933T3 (da) 2011-06-27
ZA201002393B (en) 2011-06-29
US20110319992A1 (en) 2011-12-29
CA2700150A1 (en) 2009-04-09
JP2014198265A (ja) 2014-10-23
NZ585017A (en) 2011-04-29
TW200930418A (en) 2009-07-16
US20110257291A1 (en) 2011-10-20
AU2008308607B2 (en) 2013-07-04
US8728157B2 (en) 2014-05-20
CN101815541B (zh) 2013-05-22
AR068661A1 (es) 2009-11-25
SI2192933T1 (sl) 2011-08-31
US8048154B2 (en) 2011-11-01
CN101815541A (zh) 2010-08-25
TWI426932B (zh) 2014-02-21
ES2364892T3 (es) 2011-09-16
WO2009046235A1 (en) 2009-04-09
AU2008308607A1 (en) 2009-04-09
PT2192933E (pt) 2011-07-18
ATE510568T1 (de) 2011-06-15
US20090093604A1 (en) 2009-04-09
EP2192933B1 (en) 2011-05-25
HRP20110420T1 (hr) 2011-07-31
PL2192933T3 (pl) 2011-10-31
JP2011501987A (ja) 2011-01-20
RU2010117690A (ru) 2011-11-10
IL204609A0 (en) 2010-11-30
KR20100080920A (ko) 2010-07-13
BRPI0817627A2 (pt) 2015-04-07
US8163862B2 (en) 2012-04-24
IL204609A (en) 2012-07-31
JP5623280B2 (ja) 2014-11-12
CA2700150C (en) 2016-02-23
US20140213733A1 (en) 2014-07-31
BRPI0817627B1 (pt) 2019-05-14
EP2192933A1 (en) 2010-06-09
BRPI0817627B8 (pt) 2021-06-22
US8900297B2 (en) 2014-12-02

Similar Documents

Publication Publication Date Title
RU2467769C2 (ru) Материалы для офтальмологических и оториноларингологических устройств
RU2468825C2 (ru) Материалы для офтальмологических и оториноларингологических устройств
RU2469743C2 (ru) Материалы для офтальмологических и оториноларингологических устройств
JP5363683B2 (ja) グリスニングが低い、高屈折率の眼科的アクリルデバイス材料
JP5941166B2 (ja) マルチアームpegマクロマーを含む眼科用および耳鼻咽喉科用デバイス材料
EP2470578B1 (en) Ophthalmic and otorhinolaryngological device materials

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20200724

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201004