JPH06191801A - 水素製造方法 - Google Patents

水素製造方法

Info

Publication number
JPH06191801A
JPH06191801A JP35649892A JP35649892A JPH06191801A JP H06191801 A JPH06191801 A JP H06191801A JP 35649892 A JP35649892 A JP 35649892A JP 35649892 A JP35649892 A JP 35649892A JP H06191801 A JPH06191801 A JP H06191801A
Authority
JP
Japan
Prior art keywords
gas
raw material
hydrogen
purge
purge gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35649892A
Other languages
English (en)
Inventor
Katsuhide Kita
克秀 喜多
Hideaki Yanaru
英明 矢鳴
Satoshi Hirose
聡 廣瀬
Yuzuru Yanagisawa
譲 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP35649892A priority Critical patent/JPH06191801A/ja
Publication of JPH06191801A publication Critical patent/JPH06191801A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

(57)【要約】 【構成】 炭化水素原料を改質器にて水蒸気改質して得
られた水素を含む改質ガスを、圧力スイング吸着装置に
て精製し、高純度の製品水素ガスを製造する方法におい
て、圧力スイング吸着装置の再生操作にて排出される主
に炭酸ガス、メタン及び水素からなるパージガスを、そ
の再生のためのパージ時間を区切ることで組成の異なる
複数のパージガスを製造する。この複数のパージガスの
うち比較的水素及びメタン濃度が高く、逆に比較的炭酸
ガス濃度の低いパージガスを、前述の改質器への炭化水
素原料の供給ラインに循環する。 【効果】 改質器での高温改質の必要がなく比較的緩や
かな条件の改質器設計が可能となる。さらに、パージガ
ス中の水素の一部を循環することが可能となり、総合的
な水素回収率が増大し、原料消費量の低減、改質器の負
荷の低減による改質器コストの低下及び改質器負荷低下
による燃料消費量の低減が達成される。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は炭化水素を原料として、
スチームと共に水蒸気改質して得られた改質ガス、ある
いはさらにCO転化反応器を経由して得られた水素リッ
チガスを、圧力スイング吸着装置(以下PSA装置と称
する)にて精製し、高純度の製品水素を製造する方法に
関する。
【0002】
【従来の技術】従来、炭化水素から水素を製造する方法
の1つとして、炭化水素原料を水蒸気改質した後改質ガ
ス中の一酸化炭素の大部分をCO転化反応器にて水蒸気
と反応させて炭酸ガスと水素とし、次に改質ガス中の炭
酸ガスの大部分を湿式脱炭酸装置にて除去し、最後に水
素リッチガスに残留した酸化炭素分をメタン転化反応器
にて水素の一部と反応させてメタンとして製品水素を得
るメタネーター法が採用されている。また、近年ではP
SA装置を使用して、炭化水素原料を水蒸気改質して得
られた改質ガス、あるいは改質ガスを少なくとも1基の
CO転化反応器によりガス中の一酸化炭素の多くを水蒸
気と反応させて炭酸ガスと水素として得られた水素リッ
チガスを直接PSA装置に供給し、装置内の吸着塔に充
填された吸着剤における水素と一酸化炭素、炭酸ガス、
水、窒素、メタン等から成るその他の成分との吸着速度
の違いを利用して、高純度の水素を製造する方法が提案
され、このPSA法が多くの水素製造装置に採用されて
いる。
【0003】PSA法とは、混合ガスから特定ガスを選
択分離する方法の1つであり、高い圧力で被吸着物を吸
着剤に吸着させ、次いで吸着系の圧力を下げることによ
って吸着剤に吸着した被吸着物を脱離し、吸着物及び被
吸着物を分離する方法であって、工業的には吸着剤を充
填した塔を複数個設け、それぞれの吸着塔において、昇
圧→吸着→脱着→再生の一連の操作を繰り返すことによ
り、装置全体としては連続的に分離回収を行うことがで
きるようにしたものである。このPSA法においては、
PSA装置から出る高純度の水素ガスの他に、水素と分
離された成分が吸着剤の再生操作にてパージガスとして
排出される。このパージガスは、一酸化炭素、炭酸ガ
ス、メタン及び精製ロスとしての水素からなり、通常、
上流の炭化水素原料を水蒸気改質するのに使用される外
部燃焼式の改質器(以下改質炉と称す)にて必要な燃料
の一部として使用される。
【0004】このPSA法による水素製造方法を図2に
従って説明する。原料の炭化水素は後述する水素及びメ
タンを比較的多く含んだパージガスと共に脱硫に必要な
温度まで予熱されて脱硫工程に入り、水添反応塔1さら
に脱硫塔2を通過することで、炭化水素に含まれる硫黄
化合物が除去される。次に改質用水蒸気と混合され、さ
らに加熱された後外部燃焼式の改質器3に導入される。
原料炭化水素と水蒸気の混合ガスは、触媒を充填した改
質管の中で700〜900℃の範囲の温度条件でいわゆ
る水蒸気改質反応により水素、炭酸ガス、一酸化炭素及
びメタンからなる改質ガスになる。改質ガスにはドライ
ベースで15mol%前後の一酸化炭素が含まれている
ため、360℃前後まで熱回収後CO転化器4にて一酸
化炭素と水蒸気の反応により水素と炭酸ガスになるいわ
ゆるシフト反応にて改質ガス中の一酸化炭素の大部分が
水素と炭酸ガスとなる。こうして得られた水素リッチガ
スは水蒸気発生による熱回収及び冷却器にて常温まで冷
却され、凝縮水を分離器5にて分離した後、PSA装置
6にて精製される。PSA装置は、4塔ないしはそれ以
上の複数の塔からなり、1塔ないし2塔が吸着操作に供
され、他の塔は再生操作が行われている。各吸着塔には
吸着剤が充填されており、供給ガスが塔内を流れる間に
ガス中の炭酸ガス、メタン及び一酸化炭素等の不純物ガ
スが吸着剤に吸着され、通過ガスは純度99.99mo
l%以上の製品水素ガスとなる。PSA装置において
は、あるサイクル時間の吸着操作が終了した塔は次に再
生操作に入る。これは、塔を減圧することにより吸着剤
に吸着除去された不純物ガスを吸着剤より脱着させて装
置外に排出し、吸着剤の吸着能力を再生するものであ
る。この不純物ガス脱着は、吸着操作終了後の吸着塔の
中に残っている高圧の水素ガスを再生操作が終了した別
の吸着塔の昇圧に利用した後、さらに減圧することで行
われる。
【0005】
【発明が解決しようとする課題】このPSA法の問題と
しては、工業的なPSA装置において、装置に供給され
る改質ガスあるいは水素リッチガスに含まれる水素に対
する製品水素の割合で定義される水素回収率は通常80
〜90%であり、残りの水素はその他の不純物ガスと共
にPSA装置の再生操作時にパージガスとして排出され
る。従って、炭化水素原料を水蒸気改質して製造した水
素の一部は、製品として供されることなく改質炉で吸熱
反応である改質反応を行わせるため外部より熱を供給す
る燃料として消費されている。またこのため、同じ製品
水素を得る場合、炭化水素を水蒸気改質して改質ガスを
製造する改質炉の容量が、メタネーター法に比較して2
0〜25%大きくなり、改質炉で使用する燃料も多く必
要になるという問題がある。
【0006】従来技術では、この問題を改善するため、
原燃料として炭化水素の消費量低減を目的とした改質炉
の改良等が試みられた。例えば、改質炉の燃焼用空気の
予熱温度を上昇させて改質炉における燃焼効率を増加さ
せる方法がある。燃焼用空気の予熱は、改質炉から出た
950〜1050℃の燃焼ガスの熱回収を行う煙道に組
み入れられた空気予熱器にて行われるが、この予熱器に
より燃焼用空気温度をさらに50℃増加することによ
り、原燃料の消費量を1%程度削減することが可能とな
る。しかし、このことは逆に空気予熱器の伝熱面積を約
25%増加することによる設備費の増加と、加熱炉燃焼
バーナーでの火炎温度の上昇による燃焼ガス中の窒素酸
化物の増加をもたらす結果となった。他に、PSA装置
の吸着剤量を増加することで水素回収率をさらに向上さ
せる方法があり、例えば吸着剤を30%増すことで、水
素回収率を3〜4%向上させることが可能である。しか
し、この場合でも原燃料の削減は1〜1.5%にとどま
り、経済的に有効な手段とはなり得なかった。
【0007】このような状況から、改質反応に必要な熱
を改質炉での燃料の燃焼だけで賄うのではなく、例えば
改質炉から700〜900℃で出る改質ガスの持つ顕熱
を改質反応に利用して、改質炉での燃料の燃焼により外
部から供給される所要熱量を飛躍的に減少せしめる方法
が提案されている。例えば特開昭59−16536号公
報に示されている入口と出口を同一端に有する同心二重
円筒管型の改質器、あるいは米国特許第4,824,6
58号に示されている伝熱管内に改質触媒を充填した熱
交換器構造の改質器は、この目的を達成するための手段
となるものである。しかしながら、これらの手段の適用
により改質炉の燃料所要量が低減されたため、改質炉の
燃料として利用されるパージガスが余る結果となった。
さらに、上記先行技術には以下に述べるように余剰のパ
ージガスの有効な利用方法がないという問題点があっ
た。すなわち、パージガスの有効利用の1つとして、パ
ージガスの一部を原料として循環する方法があるが、パ
ージガス中には水素製造装置にとってイナートガスであ
る炭酸ガスを多く含んでいるため、パージガス中の一部
を原料として循環した場合でも、系内に炭酸ガスが蓄積
され、結果的に改質ガス流量が増加し、また改質ガス中
の水素濃度が低下して、改質器の容量増加とPSA装置
での水素回収率の悪化を招くことになる。本発明の目的
は、従来のPSA法において燃料として使用されている
パージガスを有効に利用することにより、原料消費量を
低減すると同時に、効率的な高純度水素を得る方法を提
供することにある。
【0008】
【課題を解決するための手段】本発明者らは上記の従来
のPSA法の難点を克服するため鋭意研究を重ねた結
果、PSA装置の再生時に排出されるパージガスの組成
がパージ時間と共に変化することに着目し、パージ時間
を区切ってガスを複数の流れに分けることで、組成の異
なるガスが得られること、この組成の異なるガスを改質
器への原料ガスの供給ラインに循環させることで、エネ
ルギー効率を向上しうることを見い出し、この知見に基
づき本発明をなすに至った。すなわち本発明は、(1)
炭化水素原料を改質器にて水蒸気改質して得られた水素
を含む改質ガスを、圧力スイング吸着装置にて精製し、
高純度の製品水素ガスを製造する方法において、圧力ス
イング吸着装置の再生操作にて排出される主に炭酸ガ
ス、メタン及び水素からなるパージガスを、その再生の
ためのパージ時間を区切ることで組成の異なる複数のパ
ージガスを製造し、この複数のパージガスの内比較的水
素及びメタン濃度が高く、逆に比較的炭酸ガス濃度の低
いパージガスを、前述の改質器への炭化水素原料の供給
ラインに循環することを特徴とする水素製造方法、及び
(2)循環パージガスを炭化水素原料ラインに混合する
場所が、原料の脱硫操作を行う脱硫塔の出口原料ガスラ
イン、あるいは原料の脱硫操作のために必要な予熱器へ
の原料供給ライン、あるいは原料を改質器に供給するに
必要な圧力まで昇圧するための圧縮器への原料供給ライ
ンのいずれかである(1)項に記載の方法、を提供する
ものである。
【0009】本発明の水素の製造方法において、パージ
時間を区切ると、減圧開始初期では比較的炭酸ガス濃度
の高いパージガスが排出され、逆にパージが進むに従っ
て比較的水素、メタン及び一酸化炭素濃度の高いパージ
ガスが得られるが、これらのパージガスのうち水素ある
いはメタン濃度が比較的高いパージガスを昇圧後、水蒸
気改質の原料あるいは炭化水素原料に含まれ水蒸気改質
触媒の触媒毒である硫黄分の水添脱硫に使われる水素源
として、循環することを特徴とする。本発明でいう水素
あるいはメタン濃度が比較的高いパージガスの量の全パ
ージガス量に対する割合は、2%から50%の範囲がよ
く、さらに好ましくは5%〜20%の範囲がよい。ま
た、本発明でPSA装置の吸着塔に充填される吸着剤と
しては、従来法に使用されているものと同様のモレキュ
ラーシーブ、活性炭及びシリカゲル等の吸着剤単独ある
いは複数の組合せが使用される。本発明において、主に
炭酸ガス、メタン及び水素からなるパージガスとは、炭
酸ガスは好ましくは40〜75モル%、より好ましくは
50〜60モル%、メタンは好ましくは2〜17モル
%、より好ましくは5〜10モル%、水素は好ましくは
20〜50モル%、より好ましくは23〜35モル%の
組成のものをいう。
【0010】本発明方法を図1に従って説明する。水添
反応塔1、脱硫塔2、改質器3、CO転化器4、分離器
5、PSA装置6の配置、構造及びその作用は前述の従
来法と同様である。PSA装置6においては、あるサイ
クル時間の吸着操作が終了した塔は次に再生操作に入
る。これは、塔を減圧することにより吸着剤に吸着除去
された不純物ガスを吸着剤より脱着させて装置外に排出
し、吸着剤の吸着能力を再生するものである。この不純
物ガス脱着は、吸着操作終了後の吸着塔の中に残ってい
る高圧の水素ガスを再生操作が終了した別の吸着塔の昇
圧に利用した後、さらに減圧することで行われるのが従
来行われている。本発明ではこの減圧開始からパージ終
了までの約数分の時間を区切り、シーケンスにより排出
バルブを切り替え、前流をライン10から第1バッファ
ードラム7に送り、後流をライン11から第2バッファ
ードラム8に送る。これら2つのバッファードラムは間
欠的に排出されるパージガスの圧力変動を吸収する役割
と時間と共に組成変化するパージガスの組成を均一にす
る役割を持っている。ここでいう前流とは、再生のため
の減圧開始時からパージガスを分流するバルブ切り替え
までの間に吸着塔より排出されたパージガスであり、後
流とはバルブを切り替えた時点からパージ終了までの間
に吸着塔より排出されたパージガスである。
【0011】本発明では、バルブの切り替え操作により
パージガスを前流と後流の2つの流れに分けたが、パー
ジガスの利用目的に応じてパージガスを2つ以上の複数
の流れに分けることもできる。第1バッファードラム7
に送られたパージガスの前流分は、比較的炭酸ガスを多
く含んでおり、このガスは第1バッファードラム7にて
圧力・組成を調整されて、改質炉3の燃料の一部として
使用される。一方、第2バッファードラム8に送られた
パージガスの後流分は、比較的メタン及び水素を多く含
んでおり、このガスは第2バッファードラム8にて圧力
・組成を調整された後、循環ガス圧縮機9にて所定の圧
力まで昇圧され脱硫工程の上流に送られ原料と混合され
る。本発明において、循環されるパージガスは脱硫工程
の上流で原料と混合されたが、原料炭化水素に含まれる
硫黄化合物が比較的少なく脱硫操作での水添反応が必要
ない場合には、循環パージガスを脱硫工程の後で原料炭
化水素に混合しても良い。また、炭化水素原料の受け入
れ圧力が低く、改質器3に供給するのに必要な圧力まで
昇圧するための圧縮機を設置する場合は、この圧縮機の
吸い込みラインにて原料炭化水素にパージガスを混合し
ても良い。
【0012】上述のように構成されたシステムフローで
あるので、これまで燃料としてのみ利用できなかったパ
ージガス中の水素製造に有効な成分である未回収水素、
メタン及び一酸化炭素を濃縮した一部のパージガスを原
料炭化水素の供給ラインに戻すことで、同等の製品水素
を得るための原料の消費量が低減され、またこのことに
より改質炉の負荷が低下し、燃料の消費量が同時に低減
される。
【0013】
【実施例】次に本発明を実施例に基づきさらに詳細に説
明する。 実施例1 図1に示す系統図に従い水素製造試験を行った。PSA
装置6の吸着塔への供給ガス条件を表1に示す。吸着塔
としては、内径43mm及び高さ2mのサイズで、内部
に吸着材としてモレキュラーシーブと活性炭を4対6の
割合で充填したものを使用し、供給ガス流量15リッタ
ー/分で吸着塔底部より送入し、吸着塔塔頂より精製ガ
スを排出した。表1に示す条件の供給ガスの吸着塔への
送入開始より4分間の吸着操作の後、供給ガスの送入と
精製ガスの排出を停止した。次に吸着塔の減圧操作によ
り塔内の水素濃度の高いガスを吸着塔塔頂より排出した
後、さらなる減圧操作により塔内の吸着剤に吸着された
被吸着物を脱着し、吸着塔底部より排出した。この被吸
着物の脱着のための減圧開始より104秒後、吸着塔底
部からの排出ラインをライン10からライン11へ切り
換え、パージガスの流れを2つに分け、切り換え操作の
前後で集められた各パージガス組成を測定した。結果を
表2に示したが、切り換え操作以降に排出された後流の
パージガスとして、後述する比較例1に示すパージガス
組成に比べ、水素、メタン及び一酸化炭素濃度が高く、
炭酸ガス濃度の低いものが得られた。また、ここで得ら
れた水素及びメタン濃度の高いパージガスを原料ライン
に循環することによる原料及び燃料の消費量の算定結果
では、後述する比較例1に代表される従来法で所要の製
品水素を得るために必要な原燃料消費量を100とする
と、表2に示すように実施例1での原燃料所要量は98
となり、エネルギー効率は2%向上した。
【0014】実施例2 実施例1と同様の系統図に従い水素製造試験を行った。
実施例1と同様の吸着操作を行い、再生操作における被
吸着物の脱着のための減圧開始より115秒後、吸着塔
底部からの排出ラインを実施例1と同様に切り換えた場
合の各パージガス組成を測定した結果を表2に並記し
た。この場合も、切り換え操作以降に排出された後流の
パージガスの組成は、実施例1に比べさらに水素濃度が
高く、炭酸ガス濃度の低いものが得られ、原料ラインへ
の循環による原料及び燃料の消費量の算定結果は、表2
に示すように97.8となり、エネルギー効率は2.2
%向上した。
【0015】実施例3 実施例1と同様の系統図に従い水素製造試験を行った。
実施例1と同様の吸着操作を行い、再生操作における被
吸着物の脱着のための減圧開始より131秒後、吸着塔
底部からの排出ラインを実施例1と同様に切り換えた場
合の各パージガス組成を測定した結果を表2に並記し
た。この場合も、切り換え操作以降に排出された後流の
パージガスの組成は、実施例1及び実施例2に比較し水
素濃度が高く、炭酸ガス濃度の低いものが得られ、原料
ラインへの循環による原料及び燃料の消費量の算定結果
は、表2に示すように98.1となり、エネルギー効率
は1.9%向上した。
【0016】比較例1 図2に示す系統図に従った以外は実施例1と同一の条件
にて吸着・再生操作を行い、水素製造試験を行った。従
来法と同様に再生操作のための減圧開始から再生終了ま
でのパージ時間170秒の間に排出された全パージガス
の組成の測定結果と従来法での原燃料消費量を100と
した場合の原料・燃料の各割合を表2に並記する。
【0017】
【表1】
【0018】
【表2】
【0019】
【発明の効果】以上説明したように、本発明の水素製造
方法によれば従来のPSA法のように原料消費量を減ら
しかつパージガス量を減らす目的でできるだけ改質器か
らのメタンのリークを下げるための、改質器での高温改
質の必要がなく比較的緩やかな条件の改質器設計が可能
となる。さらに、従来のPSA装置の経済性からの水素
回収率の制限にて製品として回収されなかったパージガ
ス中の水素の一部を循環することが可能となり、総合的
な水素回収率が増大し、原料消費量の低減、改質器の負
荷の低減による改質器コストの低下及び改質器負荷低下
による燃料消費量の低減に効果がある。
【図面の簡単な説明】
【図1】本発明の実施例の系統図である。
【図2】従来のPSA法による水素製造方法の系統図で
ある。
【符号の説明】
1 水素反応塔 2 脱硫塔 3 改質器 4 CO転化器 5 分離器 6 PSA装置 7 第1バッファードラム 8 第2バッファードラム 9 循環ガス圧縮器 10 ライン 11 ライン

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 炭化水素原料を改質器にて水蒸気改質し
    て得られた水素を含む改質ガスを、圧力スイング吸着装
    置にて精製し、高純度の製品水素ガスを製造する方法に
    おいて、圧力スイング吸着装置の再生操作にて排出され
    る主に炭酸ガス、メタン及び水素からなるパージガス
    を、その再生のためのパージ時間を区切ることで組成の
    異なる複数のパージガスを製造し、この複数のパージガ
    スのうち比較的水素及びメタン濃度が高く、逆に比較的
    炭酸ガス濃度の低いパージガスを、前述の改質器への炭
    化水素原料の供給ラインに循環することを特徴とする水
    素製造方法。
  2. 【請求項2】 循環パージガスを炭化水素原料ラインに
    混合する場所が、原料の脱硫操作を行う脱硫塔の出口原
    料ガスライン、あるいは原料の脱硫操作のために必要な
    予熱器への原料供給ライン、あるいは原料を改質器に供
    給するに必要な圧力まで昇圧するための圧縮器への原料
    供給ラインのいずれかである請求項1に記載の方法。
JP35649892A 1992-12-22 1992-12-22 水素製造方法 Pending JPH06191801A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35649892A JPH06191801A (ja) 1992-12-22 1992-12-22 水素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35649892A JPH06191801A (ja) 1992-12-22 1992-12-22 水素製造方法

Publications (1)

Publication Number Publication Date
JPH06191801A true JPH06191801A (ja) 1994-07-12

Family

ID=18449321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35649892A Pending JPH06191801A (ja) 1992-12-22 1992-12-22 水素製造方法

Country Status (1)

Country Link
JP (1) JPH06191801A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060203A (ja) * 2000-08-16 2002-02-26 Mitsubishi Heavy Ind Ltd 合成ガスの製造方法
JP2005053762A (ja) * 2003-08-07 2005-03-03 Chiyoda Corp 水蒸気改質炉
JP2008520524A (ja) * 2004-11-16 2008-06-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 水素および二酸化炭素の複合製造のための方法および装置
JP2008525301A (ja) * 2004-12-22 2008-07-17 アイダテック, エル.エル.シー. 圧力スイング吸着放出制御を介した加熱アセンブリ動作調整システム及び方法
JP2010528974A (ja) * 2007-06-06 2010-08-26 リンデ・エルエルシー カーボンナノマテリアル生成用の一酸化炭素生成のための統合プロセス
JP2011006298A (ja) * 2009-06-26 2011-01-13 Ihi Corp グリセリン改質装置および改質方法
JP2015030655A (ja) * 2013-08-06 2015-02-16 大阪瓦斯株式会社 水素製造装置、及び水素製造方法
JP2016000675A (ja) * 2014-06-12 2016-01-07 大阪瓦斯株式会社 水素製造装置およびその運転方法
CN109650335A (zh) * 2019-01-21 2019-04-19 武汉理工大学 一种变压吸附纯化制氢装置及制氢方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060203A (ja) * 2000-08-16 2002-02-26 Mitsubishi Heavy Ind Ltd 合成ガスの製造方法
JP2005053762A (ja) * 2003-08-07 2005-03-03 Chiyoda Corp 水蒸気改質炉
JP4603251B2 (ja) * 2003-08-07 2010-12-22 千代田化工建設株式会社 水蒸気改質炉
JP2008520524A (ja) * 2004-11-16 2008-06-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 水素および二酸化炭素の複合製造のための方法および装置
JP2008525301A (ja) * 2004-12-22 2008-07-17 アイダテック, エル.エル.シー. 圧力スイング吸着放出制御を介した加熱アセンブリ動作調整システム及び方法
JP2010528974A (ja) * 2007-06-06 2010-08-26 リンデ・エルエルシー カーボンナノマテリアル生成用の一酸化炭素生成のための統合プロセス
JP2011006298A (ja) * 2009-06-26 2011-01-13 Ihi Corp グリセリン改質装置および改質方法
JP2015030655A (ja) * 2013-08-06 2015-02-16 大阪瓦斯株式会社 水素製造装置、及び水素製造方法
JP2016000675A (ja) * 2014-06-12 2016-01-07 大阪瓦斯株式会社 水素製造装置およびその運転方法
CN109650335A (zh) * 2019-01-21 2019-04-19 武汉理工大学 一种变压吸附纯化制氢装置及制氢方法

Similar Documents

Publication Publication Date Title
US4869894A (en) Hydrogen generation and recovery
JP2757977B2 (ja) アンモニア合成ガス製造方法
US4475929A (en) Selective adsorption process
CA2565604C (en) Hydrogen generation process using partial oxidation/steam reforming
US4861351A (en) Production of hydrogen and carbon monoxide
US4375363A (en) Selective adsorption process for production of ammonia synthesis gas mixtures
US4813980A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
CA2046772C (en) Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
US5669960A (en) Hydrogen generation process
JP5696967B2 (ja) Co2の排出を規制した直接還元鉄の製造方法
US4624841A (en) Process for refining an ammonia synthesis gas
IE914210A1 (en) Hydrogen and carbon monoxide production by hydrocarbon steam¹reforming and pressure swing adsorption purification
JP2000129327A (ja) 溶鉱炉と極低温精留法を用いる直接還元反応器とを統合する方法
JPH06191801A (ja) 水素製造方法
US5202057A (en) Production of ammonia synthesis gas
CN1157331C (zh) 低温精馏生产氨的方法及设备
JPS6230603A (ja) 工業用水素の製造方法
JPH03242302A (ja) 水素及び一酸化炭素の製造方法
JPH0517163B2 (ja)
JPH07115845B2 (ja) 水素および一酸化炭素の製造方法
JP2005177716A (ja) 水素psa精製装置から排出されるオフガスの処理方法
JP2000233917A (ja) Co2からcoを製造する方法
JPH0465302A (ja) 圧力スイング式水素精製方法
EP3967653A1 (en) Sorption-enhanced water-gas shift process for the formation of a co2 product stream and an h2 product stream
JPH06305701A (ja) 炭化水素からの水素製造方法及び水素製造装置