WO2014045871A1 - 液体燃料を製造するとともに発電する方法およびシステム - Google Patents

液体燃料を製造するとともに発電する方法およびシステム Download PDF

Info

Publication number
WO2014045871A1
WO2014045871A1 PCT/JP2013/073810 JP2013073810W WO2014045871A1 WO 2014045871 A1 WO2014045871 A1 WO 2014045871A1 JP 2013073810 W JP2013073810 W JP 2013073810W WO 2014045871 A1 WO2014045871 A1 WO 2014045871A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
reformed gas
pressure steam
low
gas
Prior art date
Application number
PCT/JP2013/073810
Other languages
English (en)
French (fr)
Inventor
飯嶋 正樹
隆士 吉山
晴章 平山
清木 義夫
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA2884175A priority Critical patent/CA2884175C/en
Priority to US14/428,461 priority patent/US9611438B2/en
Priority to RU2015109699/04A priority patent/RU2603961C2/ru
Priority to AU2013319303A priority patent/AU2013319303B2/en
Priority to EP13838253.6A priority patent/EP2905433B1/en
Publication of WO2014045871A1 publication Critical patent/WO2014045871A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0492Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/42Fischer-Tropsch steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method and system for producing liquid fuel such as gasoline and generating power from hydrocarbon gas such as natural gas.
  • Japanese Examined Patent Publication No. 62-41276 discloses that natural gas is steam reformed to produce synthesis gas, methanol is synthesized from this synthesis gas, and gasoline is further synthesized from this methanol. How to do is described. In the reaction of synthesizing gasoline from methanol, a large amount of water is produced in addition to gasoline, but no research has been conducted on how to use this water.
  • Japanese Patent Application Laid-Open No. 2000-54852 describes coupling a steam reforming system to a combustor of a gas turbine in gas turbine combined cycle power generation.
  • the steam reforming reaction is performed at a very high temperature of about 800 ° C. or higher.
  • this steam reforming reaction in order to suppress the deposition of carbon on the catalyst, it is necessary to supply a larger amount of steam than the hydrocarbon gas that is a raw material.
  • the reformed gas obtained by steam reforming contains excess steam, and therefore, when the reformed gas is cooled, it is condensed and generates a large amount of heat.
  • most of this heat has a low temperature of about 180 ° C. or less, and there is no promising use for reuse.
  • the present invention effectively utilizes low-temperature waste heat generated by a steam reforming reaction to produce liquid fuel from the reformed gas generated by the steam reforming reaction and efficiently generate power. It is an object to provide a method and system for performing the above.
  • the present invention is a method for producing liquid fuel from hydrocarbon gas and generating electric power, wherein the reformed gas is generated from the hydrocarbon gas by a steam reforming reaction.
  • a reforming step a synthesis step of synthesizing gasoline or dimethyl ether or diesel fuel from the reformed gas via methanol, and heat of the reformed gas before the reformed gas is used in the synthesis step.
  • a heat recovery step for obtaining saturated steam of 180 ° C. or less from energy
  • a superheating step for obtaining superheated steam by heating the saturated steam with a heat source of 200 ° C. or higher generated by the present method, and generating power using the superheated steam Power generation step to be performed.
  • the steam generated by the exothermic reaction in the synthesis step can be used as the heat source for overheating.
  • Methanol synthesis reaction, gasoline synthesis reaction, dimethyl ether (DME) synthesis reaction, diesel fuel synthesis reaction such as Fischer-Tropsch method are all exothermic reactions, and these reaction heats alone or in combination generate steam. Heat recovery can be performed.
  • the overheating step a part of the reformed gas obtained in the reforming step can be used as the heat source for overheating.
  • the exhaust gas generated in the reforming step can be used as the heat source for overheating.
  • Another aspect of the present invention is a system for producing liquid fuel from a hydrocarbon gas and generating power, the steam reforming apparatus for generating a reformed gas from the hydrocarbon gas by a steam reforming reaction, and the modified A synthesis tower for synthesizing gasoline or dimethyl ether or diesel fuel from a gas through methanol, and before the reformed gas is used in the synthesis tower, heat exchange with the reformed gas is performed to saturate at 180 ° C. or less.
  • the superheater may use steam generated by an exothermic reaction in the synthesis tower as the heat source.
  • the superheater may use a part of the reformed gas obtained by the steam reformer as the heat source.
  • the superheater may use exhaust gas generated in the steam reformer as the heat source.
  • the superheated steam can be reduced by overheating, so that the wet area when the steam pressure is reduced by the steam turbine can be reduced.
  • the output of power generation using steam can be greatly improved. Therefore, a method and system for efficiently generating power by effectively using low-temperature waste heat of 180 ° C. or less generated by the steam reforming reaction and producing liquid fuel from the reformed gas generated by the steam reforming reaction Can be provided.
  • the gasoline production power generation system of the present embodiment mainly includes a steam reformer 10 that generates a reformed gas by steam reforming a hydrocarbon gas such as natural gas, and a steam.
  • a steam turbine 60 is mainly provided.
  • the steam reformer 10 includes a reaction tube 11 for steam reforming, a combustion section (not shown) disposed around the reaction tube 11, and a waste heat recovery system that recovers waste heat of exhaust gas generated in the combustion section. And a chimney 13 for releasing the exhaust gas after waste heat recovery to the atmosphere.
  • the reaction tube 11 is a device that includes a steam reforming catalyst filled therein and generates hydrogen, carbon monoxide, and carbon dioxide from natural gas mainly composed of methane by the following reaction.
  • a known catalyst such as a nickel catalyst can be used as the steam reforming catalyst.
  • a raw material supply line 14 for supplying natural gas as a raw material and a steam supply line 15 for supplying steam from a boiler (not shown) are connected to the inlet side of the reaction tube 11 of the steam reformer 10.
  • a reformed gas supply line 21 Connected to the outlet side of the reaction tube 11 is a reformed gas supply line 21 that supplies a reformed gas mainly containing hydrogen, carbon monoxide, and carbon dioxide generated by the steam reforming reaction to the methanol synthesis tower 30.
  • the steam reformer 10 is connected to a fuel supply line 16 for supplying fuel to a combustion section (not shown) for heating the reaction tube 11.
  • the reformed gas supply line 21 includes a high-pressure steam heat exchanger 23 for obtaining high-pressure steam from the reformed gas in the line, and a low-pressure steam heat exchanger 25 for obtaining low-pressure steam from the reformed gas in the line.
  • a compressor 22 that compresses the reformed gas after passing through these heat exchangers to a pressure suitable for methanol synthesis is provided in order from the steam reformer 10 side.
  • Each of the heat exchangers 23 and 25 for high pressure steam and low pressure steam generates steam by heat exchange with the reformed gas.
  • the compressor 22 compresses the reformed gas whose temperature has been lowered by these heat exchangers to a predetermined pressure and then supplies the reformed gas to the methanol synthesis tower 30.
  • the high-pressure steam heat exchanger 23 is provided with a high-pressure steam line 24 for supplying the generated high-pressure steam to equipment for a predetermined use.
  • the low pressure steam heat exchanger 25 is provided with a low pressure steam line 26 for supplying the generated low pressure steam to the low pressure steam turbine 60 shown in FIG.
  • the methanol synthesis tower 30 is an apparatus that synthesizes methanol from the reformed gas by the following reaction.
  • CO + 2H 2 ⁇ CH 3 OH (Formula 3)
  • CO 2 + 3H 2 ⁇ CH 3 OH + H 2 O (Formula 4)
  • the methanol synthesis tower 30 includes a methanol synthesis catalyst packed therein.
  • a methanol synthesis catalyst such as a copper catalyst can be used.
  • a methanol supply line 31 for supplying the methanol synthesized in the methanol synthesis tower 30 to the gasoline synthesis tower 40 is connected to the methanol synthesis tower 30.
  • the methanol supply line 31 is a passage through which liquid crude methanol containing water by-produced in Formula 4 flows in addition to the synthesized methanol.
  • the methanol synthesis reaction occurring in the methanol synthesis tower 30 is an exothermic reaction. Therefore, medium pressure steam can be obtained from water using the heat energy generated by the methanol synthesis reaction in the methanol synthesis tower 30 as a heat source.
  • the methanol synthesis tower 30 is provided with an intermediate pressure steam line 32 for supplying the intermediate pressure steam thus obtained to equipment for a predetermined application such as the superheater 50.
  • the gasoline synthesis tower 40 is a device that synthesizes gasoline from methanol by the reaction shown in the following equation. 2CH 3 OH ⁇ CH 3 OCH 3 + H 2 O (Formula 5) 1 / 2nCH 3 OCH 3 ⁇ (CH 2 ) n + 1 / 2nH 2 O (Formula 6)
  • methanol undergoes a dimethyl ether (DME) synthesis reaction as shown in Formula 5 and becomes gasoline through a gasoline synthesis reaction shown in Formula 6.
  • DME dimethyl ether
  • the gasoline synthesis tower 40 two types of catalysts, a DME synthesis catalyst and a gasoline synthesis catalyst, are provided in two stages, and the two reactions can be advanced in stages.
  • a known catalyst such as an aluminosilicate type zeolite catalyst can be used.
  • the gasoline synthesis catalyst a known catalyst such as an aluminosilicate type zeolite catalyst can be used.
  • the gasoline synthesis tower 40 is connected with a gasoline supply line 41 for supplying the gasoline synthesized in the gasoline synthesis tower 40 to a storage facility (not shown).
  • the reaction occurring in the gasoline synthesis tower 40 is an exothermic reaction. Therefore, medium pressure steam can be obtained from water using heat energy generated by the reaction in the gasoline synthesis tower 40 as a heat source.
  • the gasoline synthesis tower 40 is provided with an intermediate pressure steam line 42 for supplying the intermediate pressure steam thus obtained to equipment for a predetermined application such as the superheater 50.
  • the superheater 50 includes a low-pressure steam extraction line 51 that flows a part of the low-pressure steam from the low-pressure steam line 26 to the superheater 50, and low-pressure steam that is heated by the superheater 50 as low-pressure steam turbine.
  • the superheated steam supply line 52 that flows to 60
  • the medium pressure steam extraction line 53 that flows from the medium pressure steam line 32 to a superheater 50 using a part of the medium pressure steam as a superheat source
  • the exhaust steam used in the superheater 50 And an exhaust steam line 54 through which the gas flows.
  • the superheater 50 is a heat exchanger that superheats the low-pressure steam generated in the low-pressure steam heat exchanger 25, and the heat source thereof is medium-pressure steam generated in the methanol synthesis tower 30.
  • the heat source is medium-pressure steam, it may be generated in the methanol synthesis tower 30, generated in the gasoline synthesis tower 40, or both.
  • the low-pressure steam turbine 60 includes a generator 61 that generates electric power by driving the turbine, and a condenser 62 that returns the steam used for driving the turbine to water. In the condenser 62, the condensate is recycled to the steam generation system via the discharge line 63.
  • the exhaust steam line 54 is provided with a valve 55 that can be opened and closed according to the steam pressure in the line.
  • the exhaust steam line 54 is connected to a gas-liquid separator 56.
  • the gas-liquid separator 56 is a device that separates the introduced steam into reusable steam and condensed water.
  • the gas-liquid separator 56 is provided with a steam return line 59 for returning the reusable steam to the low-pressure steam line 26 and a condensed water line 57 for discharging condensed water to the condensate line 63.
  • the low-pressure steam line 26 can be appropriately provided with an auxiliary line 64 for supplying steam generated in a waste heat recovery boiler (not shown) to the line.
  • the condensed water line 57 is provided with a valve 58 that can be opened and closed in accordance with the level of the condensed water in the gas-liquid separator 56.
  • the natural gas and steam from the boiler are supplied to the reaction tube 11 of the steam reformer 10 via the raw material supply line 14 and the steam supply line 15, respectively.
  • the steam is preferably supplied at a molar ratio of 2 or more compared to hydrogen in natural gas.
  • fuel is supplied to the combustion section (not shown) of the steam reformer 10 via the fuel supply line 16.
  • Fuel is combusted with air in the combustion section, and the reaction tube 11 is heated to a temperature of about 800 ° C. to about 900 ° C.
  • the combustion exhaust gas containing carbon dioxide generated in the combustion section has a temperature of about 1000 ° C., and after heat recovery is performed in the waste heat recovery section 12, it is released from the chimney 13 to the atmosphere.
  • the natural gas and steam supplied to the reaction tube 11 are converted into reformed gas by a steam reforming reaction in the reaction tube 11.
  • the reformed gas has a temperature of about 800 to 900 ° C., and is first introduced into the high-pressure steam heat exchanger 23 via the reformed gas supply line 18.
  • boiler water or the like is heated with the reformed gas to generate, for example, high-pressure steam having a temperature of about 200 ° C. or higher and its saturated vapor pressure, and heat is recovered from the reformed gas.
  • the high-pressure steam is sent to equipment for a predetermined application via the high-pressure steam line 24.
  • the reformed gas is introduced into the low pressure steam heat exchanger 25 after reaching a temperature of, for example, about 200 to 300 ° C. by heat recovery in the high pressure steam heat exchanger 23.
  • the reformed gas heats boiler water or the like to generate low pressure steam having a temperature of about 100 to 180 ° C., preferably about 100 to 150 ° C. and its saturated steam pressure. Generate heat and recover heat.
  • the reformed gas having a temperature of about 100 to 180 ° C. by this heat recovery is further cooled by cooling water or an air cooler and introduced into the compressor 22.
  • the reformed gas is brought to a temperature suitable for the methanol synthesis reaction (for example, around 200 ° C.) and then supplied to the methanol synthesis tower 30.
  • methanol is synthesized from the reformed gas and carbon dioxide gas by the reactions of the above formulas 3 and 4. Further, since the methanol synthesis reaction is an exothermic reaction, the methanol synthesis tower 30 can generate intermediate pressure steam having a temperature of about 250 ° C. and its saturated vapor pressure by exothermic energy.
  • the methanol synthesized in the methanol synthesis tower 30 is supplied to the gasoline synthesis tower 40 through the methanol supply line 31 as crude methanol containing water. Further, the intermediate pressure steam is supplied to equipment for a predetermined application via the intermediate pressure steam line 32.
  • gasoline is synthesized from methanol by the reactions of the above formulas 5 and 6. Since the gasoline synthesis reaction is also an exothermic reaction, the gasoline synthesis tower 40 can generate intermediate pressure steam having a temperature of about 250 ° C. and its saturated vapor pressure by the exothermic energy.
  • the gasoline synthesized in the gasoline synthesis tower 40 is supplied to a storage facility (not shown) via a gasoline supply line 41. Further, the intermediate pressure steam is supplied to equipment for a predetermined application via the intermediate pressure steam line 42.
  • a part of the low-pressure steam flowing through the low-pressure steam line 26 is introduced into the superheater 50 via the low-pressure steam extraction line 51 as shown in FIG.
  • a part of the intermediate pressure steam flowing through the intermediate pressure steam line 32 is introduced into the superheater 50 via the intermediate pressure steam extraction line 53, and the low pressure steam is heated.
  • the temperature of the low-pressure steam can be raised by, for example, about 50 to 100 ° C. above the saturated steam temperature.
  • the overheated low pressure steam is supplied to the low pressure steam turbine 60 via the overheated steam supply line 52. In the low-pressure steam turbine 60, the overheated low-pressure steam is expanded, and the turbine is driven by the kinetic energy, and then the generator 61 generates power.
  • the low-pressure steam supplied to the low-pressure steam turbine 60 is overheated as described above, the wetness at the outlet side of the low-pressure steam turbine can be reduced and the steam pressure can be expanded to a low vacuum pressure.
  • the specific enthalpy can be increased, and the output of the low-pressure steam turbine 60 can be greatly improved.
  • the steam used in the low-pressure steam turbine 60 is condensed by the condenser 62 and then recycled to the steam system through the condensate line.
  • the medium pressure steam used in the superheater 50 is supplied to the gas-liquid separator 56 via the exhaust steam line 54.
  • the medium-pressure steam which is used for overheating and whose temperature is lowered, is reduced to the pressure of the low-pressure steam, and gas-liquid separation is performed into reusable steam and condensed water.
  • the condensed water is discharged to the condensate line via the condensed water line 57.
  • Steam can be supplied to the low-pressure steam line 26 via the steam return line 59, heated by the superheater 50, and reused for power generation in the low-pressure steam turbine 60.
  • the superheater 50 instead of the superheater 50, as shown in FIG. 2, a part of the intermediate pressure steam flowing through the line is extracted into the intermediate pressure steam line 32 and mixed with the low pressure steam flowing through the low pressure steam extraction line 51.
  • the low pressure steam can be overheated by providing the steam mixing line 68 for the purpose. According to such a configuration, the temperature of the low-pressure steam can be increased by about 50 to 100 ° C. above the saturated steam temperature.
  • this configuration of the steam mixing line 68 may be used with the superheater 50.
  • each heating means for heat exchange by the superheater 50 and mixing by the steam mixing line 68 can be selected as necessary.
  • the gasoline synthesis tower 40 can replace with the gasoline synthesis tower 40, and can also provide the DME synthesis tower which stops until the DME synthesis reaction of Formula 5, and manufactures DME. Since the DME synthesis reaction is also an exothermic reaction, medium pressure steam can be generated in the DME synthesis tower. Moreover, it replaces with the methanol synthesis tower 30 of FIG. 1, and the gasoline synthesis tower 40, the synthesis tower by a Fischer-Tropsch method is provided, and diesel fuel can also be obtained from reformed gas. Since the Fischer-Tropsch synthesis reaction is also an exothermic reaction, intermediate pressure steam can be generated even in this case.
  • the heat source for overheating the low pressure steam is not limited to the heat of the intermediate pressure steam of the methanol synthesis tower or the gasoline synthesis tower, and for example, the heat of the reformer gas or exhaust gas of the steam reformer can be used.
  • FIG. 3 shows a configuration in the case of using the reformer gas of the steam reformer
  • FIG. 4 shows a configuration in the case of using the exhaust gas of the steam reformer. 3 and 4, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the superheater 70 is a low-pressure steam extraction line 71 that allows a part of the low-pressure steam to flow from the low-pressure steam line 26 to the superheater 70.
  • a superheated steam supply line 72 for flowing the low-pressure steam heated by the superheater 70 to the low-pressure steam turbine 60, and a reformer for flowing a part of the reformed gas from the reformed gas supply line 21 to the superheater 70 as a superheat source.
  • a quality gas extraction line 73 and a reformed gas discharge line 74 through which the reformed gas used in the superheater 70 flows are provided.
  • connection position of the reformed gas extraction line 73 to the reformed gas supply line 21 is provided between the steam reformer 10 and the high pressure steam heat exchanger 23 shown in FIG. 1, the high pressure steam heat exchanger 23 is provided. And the low-pressure steam heat exchanger 25 may be provided.
  • the reformed gas discharge line 74 is connected to the compressor 22 shown in FIG.
  • the reformed gas discharge line 74 is provided with a gas-liquid separator 75 for removing condensed water from the reformed gas used for overheating.
  • a part of the low-pressure steam flowing through the low-pressure steam line 26 is introduced into the superheater 70 via the low-pressure steam extraction line 71.
  • a part of the reformed gas flowing through the reformed gas supply line 21 is introduced into the superheater 70 via the reformed gas extraction line 73 to superheat the low-pressure steam.
  • the temperature of the low-pressure steam can be raised by, for example, about 50 to 150 ° C. above the saturated steam temperature.
  • the overheated low pressure steam is supplied to the low pressure steam turbine 60 via the overheated steam supply line 72.
  • the turbine is driven as described above, and the generator 61 generates electric power therefrom.
  • the output of the low-pressure steam turbine 60 can be greatly improved and the wetness of the steam used in the low-pressure steam turbine 60 on the turbine outlet side can be improved as described above.
  • the reformed gas used in the superheater 70 is introduced into the gas-liquid separator 75 via the reformed gas discharge line 74. And after separating condensed water with the gas-liquid separator 75, it is supplied to the methanol synthesis tower 30 as a raw material of methanol synthesis reaction via the compressor 22 shown in FIG.
  • the superheater 80 when the exhaust gas from the steam reformer is used as a heat source for overheating, the superheater 80 is provided in the waste heat recovery unit 12 of the steam reformer 10.
  • the superheater 80 includes a low-pressure steam extraction line 81 that flows a part of the low-pressure steam from the low-pressure steam line 26 to the superheater 80, and superheated steam that flows the low-pressure steam heated by the superheater 80 to the low-pressure steam turbine 60.
  • a supply line 82 is provided.
  • a part of the low-pressure steam flowing through the low-pressure steam line 26 is introduced into the superheater 80 via the low-pressure steam extraction line 81. Then, the low pressure steam is heated by the exhaust gas flowing through the waste heat recovery unit 12 of the steam reformer 10. By this overheating, the temperature of the low-pressure steam can be raised by, for example, about 50 to 150 ° C. above the saturated steam temperature.
  • the overheated low-pressure steam is supplied to the low-pressure steam turbine 60 via the overheated steam supply line 82. In the low-pressure steam turbine 60, the turbine is driven as described above, and the generator 61 generates electric power therefrom. Even in such a configuration, the output of the low-pressure steam turbine 60 can be greatly improved and the wetness of the steam used in the low-pressure steam turbine 60 can be improved as described above.
  • the low pressure steam to be overheated was set to a temperature of 143 ° C., a pressure of 3 kg / cm 2 G, and a flow rate of 114.3 tons / h.
  • the methanol produced in the methanol synthesis tower is usually removed from the crude methanol by distillation.
  • water is generated simultaneously with gasoline as shown in the above formulas 5 and 6, and therefore, in the configuration shown in FIG. 1, distillation is performed between the methanol synthesis tower and the gasoline synthesis tower.
  • Providing a tower can be omitted.
  • Steam reformer and methanol synthesis tower plants producing 2500 tons / day of methanol require about 60 ⁇ 10 6 kcal of heat for distillation, but if this is omitted, the reformer gas of the steam reformer
  • the heat exchanger can generate 114 kg / h of 3 kg / cm 2 G saturated steam.

Abstract

 スチームリフォーマで、天然ガス等の炭化水素ガスを水蒸気改質反応によって改質ガスを生成し、メタノール合成塔とガソリン合成塔で、改質ガスからメタノールを経由してガソリンを合成して液体燃料を製造するとともに、改質ガスから熱回収した低圧スチームの一部を、過熱器において、メタノール合成塔またはガソリン合成塔で熱回収した中圧スチームの一部で過熱し、未飽和状態としたスチームを低圧スチームタービンに供給する。

Description

液体燃料を製造するとともに発電する方法およびシステム
 本発明は、天然ガス等の炭化水素ガスから、ガソリン等の液体燃料を製造するとともに発電を行う方法およびシステムに関する。
 天然ガスからガソリンを製造する方法として、特公昭62-41276号公報には、天然ガスを水蒸気改質して合成ガスを生成し、この合成ガスからメタノールを合成し、さらにこのメタノールからガソリンを合成する方法が記載されている。メタノールからガソリンを合成する反応では、ガソリンの他、多量の水が生成するが、この水の利用方法については従来、研究されていない。
 一方、特開2000-54852号公報には、ガスタービン複合サイクル発電において、水蒸気改質システムを、ガスタービンの燃焼器に結合することが記載されている。
特公昭62-41276号公報 特開2000-54852号公報
 水蒸気改質反応は約800℃以上と非常に高い温度で行われる。この水蒸気改質反応には、触媒上に炭素が析出するのを抑えるために、原料である炭化水素ガスに比べて多量の水蒸気を供給する必要がある。そのため、水蒸気改質により得た改質ガスには余剰の水蒸気を含むことから、改質ガスを冷却する際に凝縮して多量の熱を発生する。しかしながら、この熱の多くは約180℃以下と温度が低いものであり、再利用の用途として有望なものがない。
 本発明は、上記の問題に鑑み、水蒸気改質反応により発生する低温廃熱を有効に利用することで、水蒸気改質反応により生成した改質ガスから液体燃料を製造するとともに、効率的に発電を行う方法およびシステムを提供することを目的とする。
 上記の目的を達成するために、本発明は、その一態様として、炭化水素ガスから液体燃料を製造するとともに発電を行う方法であって、炭化水素ガスを水蒸気改質反応によって改質ガスを生成する改質ステップと、前記改質ガスから、メタノールを経由してガソリン若しくはジメチルエーテル又はディーゼル燃料を合成する合成ステップと、前記改質ガスを前記合成ステップに用いる前に、前記改質ガスが有する熱エネルギーから180℃以下の飽和蒸気を得る熱回収ステップと、前記飽和蒸気を、本方法によって発生する200℃以上の熱源によって過熱して過熱蒸気を得る過熱ステップと、前記過熱蒸気を用いて発電を行う発電ステップとを含むものである。
 前記過熱ステップでは、前記合成ステップでの発熱反応によって発生させた蒸気を、前記熱源として用いて過熱を行うことができる。メタノール合成反応、ガソリン合成反応、ジメチルエーテル(DME)合成反応、フィッシャートロプシュ法などのディーゼル燃料の合成反応は、いずれも発熱反応であり、これらの反応熱を単独で又は組み合わせて、蒸気を発生させて熱回収をすることができる。
 前記過熱ステップでは、前記改質ステップで得られる改質ガスの一部を、前記熱源として用いて過熱を行うこともできる。また、前記過熱ステップでは、前記改質ステップで発生する排ガスを、前記熱源として用いて過熱を行うこともできる。
 本発明は、別の態様として、炭化水素ガスから液体燃料を製造するとともに発電を行うシステムであって、炭化水素ガスを水蒸気改質反応によって改質ガスを生成する水蒸気改質装置と、前記改質ガスから、メタノールを経由してガソリン若しくはジメチルエーテル又はディーゼル燃料を合成する合成塔と、前記改質ガスを前記合成塔に用いる前に、前記改質ガスと熱交換して、180℃以下の飽和蒸気を得る熱交換器と、前記飽和蒸気を、本システム内で発生する200℃以上の熱源によって過熱して過熱蒸気を得る過熱装置と、前記過熱蒸気を用いて発電を行う発電装置とを備えるものである。
 前記過熱装置は、前記合成塔における発熱反応によって発生させた蒸気を、前記熱源とするものとしてもよい。又は、前記過熱装置は、前記水蒸気改質装置で得られる改質ガスの一部を、前記熱源とするものとしてもよい。又は、前記過熱装置は、前記水蒸気改質装置で発生する排ガスを、前記熱源とするものとしてもよい。
 このように本発明によれば、180℃以下の飽和蒸気であっても、過熱によって過熱蒸気とすることで、蒸気タービンにより蒸気の圧力低下した際の湿り域を少なくできるため、蒸気の比エンタルピーを高くすることができ、蒸気を用いた発電の出力を大幅に改善することができる。よって、水蒸気改質反応により発生する180℃以下という低温廃熱を有効に利用して、効率的に発電を行うとともに、水蒸気改質反応により生成した改質ガスから液体燃料を製造する方法およびシステムを提供することができる。
本発明に係るガソリンを製造するとともに発電するシステムの一実施の形態であって、そのうちの原料からガソリンの製造の流れを示す模式図である。 本発明に係るガソリンを製造するとともに発電するシステムの一実施の形態であって、そのうちの発電を行う蒸気の流れを示す模式図である。 本発明に係るガソリンを製造するとともに発電するシステムの別の実施の形態であって、そのうちの発電を行う蒸気の流れを示す模式図である。 本発明に係るガソリンを製造するとともに発電するシステムのさらに別の実施の形態であって、そのうちの発電を行う蒸気の流れを示す模式図である。
 以下、添付図面を参照して、本発明の一実施の形態について説明する。図1及び図2に示すように、本実施の形態のガソリン製造発電システムは、主に、天然ガス等の炭化水素ガスを水蒸気改質して改質ガスを生成するスチームリフォーマ10と、スチームリフォーマで生成した改質ガスからメタノールを合成するメタノール合成塔30と、メタノール合成塔で合成したメタノールからガソリンを合成するガソリン合成塔40と、スチームリフォーマとメタノール合成塔の間に位置し、改質ガスから低圧スチームを得る低圧スチーム用熱交換器25と、この熱交換器で得た低圧スチームを過熱するための過熱器50と、過熱器で過熱されたスチームを用いて発電を行う低圧スチームタービン60とを主に備える。
 スチームリフォーマ10は、水蒸気改質用の反応管11と、この反応管11の周囲に配置された燃焼部(図示省略)と、この燃焼部で発生した排ガスの廃熱を回収する廃熱回収部12と、廃熱回収後の排ガスを大気へ開放する煙突13とを備える。反応管11は、その内部に充填された水蒸気改質用触媒を備え、以下に示す反応によってメタンを主成分とする天然ガスから水素、一酸化炭素および二酸化炭素を生成する装置である。水蒸気改質用触媒としては、例えば、ニッケル系触媒などの公知の触媒を用いることができる。
 CH+HO→3H+CO・・・(式1)
 CO+HO→H+CO・・・(式2)
 スチームリフォーマ10の反応管11の入口側には、原料である天然ガスが供給される原料供給ライン14と、ボイラ(図示省略)等からスチームが供給されるスチーム供給ライン15を接続する。反応管11の出口側には、水蒸気改質反応により生成した水素、一酸化炭素および二酸化炭素を主成分として含む改質ガスをメタノール合成塔30に供給する改質ガス供給ライン21を接続する。また、スチームリフォーマ10には、反応管11を加熱するための燃焼部(図示省略)に燃料を供給するための燃料供給ライン16を接続する。
 改質ガス供給ライン21には、ライン内の改質ガスから高圧スチームを得る高圧スチーム用熱交換器23と、さらにこのライン内の改質ガスから低圧スチームを得る低圧スチーム用熱交換器25と、これら熱交換器を経た後の改質ガスをメタノール合成に適した圧力まで圧縮するコンプレッサ22とを、スチームリフォーマ10側から順に設ける。これら高圧スチーム用および低圧スチーム用の各熱交換器23、25は、改質ガスとの熱交換によって水蒸気を発生させるものである。コンプレッサ22は、これら熱交換器によって温度が低下した改質ガスを所定の圧力まで圧縮してからメタノール合成塔30へ供給するものである。
 高圧スチーム用熱交換器23には、発生した高圧スチームを所定の用途の設備に供給する高圧スチームライン24を設ける。低圧スチーム用熱交換器25には、発生した低圧スチームを、図2に示す低圧スチームタービン60へ供給する低圧スチームライン26を設ける。
 メタノール合成塔30は、以下に示す反応により改質ガスからメタノールを合成する装置である。
 CO+2H→CHOH・・・(式3)
 CO+3H→CHOH+HO・・・(式4)
 メタノール合成塔30は、その内部に充填されたメタノール合成触媒を備える。メタノール合成触媒としては銅系触媒などの公知の触媒を用いることができる。メタノール合成塔30には、メタノール合成塔30で合成したメタノールをガソリン合成塔40に供給するメタノール供給ライン31を接続する。なお、このメタノール供給ライン31は、合成したメタノールの他、式4で副生する水を含む液状の粗メタノールが流れるものである。
 また、メタノール合成塔30で起こるメタノール合成反応は、発熱反応である。よって、メタノール合成塔30内のメタノール合成反応によって生じる熱エネルギーを熱源として、水から中圧スチームを得ることができる。メタノール合成塔30には、このようにして得た中圧スチームを、過熱器50等の所定の用途の設備に供給する中圧スチームライン32を設ける。
 ガソリン合成塔40は、以下の式に示す反応によってメタノールからガソリンを合成する装置である。
 2CHOH→CHOCH+HO・・・(式5)
 1/2nCHOCH→(CH)n+1/2nHO・・・(式6)
 このようにメタノールは、式5で示すようにジメチルエーテル(DME)合成反応を経て、式6に示すガソリン合成反応によりガソリンとなる。ガソリン合成塔40内には、DME合成用触媒とガソリン合成用触媒との2種類の触媒を2段階に設け、2つの反応を段階的に進めることができる。DME合成用触媒としては、例えば、アルミノシリケート型ゼオライト系触媒などの公知の触媒を用いることができる。また、ガソリン合成用触媒としても、アルミノシリケート型ゼオライト系触媒などの公知の触媒を用いることができる。
 ガソリン合成塔40には、ガソリン合成塔40で合成したガソリンを貯蔵設備など(図示省略)に供給するガソリン供給ライン41を接続する。また、ガソリン合成塔40で起こる上記反応は、発熱反応である。よって、ガソリン合成塔40内の反応によって生じる熱エネルギーを熱源として、水から中圧スチームを得ることができる。ガソリン合成塔40には、このようにして得た中圧スチームを、過熱器50等の所定の用途の設備に供給する中圧スチームライン42を設ける。
 図2に示すように、過熱器50には、低圧スチームライン26から低圧スチームの一部を過熱器50へと流す低圧スチーム抽出ライン51と、過熱器50で過熱された低圧スチームを低圧スチームタービン60へと流す過熱スチーム供給ライン52と、中圧スチームライン32から中圧スチームの一部を過熱源として過熱器50へと流す中圧スチーム抽出ライン53と、過熱器50で使用された排スチームが流れる排スチームライン54とを設ける。すなわち、過熱器50は、低圧スチーム用熱交換器25で発生した低圧スチームを過熱する熱交換器であり、その熱源は、メタノール合成塔30で発生した中圧スチームである。なお、熱源は中圧スチームであれば、メタノール合成塔30で発生したものでも、ガソリン合成塔40で発生したものでも、その両方でもよい。
 低圧スチームタービン60は、タービンの駆動によって発電を行う発電機61と、タービンの駆動に用いられたスチームを水に戻す復水器62とを備える。復水器62には、復水を排出ライン63を経て、蒸気発生系へとリサイクルされる。
 排スチームライン54には、ライン内のスチーム圧に応じて開閉が調節可能なバルブ55が設けられている。そして、排スチームライン54は気液分離器56に接続する。気液分離器56は、導入されたスチームを、再利用可能なスチームと凝縮水とに気液分離する装置である。気液分離器56には、再利用可能なスチームを低圧スチームライン26に戻すためのスチーム戻りライン59と、凝縮水を復水ライン63へと排出する凝縮水ライン57とを設ける。低圧スチームライン26には、廃熱回収ボイラ(図示省略)で発生したスチームを当該ラインへ供給する補助ライン64を適宜設けることができる。凝縮水ライン57には、気液分離器56内の凝縮水の液面の高さに応じて開閉が調節可能なバルブ58を設ける。
 以上の構成によれば、先ず、スチームリフォーマ10の反応管11に、天然ガスとボイラ(図示省略)からスチームとを、原料供給ライン14及びスチーム供給ライン15を介してそれぞれ供給する。スチームは、反応管内の触媒上に炭素の析出を抑えるため、天然ガス中の水素と比べて、モル比で2以上の割合で供給することが好ましい。
 また、スチームリフォーマ10の燃焼部(図示省略)には、燃料供給ライン16を介して燃料を供給する。燃焼部で燃料が空気とともに燃焼され、反応管11を約800℃~約900℃の温度に加熱する。燃焼部で発生した二酸化炭素を含む燃焼排ガスは、約1000℃の温度を有し、廃熱回収部12において熱回収が行われた後、煙突13から大気へと放出される。
 一方、反応管11に供給された天然ガス及びスチームは、反応管11内で水蒸気改質反応によって改質ガスに転換される。改質ガスは約800~900℃の温度を有しており、改質ガス供給ライン18を介して、先ず、高圧スチーム用熱交換器23に導入される。高圧スチーム用熱交換器23では、改質ガスでボイラ水などを加熱して、例えば約200℃以上の温度およびその飽和蒸気圧力を有する高圧スチームを発生させ、改質ガスから熱回収を行う。高圧スチームは、高圧スチームライン24を介して所定の用途の設備へと送られる。
 改質ガスは、高圧スチーム用熱交換器23での熱回収によって、例えば約200~300℃の温度となった後、低圧スチーム用熱交換器25に導入される。低圧スチーム用熱交換器25では、改質ガスは、ボイラ水などを加熱して、例えば約100~180℃の温度、好ましくは約100~150℃の温度およびその飽和蒸気圧力を有する低圧スチームを発生させ、熱回収を行う。この熱回収によって約100~180℃の温度となった改質ガスは、冷却水やエアークーラーによりさらに冷却され、コンプレッサ22に導入される。コンプレッサ22では、改質ガスをメタノール合成反応に適した温度(例えば200℃前後)にした後、メタノール合成塔30に供給する。
 メタノール合成塔30では、上記の式3および式4の反応により、改質ガスおよび二酸化炭素ガスからメタノールが合成される。また、メタノール合成反応は発熱反応であることから、メタノール合成塔30では発熱エネルギーによって、約250℃の温度およびその飽和蒸気圧力を有する中圧スチームを発生させることができる。メタノール合成塔30で合成したメタノールは、水を含有する粗メタノールとして、メタノール供給ライン31を介してガソリン合成塔40に供給する。また、中圧スチームは、中圧スチームライン32を介して、所定の用途の設備に供給する。
 ガソリン合成塔40では、上記の式5および式6の反応により、メタノールからガソリンが合成される。ガソリン合成反応も発熱反応であることから、ガソリン合成塔40では発熱エネルギーによって、約250℃の温度およびその飽和蒸気圧力を有する中圧スチームを発生させることができる。ガソリン合成塔40で合成したガソリンは、ガソリン供給ライン41を介して貯蔵設備(図示省略)に供給する。また、中圧スチームは、中圧スチームライン42を介して、所定の用途の設備に供給する。
 次に、低圧スチームライン26を流れる低圧スチームは、図2に示すように、低圧スチーム抽出ライン51を介して、その一部を過熱器50に導入する。そして、中圧スチームライン32を流れる中圧スチームの一部を、中圧スチーム抽出ライン53を介して過熱器50に導入し、低圧スチームを過熱する。この過熱によって、低圧スチームの温度を、飽和蒸気温度よりも例えば約50~100℃上昇させることができる。このように過熱した低圧スチームは、過熱スチーム供給ライン52を介して、低圧スチームタービン60に供給する。低圧スチームタービン60では、過熱した低圧スチームを膨張させて、その運動エネルギーでタービンを駆動し、それより発電機61で発電を行う。
 ここで、低圧スチームタービン60に供給される低圧スチームは、上記のように過熱されていることから、低圧スチームタービン出口側の湿り度が少なくでき、低い真空度の蒸気圧力まで膨張されることができ、比エンタルピーが高くでき、低圧スチームタービン60の出力を大幅に改善することができる。低圧スチームタービン60で使用されたスチームは、復水器62で復水した後、復水ラインを介して蒸気系へとリサイクルされる。
 一方、過熱器50で使用された中圧スチームは、排スチームライン54を介して気液分離器56に供給される。気液分離器56では、過熱に使用され、温度が低下した中圧スチームを低圧スチームの圧力まで低下させて、再利用可能なスチームと凝縮水とに気液分離する。凝縮水は、凝縮水ライン57を介して復水ラインへ排出する。スチームは、スチーム戻りライン59を介して低圧スチームライン26へ供給し、過熱器50で過熱して低圧スチームタービン60での発電に再利用することができる。
 また、過熱器50に替えて、図2に示すように、中圧スチームライン32に、ライン中を流れる中圧スチームの一部を抽出して、低圧スチーム抽出ライン51を流れる低圧スチームに混合するためのスチーム混合ライン68を設けることでも、低圧スチームを過熱することができる。このような構成によれば、低圧スチームの温度を、飽和蒸気温度よりも約50~100℃上昇させることができる。もちろん、このスチーム混合ライン68の構成は、過熱器50とともに使用してもよい。スチーム混合ライン68に開閉バルブ69を設けることで、必要に応じ、過熱器50による熱交換とスチーム混合ライン68による混合の各過熱手段を選択することができる。
 なお、図1では、ガソリン合成塔40を示したが、ガソリン合成塔40に替えて、式5のDME合成反応までで留めてDMEを製造するDME合成塔を設けることもできる。DME合成反応も発熱反応であるので、DME合成塔で中圧スチームを発生させることができる。また、図1のメタノール合成塔30およびガソリン合成塔40に替えて、フィッシャートロプシュ法による合成塔を設け、改質ガスからディーゼル燃料を得ることもできる。フィッシャートロプシュ合成反応も発熱反応であるので、この場合でも中圧スチームを発生させることができる。
 また、本発明において、低圧スチームを過熱する熱源は、メタノール合成塔やガソリン合成塔の中圧スチームの熱に限られず、例えば、スチームリフォーマの改質ガスや排ガスの熱を利用することもできる。図2に替える構成として、スチームリフォーマの改質ガスを利用する場合の構成を図3に、スチームリフォーマの排ガスを利用する場合の構成を図4に示す。なお、図3および図4では、図2と同様の構成については同一の符号を付し、その説明を省略する。
 図3に示すように、スチームリフォーマの改質ガスを過熱の熱源として利用する場合、過熱器70は、低圧スチームライン26から低圧スチームの一部を過熱器70へと流す低圧スチーム抽出ライン71と、過熱器70で過熱された低圧スチームを低圧スチームタービン60へと流す過熱スチーム供給ライン72と、改質ガス供給ライン21から改質ガスの一部を過熱源として過熱器70へと流す改質ガス抽出ライン73と、過熱器70で使用された改質ガスが流れる改質ガス排出ライン74とを設ける。改質ガス供給ライン21への改質ガス抽出ライン73の接続位置は、図1に示すスチームリフォーマ10と高圧スチーム用熱交換器23との間に設けても、高圧スチーム用熱交換器23と低圧スチーム用熱交換器25との間に設けてもよい。改質ガス排出ライン74は、図1に示すコンプレッサ22へ接続する。また、改質ガス排出ライン74には、過熱に使用された改質ガスから凝縮水を除去するための気液分離器75を設ける。
 このような構成によれば、低圧スチームライン26を流れる低圧スチームは、低圧スチーム抽出ライン71を介して、その一部を過熱器70に導入する。そして、改質ガス供給ライン21を流れる改質ガスの一部を、改質ガス抽出ライン73を介して過熱器70に導入し、低圧スチームを過熱する。この過熱によって、低圧スチームの温度を、飽和蒸気温度よりも例えば約50~150℃上昇させることができる。このように過熱した低圧スチームは、過熱スチーム供給ライン72を介して、低圧スチームタービン60に供給する。低圧スチームタービン60では、上述したようにタービンを駆動し、それより発電機61で発電を行う。このような構成でも、上記と同様に、低圧スチームタービン60の出力を大幅に改善することができるとともに、低圧スチームタービン60で使用されたスチームのタービン出口側の湿り度を改善することができる。
 一方、過熱器70で使用された改質ガスは、改質ガス排出ライン74を介して気液分離器75に導入される。そして、気液分離器75で凝縮水を分離した後、図1に示すコンプレッサ22を介してメタノール合成塔30へメタノール合成反応の原料として供給される。
 図4に示すように、スチームリフォーマの排ガスを過熱の熱源として利用する場合、過熱器80は、スチームリフォーマ10の廃熱回収部12に設ける。また、過熱器80は、低圧スチームライン26から低圧スチームの一部を過熱器80へと流す低圧スチーム抽出ライン81と、過熱器80で過熱された低圧スチームを低圧スチームタービン60へと流す過熱スチーム供給ライン82とを設ける。
 このような構成によれば、低圧スチームライン26を流れる低圧スチームは、低圧スチーム抽出ライン81を介して、その一部を過熱器80に導入する。そして、スチームリフォーマ10の廃熱回収部12を流れる排ガスによって低圧スチームを過熱する。この過熱によって、低圧スチームの温度を、飽和蒸気温度よりも例えば約50~150℃上昇させることができる。このように過熱した低圧スチームは、過熱スチーム供給ライン82を介して、低圧スチームタービン60に供給する。低圧スチームタービン60では、上述したようにタービンを駆動し、それより発電機61で発電を行う。このような構成でも、上記と同様に、低圧スチームタービン60の出力を大幅に改善することができるとともに、低圧スチームタービン60で使用されたスチームの湿り度を改善することができる。
 図2~図4に示す各実施の形態について、過熱により得られるスチームタービン供給蒸気のシミュレーションを行った。その結果を表1に示す。過熱対象となる低圧スチームは、いずれの実施形態でも、温度143℃、圧力3kg/cmG、流量114.3トン/hとした。
Figure JPOXMLDOC01-appb-T000001
 図2や図4によれば、過熱により温度210℃、圧力3kg/cmGのスチームが得られ、これをタービン発電に用いる場合、685kcal/kgから590kcal/kgを引いた95kcal/kgが熱量となるから、タービン出力は12620kwとなる。一方、圧力3kg/cmGの飽和蒸気をタービン発電に用いる場合、655kcal/kgから608kcal/kgを引いた47kcal/kgが熱量となるから、タービン出力は6240kwとなる。よって、図2や図4のように過熱することで、タービン出力を約2倍にすることができる。
 また、メタノール合成塔で生成したメタノールは、通常、蒸留により粗メタノールから水分を除くことが行われる。メタノールからガソリンを合成する反応では、上記の式5および式6に示すように、ガソリンと同時に水が生成することから、図1に示す構成では、メタノール合成塔とガソリン合成塔との間に蒸留塔を設けることを省略することができる。2500トン/日のメタノールを製造するスチームリフォーマおよびメタノール合成塔のプラントでは、蒸留に約60×10kcalの熱量を必要とするが、これを省略した場合、スチームリフォーマの改質ガスの熱交換器によって、3kg/cmGの飽和蒸気を114トン/hを発生することができる。
10 スチームリフォーマ
11 反応管
12 廃熱回収部
13 煙突
14 原料供給ライン
15 スチーム供給ライン
16 燃料供給ライン
21 改質ガス供給ライン
22 コンプレッサ
23 高圧スチーム用熱交換器
24 高圧スチームライン
25 低圧スチーム用熱交換器
26 低圧スチームライン
30 メタノール合成塔
31 メタノール供給ライン
32 中圧スチームライン
40 ガソリン合成塔
41 ガソリン供給ライン
42 中圧スチームライン
50、70、80 過熱器
51、71、81 低圧スチーム抽出ライン
52、72、82 過熱スチーム供給ライン
53 中圧スチーム抽出ライン
54 排スチームライン
55 バルブ
56 気液分離器
57 凝縮水ライン
58 バルブ
59 スチーム戻りライン
60 低圧スチームタービン
61 発電機
62 復水器
63 復水ライン
73 改質ガス抽出ライン
74 改質ガス排出ライン
75 気液分離器

Claims (8)

  1.  炭化水素ガスから液体燃料を製造するとともに発電を行う方法であって、
     炭化水素ガスを水蒸気改質反応によって改質ガスを生成する改質ステップと、
     前記改質ガスから、メタノールを経由してガソリン若しくはジメチルエーテル又はディーゼル燃料を合成する合成ステップと、
     前記改質ガスを前記合成ステップに用いる前に、前記改質ガスが有する熱エネルギーから180℃以下の飽和蒸気を得る熱回収ステップと、
     前記飽和蒸気を、本方法によって発生する200℃以上の熱源によって過熱して過熱蒸気を得る過熱ステップと、
     前記過熱蒸気を用いて発電を行う発電ステップと
     を含む方法。
  2.  前記過熱ステップにおいて、前記合成ステップでの発熱反応によって発生させた蒸気を、前記熱源として用いて過熱を行う請求項1に記載の方法。
  3.  前記過熱ステップにおいて、前記改質ステップで得られる改質ガスの一部を、前記熱源として用いて過熱を行う請求項1に記載の方法。
  4.  前記過熱ステップにおいて、前記改質ステップで発生する排ガスを、前記熱源として用いて過熱を行う請求項1に記載の方法。
  5.  炭化水素ガスから液体燃料を製造するとともに発電を行うシステムであって、
     炭化水素ガスを水蒸気改質反応によって改質ガスを生成する水蒸気改質装置と、
     前記改質ガスから、メタノールを経由してガソリン若しくはジメチルエーテル又はディーゼル燃料を合成する合成塔と、
     前記改質ガスを前記合成塔に用いる前に、前記改質ガスと熱交換して、180℃以下の飽和蒸気を得る熱交換器と、
     前記飽和蒸気を、本システム内で発生する200℃以上の熱源によって過熱して過熱蒸気を得る過熱装置と、
     前記過熱蒸気を用いて発電を行う発電装置と
     を備えるシステム。
  6.  前記過熱装置が、前記合成塔における発熱反応によって発生させた蒸気を、前記熱源とするものである請求項5に記載のシステム。
  7.  前記過熱装置が、前記水蒸気改質装置で得られる改質ガスの一部を、前記熱源とするものである請求項5に記載のシステム。
  8.  前記過熱装置が、前記水蒸気改質装置で発生する排ガスを、前記熱源とするものである請求項5に記載のシステム。
     
     
     
PCT/JP2013/073810 2012-09-21 2013-09-04 液体燃料を製造するとともに発電する方法およびシステム WO2014045871A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2884175A CA2884175C (en) 2012-09-21 2013-09-04 Method and system for producing liquid fuel and generating power
US14/428,461 US9611438B2 (en) 2012-09-21 2013-09-04 Method and system for producing liquid fuel and generating power
RU2015109699/04A RU2603961C2 (ru) 2012-09-21 2013-09-04 Способ и установка для получения жидкого топлива и выработки энергии
AU2013319303A AU2013319303B2 (en) 2012-09-21 2013-09-04 Method and system for producing liquid fuel and generating electric power
EP13838253.6A EP2905433B1 (en) 2012-09-21 2013-09-04 Method and system for producing liquid fuel and generating electric power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208105 2012-09-21
JP2012208105A JP6057643B2 (ja) 2012-09-21 2012-09-21 液体燃料を製造するとともに発電する方法およびシステム

Publications (1)

Publication Number Publication Date
WO2014045871A1 true WO2014045871A1 (ja) 2014-03-27

Family

ID=50341188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073810 WO2014045871A1 (ja) 2012-09-21 2013-09-04 液体燃料を製造するとともに発電する方法およびシステム

Country Status (7)

Country Link
US (1) US9611438B2 (ja)
EP (1) EP2905433B1 (ja)
JP (1) JP6057643B2 (ja)
AU (1) AU2013319303B2 (ja)
CA (1) CA2884175C (ja)
RU (1) RU2603961C2 (ja)
WO (1) WO2014045871A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189763B2 (en) 2016-07-01 2019-01-29 Res Usa, Llc Reduction of greenhouse gas emission
US9981896B2 (en) 2016-07-01 2018-05-29 Res Usa, Llc Conversion of methane to dimethyl ether
WO2018004994A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Fluidized bed membrane reactor
CN108825364B (zh) * 2018-06-22 2021-05-04 中船动力有限公司 天然气发电机组余热及二氧化碳利用装置
CA3215544A1 (en) * 2021-04-14 2022-10-20 Venkata Krishnan RAMANUJAM Steam cycle methods, systems, and appparatus for efficiently reducing carbon footprints in plant systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241276B2 (ja) 1978-10-26 1987-09-02 Metallgesellschaft Ag
JPH08312310A (ja) * 1995-05-19 1996-11-26 Hitachi Ltd 廃棄物発電システム
JPH1026330A (ja) * 1996-07-11 1998-01-27 Hitachi Ltd 廃棄物焼却システム及びその運転・制御方法
JPH11257093A (ja) * 1998-03-06 1999-09-21 Hitachi Ltd 発電プラント及びその運用方法
JPH11257094A (ja) * 1998-03-16 1999-09-21 Electric Power Dev Co Ltd 石炭ガス化発電システム
JP2000054852A (ja) 1998-06-05 2000-02-22 Nippon Steel Corp ガスタ―ビン複合サイクル発電システム
JP2008163873A (ja) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd 固体燃料ガス化ガス利用プラント
JP2009085210A (ja) * 2007-09-28 2009-04-23 General Electric Co <Ge> ポリジェネレーションシステム
JP2010127155A (ja) * 2008-11-26 2010-06-10 Mitsubishi Heavy Ind Ltd スチームシステム及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714685A (en) 1980-06-30 1982-01-25 Mitsubishi Heavy Ind Ltd Recovering method for heat of reaction
JP4533515B2 (ja) 2000-08-16 2010-09-01 三菱重工業株式会社 合成ガスの製造方法
MY128179A (en) 2001-10-05 2007-01-31 Shell Int Research System for power generation in a process producing hydrocarbons
GB0200891D0 (en) 2002-01-16 2002-03-06 Ici Plc Hydrocarbons
GB0405786D0 (en) 2004-03-16 2004-04-21 Accentus Plc Processing natural gas to form longer-chain hydrocarbons

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241276B2 (ja) 1978-10-26 1987-09-02 Metallgesellschaft Ag
JPH08312310A (ja) * 1995-05-19 1996-11-26 Hitachi Ltd 廃棄物発電システム
JPH1026330A (ja) * 1996-07-11 1998-01-27 Hitachi Ltd 廃棄物焼却システム及びその運転・制御方法
JPH11257093A (ja) * 1998-03-06 1999-09-21 Hitachi Ltd 発電プラント及びその運用方法
JPH11257094A (ja) * 1998-03-16 1999-09-21 Electric Power Dev Co Ltd 石炭ガス化発電システム
JP2000054852A (ja) 1998-06-05 2000-02-22 Nippon Steel Corp ガスタ―ビン複合サイクル発電システム
JP2008163873A (ja) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd 固体燃料ガス化ガス利用プラント
JP2009085210A (ja) * 2007-09-28 2009-04-23 General Electric Co <Ge> ポリジェネレーションシステム
JP2010127155A (ja) * 2008-11-26 2010-06-10 Mitsubishi Heavy Ind Ltd スチームシステム及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905433A4

Also Published As

Publication number Publication date
CA2884175C (en) 2017-04-04
AU2013319303B2 (en) 2016-09-01
AU2013319303A1 (en) 2015-03-26
JP6057643B2 (ja) 2017-01-11
EP2905433B1 (en) 2020-03-11
RU2603961C2 (ru) 2016-12-10
EP2905433A1 (en) 2015-08-12
CA2884175A1 (en) 2014-03-27
RU2015109699A (ru) 2016-10-10
EP2905433A4 (en) 2016-04-20
US9611438B2 (en) 2017-04-04
JP2014062499A (ja) 2014-04-10
US20150232773A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
US6989135B2 (en) Hydrocarbon conversion system with enhanced combustor and method
RU2567282C2 (ru) Рекуперация тепла в химическом процессе и установке, в частности, синтеза аммиака
JP6057643B2 (ja) 液体燃料を製造するとともに発電する方法およびシステム
EP2432730A1 (en) Process for co-producing synthesis gas and power
AU2012283712B2 (en) Advanced combined cycle systems and methods based on methanol indirect combustion
JPH05506290A (ja) 機械エネルギーを作るための方法と装置
JP5863421B2 (ja) ガソリン又はジメチルエーテルを製造するシステム又は方法
RU2648914C2 (ru) Способ получения водорода и генерирования энергии
JP5995447B2 (ja) ガソリン製造装置
US8424308B2 (en) Co-production of synthesis gas and power
JP6116801B2 (ja) ガソリンを製造するシステム又は方法
JP5798821B2 (ja) メタノールからガソリンを製造するともに発電する方法およびシステム
CA2689192A1 (en) Systems for reducing cooling water and power consumption in gasification systems and methods of assembling such systems
JP7474013B1 (ja) 発電設備併設e-fuel生産システムおよび発電設備併設e-fuel生産方法
US20230167748A1 (en) Method and apparatus for co-generating electricity in a process plant integrated with a thermal power generator using feedwater
JP2005336076A (ja) 液体燃料製造プラント
JP2006022687A (ja) 合成ガス製造兼発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2884175

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013838253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14428461

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015109699

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013319303

Country of ref document: AU

Date of ref document: 20130904

Kind code of ref document: A