RU2603961C2 - Способ и установка для получения жидкого топлива и выработки энергии - Google Patents

Способ и установка для получения жидкого топлива и выработки энергии Download PDF

Info

Publication number
RU2603961C2
RU2603961C2 RU2015109699/04A RU2015109699A RU2603961C2 RU 2603961 C2 RU2603961 C2 RU 2603961C2 RU 2015109699/04 A RU2015109699/04 A RU 2015109699/04A RU 2015109699 A RU2015109699 A RU 2015109699A RU 2603961 C2 RU2603961 C2 RU 2603961C2
Authority
RU
Russia
Prior art keywords
water vapor
reforming
gas
steam
line
Prior art date
Application number
RU2015109699/04A
Other languages
English (en)
Other versions
RU2015109699A (ru
Inventor
Масаки ИИДЗИМА
Риюдзи ЙОСИЯМА
Харуаки ХИРАЯМА
Ёсио СЕЙКИ
Original Assignee
Мицубиси Хеви Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Хеви Индастриз, Лтд. filed Critical Мицубиси Хеви Индастриз, Лтд.
Publication of RU2015109699A publication Critical patent/RU2015109699A/ru
Application granted granted Critical
Publication of RU2603961C2 publication Critical patent/RU2603961C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0492Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/42Fischer-Tropsch steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к способу и установке для получения жидкого топлива из углеводородного газа. Заявлен способ получения жидкого топлива из углеводородного газа и выработки энергии, в котором осуществляют риформинг углеводородного газа для получения газа риформинга путем реакции парового риформинга углеводородного газа; осуществляют синтез бензина, диметилового эфира или дизельного топлива из газа риформинга через метанол; извлекают тепло термической энергии газа риформинга для получения насыщенного водяного пара, имеющего температуру не более 180°C, до использования указанного газа риформинга на стадии синтеза; осуществляют перегревание указанного насыщенного водяного пара с использованием теплового источника, имеющего температуру по меньшей мере 200°C, образовавшегося в указанном способе, чтобы получить перегретый водяной пар; и осуществляют выработку энергии с использованием указанного перегретого водяного пара, причем в качестве теплового источника для перегревания на стадии перегревания используют водяной пар, образовавшийся за счет экзотермической реакции на стадии синтеза. Технический результат - эффективная выработка энергии путем использования низкотемпературного отходящего тепла процесса. 2 н.п. ф-лы, 1 табл., 4 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу и установке для получения жидкого топлива, такого как бензин, из углеводородного газа, такого как природный газ, и для выработки энергии.
Уровень техники
В качестве способа для получения бензина из природного газа, в документе JP 62-041276 В описан способ, в котором синтетический газ получают с помощью парового риформинга природного газа, метанол синтезируют из синтетического газа, и затем бензин синтезируют из метанола. В процессе синтеза бензина из метанола помимо бензина образуется большое количество воды, однако до настоящего времени отсутствует способ использования образовавшейся воды.
С другой стороны, в документе JP 2000-054852А обсуждается способ комбинированного цикла выработки энергии, в котором используется газовая турбина, в которой установка парового риформинга сообщается с камерой сгорания газовой турбины.
Литература уровня техники
Патентная литература
Документ 1: JP 62-041276 В.
Документ 2: JP 2000-054852 А.
Раскрытие изобретения Проблема, решаемая в изобретении
Реакция парового риформинга проводится при очень высокой температуре, такой как приблизительно 800°C или выше. При осуществлении указанной реакции парового риформинга, для подавления процесса осаждения углерода на катализаторе необходимо подавать водяной пар в количестве, превышающем количество углеводородного газа, то есть сырья. Следовательно, поскольку избыточный водяной пар входит в состав газа риформинга, полученного путем парового риформинга, газ риформинга конденсируется при охлаждении, и в результате выделяется значительное количество тепла. Однако, поскольку температура большей части теплового потока составляет всего лишь около 180°C или ниже, этот тепловой поток не содержит тепла, которое подходит для использования в качестве рециркулирующего.
При рассмотрении указанной выше проблемы целью настоящего изобретения является предложение способа и установки для получения жидкого топлива из газа риформинга, образовавшегося в процессе парового риформинга, и эффективной выработки энергии путем эффективного использования низкотемпературного отходящего тепла, образовавшегося в процессе парового риформинга.
Средство решения проблемы
Для достижения описанной выше цели, в соответствии с замыслом настоящего изобретения, предлагается способ получения жидкого топлива из углеводородного газа и выработки энергии, путем реакции: осуществляют риформинг углеводородного газа с образованием газа риформинга путем реакции парового риформинга углеводородного газа; осуществляют синтез бензина, диметилового эфира, или дизельного топлива из газа риформинга через метанол; извлекают тепло из термической энергии газа риформинга, чтобы получить насыщенный водяной пар, имеющий температуру не более 180°C, до использования указанного газа риформинга на стадии синтеза; осуществляют перегревание указанного насыщенного водяного пара с использованием теплового источника, имеющего температуру по меньшей мере 200°C, образовавшегося в указанном способе, чтобы получить перегретый водяной пар; и осуществляют выработку энергии путем использования указанного перегретого водяного пара.
Водяной пар, генерируемый экзотермической реакцией на стадии синтеза, может быть использован в качестве теплового источника для перегревания на стадии перегревания. Все из реакции синтеза метанола, реакции синтеза бензина, реакции синтеза диметилового эфира (ДМЭ) и реакции синтеза дизельного топлива, такой как синтез Фишера-Тропша, являются экзотермическими реакциями. Теплота указанных реакций, индивидуально или в комбинации с другими, может быть использована для генерации водяного пара с целью рекуперации тепла.
Часть газа риформинга, полученного на стадии риформинга, может быть использована в качестве теплового источника для перегревания на стадии перегревания. В качестве альтернативы, в качестве теплового источника для перегревания на стадии перегревания может быть использован дымовой газ, образовавшийся на стадии риформинга.
Согласно другому замыслу настоящего изобретения, предложена установка для получения жидкого топлива из углеводородного газа и для выработки энергии, которая содержит устройство парового риформинга для получения газа риформинга по реакции парового риформинга углеводородного газа; колонну синтеза для получения бензина, диметилового эфира, или дизельного топлива из газа риформинга через метанол; устройство теплообмена для получения насыщенного водяного пара, имеющего температуру не более 180°C, за счет теплообмена газа риформинга до введения газа риформинга в колонну синтеза; устройство перегревания для перегревания насыщенного водяного пара с использованием теплового источника, имеющего температуру, по меньшей мере 200°C, образовавшегося внутри указанной установки, чтобы получить перегретый водяной пар; и устройство выработки энергии для генерации энергии с использованием указанного перегретого водяного пара.
Тепловой источник, используемый в устройстве перегревания, может быть водяным паром, образовавшимся за счет экзотермической реакции в колонне синтеза. Альтернативно, тепловой источник, используемый в устройстве перегревания, может быть частью газа риформинга, полученного с помощью устройства парового риформинга. В качестве дополнительной альтернативы, тепловой источник, используемый в устройстве перегревания, представляет собой дымовой газ, образовавшийся в устройстве парового риформинга.
Выгодные эффекты изобретения
Как описано выше, согласно настоящему изобретению, за счет получения перегретого водяного пара путем перегревания насыщенного водяного пара с температурой 180°C или ниже, можно сократить влажную область, если давление водяного пара снижается под действием паровой турбины, и таким образом, можно получить водяной пар с высокой удельной энтальпией и можно значительно улучшить показатели выработки энергии с использованием указанного водяного пара. Следовательно, путем эффективного использования низкотемпературного отходящего тепла, с температурой 180°C или ниже, образовавшегося в реакции парового риформинга, можно эффективно вырабатывать энергию, и могут быть предложены способ и установка для получения жидкого топлива из газа риформинга, образовавшегося в реакции парового риформинга.
Краткое описание чертежей
На фигуре 1 представлена принципиальная схема, которая демонстрирует вариант осуществления установки для получения бензина и выработки энергии согласно настоящему изобретению, где показана технологическая схема производства бензина из сырья.
На фигуре 2 представлена принципиальная схема, которая демонстрирует вариант осуществления установки для получения бензина и выработки энергии согласно настоящему изобретению, где показан технологический маршрут водяного пара, используемого для выработки энергии.
На фигуре 3 представлена принципиальная схема, которая демонстрирует другой вариант осуществления установки для получения бензина и выработки энергии согласно настоящему изобретению, где показан технологический маршрут водяного пара, используемый для выработки энергии.
На фигуре 4 представлена принципиальная схема, которая демонстрирует еще один вариант осуществления установки для получения бензина и выработки энергии согласно настоящему изобретению, где показан технологический маршрут водяного пара, используемый для выработки энергии.
Осуществление изобретения
Варианты осуществления настоящего изобретения будут описаны ниже со ссылкой на прилагаемые чертежи. Как показано на фигурах 1 и 2, установка получения бензина и выработки энергии согласно настоящему изобретению содержит основные компоненты, такие как реактор 10 парового риформинга, который выполнен с возможностью получения газа риформинга путем парового риформинга углеводородного газа, такого как природный газ, колонна 30 синтеза метанола, которая выполнена с возможностью синтезировать метанол из газа риформинга, полученного в реакторе парового риформинга, колонна 40 синтеза бензина, которая выполнена с возможностью синтезировать бензин из метанола, полученного в колонне синтеза метанола, теплообменник 25 водяного пара низкого давления, который расположен между реактором парового риформинга и колонной синтеза метанола и выполнен с возможностью получения водяного пара низкого давления из газа риформинга, перегреватель 50, который выполнен с возможностью перегревать водяной пар низкого давления, полученный с использованием указанного теплообменника, и турбина 60 водяного пара низкого давления, которая выполнена с возможностью выработки энергии с использованием водяного пара, перегретого в перегревателе.
Реактор 10 парового риформинга снабжен основными компонентами, такими как реакционная трубка 11 для парового риформинга, участок 12 горения (не показан), расположенный вокруг реакционной трубки 11, участок 12 рекуперации отработанного тепла, который выполнен с возможностью извлекать отработанное тепло дымового газа, образовавшегося в участке горения, и вытяжная труба 13, которая выполнена с возможностью выпуска дымового газа в атмосферу после извлечения из него отработанного тепла. Реакционная трубка 11, в которой содержится катализатор парового риформинга, загруженный внутрь трубки, представляет собой устройство для получения водорода, моноксида углерода и диоксида углерода из природного газа, содержащего метан в качестве основного ингредиента, путем протекания следующих ниже реакций. В качестве катализатора парового риформинга, например, могут быть использованы известные катализаторы, такие как катализатор на основе никеля.
Figure 00000001
Figure 00000002
Со стороны входного отверстия реакционной трубки 11 реактора 10 парового риформинга, присоединена линия 14 подачи сырья для подачи природного газа, который является сырьем, и линия 15 подачи водяного пара для подачи водяного пара из котла или тому подобного (не показано). Со стороны выходного отверстия реакционной трубки 11 присоединена линия 21 подачи газа риформинга, которая представляет собой линию для подачи газа риформинга, содержащего в качестве основных ингредиентов водород, монооксид углерода и диоксида углерода, образовавшиеся по реакции - парового риформинга, в колонну 30 синтеза метанола. Кроме того, к реактору 10 парового риформинга присоединена линия 16 подачи топлива для подачи топлива в участок горения (не показан) для нагревания реакционной трубки 11.
На линии 21 подачи газа риформинга предусмотрен теплообменник 23 водяного пара высокого давления, который выполнен с возможностью получения пара высокого давления из газа риформинга в указанной линии; теплообменник 25 водяного пара низкого давления, который выполнен с возможностью получения водяного пара низкого давления из газа риформинга в указанной линии, и компрессор 22, который выполнен с возможностью компримирования газа риформинга, который прошел через указанные теплообменники, чтобы получить давление, подходящее для синтеза метанола; причем указанные устройства расположены в указанном порядке со стороны реактора 10 парового риформинга. Теплообменники 23, 25 для водяного пара высокого давления и водяного пара низкого давления генерируют водяной пар путем осуществления теплообмена с газом риформинга. Компрессор 22 компримирует газ риформинга, температура которого снижена с помощью указанных теплообменников до заданного давления, до подачи указанного газа риформинга в колонну 30 синтеза метанола.
Теплообменник 23 водяного пара высокого давления снабжен линией 24 водяного пара высокого давления для подачи образовавшегося водяного пара высокого давления в оборудование для предусмотренного назначения. Теплообменник 25 водяного пара низкого давления снабжен линией 26 водяного пара низкого давления для подачи образовавшегося водяного пара низкого давления в турбину 60 водяного пара низкого давления, как показано на фигуре 2.
Колонна 30 синтеза метанола представляет собой устройство, выполненное с возможностью синтеза метанола из газа риформинга путем протекания следующих реакций.
Figure 00000003
Figure 00000004
Колонна 30 синтеза метанола содержит катализатор синтеза метанола, загруженный внутри трубки. В качестве катализатора синтеза метанола могут быть использованы известные катализаторы, такие как катализаторы на основе меди. Линия 31 подачи метанола соединена с колонной 30 синтеза метанола и представляет собой линию для подачи метанола, синтезированного в колонне 30 синтеза метанола, в колонну 40 синтеза бензина. Помимо синтезированного метанола в линию 31 подачи метанола поступает жидкий сырой метанол, содержащий воду, которая является побочным продуктом реакции по формуле (4).
Реакция синтеза метанола, протекающая в колонне 30 синтеза метанола, представляет собой экзотермическую реакцию. Следовательно, из указанной воды можно получить водяной пар среднего давления, с использованием термической энергии, выделяющейся в процессе синтеза метанола, протекающего в колонне 30 синтеза метанола в качестве теплового источника. Колонна 30 синтеза метанола снабжена линией 32 водяного пара среднего давления для подачи водяного пара среднего давления, который получен указанным выше способом, в оборудование для предусмотренного назначения, такое как перегреватель 50.
Колонна 30 синтеза бензина представляет собой устройство, выполненное с возможностью синтеза бензина из метанола, путем протекания реакций, которые выражены следующими формулами.
Figure 00000005
Figure 00000006
Как описано выше, метанол превращается в бензин по реакции синтеза бензина, выраженной формулой (6), через реакцию синтеза диметилового эфира (ДМЭ), выраженную формулой (5). В колонне 40 синтеза бензина предусмотрены два типа катализаторов, включая катализатор синтеза ДМЭ и катализатор синтеза бензина на двух ступенях, так что указанные две реакции могут протекать постадийно. В качестве катализатора синтеза ДМЭ могут быть использованы известные катализаторы, например, такие как катализатор алюмосиликатного типа на основе цеолита. Кроме того, в качестве катализатора синтеза бензина, также могут быть использованы известные катализаторы, например, такие как катализатор алюмосиликатного типа на основе цеолита.
Линия 41 подачи бензина соединена с колонной 40 синтеза бензина и представляет собой линию для подачи бензина, синтезированного в колонне 40 синтеза бензина, в оборудование хранения (не показано). Кроме того, описанная выше реакция, протекающая в колонне 40 синтеза бензина, представляет собой экзотермическую реакцию. Следовательно, из воды может быть получен водяной пар среднего давления с использованием термической энергии, выделившейся при протекании реакции в колонне 40 синтеза бензина, в качестве теплового источника. Колонна 40 синтеза бензина снабжена линией 42 водяного пара среднего давления для подачи водяного пара среднего давления, полученного вышеописанным образом, в оборудование для предусмотренного назначения, например, в перегреватель 50.
Как показано на фигуре 2, предусмотрен перегреватель 50 с линией 51 отбора водяного пара низкого давления для подачи части водяного пара низкого давления из линии 26 водяного пара низкого давления в перегреватель 50, линией 52 подачи перегретого водяного пара для подачи водяного пара низкого давления, перегретого в перегревателе 50, в турбину 60 водяного пара низкого давления, линией 53 отбора водяного пара среднего давления для подачи части водяного пара среднего давления из линии 32 водяного пара среднего давления в перегреватель 50 в качестве теплового источника для перегревания, и линией 54 отработанного водяного пара, в которой проходит отработанный водяной пар, использованный в перегревателе 50. Другими словами, перегреватель 50 представляет собой теплообменник, в котором осуществляется перегревание водяного пара низкого давления, образовавшегося в теплообменнике 25 водяного пара низкого давления, и его тепловым источником является водяной пар среднего давления, образовавшийся в колонне 30 синтеза метанола. Отмечается, что тепловой источник может представлять собой любой водяной пар среднего давления, то есть водяной пар, образовавшийся в колонне 30 синтеза метанола, водяной пар, образовавшийся в колонне 40 синтеза бензина, или они обе.
Турбина 60 водяного пара низкого давления снабжена генератором 61, который приводится в действие турбиной и выполнен с возможностью выработки энергии, и конденсатором 62 водяного пара, который выполнен с возможностью конденсировать водяной пар, использованный для приведения в действие турбины обратно в воду. Отводящая линия 63 соединена с конденсатором 62 водяного пара и представляет собой линию для отведения конденсата водяного пара в устройство генерации водяного пара для рециркуляции.
Линия 54 отработанного водяного пара снабжена клапаном 55, который можно контролируемым образом открывать или закрывать в соответствии с давлением водяного пара в линии. Линия 54 отработанного водяного пара соединена с газожидкостным сепаратором 56. Газожидкостный сепаратор 56 представляет собой устройство, выполненное с возможностью осуществления разделения газа и жидкости для разделения водяного пара, введенного в него, на возвратный водяной пар и конденсированную воду. Газожидкостный сепаратор 56 снабжен возвратной линией 59 водяного пара для возврата возвратного водяного пара в линию 26 водяного пара низкого давления, и линией 57 конденсированной воды для отведения конденсированной воды в линию 63 конденсированной воды. Линия 26 водяного пара низкого давления может быть снабжена вспомогательной линией 64 (а, b, с) для подачи водяного пара, образовавшегося в котле рекуперации отработанного тепла (не показан), в линию водяного пара низкого давления, в случае необходимости. Линия 57 конденсированной воды снабжена клапаном 58, который можно контролируемым образом открывать или закрывать в соответствии с уровнем жидкости конденсированной воды в газожидкостном сепараторе 56.
В описанной выше конфигурации, сначала природный газ и водяной пар из котла (не показан) подают в реакционную трубку 11 реактора 10 парового риформинга через линию 14 подачи сырья и линию 15 подачи водяного пара, соответственно. С целью подавления осаждения углерода на катализаторе в реакционной трубке, водяной пар, предпочтительно, подают в молярном отношении 2 или больше, относительно водорода, который содержится в природном газе.
Топливо подают в участок горения (не показан) реактора 10 парового риформинга через линию 16 подачи топлива. В участке горения топливо сгорает вместе с воздухом, чтобы нагреть реакционную трубку 11 приблизительно до температуры от 800 до 900°C. Температура дымового газа, содержащего диоксид углерода, образовавшегося в участке горения, составляет приблизительно 1000°C, и после прохождения рециркуляционного тепла в участке 12 рекуперации отработанного тепла, дымовой газ выпускается через вытяжную трубу 13 в атмосферу.
С другой стороны, природный газ и водяной пар, которые были поданы в реакционную трубку 11, превращаются по реакции парового риформинга, проходящей в реакционной трубке 11, в газ риформинга. Температура газа риформинга составляет от 800 до 900°C, и сначала газ риформинга вводится в теплообменник 23 водяного пара высокого давления через линию 21 подачи газа риформинга. В теплообменнике 23 водяного пара высокого давления котловая вода или тому подобное нагревается газом риформинга, и таким образом, образуется водяной пар высокого давления, имеющий температуру, например, около 200°C или выше, и создается соответствующее давление насыщенного водяного пара, и таким образом рекуперируется тепло из газа риформинга. Водяной пар высокого давления поступает в оборудование предусмотренного назначения через линию 24 водяного пара высокого давления.
Температура газа риформинга снижается за счет рекуперации тепла, которая осуществляется с помощью теплообменника 23 водяного пара высокого давления, например, до температуры приблизительно от 200 до 300°C, до поступления в теплообменник 25 водяного пара низкого давления. В указанном теплообменнике 25 водяного пара низкого давления газ риформинга нагревает котловую воду или тому подобное и, таким образом, образуется водяной пар низкого давления, имеющий температуру, приблизительно от 100 до 180°C, например, предпочтительно температура составляет от 100 до 180°C, и соответствующее давление насыщенного пара, и таким образом, рекуперируется тепло из газа риформинга. Газ риформинга, охлажденный при рекуперации тепла до температуры приблизительно от 100 до 180°C, дополнительно охлаждается охлаждающей водой и в -воздушном охладителе, до поступления в компрессор 22. В указанном компрессоре 22 температуру газа риформинга регулируют до температуры, подходящей для реакции синтеза метанола (например, около 200°C), до подачи газа риформинга в колонну 30 синтеза метанола.
В колонне 30 синтеза метанола синтезируется метанол по реакциям, описанным формулами (3) и (4), из газа риформинга и газообразного диоксида углерода. Поскольку реакция синтеза метанола является экзотермической реакцией, благодаря термической энергии в колонне 30 синтеза метанола может образоваться водяной пар среднего давления с температурой около 250°C и соответствующим давлением насыщенного пара. Метанол, синтезированный в колонне 30 синтеза метанола, подают в колонну 40 синтеза бензина через линию 31 подачи метанола в виде сырого метанола, содержащего воду. Водяной пар среднего давления подают в оборудование предусмотренного назначения через линию 32 водяного пара среднего давления.
В колонне 40 синтеза бензина, из метанола синтезируют бензин за счет осуществления реакций по формулам (5) и (6). Поскольку реакция синтеза бензина также является экзотермической реакцией, благодаря термической энергии в колонне 40 синтеза бензина может образоваться водяной пар среднего давления с температурой около 250°C и соответствующим давлением насыщенного пара. Бензин, синтезированный в колонне 40 синтеза бензина, подают в оборудование хранения (не показано) через линию 41 подачи бензина. Водяной пар среднего давления подают в оборудование предусмотренного назначения через линию 42 водяного пара среднего давления.
Затем часть водяного пара низкого давления, который проходит через линию 26 водяного пара низкого давления, вводят в перегреватель 50 через линию 51 отбора водяного пара низкого давления, как показано на фигуре 2. Кроме того, часть водяного пара среднего давления, который проходит через линию 32 водяного пара среднего давления, вводят в перегреватель 50 через линию 53 отбора водяного пара среднего давления, чтобы осуществить перегревание водяного пара низкого давления. За счет осуществления перегревания, температура водяного пара низкого давления может быть повышена до точки выше температуры насыщенного водяного пара приблизительно на 50-100°C. Водяной пар низкого давления, который был перегрет указанным выше способом, подают в турбину 60 водяного пара низкого давления через линию 52 подачи перегретого водяного пара. В турбине 60 водяного пара низкого давления, перегретый водяной пар низкого давления резко расширяется, турбина приводится в действие за счет кинетической энергии расширенного водяного пара, и таким образом, генератор 61 вырабатывает энергию.
Поскольку водяной пар низкого давления, подаваемый в турбину 60 водяного пара низкого давления был перегрет, как описано выше, может быть снижен уровень влажности на стороне выходного отверстия из турбины водяного пара низкого давления, таким образом, перегретый пар низкого давления может расширяться, чтобы иметь давление водяного пара, соответствующее низкой степени вакуума, может быть получено высокое значение удельной энтальпии и, таким образом, можно значительно улучшить производительность турбины 60 водяного пара низкого давления. Водяной пар, который был использован в турбине 60 водяного пара низкого давления, конденсируют с помощью конденсатора 62 водяного пара, до его рециркуляции в устройство генерации водяного пара через линию конденсированной воды.
С другой стороны, водяной пар среднего давления, который был использован в перегревателе 50, поступает в газожидкостный сепаратор 56 через линию 54 отработанного водяного пара. В газожидкостном сепараторе 56 давление водяного пара среднего давления, температура которого была снижена за счет его использования для перегревания, снижается до такой же величины, как у водяного пара низкого давления, и затем проводится разделение газа и жидкости на возвратный водяной пар и конденсированную воду. Конденсированная вода отводится через линию 57 конденсированной воды. Водяной пар поступает в линию 26 пара низкого давления через возвратную линию 59 водяного пара, затем перегревается с помощью перегревателя 50, и перегретый водяной пар может быть повторно использован для выработки энергии с помощью турбины 60 водяного пара низкого давления.
Альтернативно, вместо использования перегревателя 50, водяной пар низкого давления можно перегревать за счет обеспечения линий 32 водяного пара среднего давления линией 68 смешения водяного пара и ее использованием, как показано на фигуре 2. Линия 68 смешения водяного пара представляет собой линию для смешивания части водяного пара среднего давления, который проходит через линию водяного пара среднего давления, с водяным паром низкого давления, который проходит через линию 51 отбора водяного пара низкого давления. Для описанной выше конфигурации температура водяного пара низкого давления может быть увеличена до точки, выше температуры насыщенного водяного пара приблизительно на 50 - 100°С.Конфигурация, в которой используется линия 68 смешения водяного пара, разумеется, может быть использована вместе с перегревателем 50. Путем обеспечения в линии 68 смешения водяного пара клапана 69 типа «открыт-закрыт», можно выбирать средство перегрева между теплообменом с помощью перегревателя 50 и смешиванием с помощью линии 68 смешения водяного пара.
Хотя на фигуре 1 продемонстрирована колонна 40 синтеза бензина, может быть предусмотрена колонна синтеза ДМЭ, выполненная с возможностью получения ДМЭ путем осуществления процесса только до стадии синтеза ДМЭ по реакции, выраженной формулой (5), вместо колонны 40 синтеза бензина. Поскольку реакция синтеза ДМЭ также является экзотермической реакцией, водяной пар среднего давления может генерироваться с помощью колонны синтеза ДМЭ. Кроме того, в качестве альтернативы, если предусмотреть колонну синтеза, в которой осуществляется процесс Фишера-Тропша, вместо колонны 30 синтеза метанола и колонны 40 синтеза бензина, показанных на фигуре 1, можно получать дизельное топливо из газа риформинга. Поскольку реакция синтеза Фишера-Тропша также является экзотермической реакцией, водяной пар среднего давления также может генерироваться в указанной конфигурации.
В настоящем изобретении тепловой источник для перегревания водяного пара низкого давления не ограничивается теплом от водяного пара среднего давления, образовавшегося в колонне синтеза метанола и колонне синтеза бензина. Например, альтернативно, в качестве теплового источника могут быть использованы теплота газа риформинга, полученного в реакторе парового риформинга, и теплота дымового газа. В качестве конфигураций, которые могут быть использованы альтернативно конфигурации, показанной на фигуре 2, фигура 3 демонстрирует конфигурацию, в которой используется газ риформинга, образовавшийся в реакторе парового риформинга, и фигура 4 демонстрирует конфигурацию, в которой используется дымовой газ из реактора парового риформинга. На фигурах 3 и 4, компоненты, аналогичные тем, что показаны на фигуре 2, обозначены такими же номерами позиций, и их подробное описание не будет повторяться ниже.
Как показано на фигуре 3, для конфигурации, в которой газ риформинга, образовавшийся в реакторе парового риформинга, используется в качестве теплового источника для перегревания, предусмотрены: перегреватель 70 с линией 71 отбора водяного пара низкого давления для подачи части водяного пара низкого давления из линии 26 водяного пара низкого давления в перегреватель 70; линией 72 подачи перегретого водяного пара для подачи водяного пара низкого давления, перегретого в перегревателе 70, в турбину 60 водяного пара низкого давления; линией 73 отбора газа риформинга для подачи части газа риформинга из линии 21 подачи газа риформинга в перегреватель 70 в качестве источника перегрева; и линией 74 отведения газа риформинга, в которой проходит газ риформинга, который был использован в перегревателе 70. Относительно позиции соединения линии 73 отбора газа риформинга с линией 21 подачи газа риформинга, линия 73 отбора газа риформинга может быть подсоединена в местоположении между., реактором 10 парового риформинга и теплообменником 23 водяного пара высокого давления или в местоположении между теплообменником 23 водяного пара высокого давления и теплообменником 25 водяного пара низкого давления, которые показаны на фигуре 1. Линия 74 отведения газа риформинга соединена с компрессором 22, который показан на фигуре 1. Кроме того, линия 74 отведения газа риформинга снабжена газожидкостным сепаратором 75, который выполнен с возможностью удаления конденсированной воды из газа риформинга, который был использован для перегревания.
В описанной выше конфигурации часть водяного пара низкого давления, который проходит через линию 26 водяного пара низкого давления, вводят в перегреватель 70 через линию 71 отбора водяного пара низкого давления. Кроме того, часть газа риформинга, которая проходит через линию 21 подачи газа риформинга, вводят в перегреватель 70 через линию 73 отбора газа риформинга, чтобы перегревать водяной пар низкого давления. За счет осуществления перегревания температуру водяного пара низкого давления можно поднять выше температуры насыщенного водяного пара, например, приблизительно на 50-150°C. Водяной пар низкого давления, который был перегрет описанным выше способом, поступает в турбину 60 водяного пара низкого давления через линию 72 подачи перегретого водяного пара. Турбина 60 водяного пара низкого давления приводится в действие, как описано выше, и таким образом, вырабатывается энергия с помощью генератора 61. Кроме того, в этой конфигурации может быть значительно повышена производительность турбины 60 водяного пара низкого давления и может быть улучшен уровень влажности водяного пара, который был использован в турбине 60 водяного пара низкого давления, со стороны выходного, отверстия указанной турбины.
С другой стороны, газ риформинга, который был использован перегревателем 70, вводят в газожидкостный сепаратор 75 через линию 74 отведения газа риформинга. Конденсированная вода отделяется с помощью газожидкостного сепаратора 75, затем конденсированная вода подается в колонну 30 синтеза метанола через компрессор 22, показанный на фигуре 1, в качестве сырья для реакции синтеза метанола.
Как показано на фигуре 4, для конфигурации, в которой дымовой газ из реактора парового риформинга используется в качестве теплового источника для перегревания, предусмотрен перегреватель 80 на участке 12 рекуперации отработанного тепла в реакторе 10 парового риформинга. Перегреватель 80 снабжен линией 81 отбора водяного пара низкого давления для подачи части водяного пара низкого давления из линии 26 водяного пара низкого давления в перегреватель 80, и линией 82 подачи перегретого водяного пара для подачи водяного пара низкого давления, который был перегрет в перегревателе 80, в турбину 60 водяного пара низкого давления.
В описанной выше конфигурации часть водяного пара низкого давления, который проходит через линию 26 водяного пара низкого давления, вводят в перегреватель 80 через линию 81 отбора водяного пара низкого давления. Указанный водяной пар низкого давления перегревается дымовым газом, который проходит через участок 12 рекуперации отработанного тепла в реакторе 10 парового риформинга. За счет осуществления перегревания температуру водяного пара низкого давления можно поднять выше температуры насыщенного водяного пара, например, приблизительно на 50-150°C. Водяной пар низкого давления, который был перегрет описанным выше способом, подают в турбину 60 водяного пара низкого давления через линию 82 подачи перегретого водяного пара. Турбина 60 водяного пара низкого давления приводится в действие, как описано выше, и таким образом, вырабатывается энергия с помощью генератора 61. Кроме того, в этой конфигурации может быть значительно повышена производительность турбины 60 водяного пара низкого давления и может быть улучшен уровень влажности водяного пара, который был использован в турбине 60 водяного пара низкого давления, со стороны выходного отверстия указанной турбины.
Примеры
Было проведено моделирование водяного пара, подлежащего подаче в паровую турбину, который может быть получен путем перегревания, проводимого в соответствии с вариантами осуществления, продемонстрированными на фигурах 2-4. Результаты моделирования представлены в таблице 1. Условия для водяного пара низкого давления, который подвергали перегреванию в каждом варианте осуществления, были следующими:
Температура: 143°C,
Избыточное давление: 3 кг/см2 и
Расход: 114,3 т/ч.
Figure 00000007
Согласно фигурам 2-4, с помощью перегревания получается водяной пар с температурой 210°C и избыточным давлением 3 кг/см2. Если этот водяной пар будет использоваться для приведения в действие турбины, вырабатывающей энергию, то получается количество теплоты 95 ккал/кг, путем вычитания 590 ккал/кг из 685 ккал/кг, и в результате турбина вырабатывает 12620 киловатт. С другой стороны, если насыщенный водяной пар с избыточным давлением 3 кг/см будет использоваться для приведения в действие турбины, вырабатывающей энергию, получается количество теплоты 47 ккал/кг, путем вычитания 608 ккал/кг из 655 ккал/кг, и в результате турбина вырабатывает 6240 киловатт. Следовательно, за счет осуществления перегревания, как продемонстрировано на фигурах 2 и 4, производительность турбины можно практически удвоить.
Кроме того, обычно отгоняют воду, содержащуюся в метаноле, образовавшемся в колонне синтеза метанола. В реакции синтеза бензина из метанола, вода образуется наряду с бензином, как представлено в формулах (5) и (6). Следовательно, в конфигурации показанной на фигуре 1, обеспечение дистилляционной колонны между колонной синтеза метанола и колонной синтеза бензина можно исключить. В установке, которая содержит реактор парового риформинга и колонну синтеза метанола и производит 2500 тонн метанола в сутки, для дистилляции требуется термическая энергия в количестве около 60×106 ккал, и для конфигурации, в которой исключается дистилляционная колонна, может генерироваться насыщенный водяной пар с избыточным давлением 3 кг/см2 с помощью теплообменника для газа риформинга из реактора парового риформинга при расходе 114 т/ч.
Описание номеров позиций
10: Реактор парового риформинга
11: Реакционная трубка
12: Участок рекуперации отработанного тепла
13: Вытяжная труба
14: Линия подачи сырья
15: Линия подачи водяного пара
16: Линия подачи топлива
21: Линия подачи газа риформинга
22: Компрессор
23: Теплообменник водяного пара высокого давления
24: Линия водяного пара высокого давления
25: Линия водяного пара низкого давления
26: Линия водяного пара низкого давления
30: Колонна синтеза метанола
31: Линия подачи метанола
32: Линия водяного пара среднего давления
40: Колонна синтеза бензина
41: Линия подачи бензина
42: Линия водяного пара среднего давления
50, 70, 80: Перегреватели
51, 71, 81: Линии отбора водяного пара низкого давления
52, 72, 82: Линия подачи перегретого водяного пара
53: Линия отбора водяного пара среднего давления
54: Линия отработанного водяного пара
55: Клапан
56: Газожидкостный сепаратор
57: Линия конденсированной воды
58: Клапан
59: Возвратная линия водяного пара
60: Турбина водяного пара низкого давления
61: Генератор
62: Конденсатор водяного пара
63: Линия конденсированной воды
73: Линия отбора газа риформинга
74: Линия отведения газа риформинга
75: Газожидкостный сепаратор

Claims (2)

1. Способ получения жидкого топлива из углеводородного газа и выработки энергии, в котором:
осуществляют риформинг углеводородного газа для получения газа риформинга путем реакции парового риформинга углеводородного газа;
осуществляют синтез бензина, диметилового эфира или дизельного топлива из газа риформинга через метанол;
извлекают тепло термической энергии газа риформинга для получения насыщенного водяного пара, имеющего температуру не более 180°C, до использования указанного газа риформинга на стадии синтеза;
осуществляют перегревание указанного насыщенного водяного пара с использованием теплового источника, имеющего температуру по меньшей мере 200°C, образовавшегося в указанном способе, чтобы получить перегретый водяной пар; и
осуществляют выработку энергии с использованием указанного перегретого водяного пара,
причем в качестве теплового источника для перегревания на стадии перегревания используют водяной пар, образовавшийся за счет экзотермической реакции на стадии синтеза.
2. Установка для получения жидкого топлива из углеводородного газа и для выработки энергии, содержащая:
устройство парового риформинга для получения газа риформинга путем реакции риформинга углеводородного газа;
колонну синтеза для получения бензина, диметилового эфира или дизельного топлива из газа риформинга через метанол;
устройство теплообмена для получения насыщенного водяного пара, имеющего температуру не более 180°C, за счет теплообмена газа риформинга до введения указанного газа риформинга в колонну синтеза;
устройство перегревания для перегревания насыщенного водяного пара с использованием теплового источника, имеющего температуру по меньшей мере 200°C, образовавшегося внутри указанной установки, чтобы получить перегретый водяной пар; и
устройство выработки энергии для генерации энергии с использованием указанного перегретого водяного пара,
причем тепловой источник, используемый в устройстве перегревания, представляет собой водяной пар, образовавшийся за счет экзотермической реакции в колонне синтеза.
RU2015109699/04A 2012-09-21 2013-09-04 Способ и установка для получения жидкого топлива и выработки энергии RU2603961C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012208105A JP6057643B2 (ja) 2012-09-21 2012-09-21 液体燃料を製造するとともに発電する方法およびシステム
JP2012-208105 2012-09-21
PCT/JP2013/073810 WO2014045871A1 (ja) 2012-09-21 2013-09-04 液体燃料を製造するとともに発電する方法およびシステム

Publications (2)

Publication Number Publication Date
RU2015109699A RU2015109699A (ru) 2016-10-10
RU2603961C2 true RU2603961C2 (ru) 2016-12-10

Family

ID=50341188

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015109699/04A RU2603961C2 (ru) 2012-09-21 2013-09-04 Способ и установка для получения жидкого топлива и выработки энергии

Country Status (7)

Country Link
US (1) US9611438B2 (ru)
EP (1) EP2905433B1 (ru)
JP (1) JP6057643B2 (ru)
AU (1) AU2013319303B2 (ru)
CA (1) CA2884175C (ru)
RU (1) RU2603961C2 (ru)
WO (1) WO2014045871A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189763B2 (en) 2016-07-01 2019-01-29 Res Usa, Llc Reduction of greenhouse gas emission
WO2018004992A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Conversion of methane to dimethyl ether
US9938217B2 (en) 2016-07-01 2018-04-10 Res Usa, Llc Fluidized bed membrane reactor
CN108825364B (zh) * 2018-06-22 2021-05-04 中船动力有限公司 天然气发电机组余热及二氧化碳利用装置
US11885266B2 (en) * 2021-04-14 2024-01-30 J Ray Mcdermott S.A. Steam cycle methods, systems, and apparatus for efficiently reducing carbon footprints in plant systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258029C2 (ru) * 2000-08-16 2005-08-10 Мицубиси Хэви Индастриз, Лтд. Способ производства синтез-газа
RU2361900C2 (ru) * 2004-03-16 2009-07-20 КОМПАКТДЖТЛ ПиЭлСи Переработка природного газа для образования углеводородов с более длинными цепями

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2846693A1 (de) 1978-10-26 1980-05-08 Metallgesellschaft Ag Verfahren zur erzeugung von benzin aus synthesegas
JPS5714685A (en) 1980-06-30 1982-01-25 Mitsubishi Heavy Ind Ltd Recovering method for heat of reaction
JPH08312310A (ja) * 1995-05-19 1996-11-26 Hitachi Ltd 廃棄物発電システム
JP3366807B2 (ja) * 1996-07-11 2003-01-14 株式会社日立製作所 廃棄物焼却システム及びその運転・制御方法
JPH11257093A (ja) * 1998-03-06 1999-09-21 Hitachi Ltd 発電プラント及びその運用方法
JPH11257094A (ja) * 1998-03-16 1999-09-21 Electric Power Dev Co Ltd 石炭ガス化発電システム
JP2000054852A (ja) 1998-06-05 2000-02-22 Nippon Steel Corp ガスタ―ビン複合サイクル発電システム
MY128179A (en) 2001-10-05 2007-01-31 Shell Int Research System for power generation in a process producing hydrocarbons
GB0200891D0 (en) 2002-01-16 2002-03-06 Ici Plc Hydrocarbons
JP4981439B2 (ja) * 2006-12-28 2012-07-18 三菱重工業株式会社 固体燃料ガス化ガス利用プラント
US20090084035A1 (en) * 2007-09-28 2009-04-02 General Electric Company Polygeneration systems
JP4823297B2 (ja) * 2008-11-26 2011-11-24 三菱重工業株式会社 スチームシステム及びその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258029C2 (ru) * 2000-08-16 2005-08-10 Мицубиси Хэви Индастриз, Лтд. Способ производства синтез-газа
RU2361900C2 (ru) * 2004-03-16 2009-07-20 КОМПАКТДЖТЛ ПиЭлСи Переработка природного газа для образования углеводородов с более длинными цепями

Also Published As

Publication number Publication date
EP2905433A4 (en) 2016-04-20
RU2015109699A (ru) 2016-10-10
EP2905433B1 (en) 2020-03-11
AU2013319303A1 (en) 2015-03-26
US20150232773A1 (en) 2015-08-20
CA2884175C (en) 2017-04-04
US9611438B2 (en) 2017-04-04
JP2014062499A (ja) 2014-04-10
CA2884175A1 (en) 2014-03-27
WO2014045871A1 (ja) 2014-03-27
AU2013319303B2 (en) 2016-09-01
EP2905433A1 (en) 2015-08-12
JP6057643B2 (ja) 2017-01-11

Similar Documents

Publication Publication Date Title
US6265453B1 (en) Hydrocarbon conversion system with enhanced combustor and method
RU2603961C2 (ru) Способ и установка для получения жидкого топлива и выработки энергии
KR101497750B1 (ko) 대체 천연 가스를 용이하게 제조하는 방법 및 장치
CN102482078B (zh) 尤其用于合成氨的化学工艺和设备中的废热回收
CN106414330B (zh) 生产氨及其衍生物、尤其尿素的工艺
CN105518258B (zh) 燃气涡轮装置及其操作方法
CN102099283A (zh) 一种用于氨或甲醇生产的低能量工艺
WO2013006957A1 (en) Advanced combined cycle systems and methods based on methanol indirect combustion
CN105899875B (zh) 用于热电联产的方法和设备
CN105874272B (zh) 用于热电联产的方法和设备
US7493764B2 (en) Electric power generation/hydrogen production combination plant
JP5798821B2 (ja) メタノールからガソリンを製造するともに発電する方法およびシステム
CN103557597B (zh) 一种mtp反应混合气热回收方法
CA2862794C (en) System and method for producing gasoline
US20200276537A1 (en) Waste gas emission control system
JP7474013B1 (ja) 発電設備併設e-fuel生産システムおよび発電設備併設e-fuel生産方法
JP2018534465A (ja) ガス・蒸気・コンバインドサイクル発電所の運転方法、並びに、ガス・蒸気・コンバインドサイクル発電所
JPS63212776A (ja) 地熱発電プラント

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20180621