RU2258029C2 - Способ производства синтез-газа - Google Patents

Способ производства синтез-газа Download PDF

Info

Publication number
RU2258029C2
RU2258029C2 RU2001110186/15A RU2001110186A RU2258029C2 RU 2258029 C2 RU2258029 C2 RU 2258029C2 RU 2001110186/15 A RU2001110186/15 A RU 2001110186/15A RU 2001110186 A RU2001110186 A RU 2001110186A RU 2258029 C2 RU2258029 C2 RU 2258029C2
Authority
RU
Russia
Prior art keywords
gas
natural gas
hydrogen sulfide
carbon dioxide
desulfurizing
Prior art date
Application number
RU2001110186/15A
Other languages
English (en)
Other versions
RU2001110186A (ru
Inventor
Масаки ИИДЗИМА (JP)
Масаки ИИДЗИМА
Казуто КОБАЯСИ (JP)
Казуто КОБАЯСИ
Казухиро МОРИТА (JP)
Казухиро МОРИТА
Original Assignee
Мицубиси Хэви Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Хэви Индастриз, Лтд. filed Critical Мицубиси Хэви Индастриз, Лтд.
Publication of RU2001110186A publication Critical patent/RU2001110186A/ru
Application granted granted Critical
Publication of RU2258029C2 publication Critical patent/RU2258029C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Изобретение относится к способу производства синтез-газа, предназначенного для использования при синтезе бензина, метанола или диметилового эфира. Способ производства синтез-газа, содержащего водород и окись углерода, включает следующие стадии: удаление только сернистого водорода из природного газа, содержащего сернистый водород и двуокись углерода, путем прохождения природного газа через устройство для удаления сернистого водорода, заполненное адсорбентом сернистого водорода, добавление двуокиси углерода и пара в природный газ, откуда удален сернистый водород, для получения смешанного газа. Введение смешанного газа в реакционную трубку риформинг-установки позволяет осуществить в основном реакцию парового риформинга в смешанном газе. Перед введением природного газа в устройство для удаления сернистого водорода природный газ заставляют пройти через конвекционную секцию, сообщающуюся с радиационной камерой сгорания риформинг-установки, при этом природный газ нагревают до температуры, которая является пригодной для реакции между сернистым водородом в природном газе и адсорбентом сернистого водорода. Изобретение позволяет селективно удалить сернистый водород из природного газа, содержащего сернистый водород и двуокись углерода, в способе производства синтез-газа, использующем реформинг-установку. 5 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к способу производства синтез-газа, предназначенного для использования при синтезе бензина, метанола или диметилового эфира посредством процесса GTL (Газ-Жидкость).
Синтез-газ, содержащий водород (Нз) и окись углерода (СО), используется в качестве исходного материала для синтеза бензина, и тому подобного, посредством процесса GTL (Газ-Жидкость) согласно системе реакций Фишера-Тропша.
Этот синтез-газ обычно производится с помощью способа, где пар и двуокись углерода сначала добавляют к природному газу, используемому в качестве исходного газа, для получения смешанного газа, который затем вводится в реакционную трубку риформинг-установки, которая нагревается до заданной температуры для осуществления парового риформинга природного газа вместе с двуокисью углерода, при этом производится синтез-газ, содержащий водород (Н2) и моноокись углерода (СО).
В зависимости от источника, природный газ часто содержит сернистый водород (Н2S) и двуокись углерода (например, СО2: 7,1 объемных %, и Н2S: 0,6 объемных %). Когда такой природный газ предназначен для использования в качестве исходного материала, как правило, на практике удаляют сернистый водород перед стадией добавления пара и двуокиси углерода к природному газу. В этом случае удаление сернистого водорода из природного газа обычно осуществляется посредством способа поглощения амином.
Однако, если является желательным удаление сернистого водорода до уровня порядка миллионных долей посредством способа поглощения амином, двуокись углерода, заключенная в исходном природном газе, также удаляется вместе с сернистым водородом. В результате, становится невозможным использование двуокиси углерода, которая изначально заключалась в природном газе, так что требуется большое количество двуокиси углерода для введения в природный газ перед стадией, где природный газ должен транспортироваться в реакционную трубку риформинг-установки, тем самым повышается стоимость производства синтез-газа.
Следовательно, задачей настоящего изобретения является создание способа для производства синтез-газа, который делает возможным эффективное использование двуокиси углерода в природном газе, содержащем сернистый водород и двуокись углерода, путем селективного удаления из него только сернистого водорода в способе производства синтетического газа, использующем риформинг-установку (риформер), при этом становится возможным уменьшение количества двуокиси углерода, которую необходимо добавлять в природный газ перед стадией, где природный газ должен подаваться в риформер.
А именно, настоящее изобретение предусматривает способ производства синтез-газа, содержащего водород и окись углерода, который включает следующие стадии:
удаление только сернистого водорода из природного газа, содержащего сернистый водород и двуокись углерода, путем осуществления прохождения природного газа через устройство для удаления сернистого водорода, заполненное адсорбентом сернистого водорода;
добавление двуокиси углерода и пара к природному газу, откуда удален сернистый водород, для получения смешанного газа; и
введение смешанного газа в реакционную трубку риформера, при этом осуществляется в основном реакция парового риформинга в смешанном газе.
Способ производства синтез-газа согласно настоящему изобретению может осуществляться таким образом, что перед подачей природного газа в устройство для удаления сернистого водорода, природный газ проводят через конвекционную секцию, сообщающуюся с радиационной камерой сгорания риформера, при этом природный газ нагревается до температуры, которая пригодна для реакции между сернистым водородом в природном газе и адсорбентом сернистого водорода.
Способ производства синтез-газа согласно настоящему изобретению может осуществляться таким образом, что двуокись углерода, извлекаемая из отходящего газа, образованного продуктами сгорания, генерируемого в радиационной камере сгорания риформера, используется в качестве источника двуокиси углерода.
Способ производства синтез-газа согласно настоящему изобретению может быть осуществлен таким образом, что двуокись углерода, извлеченная из синтетического газа на выходе риформера, используется в качестве источника двуокиси углерода.
В способе производства синтез-газа согласно настоящему изобретению является предпочтительным, чтобы адсорбент сернистого водорода представлял собой, по меньшей мере, один из оксидов, выбранных из смешанного оксида железа (Fe3O4) и окиси цинка (ZnO).
В способе производства синтез-газа согласно настоящему изобретению является предпочтительным, чтобы устройство для удаления сернистого водорода было снабжено, по меньшей мере, одним узлом первой десульфурирующей колонны, заполненной адсорбентом сернистого водорода, содержащим смешанный оксид железа, и второй десульфурирующей колонной, заполненной адсорбентом сернистого водорода, содержащим оксид цинка, и чтобы природному газу, содержащему сернистый водород и двуокись углерода, предоставлялась возможность последовательно проходить через колонну, выбранную из этих первых десульфурирующих колонн и второй десульфурирующей колонны.
Является предпочтительным, чтобы устройство для удаления сернистого водорода было снабжено, по меньшей мере, тремя узлами первых десульфурирующих колонн, которые должны быть заполнены смешанным оксидом железа, где расположенная первой десульфурирующая колонна среди первых десульфурирующих колонн сконструирована для осуществления операции адсорбции сернистого водорода, расположенная второй первая десульфурирующая колонна среди первых десульфурирующих колонн сконструирована для осуществления операции регенерации адсорбента (сульфид железа), на котором адсорбируется сернистый водород, и расположенная третьей первая десульфурирующая колонна среди первых десульфурирующих колонн сконструирована для осуществления операции восстановления адсорбента, который был регенерирован, и эти операции выполнялись бы последовательно.
Дополнительные задачи и преимущества настоящего изобретения будут представлены в следующем далее описании и частично станут очевидными из описания или смогут быть изучены при осуществлении настоящего изобретения. Задачи и преимущества настоящего изобретения могут быть реализованы и получены посредством устройств и их сочетаний, конкретно указанных далее.
Сопутствующие чертежи, которые прилагаются и составляют часть описания, иллюстрируют предпочтительные в настоящее время примеры воплощения настоящего изобретения, и вместе с общим описанием, приведенным выше, и с подробным описанием предпочтительных воплощений, приводимым ниже, служат для объяснения принципов настоящего изобретения.
Фиг.1 представляет собой блок-схему, иллюстрирующую главные стадии производственного процесса синтеза газа в установке для синтеза бензина, керосина и газойля, который использован при воплощении настоящего изобретения; и
Фиг.2 представляет собой блок-схему, иллюстрирующую устройство для удаления сернистого водорода, которое приспособлено для включения в установку для синтеза на фиг.1.
Теперь, способ производства синтез-газа (который является пригодным, например, для использования при синтезе бензина, керосина и газойля) будет объясняться со ссылками на прилагаемые чертежи.
Фиг.1 представляет собой блок-схему, иллюстрирующую главные стадии производства синтез-газа в установке для синтеза бензина, керосина и газойля, которая может быть использована при производстве синтез-газа согласно примеру воплощения настоящего изобретения.
Обращаясь к фиг.1, риформинг-устрановка (риформер) 10 включает реакционную трубку 11, приспособленную для парового риформинга, радиационную камеру сгорания 12, расположенную вокруг реакционной трубки 11 и сконструированную для нагрева реакционной трубки путем сгорания топлива, и вытяжную трубу 14, которая сообщается через конвекционную секцию (секция для извлечения избыточного тепла) 13 с радиационной камерой сгорания 12. Реакционная трубка 11 внутри наполнена катализатором, например, на основе никеля. Проход для введения топлива 201 сообщается с радиационной камерой сгорания 12 риформера 10.
Проход 202 для введения исходного газа сообщается через конвекционную секцию 13 риформера 10 с устройством для удаления сернистого водорода 30. Как показано на фиг.2, это устройство для удаления сернистого водорода 30 снабжено тремя узлами десульфурирующих колонн 311-313, каждая из которых наполнена адсорбентом сернистого водорода, таким как частицы смешанного оксида железа (Fe3O4). Три ветви проходов для введения природного газа 321-323, которые ответвляются от прохода для введения природного газа 202, сообщаются с верхними частями первых десульфурирующих колонн 311-313, соответственно. Входные двухпозиционные клапаны для природного газа 331-333 присоединены к ветвям проходов для введения природного газа 321-323, соответственно. Нижние части первых десульфурирующих колонн 311-313 соединены через ветви проходов для выхода свободного газа 341-343 и через проход 35, с которым эти ветви проходов для выхода природного газа 341-343 соединены, с верхней частью второй десульфурирующей колонны 36, заполненной частицами оксида цинка, используемыми в качестве адсорбента сернистого водорода. Нижняя часть второй десульфурирующей колонны 36 соединена с проходом для введения исходного газа 203, как будет объяснено в дальнейшем. Двухпозиционные выходные клапаны для природного газа 371-373 присоединены к ветвям проходов для выхода природного газа 341-343, соответственно.
Устройство для удаления серы 38 сообщается через проход 391 с циркуляционным нагнетателем для газа 40. Этот циркуляционный нагнетатель газа 40 соединяется через проход 392 с предварительным нагревателем 41. Воздух подается в устройство для удаления сернистого водорода 30 через проход 393, расположенный вблизи циркуляционного нагнетателя газа 40. Проход 393 снабжен теплообменником газ-газ 42 для осуществления теплообмена между газом, смешанным с воздухом от циркуляционного нагнетателя газа 40, и нагретой газообразной двуокисью серы, которая выходит из первой десульфурирующей колонны, предусмотренной для осуществления процесса регенерации (будет объяснено далее). Предварительный нагреватель 41 сообщается через проход 394 и три ветви проходов 431-433, ответвляющихся от прохода 394, с нижними частями каждой из первых десульфурирующих колонн 311-313. Двухпозиционные входные клапаны для газа, содержащего воздух, 441-443 присоединены к ветвям проходов 431-433, соответственно. Верхние части первых десульфурирующих колонн 311-313 соединены через ветви проходов для выхода газообразной двуокиси серы, 451-453 и через проход 395, с которым эти ветви проходов 451-453 соединены, с устройством для удаления серы 38. Выходные двухпозиционные клапаны для газообразной двуокиси серы 461-463 присоединены к ветвям проходов 451-453, соответственно. Проход 395 снабжен указанным выше теплообменником газ-газ 42.
Проход для введения восстанавливающего газа 47 разветвляется на его дальнем конце, формируя, таким образом, три ветви проходов 481-483, которые сообщаются с верхними частями первых десульфурирующих колонн 311-313, соответственно. Двухпозиционные клапаны для восстанавливающего газа 491-493 присоединены к ветвям проходов 481-483, соответственно.
Устройство для удаления сернистого водорода 30, сконструированное так, как объяснено выше, сообщается через проход для введения исходного газа 203, который расположен таким образом, чтобы он проходил через конвекционную секцию 13, с верхней частью реакционной трубки 11. Дальний конец прохода для введения пара 204 сообщается с проходом для введения исходного газа 203 через его среднюю часть, которая находится на выходе устройства для удаления сернистого водорода 30, а также на входе конвекционной секции 13.
Первое устройство для извлечения двуокиси углерода 511 располагается в конвекционной секции 13 риформера 10, при этом становится возможным извлечение двуокиси углерода из отходящего газа, образованного продуктами сгорания, из конвекционной секции 13. Это устройство для извлечения двуокиси углерода 511 соединяется через проход 205 с компрессором 52. Этот компрессор 52 сообщается, через проход 206, со средней частью прохода для введения исходного газа 203, который расположен на выходе устройства для удаления сернистого водорода 30, а также на входе конвекционной секции 13.
Один из концов прохода для синтез-газа 207 соединен с нижней частью реакционной трубки 11 риформера 10, а его другой конец соединен с реакционной системой Фишера-Тропша (FT) 53, которая наполнена катализатором, например, на основе кобальта. Кстати, катализатор, которым должна быть заполнена эта реакционная система FT 53, может не ограничиваться катализатором на основе кобальта, но может быть, например, катализатором на основе железа. Теплообменник 54 и второе устройство для извлечения двуокиси углерода 512 расположены на выходе риформера 10 и последовательно размещены в указанном порядке на проходе для синтез-газа 207. Этот теплообменник 54 располагается таким образом, чтобы сделать возможным пересечение прохода 208 с ним, и таким образом, чтобы нагревать, например, кипящую воду, проходящую через этот проход 208, при этом генерируя пар высокого давления. Второе устройство для извлечения двуокиси углерода 512 соединено через проход 209 с компрессором 52. Кстати, проход 2010 для прохождения кипящей воды расположен, например, таким образом, чтобы пересекаться с конвекционной секцией 13 риформера 10, тем самым, делая возможным осуществление теплообмена между отходящим газом, образованным продуктами сгорания, из конвекционной секции 13, и кипящей водой. В результате, отходящий газ, образованный продуктами сгорания, охлаждается, и в то же самое время сама кипящая вода нагревается, генерируя пар высокого давления.
Далее, способ производства синтез-газа будет объяснен со ссылками на установку для синтеза, представленную на фигурах 1 и 2.
Прежде всего, топливо для сгорания вводится через проход для ввода топлива 201 в радиационную камеру сгорания 12 риформера 10 таким образом, чтобы дать возможность топливу сгорать вместе с воздухом, при этом нагревая внутреннее пространство реакционной трубки 11 до достаточно высокой температуры (например, 850-900°С). Этот нагрев реакционной трубки 11 производится благодаря тому, что эта реакция риформинга в риформере 10 представляет собой эндотермическую реакцию. Отходящий газ, образованный продуктами сгорания, содержащий двуокись углерода и генерируемый в этой радиационной камере сгорания 12, получает возможность протекания через конвекционную секцию 13 в вытяжную трубу 14. Когда отходящий газ, образованный продуктами сгорания, проходит через конвекционную секцию 13, осуществляется теплообмен между отходящим газом, образованным продуктами сгорания, и природным газом, проходящим через проход для введения природного газа 202, с рассмотренным ниже природным газом, смешанным с двуокисью углерода, и паром, и проходящим через проход для введения исходного газа 203, а также с кипящей водой, проходящей через проход 2010, при этом, охлаждая отходящий газ, образованный продуктами сгорания. Двуокись углерода в отходящем газе, образованном продуктами сгорания, охлажденным таким образом, извлекается с помощью первого устройства для извлечения двуокиси углерода 511, а затем вводится через проход 205 в компрессор 52. Отходящий газ, образованный продуктами сгорания, охлажденный таким образом и обедненный двуокисью углерода, выходит через вытяжную трубу 14 в воздух атмосферы.
Природный газ, содержащий в качестве основного компонента метан, а также содержащий сернистый водород и двуокись углерода, вводится в проход для введения природного газа 202 и получает возможность прохождения через этот проход 202 и, следовательно, через конвекционную секцию 13 риформера 10, при этом природный газ нагревается до температуры (например, 400°С), которая является оптимальной для взаимодействия между сернистым водородом и смешанным оксидом железа (Fe3O4), используемым в качестве адсорбента сернистого водорода (будет объяснено далее). Природный газ, нагретый таким образом, вводится в устройство для удаления сернистого водорода 30. Входной двухпозиционный клапан для природного газа 331, присоединенный к ветви прохода для введения природного газа 321, присоединенной к ветви прохода для выхода природного газа 341, является, соответственно, открытым в этом устройстве для удаления сернистого водорода 30, указанный выше нагретый природный газ получает возможность входа только в первую десульфурирующую колонну 311 (расположена в левой части фиг.2), которая заполнена частицами смешанного оксида железа (Fe3O4). Затем, в этой первой десульфурирующей колонне 311 сернистый водород (H2S) в природном газе получает возможность взаимодействовать с частицами смешанного оксида железа (Fe3O4) при указанной выше температуре (400°С), согласно следующему уравнению реакции (1), при этом большая часть сернистого водорода получает возможность для удаления из природного газа.
Fe3O4+3H2S→3FeS+3Н2O (1)
Природный газ, который прошел через первую десульфурирующую колонну 311, затем вводится через ветвь прохода для выхода природного газа 341 и проход 35 во вторую десульфурирующую колонну 36, которая заполнена частицами оксида цинка (ZnO). Затем, в этой второй десульфурирующей колонне 36 любой остаточный сернистый водород, оставшийся в природном газе, получает возможность для взаимодействия с частицами оксида цинка (ZnO) согласно следующему уравнению реакции (2), тем самым, предоставляя возможность удаления остаточного сернистого водорода из природного газа.
ZnO+H2S→ZnS+H2O (2)
В способе, где природный газ, содержащий сернистый водород и двуокись углерода, получает возможность прохождения через первую десульфурирующую колонну 311, которая заполнена частицами смешанного оксида железа (Fe3O4), а затем через вторую десульфурирующую колонну 36, которая заполнена частицами оксида цинка (ZnO), только сернистый водород получает возможность удаления до уровня порядка миллионных долей без предоставления возможности удаления двуокиси углерода из природного газа, в противоположность обычному способу адсорбции на амине.
Когда рабочие характеристики десульфурирования частиц смешанного оксида железа (Fe3O4), заполняющих первую десульфурирующую колонну 311, которая расположена в левой части на фиг.2, среди этих трех узлов первых десульфурирующих колонн 311-313, ухудшается из-за их взаимодействия с целью удаления сернистого водорода из природного газа, ввод природного газа может быть последовательно переключен от этой первой десульфурирующей колонны 311 к первой десульфурирующей колонне 312, которая расположена в центре на фиг.2, а затем к первой десульфурирующей колонне 312, которая расположена в правой части на фиг.2, при этом сернистый водород получает возможность непрерывного удаления из природного газа.
Как только рабочие характеристики десульфурирования одной из первых десульфурирующих колонн ухудшаются из-за ее работы по десульфурированию, эта первая десульфурирующая колонна (например, первая десульфурирующая колонна 312, которая расположена в центре на фиг.2) подвергается регенерационной обработке следующим образом. А именно, двухпозиционный входной клапан для газа, содержащего воздух, 442, присоединенный к ветви прохода 432, а также двухпозиционный выходной клапан для газообразной двуокиси серы 462, присоединенный к ветви прохода для выхода газообразной двуокиси серы 452, соответственно, сначала открываются. Затем приводится в действие циркуляционный нагнетатель газа 40, чтобы таким образом ввести газ (в основном газообразный азот), который отделяется с помощью устройства для удаления серы 38, в теплообменник газ-газ 42 через проходы 391 и 392, и в то же самое время воздух подается через проход 393 в проход 392. Газ, в основном состоящий из воздуха, который подвергнут теплообмену с нагретой газообразной двуокисью серы (будет объяснено далее) в теплообменнике газ-газ 42, вводится через проход 394 и ветвь прохода 432 в нижнюю часть первой десульфурирующей колонны 312. В ходе процесса, где газ, в основном состоящий из воздуха, получает возможность прохождения через проход 394, газ, в основном состоящий из воздуха, нагревается до температуры (например, 600°С), которая является оптимальной для регенерации сульфида железа (FeS) (будет объяснено далее) посредством предварительного нагревателя 41, присоединенного к проходу 394. Когда этот нагретый газ, в основном состоящий из воздуха, вводится в первую десульфурирующую колонну 312, сульфид железа (FeS), получаемый при указанной выше операции десульфурирования, как показано с помощью указанного выше уравнения реакции 1, взаимодействует с кислородом согласно следующему уравнению реакции (3), при этом производя окись трехвалентного железа (Fe2O3) и газообразную двуокись серы (SO2) и таким образом осуществляя регенерацию.
4FeS+7O2→2Fe2O3+4SO2 (3)
Газообразная двуокись серы, которая генерируется в первой десульфурирующей колонне 312, затем транспортируется через ветвь прохода для выхода газообразной двуокиси серы 452 и проход 395 в устройство для извлечения серы 38. В ходе процесса, где газообразная двуокись серы проходит через проход 395, она подвергается теплообмену с газом, в основном состоящим из воздуха, в теплообменнике газ-газ 42, который присоединен к проходу 395, тем самым, охлаждая газообразную двуокись серы. Эта охлажденная газообразная двуокись серы затем транспортируется в устройство для удаления серы 38, в котором сера извлекается из газообразной двуокиси серы.
В это время в первой десульфурирующей колонне, которая заполнена адсорбентом сернистого водорода, и которая подвергается указанной выше регенерационной обработке (например, первая десульфурирующая колонна 313, которая расположена в правой части на фиг.2), восстановительная обработка адсорбента сернистого водорода будет происходить следующим образом. А именно, двухпозиционный клапан для восстанавливающего газа 493, присоединенный к ветви прохода 483, сначала открывается. Затем, восстанавливающий газ (например, газообразный водород) вводится через проход для введения восстанавливающего газа 47 и проход 483 в верхнюю часть первой десульфурирующей колонны 313. Когда газообразный водород вводится в эту первую десульфурирующую колонну 313, окись трехвалентного железа (Fe2O3), которая производится во время операции регенерации, как показано с помощью указанного выше уравнения реакции (3), взаимодействует с газообразным водородом, как показано с помощью уравнения реакции (4), при этом производя смешанный оксид железа (Fe3O4), который будет использоваться при десульфурировании, и воду (H2O). Полученная при этом вода транспортируется из ветви прохода для выхода природного газа 343 через проход (не показан) в первую десульфурирующую колонну для осуществления операции десульфурирования (например, в первую десульфурирующую колонну 311, которая расположена в левой части на фиг.2).
3Fe2O32→2Fe3O4+H2O ...(4)
Все эти операции, операция десульфурирования, операция регенерации и операция восстановления, производятся одновременно в порядке равномерного осуществления десульфурирования.
Природный газ, обедненный таким образом сернистым водородом, вводится в проход для введения исходного газа 203. В этом случае, двуокись углерода, которая нагнетается с помощью компрессора 52, добавляется через проход 206 к природному газу при заданном отношении с целью получения природного газа, содержащего двуокись углерода. Затем, через проход для введения пара 204 к природному газу, содержащему двуокись углерода, также добавляют пар при заданном отношении с целью получения смешанного газа. Кстати, относительно этого пара, может быть использован пар, который генерируется во время теплообмена между кипящей водой и синтетическим газом в теплообменнике 54, а также пар, который генерируется во время теплообмена между кипящей водой и отходящим газом, образован продуктами сгорания, в конвекционной секции 13 риформера 10.
Смешанный газ, то есть природный газ, смешанный с двуокисью углерода и паром, получает возможность протекания внутри прохода для введения исходного газа 23 и, нагретый, в качестве этого смешанного газа проходит через конвекционную секцию 13 риформера 10, после чего этот смешанный газ, предварительно нагретый таким образом, вводится в реакционную трубку 11. Природный газ, включающий в качестве основного компонента метан (СН4), пар и двуокись углерода, который вводится в реакционную трубку 11 риформера 10, затем подвергается процессу парового риформинга, где метан в основном подвергается паровому риформингу в присутствии катализатора, размещенного внутри реакционной трубки 11, при этом производится синтез-газ, содержащий газообразный водород, моноокись углерода и двуокись углерода согласно следующим уравнениям (5) и (6).
СН42O⇔СО+3Н2 (5)
СО+Н2O⇔CO22 (6)
В этих уравнениях (5) и (6) для реакции риформинга 4 моля водорода и один моль двуокиси углерода могут быть получены путем взаимодействия одного моля метана и 2 молей пара. В реальной реакционной системе, однако, может быть получена композиция, которая является близкой к химически равновесной композиции и которая может определяться температурой и давлением на выходе реакционной трубки.
Следовательно, было бы возможно производить синтез-газ, содержащий газообразный водород, окись углерода и двуокись углерода, при молярном отношении Н2/CO в пределах от 1 до 2,5, путем поддержания содержания метана в природном газе, пара и двуокиси углерода таким образом, чтобы молярное отношение между метаном (CH4) и паром (Н2О) попадало в пределы: CH4:H2O=1:1,5-1:3; в то время как молярное отношение между метаном (СН4) и двуокисью углерода (CO2) попадало бы в пределы: СН4:СО2=1:1-1:3, в случае добавления пара и двуокиси углерода в природный газ.
Синтез-газ, полученный таким образом, вводится через проход 207 в теплообменник 54, чтобы тем самым нагревать кипящую воду, протекающую через проход 208, с целью генерирования пара высокого давления. В это время, сам синтез-газ охлаждается, а затем вводится во второе устройство для извлечения двуокиси углерода 512, в котором двуокись углерода извлекается из природного газа, генерируемая при этом вода выводится из системы через проход 2011. Извлеченная таким образом двуокись углерода затем транспортируется через проход 209 в компрессор 52 и нагнетается вместе с двуокисью углерода, которая извлекается в первом устройстве для извлечения двуокиси углерода 511, нагнетаемая таким образом двуокись углерода затем добавляется через проход 206 к природному газу, находящемуся внутри прохода для введения исходного газа 203.
Синтез-газ, обедненный таким образом двуокисью углерода, затем поступает через проход 207 в реакционную систему Фишера-Тропша (FT) 53, которая заполнена, например, катализатором на основе кобальта, при этом водороду и окиси углерода, содержащимся в синтез-газе, предоставляется возможность взаимодействовать друг с другом, при этом происходит синтез бензина, керосина и газойля.
Согласно настоящему примеру воплощения перед стадией добавления двуокиси углерода и пара к природному газу, содержащему сернистый водород и двуокись углерода, природному газу дают возможность прохождения через устройство для удаления сернистого водорода 30, заполненное адсорбентом сернистого водорода, с целью селективного удаления сернистого водорода из природного газа без предоставления возможности удаления двуокиси углерода из природного газа, в противоположность обычному методу адсорбции на амине. Следовательно, согласно настоящему изобретению является возможным эффективное использование двуокиси углерода в природном газе и уменьшение количества двуокиси углерода, которое необходимо добавлять к природному газу перед стадией введения природного газа в риформер. В результате, является возможным уменьшение стоимости производства синтез-газа.
В частности, перед тем, как природный газ, содержащий сернистый водород и двуокись углерода, вводится в устройство для удаления сернистого водорода 30, природному газу предоставляется возможность прохождения через проход для введения природного газа 202, который сконструирован таким образом, чтобы он проходил через конвекционную секцию 13 риформера 10, при этом природный газ нагревается до температуры, которая является оптимальной для взаимодействия между сернистым водородом в природном газе и смешанным оксидом железа, находящимся в первых десульфурируюших колоннах 311-313 устройства для удаления сернистого водорода 30, таким образом делается возможным уменьшение количества топлива, которое должно использоваться для удаления сернистого водорода.
Далее, как видно из устройства для удаления сернистого водорода 30, представленного на фиг.2, поскольку природный газ, содержащий сернистый водород и двуокись углерода, получает возможность прохождения через первую десульфурирующую колонну 311, которая заполнена частицами смешанного оксида железа (Fe2O4) (первая десульфурирующая колонна 311, которая расположена в левой части на фиг.2), а затем через вторую десульфурирующую колонну 36, которая заполнена частицами оксида цинка (ZnO), теперь является возможным селективное удаление только сернистого водорода из природного газа до уровня порядка миллионных долей.
Фактически, когда природный газ, имеющий композицию: СН4; 86,5 объемных %, С2Н6; 1,8 объемных %, N2; 4,0 объемных %, CO2; 7,1 объемных % и C2S; 0,6 объемных %, обрабатывают посредством устройства для удаления сернистого водорода 30, представленного на фиг.2, путем предоставления ему возможности прохождения через первую десульфурирующую колонну 311, которая заполнена частицами смешанного оксида железа (Fe2О4) (первая десульфурирующая колонна 311, которая расположена в левой части на фиг.2), а затем через вторую десульфурирующую колонну 36, которая заполнена частицами оксида цинка (ZnO), является возможным получение природного газа, имеющего композицию: СН4; 87,0 объемных %, С2Н6; 1,8 объемных %, N2; 4,1 объемных %, CO2; 7,1 объемных % и С2S; 1 миллионных долей или менее. А именно, является возможным оставлять двуокись углерода, остающуюся почти полностью в исходном природном газе, и, в то же время, селективно удалять большую часть сернистого водорода.
Далее, как видно из устройства для удаления сернистого водорода 30, представленного на фиг.2, поскольку три узла первых десульфурирующих колонн 311-3l3, каждая из которых заполнена частицами смешанного оксида железа (Fe3O4), расположены рядом, давая возможность колонне, расположенной первой среди первых десульфурирующих колонн, выполнять операцию адсорбции сернистого водорода, давая возможность расположенной второй первой десульфурирующей колонне выполнять операцию регенерации адсорбента, насыщенного сернистым водородом, а также давая возможность расположенной третьей первой десульфурирующей колонне выполнять операцию восстановления адсорбента, который был регенерирован, а также предоставляя возможность последовательного выполнения этих операций, становится возможным более равномерное и эффективное удаление сернистого водорода из природного газа.
К природному газу, обедненному таким образом сернистым водородом путем указанных выше процедур, добавляются пар и двуокись углерода для получения смешанного газа, который затем вводится в реакционную трубку 11 риформера 10 для осуществления парового риформинга смешанного газа, при этом производится синтез-газ с молярным отношением Н2/CO в пределах от 1 до 2,5. Этот синтез-газ, имеющий такое молярное отношение Н2/CO, затем вводится в реакционную систему Фишера-Тропша (FT) 53, которая заполнена, например, катализатором на основе кобальта, при этом водороду и окиси углерода, содержащимся в синтетическом газе, предоставляется возможность взаимодействовать друг с другом, при этом синтезируется бензин, керосин и газойль с высоким выходом.
В указанном выше примере воплощения, двуокись углерода, которая должна добавляться к природному газу, получается путем извлечения двуокиси углерода из отходящего газа, образованного продуктами сгорания, генерируемого в радиационной камере сгорания, или из синтез-газа. Однако двуокись углерода может быть получена из различных источников. Например, является возможным использование двуокиси углерода, которая может быть извлечена из отходящего газа, образованного продуктами сгорания, генерируемого в бойлере, или двуокиси углерода, которая высвобождается в других установках. А именно, двуокись углерода, которая высвобождается в других установках, может быть эффективно использована в качестве исходного материала в способе производства метанола согласно настоящему изобретению, так что теперь является возможным уменьшение количества двуокиси углерода, выпускаемой в воздушную атмосферу, тем самым вносится вклад в предотвращение глобального потепления.
В указанном выше воплощении синтез-газ, производимый в риформере, поступает в реакционную систему Фишера-Тропша таким образом, чтобы синтезировать бензин, и тому подобное. Однако синтез-газ, производимый в риформере, может также быть использован для синтеза метанола или диметилового эфира.
Как объяснялось выше, согласно настоящему изобретению является возможным эффективное использование двуокиси углерода в природном газе, содержащем сернистый водород и двуокись углерода, путем селективного удаления из него только сернистого водорода в способе для производства синтез-газа из природного газа, содержащего сернистый водород и двуокись углерода путем использования риформера, при этом становится возможным уменьшение количества двуокиси углерода, которую необходимо добавить к природному газу перед стадией, где природный газ подается в риформер. А также согласно настоящему изобретению является возможным создание способа производства синтез-газа, который является пригодным для использования при синтезе бензина, керосина и газойля, посредством реакционной системы Фишера-Тропша, или для синтеза метанола или диметилового эфира с низкой себестоимостью.
Дополнительные преимущества и модификации легко могут быть осуществлены специалистами в данной области. Следовательно, настоящее изобретение, в его более широких аспектах, не является ограниченным конкретными деталями и представленными примерами воплощения, представленными и описанными здесь. Соответственно различные модификации могут быть осуществлены без отклонения от духа или объема общей концепции изобретения в том виде, как она описывается в прилагаемой формуле изобретения и в ее эквивалентах.

Claims (6)

1. Способ производства синтез-газа, содержащего водород и окись углерода, который включает следующие стадии: удаление только сернистого водорода из природного газа, содержащего сернистый водород и двуокись углерода, путем осуществления прохождения природного газа через устройство для удаления сернистого водорода (30), заполненное адсорбентом сернистого водорода; добавление двуокиси углерода и пара в природный газ, откуда удален сернистый водород, для получения смешанного газа; и введение смешанного газа в реакционную трубку (11) риформинг-установки (10), позволяя таким образом осуществить в основном реакцию парового риформинга в смешанном газе, отличающийся тем, что перед введением природного газа в устройство для удаления сернистого водорода (30) природный газ заставляют пройти через конвекционную секцию (13), сообщающуюся с радиационной камерой сгорания (12) риформинг-установки (10), при этом природный газ нагревают до температуры, которая является пригодной для реакции между сернистым водородом в природном газе и адсорбентом сернистого водорода.
2. Способ производства синтез-газа по п.1, отличающийся тем, что двуокись углерода, извлекаемую из отходящего газа, образованного продуктами сгорания, генерируемого в радиационной камере сгорания (12) риформинг-установки (10), используют в качестве источника двуокиси углерода.
3. Способ производства синтез-газа по п.1, отличающийся тем, что двуокись углерода, извлекаемую из синтез-газа на выходе риформинг-установки (10), используют в качестве источника двуокиси углерода.
4. Способ производства синтез-газа по п.1, отличающийся тем, что адсорбент сернистого водорода представляет собой, по меньшей мере, один оксид, выбираемый из смешанного оксида железа (Fe3O4) и оксида цинка (ZnO).
5. Способ производства синтез-газа по п.1, отличающийся тем, что устройство для удаления сернистого водорода (30) снабжают, по меньшей мере, одним узлом первой десульфурирующей колонны (311)-(313), заполненной адсорбентом сернистого водорода, содержащим смешанный оксид железа, и второй десульфурирующей колонной (36), заполненной адсорбентом сернистого водорода, содержащим оксид цинка, и где природному газу, содержащему сернистый водород и двуокись углерода, позволяют последовательно проходить через одну колонну, выбранную из этих первых десульфурирующих колонн (311)-(313), и через вторую десульфурирующую колонну (36).
6. Способ производства синтез-газа по п.5, отличающийся тем, что устройство для удаления сернистого водорода (30) снабжают, по меньшей мере, тремя узлами первых десульфурирующих колонн (311)-(313) для заполнения смешанным оксидом железа, где расположенную первой десульфурирующую колонну из первых десульфурирующих колонн (311)-(313) выполняют с возможностью осуществления операции адсорбции сернистого водорода, расположенную второй десульфурирующую колонну среди первых десульфурирующих колонн (311)-(313) конструируют для выполнения операции регенерации адсорбента (сульфид железа), на котором адсорбирован сернистый водород, и расположенную третьей десульфурирующую колонну среди первых десульфурирующих колонн (311)-(313) конструируют для выполнения операции восстановления адсорбента, который был регенерирован, причем эти операции выполняют последовательно.
RU2001110186/15A 2000-08-16 2001-04-13 Способ производства синтез-газа RU2258029C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-246913 2000-08-16
JP2000246913A JP4533515B2 (ja) 2000-08-16 2000-08-16 合成ガスの製造方法

Publications (2)

Publication Number Publication Date
RU2001110186A RU2001110186A (ru) 2003-04-10
RU2258029C2 true RU2258029C2 (ru) 2005-08-10

Family

ID=18737115

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001110186/15A RU2258029C2 (ru) 2000-08-16 2001-04-13 Способ производства синтез-газа

Country Status (8)

Country Link
US (1) US6726852B2 (ru)
EP (1) EP1180544B1 (ru)
JP (1) JP4533515B2 (ru)
AU (1) AU744233B1 (ru)
DK (1) DK1180544T3 (ru)
NO (1) NO333653B1 (ru)
RU (1) RU2258029C2 (ru)
ZA (1) ZA200102066B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532196C2 (ru) * 2010-03-29 2014-10-27 Тийода Корпорейшн Способ производства водорода, предназначенного для хранения и транспортировки
RU2603961C2 (ru) * 2012-09-21 2016-12-10 Мицубиси Хеви Индастриз, Лтд. Способ и установка для получения жидкого топлива и выработки энергии
RU2674427C2 (ru) * 2013-12-03 2018-12-07 Линде Акциенгезелльшафт Способ и устройство для производства синтез-газа
US10829371B1 (en) 2019-10-04 2020-11-10 Saudi Arabian Oil Company Systems and processes for producing hydrogen from sour gases

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336259C (zh) * 2002-05-02 2007-09-05 三菱重工业株式会社 燃料电池发电系统及其操作方法
WO2003099961A2 (en) * 2002-05-28 2003-12-04 Fmc Technologies, Inc. Portable gas-to-liquids unit and method for capturing natural gas at remote locations
AU2003259253B2 (en) * 2002-07-26 2007-02-15 Compactgtl Plc Gas-to-liquids facility for fixed offshore hydrocarbon production platforms
JP2004168553A (ja) * 2002-11-15 2004-06-17 Mitsubishi Heavy Ind Ltd 合成ガスの製造方法
DE10301434A1 (de) * 2003-01-16 2004-07-29 Bayer Ag Verfahren zur CO-Gas-Entschwefelung
JP4568876B2 (ja) * 2004-03-30 2010-10-27 独立行政法人石油天然ガス・金属鉱物資源機構 フィッシャートロプシュ合成用合成ガスの製造方法および製造装置
US7695708B2 (en) * 2007-03-26 2010-04-13 Air Products And Chemicals, Inc. Catalytic steam reforming with recycle
DE102007038760B3 (de) * 2007-08-16 2009-01-02 Dge Dr.-Ing. Günther Engineering Gmbh Verfahren und Anlage zur Herstellung von Synthesegas aus Biogas
JP5173531B2 (ja) * 2008-03-31 2013-04-03 独立行政法人石油天然ガス・金属鉱物資源機構 Gtlプラントにおける合成ガスリフォーマの運転方法
US8728423B2 (en) * 2008-04-07 2014-05-20 Mitsubishi Heavy Industries, Ltd. Method and apparatus for flue gas treatment
US9475995B2 (en) 2009-11-27 2016-10-25 Korea Institute Of Science And Technology GTL-FPSO system for conversion of stranded gas in stranded gas fields and associated gas in oil-gas fields, and process for production of synthetic fuel using the same
KR101152666B1 (ko) * 2009-11-27 2012-06-15 한국과학기술연구원 해상 유전 및 한계 가스전의 가스를 액상연료로 전환하는 fpso-gtl 공정 및 이를 이용한 합성연료 제조방법
JP5638600B2 (ja) * 2010-03-02 2014-12-10 独立行政法人石油天然ガス・金属鉱物資源機構 合成ガスの製造方法
CN102250658A (zh) * 2010-05-19 2011-11-23 上海标氢气体技术有限公司 焦炉煤气和高炉煤气原料转化制液化天然气的方法
FR2989004B1 (fr) * 2012-04-10 2014-05-02 Total Sa Procede de traitement d'un flux gazeux par absorption
WO2014041645A1 (ja) * 2012-09-12 2014-03-20 三菱重工業株式会社 改質装置およびそれを備えた化成品の製造装置
WO2015007230A1 (zh) 2013-07-18 2015-01-22 中国石油大学(北京) 一种铁基加氢催化剂及其应用
CN104383922B (zh) * 2013-07-18 2016-05-11 中国石油大学(北京) 一种重油加氢铁基催化剂及其应用
CN104383923B (zh) * 2013-07-18 2016-07-06 中国石油大学(北京) 一种汽油柴油加氢铁基催化剂及其应用
KR101694221B1 (ko) 2014-12-24 2017-01-09 한국과학기술연구원 한계 가스전의 천연가스를 이용한 gtl-fpso 공정에 의한 합성연료의 제조방법과 그 제조장치
CN105062597B (zh) * 2015-08-10 2018-06-12 新奥科技发展有限公司 天然气净化装置、净化系统、处理系统及吸附剂再生方法
US10738247B2 (en) * 2017-11-15 2020-08-11 Gas Technology Institute Processes and systems for reforming of methane and light hydrocarbons to liquid hydrocarbon fuels
US11261390B2 (en) 2018-09-10 2022-03-01 Korea Institute Of Science And Technology Apparatus and method of preparing synthetic fuel using natural gas

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947547A (en) * 1972-12-15 1976-03-30 Shell Oil Company Process for reducing total sulfur content of claus off-gases
US4091073A (en) * 1975-08-29 1978-05-23 Shell Oil Company Process for the removal of H2 S and CO2 from gaseous streams
NL7603168A (en) * 1976-03-26 1977-09-28 Shell Int Research Selective removal of hydrogen sulphide from gas streams - contg. carbon dioxide, by a dual absorption-stripping process
FR2432887A1 (fr) * 1978-08-08 1980-03-07 Inst Francais Du Petrole Procede d'epuration d'un gaz contenant du sulfure d'hydrogene
DE3243206A1 (de) * 1982-11-23 1984-05-24 Basf Ag, 6700 Ludwigshafen Verfahren zur reinigung von co und/oder co(pfeil abwaerts)2(pfeil abwaerts) enthaltenden gasen
US4552572A (en) * 1983-07-26 1985-11-12 Bechtel International Corporation Process for desulfurization of fuel gas
JPS6199613A (ja) * 1984-10-22 1986-05-17 Nippon Steel Corp 直接還元炉のガス再循環装置
US4769045A (en) * 1986-04-10 1988-09-06 The United States Department Of Energy Method for the desulfurization of hot product gases from coal gasifier
US5621155A (en) 1986-05-08 1997-04-15 Rentech, Inc. Process for the production of hydrocarbons
DE3780742T2 (de) * 1986-10-01 1993-03-18 Ici Plc Entschwefelung.
JPH0776348B2 (ja) * 1987-05-26 1995-08-16 財団法人電力中央研究所 高温還元性ガスの精製方法
US4925644A (en) * 1987-06-15 1990-05-15 Texaco Inc. Partial oxidation of sulfur-containing solid carbonaceous fuel
EP0328479B1 (en) 1988-02-10 1995-03-29 Mitsubishi Jukogyo Kabushiki Kaisha Method for purifying high-temperature reducing gas
GB8805351D0 (en) * 1988-03-07 1988-04-07 Ici Plc Desulphurisation
JPH01228522A (ja) * 1988-03-08 1989-09-12 Babcock Hitachi Kk 乾式脱硫方法及び装置
US5320992A (en) 1989-08-30 1994-06-14 Irwin Fox Disposable oxide carrier for scavenging hydrogen sulfide
US5102645A (en) * 1990-06-21 1992-04-07 Liquid Carbonic Corporation Method for manufacture of high purity carbon monoxide
US5244641A (en) * 1992-04-28 1993-09-14 Phillips Petroleum Company Absorption of hydrogen sulfide and absorbent composition therefor
JP3322923B2 (ja) * 1992-12-15 2002-09-09 コスモエンジニアリング株式会社 一酸化炭素及び水素の製造方法
JPH06191801A (ja) * 1992-12-22 1994-07-12 Toyo Eng Corp 水素製造方法
SE9300803L (sv) * 1993-03-11 1994-05-24 Chemrec Ab Process för separation av svavelföreningar ur en koldioxid- och vätesulfidinnehållande gasström
GB2281077B (en) * 1993-08-05 1997-05-14 Ici Plc Reforming
US5914292A (en) * 1994-03-04 1999-06-22 Phillips Petroleum Company Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent
EP0827772A3 (en) * 1994-03-18 1998-04-15 The Kansai Electric Power Co., Inc. Method for the removal of carbon dioxide and hydrogen sulfide from a gas containing these gases
US5989673A (en) 1997-06-30 1999-11-23 Sony Corporation Caromium-tantalum oxides (Cr-TaOx), sputtering targets and thin film seedlayer/sublayers for thin film magnetic recording media
US5958359A (en) * 1997-12-17 1999-09-28 Mobil Oil Corporation Process for treating H2 S-lean streams, with recycle of SOx from burner
US5882614A (en) * 1998-01-23 1999-03-16 Exxon Research And Engineering Company Very low sulfur gas feeds for sulfur sensitive syngas and hydrocarbon synthesis processes
GB9817526D0 (en) 1998-08-13 1998-10-07 Ici Plc Steam reforming
DE69905543T3 (de) * 1998-12-07 2006-10-19 Mitsubishi Heavy Industries, Ltd. Verfahren zur Herstellung von Methanol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532196C2 (ru) * 2010-03-29 2014-10-27 Тийода Корпорейшн Способ производства водорода, предназначенного для хранения и транспортировки
RU2603961C2 (ru) * 2012-09-21 2016-12-10 Мицубиси Хеви Индастриз, Лтд. Способ и установка для получения жидкого топлива и выработки энергии
US9611438B2 (en) 2012-09-21 2017-04-04 Mitsubishi Heavy Industries, Ltd. Method and system for producing liquid fuel and generating power
RU2674427C2 (ru) * 2013-12-03 2018-12-07 Линде Акциенгезелльшафт Способ и устройство для производства синтез-газа
US10829371B1 (en) 2019-10-04 2020-11-10 Saudi Arabian Oil Company Systems and processes for producing hydrogen from sour gases

Also Published As

Publication number Publication date
NO20011753D0 (no) 2001-04-06
EP1180544A3 (en) 2003-02-26
JP4533515B2 (ja) 2010-09-01
ZA200102066B (en) 2001-09-13
DK1180544T3 (da) 2006-10-23
NO20011753L (no) 2002-02-18
JP2002060203A (ja) 2002-02-26
EP1180544A2 (en) 2002-02-20
NO333653B1 (no) 2013-08-05
US6726852B2 (en) 2004-04-27
US20020024038A1 (en) 2002-02-28
AU744233B1 (en) 2002-02-21
EP1180544B1 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
RU2258029C2 (ru) Способ производства синтез-газа
CA2657669C (en) Steam-hydrocarbon reforming method with limited steam export
JP7096317B2 (ja) Co2膜を含む改質装置
TWI261616B (en) Hot solids gasifier with CO2 removal and hydrogen production
RU2606606C2 (ru) Установка риформинга, способ риформинга, установка для получения химических продуктов, снабженная установкой риформинга, и способ получения химических продуктов
RU2001110186A (ru) Способ производства синтез-газа
EP2103569A2 (en) Steam-hydrocarbon reforming method with limited steam export
JP2007500115A (ja) メタン含有ガス、特に天然ガスからの水素の製造法および該方法を実施するシステム
US5716587A (en) Apparatus for removal of contaminates from a gas stream
KR20070100962A (ko) 이산화탄소 방출이 적은 합성가스 제조 방법
US20150307351A1 (en) Tail gas processing for liquid hydrocarbons synthesis
CN105757641A (zh) 燃气锅炉系统及其运行方法
EP1162170B1 (en) Method of manufacturing a synthesis gas to be employed for the synthesis of gasoline, kerosene and gas oil
RU2001105617A (ru) Способ производства синтез-газа, применяемого для синтеза бензина, керосина и газойля (варианты)
CN101155753A (zh) 再利用收集的co2制备氢气的燃烧装置
KR101472767B1 (ko) 일산화탄소 가스 발생 장치 및 방법
JP4681101B2 (ja) ガソリン、軽油および灯油用合成ガスの製造方法
WO2020234708A1 (en) Furnace and process for synthesis gas production
JPS62266138A (ja) 蒸気改質設備等における低レベルの熱を回収する方法及び装置
JP2008179496A (ja) 水素製造装置およびその方法
JP2020531262A (ja) 酸性ガスの処理および発電のプロセス
JPS6039050B2 (ja) メタノ−ルの製造方法
JP5348938B2 (ja) 一酸化炭素ガス発生装置および方法
KR20230022859A (ko) 수소의 생산 방법
JP2021155242A (ja) 改質器及び改質処理装置

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20180621