WO2014041645A1 - 改質装置およびそれを備えた化成品の製造装置 - Google Patents

改質装置およびそれを備えた化成品の製造装置 Download PDF

Info

Publication number
WO2014041645A1
WO2014041645A1 PCT/JP2012/073374 JP2012073374W WO2014041645A1 WO 2014041645 A1 WO2014041645 A1 WO 2014041645A1 JP 2012073374 W JP2012073374 W JP 2012073374W WO 2014041645 A1 WO2014041645 A1 WO 2014041645A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
unit
combustion exhaust
exhaust gas
reforming
Prior art date
Application number
PCT/JP2012/073374
Other languages
English (en)
French (fr)
Inventor
幹也 桜井
尚哉 奥住
志村 良太
修一 宮本
清木 義夫
大空 弘幸
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2012/073374 priority Critical patent/WO2014041645A1/ja
Priority to EP13837204.0A priority patent/EP2896596A4/en
Priority to CN201380044698.0A priority patent/CN104583121B/zh
Priority to JP2014535496A priority patent/JP5863979B2/ja
Priority to US14/423,637 priority patent/US9737868B2/en
Priority to MYPI2015700548A priority patent/MY182107A/en
Priority to RU2015106410A priority patent/RU2606606C2/ru
Priority to PCT/JP2013/073705 priority patent/WO2014042042A1/ja
Publication of WO2014041645A1 publication Critical patent/WO2014041645A1/ja
Priority to US15/377,596 priority patent/US10258960B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/026Preparation of ammonia from inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0488Processes integrated with preparations of other compounds, e.g. methanol, urea or with processes for power generation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/10Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds combined with the synthesis of ammonia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a reformer for reforming natural gas using natural gas as fuel for a reformer for reforming natural gas or the like, and a chemical product manufacturing apparatus having the reformer.
  • a reformed gas obtained by reforming natural gas or the like with a reformer is used (see, for example, Patent Documents 1 and 2).
  • a part of the natural gas is extracted and used as a reformer fuel before supplying the natural gas to the reformer.
  • the supplied natural gas is reformed.
  • JP-A-6-234517 Japanese Patent No. 4168210
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a reformer capable of improving the thermal efficiency when reforming natural gas and a chemical product manufacturing apparatus including the reformer. To do.
  • a reformer according to the present invention is heated by a first compression unit that compresses a raw material gas containing hydrocarbons and sulfur, a heat exchange unit that heats the compressed raw material gas, and and a desulfurization unit for removing sulfur contained in the raw material gas, the said hydrocarbon feed gas reforming either one or both of CO and CO 2, one of CO and CO 2
  • a reforming unit that generates a reformed gas including one or both, and the compressed source gas are extracted from one or both of the upstream side and the downstream side of the desulfurization unit with respect to the flow direction of the source gas.
  • a raw material gas branch line supplied as a combustion fuel used for heating in the reforming section, and a combustion exhaust gas discharge line for discharging combustion exhaust gas generated by combustion in the reforming section, and the heat exchange section Is installed in the combustion exhaust gas discharge line.
  • the combustion exhaust gas is used as a heating medium for the compressed raw material gas.
  • the reforming unit supplies steam to the source gas, and first reforms the hydrocarbon in the source gas into either one or both of CO and CO 2 And hydrocarbons in the source gas after the primary reforming in the first reforming section using CO, CO 2 , and the compressed source gas supplied from the combustion air and the source gas branch line It is preferable to have a second reforming section that is subjected to secondary reforming to form a reformed gas in one or both of the above.
  • a denitration unit that is provided between the reforming unit and the heat exchange unit of the combustion exhaust gas discharge line and removes NOx contained in the combustion exhaust gas generated in the reforming unit
  • a CO 2 recovery unit that is provided downstream of the heat exchange unit with respect to the flow direction of the combustion exhaust gas in the combustion exhaust gas discharge line and removes CO 2 contained in the combustion exhaust gas It is preferable to have.
  • a chemical product manufacturing apparatus includes the reforming apparatus according to any one of the above and a chemical product generation unit that manufactures the chemical product using the reformed gas.
  • the chemical product generation unit converts CO in the reformed gas into CO 2 , and generates a shift gas containing CO 2. and carbon dioxide removal unit to separate the CO 2 in a methanation unit for generating methane the CO 2 of carbon dioxide gas separation unit CO 2 is separated by the CO 2 removal gas by methanation, in the methanation section
  • a plurality of second compression sections that compress the generated methane, a hydrogen separation section that separates H 2 from the high-pressure reformed gas discharged from any of the second compression sections, and the second compression section.
  • Methanol is synthesized using as raw materials an ammonia synthesis unit that produces ammonia using the methane from which hydrogen has been separated, CO 2 separated by the carbon dioxide removal unit, and H 2 separated by the second compression unit.
  • Methano A and Le combining portion characterized in that the production of ammonia and methanol.
  • the urea and methanol production system of the present invention includes the above ammonia and methanol production system, a urea synthesis unit that synthesizes urea using ammonia obtained in the ammonia synthesis unit, and the methanol from the carbon dioxide removal unit. And a carbon dioxide branch supply line for supplying a part of CO 2 supplied to the synthesis unit to the urea synthesis unit.
  • the amount of heat recovered from the heat medium to the natural gas can be improved, so that the thermal efficiency when reforming the natural gas can be improved.
  • FIG. 1 is a schematic view of a reforming apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of another configuration of the reformer.
  • FIG. 3 is a diagram illustrating an example of another configuration of the reformer.
  • FIG. 4 is a diagram illustrating an example of another configuration of the reformer.
  • FIG. 5 is a diagram illustrating an example of another configuration of the reformer.
  • FIG. 6 is a schematic diagram of an ammonia and methanol production system according to the second embodiment of the present invention.
  • FIG. 7 is a schematic view of a urea and methanol production system according to the third embodiment of the present invention.
  • FIG. 1 is a schematic view of a reforming apparatus according to the first embodiment of the present invention.
  • a reformer 10 includes a compressor (compression unit) 11, a heat exchanger (heat exchange unit) 12, a desulfurization unit (desulfurization unit) 13, a reformer 14, and a denitration unit. (Denitration means) 15, heat exchanger 16, cooling device 17, CO 2 recovery device 18, raw material gas branch line L 11, and combustion exhaust gas discharge line L 12.
  • the natural gas 21 is used as the raw material gas containing hydrocarbons and sulfur.
  • the present invention is not limited to this, and any raw material gas containing hydrocarbons may be used.
  • Gas Liquid Petroleum Gas: LPG
  • synthetic gas obtained from other hydrocarbons such as butane or naphtha
  • natural gas liquid Natural Gas Liquid: NGL
  • methane hydrate produced with the production of crude oil and natural gas Etc.
  • the compressor 11 compresses the natural gas 21 and raises the natural gas 21 to a predetermined pressure.
  • the natural gas 21 is supplied to the compressor 11 through the raw material gas supply line L13-1.
  • the natural gas 21 is raised to a predetermined pressure by the compressor 11 and is heated to a high temperature, and then supplied to the heat exchanger 12 through the raw material gas supply line L13-2.
  • the heat exchanger 12 heats the compressed natural gas 21.
  • the heat exchanger 12 is provided in the combustion exhaust gas discharge line L12.
  • a shell and tube heat exchanger multi-tubular heat exchanger
  • the heat exchanger 12 has a shell (fuselage) side as a secondary side, the natural gas 21 is circulated through the fuselage, and a tube (heat transfer tube) side of the heat exchanger 12 is defined as a primary side in the heat transfer tube.
  • the combustion exhaust gas 22 discharged from the reformer 14 is circulated as a heating medium.
  • the heat exchanger 12 uses the combustion exhaust gas 22 supplied to the heat transfer tube side as a heat source, circulates the natural gas 21 in the fuselage, and heats the natural gas 21 with the outer surface of the heat transfer tube as the surface to be heated.
  • the heat exchanger 12 is not limited to a shell-and-tube heat exchanger, and any heat exchanger that can indirectly exchange heat between the natural gas 21 and the combustion exhaust gas 22 may be used.
  • the natural gas 21 is heat-exchanged with the combustion exhaust gas 22 by the heat exchanger 12 and heated, and then supplied to the desulfurization apparatus 13 through the raw material gas supply line L13-3.
  • the desulfurization apparatus 13 removes sulfur content (S content) such as sulfur oxide (SOx) contained in the heated natural gas 21.
  • S content sulfur content
  • SOx sulfur oxide
  • a conventionally known desulfurization apparatus 13 is used, and either a wet type or a dry type can be used.
  • the desulfurization apparatus 13 uses, for example, lime slurry (an aqueous solution in which limestone powder is dissolved in water) as the alkali absorption liquid.
  • the temperature in the column is adjusted to about 30 to 80 ° C.
  • the lime slurry is supplied to the bottom of the desulfurizer 13.
  • the lime slurry supplied to the tower bottom of the desulfurization apparatus 13 is sent to a plurality of nozzles in the desulfurization apparatus 13 via an absorption liquid supply line and the like, and is ejected from the nozzle toward, for example, the tower top side of the absorption tower. .
  • the S content in the natural gas 21 is absorbed by the lime slurry and separated from the natural gas 21. Removed.
  • the S content in the natural gas 21 causes a reaction represented by the following formula (1) with the lime slurry.
  • the lime slurry that has absorbed the S component in the natural gas 21 is oxidized by air (not shown) supplied to the bottom of the desulfurizer 13, and reacts with the air by the following formula (2). Arise. In this way, the S content in the natural gas 21 is captured in the form of gypsum CaSO 4 .2H 2 O in the desulfurization apparatus 13.
  • the natural gas 21 purified by the lime slurry is discharged from the tower top side of the desulfurization apparatus 13. Thereafter, the natural gas 21 is supplied into the reformer 14 through the raw material gas supply line L13-4.
  • the source gas supply line L13-4 is connected to the water vapor supply line L14.
  • the water vapor 24 is supplied into the raw material gas supply line L13-4 through the water vapor supply line L14 and mixed with the natural gas 21.
  • the natural gas 21 is supplied into the reformer 14 after the steam 24 is mixed in the steam supply line L14.
  • Reformer 14 in which the hydrocarbons in the natural gas 21 CO, modified in either or both of the CO 2, CO, to produce a reformed gas 23 containing one or both of CO 2 is there.
  • the reformer 14 includes a main body 14a, a catalyst reaction tube 14b, and a burner 14c.
  • the catalyst reaction tube 14b is provided inside the main body 14a, and the catalyst reaction tube 14b includes a reforming catalyst layer including a reforming catalyst.
  • the burner 14c is provided inside the main body 14a, burns the combustion air 26, generates combustion exhaust gas 22, and heats the catalyst reaction tube 14b.
  • the burner 14c is connected to the air supply line L15.
  • the combustion air 26 is supplied to the burner 14c through the air supply line L15.
  • the combustion air 26 is heat-exchanged with the combustion exhaust gas 22 by the heat exchanger 16 and heated, and then supplied to the reformer 14.
  • the catalyst reaction tube 14b is heated by the combustion exhaust gas 22, and the natural gas 21 contacts the reforming catalyst when passing through the reforming catalyst layer of the catalyst reaction tube 14b. ),
  • the hydrocarbons in the natural gas 21 are reformed to CO and CO 2 .
  • the reformed gas 23 containing CO and CO 2 is generated.
  • the gas temperature of the reformed gas 23 is in the range of 400 ° C. to 1000 ° C., for example.
  • the raw material gas branch line L11 connects the downstream side of the desulfurization apparatus 13 and the air supply line L15.
  • the raw material gas branch line L11 extracts the natural gas 21 compressed by the compressor 11 from the downstream side of the desulfurization device 13 with respect to the flow direction of the natural gas 21, and mixes it with the combustion exhaust gas 22 passing through the air supply line L15. Since the S content contained in the natural gas 21 is removed by the desulfurization apparatus 13, the natural gas 21 not containing the S content is supplied to the air supply line L15.
  • the reformed gas 23 generated in the reformer 14 is used as a raw material gas for synthesizing hydrogen, liquid hydrocarbon, methanol, ammonia, or the like. Further, the combustion exhaust gas 22 discharged from the reformer 14 is supplied to the denitration device 15 through the combustion exhaust gas discharge line L12.
  • the combustion exhaust gas discharge line L12 is a line for discharging the combustion exhaust gas 22 generated by burning the fuel including the natural gas 21 extracted to the raw material gas branch line L11 for fuel using the combustion air 26 in the reformer 14. is there.
  • the combustion exhaust gas discharge line L12 includes a denitration device 15 in the middle thereof, and a reducing agent injector 28 on the upstream side of the denitration device 15.
  • the reducing agent 29 is supplied from the reducing agent injector 28 to the combustion exhaust gas 22 while the combustion exhaust gas 22 passing through the combustion exhaust gas discharge line L ⁇ b> 12 is supplied to the denitration device 15.
  • the reducing agent 29 for example, ammonia (NH 3 ), urea (NH 2 (CO) NH 2 ), ammonium chloride (NH 4 Cl), or the like is used.
  • the reducing agent 29 is supplied to the combustion exhaust gas discharge line L12 as a solution or gas containing the reducing agent 29.
  • the solution containing the reducing agent 29 is supplied to the combustion exhaust gas discharge line L12, the droplets of the solution containing the reducing agent 29 are evaporated and vaporized by the high-temperature ambient temperature of the combustion exhaust gas 22.
  • the combustion exhaust gas 22 is supplied to the denitration device 15 through the combustion exhaust gas discharge line L12 while containing the reducing agent 29.
  • the denitration device 15 is provided between the reformer 14 and the heat exchanger 12 of the combustion exhaust gas discharge line L12 and removes nitrogen oxides (NOx) contained in the combustion exhaust gas 22 generated by the reformer 14. To do.
  • a conventionally known denitration device 15 is used.
  • the denitration device 15 includes a denitration catalyst layer in which a denitration catalyst for removing NOx in the combustion exhaust gas 22 is filled.
  • the combustion exhaust gas 22 supplied into the NOx removal device 15 comes into contact with the NOx removal catalyst filled in the NOx removal catalyst layer, so that NOx in the combustion exhaust gas 22 on the NOx removal catalyst is reduced as shown in the following formula (5).
  • the reduction reaction proceeds with 29 and is reduced and decomposed and removed into nitrogen gas (N 2 ) and water (H 2 O). 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O (5)
  • the combustion exhaust gas 22 is supplied to the heat exchanger 12 after NOx in the combustion exhaust gas 22 is removed by the denitration device 15.
  • the combustion exhaust gas 22 is heat-exchanged with the natural gas 21 to heat the natural gas 21 as described above. Thereafter, the combustion exhaust gas 22 is supplied from the heat exchanger 12 to the heat exchanger 16 through the combustion exhaust gas discharge line L12.
  • the heat exchanger 16 heats the combustion air 26. Similar to the heat exchanger 12, the heat exchanger 16 is provided in the combustion exhaust gas discharge line L12. As the heat exchanger 16, similarly to the heat exchanger 12, a shell and tube heat exchanger (multi-tubular heat exchanger) is used.
  • the heat exchanger 16 circulates the combustion air 26 in the body with the shell (body) side as the secondary side and the combustion exhaust gas 22 in the heat transfer tube with the tube (heat transfer tube) side as the primary side.
  • the heat exchanger 16 uses the combustion exhaust gas 22 supplied to the heat transfer tube side as a heat source, circulates the combustion air 26 in the fuselage, and heats the combustion air 26 using the outer surface of the heat transfer tube as the surface to be heated.
  • the combustion exhaust gas 22 is heat-exchanged with the combustion air 26 by the heat exchanger 16 and then supplied to the cooling device 17.
  • the combustion air 26 is heated by exchanging heat with the combustion exhaust gas 22 in the heat exchanger 16 and then supplied to the reformer 14.
  • the cooling device 17 cools the combustion exhaust gas 22.
  • the cooling device 17 is a cooling tower in which the cooling water 30 circulates inside and outside.
  • the cooling water 30 is supplied from the tower top side, and the combustion exhaust gas 22 supplied into the tower is brought into gas-liquid contact with the cooling water 30 to be cooled.
  • the cooling device 17 is not limited to a device that cools the combustion exhaust gas 22 by directly contacting the combustion exhaust gas 22 with the cooling water 30, and cools the combustion exhaust gas 22 by indirectly exchanging heat with the cooling water 30. You may do it.
  • the combustion exhaust gas 22 is cooled by the cooling device 17 and then supplied to the CO 2 recovery device 18.
  • the CO 2 recovery device 18 is for removing CO 2 contained in the combustion exhaust gas 22.
  • the CO 2 recovery device 18 is provided on the downstream side of the heat exchanger 16 with respect to the flow direction of the combustion exhaust gas 22 in the combustion exhaust gas discharge line L12.
  • the combustion exhaust gas 22 is contacted CO 2 absorbing solution and gas-liquid in a CO 2 absorption tower, CO 2 in the combustion exhaust gas 22 is absorbed by the CO 2 absorbing solution, the CO 2 in the combustion exhaust gas 22 is removed.
  • the combustion exhaust gas 22 is released into the atmosphere as a purified gas after the CO 2 contained in the combustion exhaust gas 22 is removed by the CO 2 recovery device 18.
  • the reformer 10 includes the raw material gas branch line L11, and a part of the natural gas 21 compressed by the compressor 11 by the raw material gas branch line L11 is removed from the desulfurizer 13 with respect to the flow direction of the natural gas 21. Extracted from the downstream side and used as fuel for the reformer 14. For this reason, compared with the case where a part of natural gas 21 is extracted before supplying the natural gas 21 to the heat exchanger 12 conventionally, the supply amount of the natural gas 21 supplied to the heat exchanger 12 is increased. Can do. As a result, the amount of the natural gas 21 that is heat-exchanged with the combustion exhaust gas 22 by the heat exchanger 12 can be increased, so that more heat of the combustion exhaust gas 22 can be recovered in the natural gas 21.
  • the reformer 10 since the amount of heat recovered from the combustion exhaust gas 22 to the natural gas 21 can be improved when the natural gas 21 is heated, the thermal efficiency when reforming the natural gas 21 is improved. Can be improved. Further, since the natural gas 21 after being compressed by the compressor 11 is at a high temperature, the amount of the natural gas 21 required for use as fuel by the reformer 14 can be reduced.
  • the heat recovery amount of the natural gas 21 from the calcined exhaust gas 22 is the same as before the natural gas 21 is supplied to the compressor 11 as in the prior art. For example, it can be improved by about 40% to 50% as compared with the case of extraction. Since the natural gas 21 after being compressed by the compressor 11 has a higher temperature than the natural gas 21 before being compressed by the compressor 11, the amount of the natural gas 21 used as fuel in the reformer 14 is, for example, 1%. It can be reduced by about 1.5%.
  • the raw material gas branch line L11 connects the downstream side of the desulfurization device 13 and the air supply line L15, and the natural gas 21 compressed by the compressor 11 is downstream of the desulfurization device 13 with respect to the flow direction of the natural gas 21. It is extracted from the side and mixed with the combustion exhaust gas 22 passing through the air supply line L15. Since the S content contained in the natural gas 21 is removed by the desulfurization device 13, the natural gas 21 not containing the S content can be supplied to the air supply line L15. As a result, the combustion exhaust gas 22 discharged from the reformer 14 does not contain S, so the combustion exhaust gas 22 exchanges heat with the natural gas 21 in the heat exchanger 12 and the temperature of the combustion exhaust gas 22 decreases.
  • the temperature of the flue gas becomes lower than the dew point temperature of the acid of S such as anhydrous sulfuric acid contained in the flue gas, and the sulfur contained in the flue gas combines with moisture and sulfuric acid (H 2 SO 4 ) Condensates and corrodes metal. Therefore, it is necessary to use acid-resistant steel having high corrosion resistance against acids such as sulfuric acid as a material for piping through which combustion exhaust gas passes.
  • the combustion exhaust gas 22 discharged from the reformer 14 does not contain S
  • the combustion exhaust gas 22 exchanges heat with the natural gas 21 in the heat exchanger 12 and the combustion exhaust gas 22 Even if the temperature is lowered, it is possible to suppress the occurrence of corrosion in the passage of the combustion exhaust gas discharge line L12 on the downstream side in the gas flow direction of the combustion exhaust gas 22 from the heat exchanger 12 of the combustion exhaust gas discharge line L12. Therefore, the material of the combustion exhaust gas discharge line L12 is not limited to acid-resistant steel, and other materials can be used, and the application range can be expanded.
  • a reducing agent 29 such as ammonia is supplied into the flue, but methanol conventionally used as in Patent Documents 1 and 2, etc.
  • unreacted ammonia also referred to as leaked ammonia
  • Ammonium sulfate may be deposited on heat transfer tubes and coils in a heat exchanger that exchanges heat between combustion exhaust gas and natural gas, and may block the pipe through which combustion exhaust gas passes to increase pressure loss.
  • Ammonium hydrogen sulfate may cause corrosion in a heat exchanger that exchanges heat between combustion exhaust gas and natural gas, a material that forms a pipe through which the combustion exhaust gas passes, and the like.
  • a reducing agent 29 such as ammonia is added to the combustion exhaust gas discharge line L12 upstream of the denitration device 15. Even if it supplies in, it can suppress that reducing agent 29, such as unreacted ammonia, and S component react, and ammonium sulfate, ammonium hydrogen sulfate, etc. are produced
  • ammonium sulfate, ammonium hydrogen sulfate, and the like are deposited in the combustion exhaust gas discharge line L12 to suppress an increase in pressure loss in the combustion exhaust gas discharge line L12, corrosion in the passage of the combustion exhaust gas discharge line L12, and the like. Can do.
  • a CO 2 recovery device 18 is provided to remove CO 2 contained in the combustion exhaust gas 22, which has been conventionally used as in Patent Documents 1 and 2, for example.
  • a desulfurization device is provided upstream of the CO 2 recovery device in the gas flow direction of the combustion exhaust gas, and the sulfur concentration in the combustion exhaust gas at the inlet of the CO 2 recovery device is set to a predetermined value (for example, 1 ppm). ) It is necessary to do the following.
  • the number of apparatuses to be installed increases as much as the desulfurization apparatus is provided, and the place where each apparatus is disposed is limited and the equipment cost increases.
  • the reformer 10 includes only one reformer 14, but the present invention is not limited to this, and a plurality of reformers 14 may be provided.
  • FIG. 2 is a diagram illustrating an example of another configuration of the reforming apparatus 10. As shown in FIG. 2, the reformer 14 may include a first reformer 14-1 and a second reformer 14-2.
  • First reformer 14-1 supplies steam 24 to the natural gas 21 is intended to hydrocarbons in the natural gas 21 CO, to primary reformed on either both CO 2.
  • the first reformer 14-1 has a main body and a reforming catalyst layer including a reforming catalyst therein.
  • the first reformer 14-1 is connected to the steam supply line L14.
  • the steam 24 is supplied into the first reformer 14-1 through the steam supply line L 14 and mixed with the natural gas 21.
  • the natural gas 21 is supplied to the reforming catalyst layer after the water vapor 24 is mixed in the main body.
  • the natural gas 21 comes into contact with the reforming catalyst when passing through the reforming catalyst layer in the first reformer 14-1, so that the natural gas 21 is expressed by the following equations (3) and (4).
  • the hydrocarbons therein are primarily reformed to CO and CO 2 .
  • Natural gas 21 is primarily reformed by the first reformer 14-1, and then supplied to the second reformer 14-2.
  • the second reformer 14-2 heats the natural gas 21 after the primary reforming using the natural gas 21 extracted for fuel from the combustion air 26 and the raw material gas branch line L11, and carbonizes the natural gas 21 in the natural gas 21. Secondary reforming of hydrogen into one or both of CO and CO 2 .
  • the second reformer 14-2 includes a main body 14a, a catalyst reaction tube 14b, and a burner 14c.
  • the catalyst reaction tube 14b is heated by the combustion exhaust gas 22 generated by combustion in the burner 14c, and contacts the reforming catalyst when the natural gas 21 after the primary reforming passes through the reforming catalyst layer of the catalyst reaction tube 14b.
  • the hydrocarbons in the natural gas 21 are secondarily reformed to CO or CO 2 or both and partially oxidized.
  • the reformer 14 When the reformer 14 is composed of two stages of the first reformer 14-1 and the second reformer 14-2, a part of the combustion exhaust gas 22 discharged from the second reformer 14-2 Alternatively, all may be used as a heating medium for heating the reforming catalyst layer of the first reformer 14-1.
  • the raw material gas branch line L11 is provided so as to be connected to the air supply line L15, and the natural gas 21 is supplied together with the combustion air 26 into the reformer 14 through the air supply line L15.
  • the present invention is not limited to this.
  • the raw gas branch line L11 is connected to the reformer 14, and the natural gas 21 and the combustion air 26 are separately reformed. 14 may be supplied.
  • the raw material gas branch line L11 is provided so as to be connected to the downstream side of the desulfurization device 13 with respect to the flow direction of the natural gas 21, but is not limited thereto.
  • a raw material gas branch line L21 connecting the upstream side of the desulfurization apparatus 13 and the air supply line L15 is provided, and a part of the natural gas 21 is provided with respect to the flow direction of the natural gas 21.
  • source gas branch lines L ⁇ b> 11 and L ⁇ b> 21 are provided so that a part of the natural gas 21 is extracted from the upstream side and the downstream side of the desulfurization device 13 with respect to the flow direction of the natural gas 21. Good.
  • the reformer 10 includes the denitration device 15, but is not limited thereto, and the denitration device 15 may not be provided.
  • the reformer 10 includes the cooling device 17 and the CO 2 recovery device 18, but is not limited to this, and the recovery of CO 2 contained in the combustion exhaust gas 22 is not limited thereto. These devices may not be provided when unnecessary.
  • the reformer 10 since the reformer 10 has the above-described characteristics, it can be used for the manufacture of chemical products using the reformed gas 23 obtained by the reformer 10.
  • the chemical product include ammonia, methanol, urea, hydrogen, liquid fuels of liquid hydrocarbons such as wax, light oil, kerosene, and gasoline by FT synthesis.
  • the reformer 10 by applying the reformer 10 to an ammonia and methanol production system or a urea and methanol production system, it is possible to improve the production efficiency of methanol and ammonia or the production efficiency of urea and methanol.
  • the chemical product manufacturing apparatus includes a reformer 10 and a chemical product generator that manufactures a chemical product using the reformed gas 23 obtained by the reformer 10. This embodiment demonstrates the case where ammonia and methanol are manufactured as a chemical product.
  • FIG. 6 is a schematic diagram of an ammonia and methanol production system according to the second embodiment of the present invention.
  • the ammonia and methanol production system 40 includes a reformer 10, a CO shift reaction device (CO shift reaction unit) 41, a carbon dioxide removal device (carbon dioxide removal unit) 42, and a methanation.
  • Apparatus (methanation section) 43, compressors 44-1, 44-2, hydrogen separator (hydrogen separation section) 45, ammonia synthesis tower (ammonia synthesis section) 46, methanol synthesis tower (methanol synthesis section) 47 It has.
  • the CO shift reaction device 41, the carbon dioxide gas removal device 42, the methanation device 43, the compressors 44-1 and 44-2, the hydrogen separation device 45, the ammonia synthesis tower 46, and the methanol synthesis tower 47. Is a chemical product generator.
  • the CO shift reaction device 41 converts (shifts) CO in the reformed gas 23 to CO 2 to generate a shift gas 51 containing CO 2 .
  • a CO shift reactor including a packed portion filled with a catalyst for CO shift reaction that converts (shifts) CO into CO 2 is used.
  • the reformed gas 23 obtained by reforming the natural gas 21 with the reformer 10 is discharged from the reformer 10 and supplied to the CO shift reactor 41.
  • the CO in the reformed gas 23 is converted to CO 2, to produce a shifted gas 51 containing CO 2.
  • the gas temperature of the shift gas 51 is in the range of 150 ° C. to 1000 ° C., for example.
  • the shift gas 51 generated in the CO shift reaction device 41 is discharged from the CO shift reaction device 41 and supplied to the carbon dioxide gas removal device 42.
  • the carbon dioxide removal device 42 removes carbon dioxide (CO 2 ) in the shift gas 51.
  • the carbon dioxide gas removing device 42 for example, a device that removes CO 2 in the shift gas 51 by using chemical adsorption using a CO 2 absorbing solution such as an amine solvent, a device that includes a catalyst that removes CO 2 , or a shift gas.
  • a membrane separation device provided with a separation membrane for separating CO 2 in 51 is used.
  • the gas temperature of the CO 2 removal gas 52 is about 50 ° C., for example.
  • the carbon dioxide removing device 42 is connected to the carbon dioxide supply line L31.
  • the CO 2 separated from the shift gas 51 by the carbon dioxide removal device 42 is supplied to the methanol synthesis tower 47 through the carbon dioxide supply line L31 and used as a gas for methanol synthesis.
  • the CO 2 removal gas 52 discharged from the carbon dioxide removal device 42 is supplied to the methanation device 43.
  • Methanation apparatus 43 is for methanation of CO 2 in the CO 2 reducing gas 52 from which CO 2 has been removed by the carbon dioxide gas removing unit 42.
  • the methanator 43 for example, a methanation reactor (methanator) provided with a catalyst part filled with a methanation catalyst is used.
  • the reaction temperature (methanation temperature) in the catalyst part is preferably 220 ° C. or higher and 450 ° C. or lower, more preferably 290 ° C. or higher and 350 ° C. or lower, from the viewpoint of the limit temperature at which the methanation catalyst can be used.
  • the CO 2 removal gas 53 discharged from the methanator 43 is supplied to the compressor 44-1.
  • the compressors 44-1 and 44-2 compress the CO 2 removal gas 53.
  • the compressor 44-1 is a low-pressure compressor
  • the compressor 44-2 is a high-pressure compressor.
  • the pressure of the CO 2 removal gas 53 is appropriately adjusted to a pressure suitable for ammonia synthesis by the compressors 44-1 and 44-2.
  • the compressors 44-1 and 44-2 have two stages of a low pressure and a high pressure.
  • the present invention is not limited to this, and the compressor may be a single stage, or the low pressure compressor and the medium pressure. A plurality of stages such as a three-stage compressor and a high-pressure compressor may be used.
  • CO 2 stripping gas 53 After raising the pressure of CO 2 stripping gas 53 by the compressor 44-1, CO 2 stripping gas 53 is supplied to the hydrogen separator 45.
  • the hydrogen separator 45 is provided between the compressor 44-1 and the compressor 44-2.
  • the hydrogen separator 45 separates a part of hydrogen (H 2 ) contained in the CO 2 removal gas 53 from the CO 2 removal gas 53.
  • the hydrogen separator 45 is a membrane separator provided with a hydrogen permeable functional membrane.
  • the hydrogen permeable functional membrane is a membrane for separating at least a part of H 2 contained in the gas.
  • the hydrogen-permeable functional membrane it is preferable to use, for example, a polymer membrane such as a palladium (Pd) membrane, polysulfone, polyamide, polyimide, or a bundle of many hollow fibers.
  • a polymer membrane such as a palladium (Pd) membrane, polysulfone, polyamide, polyimide, or a bundle of many hollow fibers.
  • the hydrogen permeable functional membrane can be appropriately designed based on the material, use conditions, lifetime, hydrogen permeability coefficient, and selectivity.
  • the CO 2 removal gas 53 passes through the hydrogen permeable functional membrane, so that the hydrogen contained in the CO 2 removal gas 53 is separated by the hydrogen permeable functional membrane.
  • the CO 2 removal gas 53 from which hydrogen has been separated by the hydrogen separator 45 is discharged from the hydrogen separator 45.
  • the hydrogen separator 45 is connected to the hydrogen supply line L32, and a part of the hydrogen separated from the shift gas 51 in the hydrogen separator 45 is supplied to the methanol synthesis tower 47 through the hydrogen supply line L32, and methanol synthesis is performed. Used as a gas for use.
  • a membrane separator provided with a hydrogen permeable functional membrane is used as the hydrogen separator 45.
  • the present invention is not limited to this, and for example, a pressure swing adsorption device (PSA) or the like is used. Any apparatus that can separate at least a part of hydrogen contained in the CO 2 removal gas 53 can be used.
  • PSA pressure swing adsorption device
  • the CO 2 removal gas 53 discharged from the hydrogen separator 45 is supplied to the compressor 44-2. After the pressure of the CO 2 stripping gas 53 is appropriately adjusted to a suitable pressure to the ammonia synthesis in the compressor 44-2, CO 2 stripping gas 53 is supplied to the ammonia synthesis tower 46. The hydrogen separated by the hydrogen separator 45 is supplied to the methanol synthesis tower 47 through the hydrogen supply line L32.
  • the ammonia synthesis tower 46 is for producing ammonia (NH 3 ) 55 after methanation of CO 2 in the CO 2 removal gas 53 by the methanator 43.
  • the ammonia synthesis tower 46 those conventionally used can be used, and examples thereof include an ammonia synthesis reactor in which a catalyst is arranged on one or more beds in the reactor.
  • a method of synthesizing ammonia by flowing a CO 2 removal gas 53 as a synthesis gas containing nitrogen (N 2 ) and hydrogen is used in this ammonia synthesis reactor.
  • the hydrogen separated by the hydrogen separator 45 passes through the hydrogen supply line L32, and the CO 2 separated by the carbon dioxide remover 42 passes through the carbon dioxide supply line L31 to remove hydrogen and carbon dioxide separated by the hydrogen separator 45.
  • the CO 2 separated by the apparatus 42 is supplied to the methanol synthesis tower 47.
  • the methanol synthesis tower 47 synthesizes methanol 56 using carbon dioxide separated by the carbon dioxide removing device 42 and hydrogen separated by the compressors 44-1 and 44-2 as raw materials.
  • the methanol synthesis tower 47 those conventionally used in general can be used.
  • a methanol synthesis apparatus having a catalytic reactor is used.
  • the ammonia and methanol production system 40 uses the ammonia 55 obtained by the ammonia synthesis tower 46, the carbon dioxide separated by the carbon dioxide removal device 42, and the hydrogen separated by the hydrogen separation device 45 to make methanol 56. And ammonia 55 and methanol 56 can be simultaneously produced in parallel.
  • the ammonia and methanol production system 40 can improve the thermal efficiency when reforming the natural gas 21 by including the reformer 10, and at the same time, process the combustion exhaust gas 22 in the process of treating the combustion exhaust gas 22. Corrosion can be prevented from occurring in the passage of L12. Therefore, according to the ammonia and methanol production system 40, the ammonia 55 and the methanol 56 can be stably produced, and the production efficiency of the ammonia 55 and the methanol 56 can be improved.
  • a hydrogen separator 45 is provided between the compressor 44-1 and the compressor 44-2, and hydrogen in all the CO 2 removal gas 53 separated by the hydrogen separator 45 is separated.
  • the present invention is not limited to this, and only a part of the CO 2 removal gas 53 separated by the compressor 44-1 or the compressor 44-2 is supplied to the hydrogen separator 45 to supply hydrogen. Hydrogen in the CO 2 removal gas 53 may be separated by the separation device 45.
  • FIG. 7 is a schematic view of a urea and methanol production system according to the third embodiment of the present invention.
  • the urea and methanol production system 60 includes, in addition to the ammonia and methanol production system 40 according to the second embodiment shown in FIG. 6, a urea synthesis tower (urea synthesis unit) 61 and a carbon dioxide gas branch. And a supply line L33.
  • the urea synthesis tower 61 is provided on the downstream side of the ammonia synthesis tower 46 in the ammonia flow direction.
  • the urea synthesis tower 61 synthesizes urea 62 using the ammonia 55 obtained in the ammonia synthesis tower 46.
  • the urea synthesis tower 61 those conventionally used in general can be used, and examples thereof include a urea synthesis tube that reacts ammonia and CO 2 in a tube.
  • the carbon dioxide branch supply line L33 is a line that branches from the carbon dioxide supply line L31 that supplies CO 2 from the carbon dioxide removal device 42 to the methanol synthesis tower 47 and is connected to the urea synthesis tower 61.
  • Ammonia 55 obtained in the ammonia synthesis tower 46 is supplied to the urea synthesis tower 61.
  • a part of CO 2 supplied from the carbon dioxide removing device 42 to the methanol synthesis tower 47 through the carbon dioxide supply line L31 is supplied from the carbon dioxide branch supply line L33 to the urea synthesis tower 61.
  • the urea and methanol production system 60 uses the ammonia 55 obtained in the ammonia synthesis tower 46 and the CO 2 separated by the carbon dioxide removal device 42 during the ammonia synthesis to produce urea 62 and methanol 56. Can be manufactured at the same time.
  • the urea and methanol production system 60 includes the reforming device 10, so that the thermal efficiency in reforming the natural gas 21 is the same as the ammonia and methanol production system 40 according to the second embodiment.
  • the case of producing ammonia and methanol has been described.
  • the case of producing urea and methanol has been described.
  • the second or third embodiment has been described.
  • the form is not limited to this, and the same can be used in the case where ammonia or urea and other hydrocarbons are simultaneously produced in parallel.
  • the said 2nd or 3rd embodiment demonstrated the case where the said chemical product production
  • the reformer 10 can be similarly used in a hydrogen production system for producing hydrogen, a system for producing liquid fuel of liquid hydrocarbons by FT synthesis, and the like. Moreover, you may make it manufacture combining these chemical products in multiple numbers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明に係る改質装置10は、圧縮機11と、熱交換器12と、脱硫装置13と、改質器14と、圧縮された天然ガス21を天然ガス21の流れ方向に対して脱硫装置13の下流側から抜きして改質器14に供給する原料ガス分岐ラインL11と、改質器14で発生した燃焼排ガス22を排出する燃焼排ガス排出ラインL12と、を有し、熱交換器12が燃焼排ガス排出ラインL12に設けられ、燃焼排ガス22を圧縮された天然ガス21の加熱媒体として用いる。

Description

改質装置およびそれを備えた化成品の製造装置
 本発明は、天然ガス等を改質する改質器の燃料として天然ガスを用いて天然ガスを改質する改質装置およびそれを備えた化成品の製造装置に関する。
 メタノールおよびアンモニアを製造する際、天然ガス等を改質器で改質した改質ガスが用いられている(例えば、特許文献1、2参照)。天然ガス等を改質器で改質して改質ガスとする際、天然ガスを改質器に供給する前に天然ガスの一部を抜き出して改質器の燃料として用い、改質器に供給した天然ガスを改質している。
特開平6-234517号公報 特許第4168210号公報
 特許文献1、2のように、従来から用いられているメタノールおよびアンモニアを製造する方法では、一般的に、まず天然ガスを改質圧まで圧縮している。そして、天然ガスを圧縮する前に脱硫していない天然ガスの一部を抜き出して改質器の燃料として使用している。今後、メタノールおよびアンモニアの生産効率の向上を図る上で、天然ガスを加熱する際に熱媒体から天然ガスへの熱回収量を向上させ、天然ガスを改質する際の熱効率の向上を図るため、改質装置を更に改善する必要がある。
 本発明は、上記に鑑みてなされたものであって、天然ガスを改質する際の熱効率を向上させることができる改質装置およびそれを備えた化成品の製造装置を提供することを目的とする。
 上述した課題を解決するため、本発明に係る改質装置は、炭化水素、硫黄を含む原料ガスを圧縮する第1圧縮部と、圧縮された前記原料ガスを加熱する熱交換部と、加熱された前記原料ガス中に含まれる硫黄分を除去する脱硫部と、前記原料ガス中の前記炭化水素をCOとCO2との何れか一方または両方に改質し、COとCO2との何れか一方または両方を含む改質ガスを生成する改質部と、圧縮された前記原料ガスを前記原料ガスの流れ方向に対して前記脱硫部の上流側と下流側との何れか一方または両方から抜き出して、前記改質部で加熱に用いる燃焼用燃料として供給する原料ガス分岐ラインと、前記改質部で燃焼により発生した燃焼排ガスを排出する燃焼排ガス排出ラインと、を有し、前記熱交換部が前記燃焼排ガス排出ラインに設けられ、前記燃焼排ガスは圧縮された前記原料ガスの加熱媒体として用いられることを特徴とする。
 本発明においては、前記改質部が、前記原料ガスに水蒸気を供給して、前記原料ガス中の炭化水素をCO、CO2の何れか一方または両方に一次改質する第1の改質部と、燃焼空気と前記原料ガス分岐ラインから供給される圧縮された前記原料ガスとを用いて、前記第1の改質部で一次改質後の前記原料ガス中の炭化水素をCO、CO2の何れか一方または両方に二次改質して改質ガスとする第2の改質部と、を有することが好ましい。
 本発明においては、前記燃焼排ガス排出ラインの前記改質部と前記熱交換部との間に設けられ、前記改質部で生成された燃焼排ガス中に含まれるNOxを除去する脱硝部と、前記燃焼排ガス排出ラインの前記燃焼排ガスの流れ方向に対して前記熱交換部よりも下流側に設けられ、前記燃焼排ガス中に含まれるCO2を除去するCO2回収部と、の何れか一方または両方を有することが好ましい。
 本発明に係る化成品の製造装置は、上記何れか1つに記載の改質装置と、前記改質ガスを用いて化成品を製造する化成品生成部と、を有することを特徴とする。
 本発明に係るアンモニアおよびメタノールの製造システムは、前記化成品生成部が、前記改質ガス中のCOをCO2に転化し、CO2を含むシフトガスを生成するCOシフト反応部と、前記シフトガス中のCO2を分離する炭酸ガス除去部と、前記炭酸ガス分離部でCO2が分離されたCO2除去ガス中のCO2をメタン化してメタンを生成するメタン化部と、前記メタン化部で生成した前記メタンを圧縮する複数の第2圧縮部と、何れかの前記第2圧縮部から排出される高圧の前記改質ガスからH2を分離する水素分離部と、前記第2圧縮部で水素が分離された前記メタンを用いてアンモニアを製造するアンモニア合成部と、前記炭酸ガス除去部で分離されたCO2と前記第2圧縮部で分離されたH2とを原料としてメタノールを合成するメタノール合成部と、を有し、アンモニアおよびメタノールを製造することを特徴とする。
 本発明の尿素およびメタノールの製造システムは、上記のアンモニアおよびメタノールの製造システムと、前記アンモニア合成部で得られたアンモニアを用いて尿素を合成する尿素合成部と、前記炭酸ガス除去部から前記メタノール合成部に供給されるCO2の一部を前記尿素合成部に供給する炭酸ガス分岐供給ラインと、を有することを特徴とする。
 本発明によれば、天然ガスを加熱する際に熱媒体から天然ガスへの熱回収量を向上させることができるため、天然ガスを改質する際の熱効率を向上させることができる。
図1は、本発明の第1の実施形態に係る改質装置の概略図である。 図2は、改質装置の他の構成の一例を示す図である。 図3は、改質装置の他の構成の一例を示す図である。 図4は、改質装置の他の構成の一例を示す図である。 図5は、改質装置の他の構成の一例を示す図である。 図6は、本発明の第2の実施形態に係るアンモニアおよびメタノールの製造システムの概略図である。 図7は、本発明の第3の実施形態に係る尿素およびメタノールの製造システムの概略図である。
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
[第1の実施形態]
<改質装置>
 本発明の第1の実施形態に係る改質装置について、図面を参照して説明する。図1は、本発明の第1の実施形態に係る改質装置の概略図である。図1に示すように、改質装置10は、圧縮機(圧縮手段)11と、熱交換器(熱交換手段)12と、脱硫装置(脱硫手段)13と、改質器14と、脱硝装置(脱硝手段)15と、熱交換器16と、冷却装置17と、CO2回収装置18と、原料ガス分岐ラインL11と、燃焼排ガス排出ラインL12と、を有するものである。
 なお、本実施形態では、炭化水素、硫黄を含む原料ガスとして、天然ガス21を用いているが、これに限定されるものではなく、炭化水素を含む原料ガスであればよく、例えば、液化石油ガス(Liquefied Petroleum Gas:LPG)、ブタンあるいはナフサ等他の炭化水素から得られる合成ガス、原油や天然ガスの生産に随伴して生産される天然ガス液(Natural Gas Liquid:NGL)、メタンハイドレートなどが挙げられる。
 圧縮機11は天然ガス21を圧縮するものであり、天然ガス21を所定の圧力にまで上昇させる。天然ガス21は原料ガス供給ラインL13-1を通って圧縮機11に供給される。天然ガス21は圧縮機11で所定の圧力にまで上昇させ、高温にした後、原料ガス供給ラインL13-2を通って熱交換器12に供給される。
 熱交換器12は、圧縮された天然ガス21を加熱するものである。熱交換器12は、燃焼排ガス排出ラインL12に設けられている。熱交換器12としては、シェルアンドチューブ式熱交換器(多管式熱交換器)が用いられる。熱交換器12は、シェル(胴体)側を2次側として、胴体内に天然ガス21を流通させ、熱交換器12のチューブ(伝熱管)側を1次側として、伝熱管内に、後述するように、改質器14から排出される燃焼排ガス22を加熱媒体として流通させる。熱交換器12は、伝熱管側に供給される燃焼排ガス22を熱源として用い、天然ガス21を胴体内に流通させて、伝熱管の外面を被加熱面として天然ガス21を加熱する。
 なお、熱交換器12はシェルアンドチューブ式熱交換器に限定されるものではなく、天然ガス21と燃焼排ガス22とを間接的に熱交換できるものであればよい。
 天然ガス21は熱交換器12で燃焼排ガス22と熱交換され加熱された後、原料ガス供給ラインL13-3を通って脱硫装置13に供給される。
 脱硫装置13は、加熱された天然ガス21中に含まれる硫黄酸化物(SOx)などの硫黄分(S分)を除去するものである。脱硫装置13は従来より公知のものが用いられ、湿式または乾式のいずれでも用いることができる。脱硫装置13が湿式法で天然ガス21中のS分を除去する吸収塔である場合、脱硫装置13では、アルカリ吸収液として例えば石灰スラリー(水に石灰石粉末を溶解させた水溶液)が用いられ、塔内の温度は30℃~80℃程度に調節されている。石灰スラリーは脱硫装置13の塔底部に供給される。脱硫装置13の塔底部に供給された石灰スラリーは吸収液送給ラインなどを介して脱硫装置13内の複数のノズルに送られ、前記ノズルから例えば吸収塔の塔頂部側に向かって噴出される。脱硫装置13の塔底部側から上昇してくる天然ガス21が前記ノズルから噴出する石灰スラリーと気液接触することにより、天然ガス21中のS分が石灰スラリーにより吸収され、天然ガス21から分離、除去される。脱硫装置13の内部において、天然ガス21中のS分は石灰スラリーと下記式(1)で表される反応を生じる。さらに、天然ガス21中のS分を吸収した石灰スラリーは、脱硫装置13の塔底部に供給される空気(図示せず)により酸化処理され、空気と下記式(2)で表される反応を生じる。このようにして、天然ガス21中のS分は脱硫装置13において石膏CaSO・2HOの形で捕獲される。
CaCO + SO + 0.5HO → CaSO・0.5HO + CO ・・・(1)
CaSO・0.5HO + 0.5O + 1.5HO → CaSO・2HO ・・・(2)
 石灰スラリーにより浄化された天然ガス21は脱硫装置13の塔頂部側より排出される。その後、天然ガス21は原料ガス供給ラインL13-4を通って改質器14内に供給される。原料ガス供給ラインL13-4は水蒸気供給ラインL14と連結されている。水蒸気24は水蒸気供給ラインL14を通って原料ガス供給ラインL13-4内に供給され、天然ガス21と混合される。天然ガス21は水蒸気供給ラインL14中で水蒸気24が混合された後、改質器14内に供給される。
 改質器14は、天然ガス21中の炭化水素をCO、CO2の何れか一方または両方に改質し、CO、CO2の何れか一方または両方を含む改質ガス23を生成するものである。改質器14は、本体14aと、触媒反応管14bと、バーナ14cとを有する。触媒反応管14bは、本体14aの内部に設けられ、触媒反応管14b内には改質触媒を備える改質触媒層を備えている。バーナ14cは本体14aの内部に設けられ、燃焼空気26を燃焼して燃焼排ガス22を発生させ、触媒反応管14bを加熱する。バーナ14cは空気供給ラインL15と連結されている。燃焼空気26が空気供給ラインL15を通ってバーナ14cに供給される。燃焼空気26は、後述するように、熱交換器16で燃焼排ガス22と熱交換されて加熱された後、改質器14に供給される。触媒反応管14bは燃焼排ガス22により加熱されて、天然ガス21が触媒反応管14bの前記改質触媒層を通過する際に前記改質触媒と接触することで、下記式(3)、(4)のように、天然ガス21中の炭化水素がCO、CO2に改質される。これにより、CO、CO2を含む改質ガス23が生成される。この改質ガス23のガス温度は、例えば400℃~1000℃の範囲内になっている。
CH4 + H2O → CO + 3H2 ・・・(3)
CH4 + 2H2O → CO2 + 4H2 ・・・(4)
 原料ガス分岐ラインL11は、脱硫装置13の下流側と空気供給ラインL15とを連結している。原料ガス分岐ラインL11は、圧縮機11で圧縮された天然ガス21を天然ガス21の流れ方向に対して脱硫装置13の下流側から抜き出して空気供給ラインL15を通過する燃焼排ガス22に混合する。天然ガス21中に含まれるS分は脱硫装置13で除去されているため、S分を含まない天然ガス21が空気供給ラインL15に供給される。
 改質器14で生成された改質ガス23は、水素、液体炭化水素、メタノールまたはアンモニアなどを合成するための原料ガスとして用いられる。また、改質器14から排出される燃焼排ガス22は燃焼排ガス排出ラインL12を通って脱硝装置15に供給される。
 燃焼排ガス排出ラインL12は改質器14で燃焼空気26を用いて燃料用として原料ガス分岐ラインL11に抜き出した天然ガス21を含む燃料を燃焼して発生した燃焼排ガス22を排出するためのラインである。燃焼排ガス排出ラインL12はその途中に脱硝装置15と、脱硝装置15の上流側に還元剤注入器28とを備えている。燃焼排ガス排出ラインL12を通る燃焼排ガス22は脱硝装置15に供給される途中で還元剤注入器28から還元剤29が燃焼排ガス22に供給される。還元剤29としては、例えばアンモニア(NH3)、尿素(NH2(CO)NH2)、塩化アンモニウム(NH4Cl)などが用いられる。還元剤29は、還元剤29を含む溶液または気体で燃焼排ガス排出ラインL12に供給される。還元剤29を含む溶液が燃焼排ガス排出ラインL12に供給される場合、還元剤29を含む溶液の液滴は燃焼排ガス22の高温雰囲気温度により蒸発して気化される。
 燃焼排ガス22は還元剤29を含んだ状態で燃焼排ガス排出ラインL12を通って脱硝装置15に供給される。
 脱硝装置15は、燃焼排ガス排出ラインL12の改質器14と熱交換器12との間に設けられ、改質器14で生成された燃焼排ガス22中に含まれる窒素酸化物(NOx)を除去するものである。脱硝装置15は、従来より公知のものが用いられ、例えば脱硝装置15はその内部に燃焼排ガス22中のNOxを除去する脱硝触媒が充填されている脱硝触媒層を備えたものが用いられる。脱硝装置15内に供給された燃焼排ガス22は、脱硝触媒層に充填されている脱硝触媒と接触することにより、脱硝触媒上で燃焼排ガス22中のNOxは下記式(5)のように還元剤29と還元反応が進行して還元され、窒素ガス(N)と水(HO)に分解・除去される。
4NO+4NH3+O2 → 4N2+6H2O・・・(5)
 燃焼排ガス22は脱硝装置15で燃焼排ガス22中のNOxが除去された後、熱交換器12に供給される。そして、熱交換器12において、燃焼排ガス22は、上述の通り、天然ガス21と熱交換されて天然ガス21を加熱する。その後、燃焼排ガス22は燃焼排ガス排出ラインL12を通って熱交換器12から熱交換器16に供給される。
 熱交換器16は、燃焼空気26を加熱するものである。熱交換器16は、熱交換器12と同様、燃焼排ガス排出ラインL12に設けられている。熱交換器16としては、熱交換器12と同様、シェルアンドチューブ式熱交換器(多管式熱交換器)が用いられる。熱交換器16は、シェル(胴体)側を2次側として、胴体内に燃焼空気26を流通させ、チューブ(伝熱管)側を1次側として、伝熱管内に燃焼排ガス22を流通させる。熱交換器16は伝熱管側に供給される燃焼排ガス22を熱源として用い、燃焼空気26を胴体内に流通させて、伝熱管の外面を被加熱面として燃焼空気26を加熱する。
 燃焼排ガス22は熱交換器16で燃焼空気26と熱交換された後、冷却装置17に供給される。また、燃焼空気26は、熱交換器16で燃焼排ガス22と熱交換されて加熱された後、改質器14に供給される。
 冷却装置17は、燃焼排ガス22を冷却するものである。冷却装置17は、その内部と外部を冷却水30が循環する冷却塔である。冷却装置17では、塔頂部側から冷却水30を供給し、塔内部に供給された燃焼排ガス22を冷却水30と気液接触させて冷却する。冷却水30は燃焼排ガス22と気液接触した後、塔底部に貯留され、外部に抜き出されて冷却器で冷却された後、再度、塔内に供給され、燃焼排ガス22と気液接触させる。なお、冷却装置17は、燃焼排ガス22を冷却水30と直接接触させて燃焼排ガス22を冷却する装置に限定されるものではなく、燃焼排ガス22を冷却水30と間接的に熱交換させて冷却するものでもよい。
 燃焼排ガス22は冷却装置17で冷却された後、CO2回収装置18に供給される。
 CO2回収装置18は、燃焼排ガス22中に含まれるCO2を除去するものである。CO2回収装置18は、燃焼排ガス排出ラインL12の燃焼排ガス22の流れ方向に対して熱交換器16よりも下流側に設けられる。CO2回収装置18は従来より公知のものを用いることができる。CO2回収装置18としては、例えば、塔内でアミン系のCO2吸収液と燃焼排ガス22とを気液接触させてCO2吸収液中に燃焼排ガス22中のCO2を吸収するCO2吸収塔と、塔内でCO2吸収液に吸収されたCO2を放散してCO2吸収液を再生する再生塔とを備えた装置などを用いることができる。燃焼排ガス22はCO2吸収塔内でCO2吸収液と気液接触させることで、燃焼排ガス22中のCO2はCO2吸収液に吸収され、燃焼排ガス22中のCO2が除去される。燃焼排ガス22はCO2回収装置18で燃焼排ガス22中に含まれるCO2が除去された後、浄化ガスとして大気中に放出される。
 このように、改質装置10は原料ガス分岐ラインL11を備え、原料ガス分岐ラインL11により圧縮機11で圧縮された天然ガス21の一部を天然ガス21の流れ方向に対して脱硫装置13の下流側から抜き出して、改質器14の燃料として用いている。このため、従来のように熱交換器12に天然ガス21を供給する前に天然ガス21の一部を抜き出す場合に比べて熱交換器12に供給される天然ガス21の供給量を増大させることができる。この結果、熱交換器12で燃焼排ガス22と熱交換される天然ガス21の量を増大させることができるため、燃焼排ガス22の有する熱を天然ガス21に更に多く回収することができる。よって、改質装置10によれば、天然ガス21を加熱する際に、燃焼排ガス22から天然ガス21への熱回収量を向上させることができるため、天然ガス21を改質する際の熱効率を向上させることができる。また、圧縮機11で圧縮した後の天然ガス21は高温となっているため、改質器14で燃料として用いるために要する天然ガス21の量を低減することができる。
 例えば、熱交換器12で焼焼排ガス22で天然ガス21を加熱する際に焼焼排ガス22からの天然ガス21の熱回収量は、従来のように圧縮機11に天然ガス21を供給する前に抜き出す場合に比べて、例えば40%~50%程度向上させることができる。圧縮機11で圧縮した後の天然ガス21は圧縮機11で圧縮する前の天然ガス21よりも高温となっているため、改質器14で燃料として用いられる天然ガス21の量を例えば1%~1.5%程度低減することができる。
 また、原料ガス分岐ラインL11は、脱硫装置13の下流側と空気供給ラインL15とを連結し、圧縮機11で圧縮された天然ガス21を天然ガス21の流れ方向に対して脱硫装置13の下流側から抜き出して空気供給ラインL15を通過する燃焼排ガス22に混合している。天然ガス21中に含まれるS分は脱硫装置13で除去されているため、空気供給ラインL15にはS分を含まない天然ガス21を供給することができる。この結果、改質器14から排出される燃焼排ガス22中にはS分が含まれないため、燃焼排ガス22が熱交換器12で天然ガス21と熱交換して燃焼排ガス22の温度が低下しても、燃焼排ガス排出ラインL12の熱交換器12よりも燃焼排ガス22のガス流れ方向の後流側で燃焼排ガス排出ラインL12に腐食が生じることを抑制することができる。すなわち、特許文献1、2などのように従来から用いられているメタノールおよびアンモニアを製造する方法では、一般に脱硫していない天然ガスの一部を抜き出して改質器の燃料として使用している場合が多い。そのため、燃焼排ガスの熱回収量を増大して燃焼排ガスの温度が低下した場合などでは、燃焼排ガスが通る配管の通路内で燃焼排ガス中に含まれる無水硫酸などS分に起因して硫酸腐食を生じる可能性がある。硫酸腐食とは、燃焼排ガスの温度が燃焼排ガス中に含まれる無水硫酸などS分の酸の露点温度以下となって、燃焼排ガス中に含まれるS分が水分と結合して硫酸(H2SO4)となって凝縮し、金属を腐食させることをいう。そのため、燃焼排ガスが通る配管の材料には硫酸など酸に対して高い耐食性を有する耐酸鋼を使用する必要がある。これに対し、本実施形態では、改質器14から排出される燃焼排ガス22はS分を含んでいないため、燃焼排ガス22が熱交換器12で天然ガス21と熱交換して燃焼排ガス22の温度が低下しても燃焼排ガス排出ラインL12の熱交換器12よりも燃焼排ガス22のガス流れ方向の後流側で燃焼排ガス排出ラインL12の通路内に腐食が生じることを抑制できる。そのため、燃焼排ガス排出ラインL12の材料は耐酸鋼に限定されることなく他の材料を用いることができ、適用範囲を広げることができる。
 また、特許文献1、2などのように従来から用いられているメタノールおよびアンモニアを製造する方法では、燃焼排ガスが通る配管の通路内に硫酸腐食を生じる可能性を考慮して、燃焼排ガスと天然ガスとを熱交換させる熱交換器で燃焼排ガスが保有する熱の回収を十分に行えない。そのため、メタノールおよびアンモニアを製造するプラント設備の運転費用は高くなり、製品の製造コストが高くなる可能性がある。これに対し、本実施形態では、燃焼排ガス22の温度が熱交換器12で低下しても燃焼排ガス排出ラインL12に腐食が生じるのを抑制することができるため、燃焼排ガス22を更に冷却することが可能となる。そのため、熱交換器12において燃焼排ガス22が保有する熱を天然ガス21により多く回収することができ、改質装置10の熱効率を向上させることができる。
 また、燃焼排ガス排出ラインL12に脱硝装置15などが設置されている場合にはアンモニアなどの還元剤29を煙道中に供給するが、特許文献1、2などのように従来から用いられているメタノールおよびアンモニアを製造する方法では、未反応のアンモニア(リークアンモニアともいう)とS分が反応して硫酸アンモニウム、硫酸水素アンモニウムなどが析出する可能性があった。硫酸アンモニウムは燃焼排ガスと天然ガスとを熱交換させる熱交換器内の伝熱管やコイルなどに析出して燃焼排ガスが通る配管内を閉塞して圧力損失を増大させる可能性がある。硫酸水素アンモニウムは燃焼排ガスと天然ガスとを熱交換させる熱交換器、燃焼排ガスが通る配管を形成する材料などに腐食を生じさせる可能性がある。これに対し、本実施形態では、改質器14から排出される燃焼排ガス22にはS分が存在していないため、アンモニアなどの還元剤29を脱硝装置15の上流側で燃焼排ガス排出ラインL12中に供給しても、未反応のアンモニアなどの還元剤29とS分が反応して硫酸アンモニウム、硫酸水素アンモニウムなどが生成されるのを抑制することができる。これにより、燃焼排ガス排出ラインL12中に硫酸アンモニウム、硫酸水素アンモニウムなどが堆積して燃焼排ガス排出ラインL12内の圧力損失の増加、燃焼排ガス排出ラインL12の通路内の腐食等が生じるのを抑制することができる。
 また、環境規制等に対応するため、CO2回収装置18を設け、燃焼排ガス22に含まれるCO2を除去するようにしているが、特許文献1、2などのように従来から用いられているメタノールおよびアンモニアを製造する方法では、CO2回収装置よりも燃焼排ガスのガス流れ方向の上流側に脱硫装置を設け、CO2回収装置の入口での燃焼排ガス中の硫黄濃度を所定値(例えば1ppm)以下とする必要がある。また、脱硫装置を設ける分だけ設置する装置数が多くなり、各装置を配置する場所が限定されると共に設備費用が増大する。これに対し、本実施形態では、改質器14から排出される燃焼排ガス22にはS分が存在しないため、CO2回収装置18よりも燃焼排ガス22のガス流れ方向の上流側に脱硫装置を設けることなく、燃焼排ガス22中のCO2を回収することができる。そのため、燃焼排ガス22中のCO2を回収するために要する設備費用の低減を図ることができる。
 なお、本実施形態においては、改質装置10は、改質器14を1つだけ備えているが、これに限定されるものではなく、改質器14は複数備えていてもよい。図2は、改質装置10の他の構成の一例を示す図である。図2に示すように、改質器14は、第1改質器14-1と、第2改質器14-2とを備えていてもよい。
 第1改質器14-1は、天然ガス21に水蒸気24を供給して、天然ガス21中の炭化水素をCO、CO2の何れか一方両方に一次改質するものである。第1改質器14-1は、本体と、その内部に改質触媒を備える改質触媒層とを有する。また、第1改質器14-1は水蒸気供給ラインL14と連結されている。水蒸気24は水蒸気供給ラインL14を通って第1改質器14-1内に供給され、天然ガス21と混合される。天然ガス21は前記本体内で水蒸気24が混合された後、前記改質触媒層に供給される。天然ガス21は第1改質器14-1内の前記改質触媒層を通過する際に前記改質触媒と接触することで、下記式(3)、(4)のように、天然ガス21中の炭化水素がCO、CO2に一次改質される。
CH4 + H2O → CO + 3H2 ・・・(3)
CH4 + 2H2O → CO2 + 4H2 ・・・(4)
 天然ガス21は第1改質器14-1で一次改質された後、第2改質器14-2に供給される。
 第2改質器14-2は、一次改質後の天然ガス21を燃焼空気26と原料ガス分岐ラインL11から燃料用として抜き出した天然ガス21を用いて加熱して、天然ガス21中の炭化水素をCO、CO2の何れか一方または両方に二次改質するものである。第2改質器14-2は、本体14aと、触媒反応管14bと、バーナ14cとを有する。触媒反応管14bはバーナ14cで燃焼により発生した燃焼排ガス22により加熱されて、一次改質後の天然ガス21が触媒反応管14bの前記改質触媒層を通過する際に前記改質触媒と接触することで、上記式(3)、(4)のように、天然ガス21中の炭化水素がCO、CO2の何れか一方または両方に二次改質すると共に部分酸化される。
 改質器14が第1改質器14-1と第2改質器14-2との2段で構成される場合、第2改質器14-2から排出される燃焼排ガス22の一部または全部を第1改質器14-1の改質触媒層の加熱用の加熱媒体として用いてもよい。
 また、本実施形態においては、原料ガス分岐ラインL11は、空気供給ラインL15と接続するように設け、天然ガス21を燃焼空気26と共に空気供給ラインL15を通って改質器14内に供給するようにしているが、これに限定されるものではなく、図3に示すように、原料ガス分岐ラインL11を改質器14に接続して天然ガス21と燃焼空気26とをそれぞれ別々に改質器14内に供給するようにしてもよい。
 また、本実施形態においては、原料ガス分岐ラインL11が天然ガス21の流れ方向に対して脱硫装置13の下流側と接続するように設けられているが、これに限定されるものではなく、図4に示すように、脱硫装置13の上流側と空気供給ラインL15とを接続する原料ガス分岐ラインL21を設け、天然ガス21の一部を原料ガス分岐ラインL21が天然ガス21の流れ方向に対して脱硫装置13の上流側から抜き出すようにしてもよい。また、図5に示すように、原料ガス分岐ラインL11、L21を設け、天然ガス21の一部を天然ガス21の流れ方向に対して脱硫装置13の上流側および下流側から抜き出すようにしてもよい。
 また、本実施形態においては、改質装置10は脱硝装置15を備えているがこれに限定されるものではなく、脱硝装置15は備えなくてもよい。
 また、本実施形態においては、改質装置10は、冷却装置17およびCO2回収装置18を備えているが、これに限定されるものではなく、燃焼排ガス22中に含まれるCO2の回収が不要な場合などにはこれらの装置は備えなくてもよい。
 以上のように、改質装置10は、上記のような諸特性を有することから、改質装置10で得られる改質ガス23を用いて化成品の製造等に用いることができる。化成品として、具体的には、例えば、アンモニア、メタノール、尿素、水素、FT合成によりワックス、軽油、灯油、ガソリンなどの液体炭化水素の液体燃料等が挙げられる。特に、改質装置10をアンモニアおよびメタノールの製造システムまたは尿素およびメタノールの製造システムに適用することで、メタノールおよびアンモニアの製造効率または尿素およびメタノールの製造効率の向上を図ることができる。
[第2の実施形態]
<化成品の製造装置>
 次に、上記図1に示す第1の実施形態に係る改質装置10を化成品の製造装置に適用した場合の一例について、図面を参照して説明する。化成品の製造装置は、改質装置10と、改質装置10で得られる改質ガス23を用いて化成品を製造する化成品生成部とを有するものである。本実施形態では、化成品としてアンモニアおよびメタノールを製造する場合について説明する。
[アンモニアおよびメタノールの製造システム]
 図6は、本発明の第2の実施形態に係るアンモニアおよびメタノールの製造システムの概略図である。なお、上記図1に示す第1の実施形態に係る改質装置と同様の構成については同一であるため、重複した説明は省略する。図6に示すように、アンモニアおよびメタノールの製造システム40は、改質装置10と、COシフト反応装置(COシフト反応部)41と、炭酸ガス除去装置(炭酸ガス除去部)42と、メタン化装置(メタン化部)43と、圧縮機44-1、44-2、水素分離装置(水素分離部)45と、アンモニア合成塔(アンモニア合成部)46と、メタノール合成塔(メタノール合成部)47とを有するものである。なお、本実施形態では、COシフト反応装置41、炭酸ガス除去装置42、メタン化装置43と、圧縮機44-1、44-2、水素分離装置45、アンモニア合成塔46、およびメタノール合成塔47を化成品生成部とする。
(COシフト反応装置)
 COシフト反応装置41は、改質ガス23中のCOをCO2に転化(シフト)し、CO2を含むシフトガス51を生成するものである。COシフト反応装置41は、例えば、COをCO2に転化(シフト)するCOシフト反応用触媒を充填した充填部を備えるCOシフト反応器などが用いられる。
 改質装置10で天然ガス21を改質して得られた改質ガス23は、改質装置10から排出され、COシフト反応装置41に供給される。COシフト反応装置41では、下記式(6)のように、改質ガス23中のCOをCO2に転化し、CO2を含むシフトガス51を生成する。また、シフトガス51のガス温度は、例えば150℃~1000℃の範囲内になっている。
CO + H2O → CO2 + H2 ・・・(6)
 COシフト反応装置41で生成されたシフトガス51は、COシフト反応装置41から排出され、炭酸ガス除去装置42に供給される。
(炭酸ガス除去装置)
 炭酸ガス除去装置42は、シフトガス51中の炭酸ガス(CO2)を除去するものである。炭酸ガス除去装置42としては、例えば、アミン溶剤などCO2吸収液を用いて化学吸着を利用してシフトガス51中のCO2を除去する装置、CO2を除去する触媒を備えた装置、またはシフトガス51中のCO2を分離する分離膜を備えた膜分離装置などが用いられる。炭酸ガス除去装置42で、シフトガス51中のCO2を除去して、CO2とCO2が除去されたCO2除去ガス52とを生成する。また、CO2除去ガス52のガス温度は、例えば50℃程度である。
 炭酸ガス除去装置42は、炭酸ガス供給ラインL31と連結されている。炭酸ガス除去装置42でシフトガス51から分離されたCO2は、炭酸ガス供給ラインL31を通ってメタノール合成塔47に供給され、メタノール合成用のガスとして用いられる。
 炭酸ガス除去装置42から排出されたCO2除去ガス52は、メタン化装置43に供給される。
(メタン化装置)
 メタン化装置43は、炭酸ガス除去装置42でCO2が除去されたCO2除去ガス52中のCO2をメタン化するものである。メタン化装置43としては、例えば、内部にメタネーション触媒を充填した触媒部を備えたメタネーション反応器(メタネータ)などが用いられる。前記触媒部での反応温度(メタネーション温度)は、メタネーション触媒が使用できる限界温度の観点から、220℃以上450℃以下であることが好ましく、より好ましくは290℃以上350℃以下である。
 メタン化装置43では、下記式(7)のように、CO2除去ガス52中のCO2をメタン化し、メタンを含むCO2除去ガス53を生成する。
CO2 + 4H2 → CH4 + 2H2O ・・・(7)
 メタン化装置43から排出されたCO2除去ガス53は、圧縮機44-1に供給される。
(圧縮機)
 圧縮機44-1、44-2は、CO2除去ガス53を圧縮するものである。圧縮機44-1は低圧圧縮機であり、圧縮機44-2は高圧圧縮機である。圧縮機44-1、44-2でCO2除去ガス53の圧力をアンモニア合成に好適な圧力に適宜調整される。本実施形態では、圧縮機44-1、44-2は低圧と高圧との二段としているが、これに限定されるものではなく、圧縮機を一段としてもよいし、低圧圧縮機と中圧圧縮機と高圧圧縮機との三段とするなど複数段としてもよい。
 圧縮機44-1でCO2除去ガス53の圧力を上昇させた後、CO2除去ガス53は水素分離装置45に供給される。
(水素分離装置)
 水素分離装置45は、圧縮機44-1と圧縮機44-2との間に設けられる。水素分離装置45は、CO2除去ガス53からCO2除去ガス53に含まれる一部の水素(H2)を分離するものである。水素分離装置45は、水素透過性機能膜を備えた膜分離装置である。なお、本実施形態において、水素透過性機能膜とは、ガス中に含まれる少なくとも一部のH2を分離するための膜である。
 水素透過性機能膜としては、例えば、パラジウム(Pd)膜、ポリスルフォン、ポリアミド、ポリイミド等の高分子膜や、中空糸状に成形されたものを多数束ねたものを使用することが好ましい。水素透過性機能膜は、材質、使用条件、寿命、水素透過係数、選択率を基に適宜最適な設計とすることができる。
 水素分離装置45で、CO2除去ガス53は水素透過性機能膜を透過することで、CO2除去ガス53に含まれる水素は水素透過性機能膜で分離される。水素分離装置45で水素が分離されたCO2除去ガス53は、水素分離装置45から排出される。
 水素分離装置45は、水素供給ラインL32と連結されており、水素分離装置45においてシフトガス51から分離された水素の一部は、水素供給ラインL32を通ってメタノール合成塔47に供給され、メタノール合成用のガスとして用いられる。
 なお、本実施形態において、水素分離装置45として、水素透過性機能膜を備えた膜分離装置を用いているが、これに限定されるものではなく、例えば圧力スイング吸着装置(PSA)等を用いることができ、CO2除去ガス53中に含まれる少なくとも一部の水素を分離できる装置であればよい。
 水素分離装置45から排出されたCO2除去ガス53は圧縮機44-2に供給される。圧縮機44-2でCO2除去ガス53の圧力をアンモニア合成に好適な圧力に適宜調整された後、CO2除去ガス53はアンモニア合成塔46に供給される。また、水素分離装置45で分離された水素は水素供給ラインL32を通ってメタノール合成塔47に供給される。
(アンモニア合成塔)
 アンモニア合成塔46は、メタン化装置43でCO2除去ガス53中のCO2をメタン化した後、アンモニア(NH3)55を製造するものである。アンモニア合成塔46は、従来より一般的に用いられているものを用いることができ、例えば、反応器内の1つ以上の床に触媒を配置したアンモニア合成反応器などが挙げられる。このアンモニア合成反応器に、窒素(N2)および水素を含有する合成ガスとしてCO2除去ガス53を流してアンモニアを合成する方法などが用いられる。
 アンモニア合成塔46では、下記式(8)のように、CO2除去ガス53中の窒素と水素とが反応して、アンモニア55を生成する。
2 + 3H2 → 2NH3 ・・・(8)
 水素分離装置45で分離された水素は水素供給ラインL32を通り、炭酸ガス除去装置42で分離されたCO2は炭酸ガス供給ラインL31を通り、水素分離装置45で分離された水素および炭酸ガス除去装置42で分離されたCO2は、メタノール合成塔47に供給される。
(メタノール合成塔)
 メタノール合成塔47は、炭酸ガス除去装置42で分離された二酸化炭素と圧縮機44-1、44-2で分離された水素とを原料としてメタノール56を合成するものである。メタノール合成塔47は、従来より一般的に用いられているものを用いることができ、例えば、触媒反応器を有するメタノール合成装置などが用いられる。
 メタノール合成塔47では、下記式(9)のように、CO2除去ガス52中の水素と一酸化炭素とが反応して、メタノール56を生成する。
2H2 + CO → 2CH3OH ・・・(9)
 よって、アンモニアおよびメタノールの製造システム40は、アンモニア合成塔46で得られたアンモニア55と、炭酸ガス除去装置42で分離された二酸化炭素と水素分離装置45で分離された水素とを用いてメタノール56を得ることができ、アンモニア55およびメタノール56を並列して同時に製造することができる。
 このように、アンモニアおよびメタノールの製造システム40は、改質装置10を備えることで天然ガス21を改質する際の熱効率を向上させることができると共に燃焼排ガス22を処理する過程において燃焼排ガス排出ラインL12の通路内に腐食が生じることを抑制できる。よって、アンモニアおよびメタノールの製造システム40によれば、アンモニア55およびメタノール56を安定して生産することができると共にアンモニア55およびメタノール56の生産効率を向上させることができる。
 なお、本実施形態においては、圧縮機44-1と圧縮機44-2との間に水素分離装置45を設け、水素分離装置45で分離された全てのCO2除去ガス53中の水素を分離するようにしているが、これに限定されるものではなく、圧縮機44-1または圧縮機44-2で分離されたCO2除去ガス53の一部のみを水素分離装置45に供給して水素分離装置45でCO2除去ガス53中の水素を分離するようにしてもよい。
[第3の実施形態]
 上記図1に示す第1の実施形態に係る改質装置10を化成品として尿素およびメタノールを製造するシステムに適用した場合の一例について、図面を参照して説明する。なお、上記図1に示す第1の実施形態に係る改質装置10および図6に示す第2の実施形態に係るアンモニアおよびメタノールの製造システム40と同様の構成については同一であるため、重複した説明は省略する。
 図7は、本発明の第3の実施形態に係る尿素およびメタノールの製造システムの概略図である。図7に示すように、尿素およびメタノールの製造システム60は、図6に示す第2の実施形態に係るアンモニアおよびメタノールの製造システム40に、尿素合成塔(尿素合成部)61と、炭酸ガス分岐供給ラインL33とを備えたものである。
 尿素合成塔61はアンモニア合成塔46のアンモニア流れ方向の後流側に設けられている。尿素合成塔61はアンモニア合成塔46で得られたアンモニア55を用いて尿素62を合成するものである。尿素合成塔61は、従来より一般に用いられているものを用いることができ、例えば、アンモニアとCO2とを管内で反応させる尿素合成管などが挙げられる。
 炭酸ガス分岐供給ラインL33は、炭酸ガス除去装置42からメタノール合成塔47にCO2を供給する炭酸ガス供給ラインL31から分岐し、尿素合成塔61と連結するラインである。
 アンモニア合成塔46で得られたアンモニア55は、尿素合成塔61に供給される。また、炭酸ガス除去装置42から炭酸ガス供給ラインL31を通ってメタノール合成塔47に供給されるCO2の一部は、炭酸ガス分岐供給ラインL33から尿素合成塔61に供給される。
 尿素合成塔61では、アンモニア合成塔46で得られたアンモニア55と、炭酸ガス除去装置42で分離されたCO2とが、下記反応式(10)のように反応して、尿素(NH2(CO)NH2)を合成している。
2NH3+CO2→NH2(CO)NH2+H2 ・・・(10)
 よって、尿素およびメタノールの製造システム60は、アンモニア合成塔46で得られたアンモニア55と、アンモニア合成の際に炭酸ガス除去装置42で分離されたCO2とを用いて、尿素62およびメタノール56を同時に製造することができる。
 このように、尿素およびメタノールの製造システム60は、改質装置10を備えることで、上記第2の実施形態に係るアンモニアおよびメタノールの製造システム40と同様、天然ガス21を改質する際の熱効率を向上させることができると共に燃焼排ガス22を処理する過程において燃焼排ガス排出ラインL12の通路内に腐食が生じることを抑制できる。よって、尿素およびメタノールの製造システム60によれば、尿素62およびメタノール56を安定して生産することができると共に尿素62およびメタノール56の生産効率を向上させることができる。
 なお、上記第2の実施形態においては、アンモニアおよびメタノールを製造する場合について説明し、第3の実施形態においては、尿素およびメタノールを製造する場合について説明したが、上記第2または第3の実施形態はこれに限定されるものではなく、アンモニアまたは尿素と他の炭化水素などを並列に同時に製造する場合においても同様に用いることができる。
 また、上記第2または第3の実施形態においては、改質装置10を用いて前記化成品生成部が化成品としてアンモニアまたは尿素とメタノールとを製造する場合について説明したが、これらに限定されるものではなく、改質装置10は水素を製造する水素製造システム、FT合成により液体炭化水素の液体燃料を製造するシステムなどにおいても同様に用いることができる。また、これらの化成品を複数組み合わせて製造するようにしてもよい。
 10 改質装置
 11 圧縮機(第1圧縮部)
 12 熱交換器(熱交換部)
 13 脱硫装置(脱硫部)
 14 改質器(改質部)
 14a 本体
 14b 触媒反応管
 14c バーナ
 14-1 第1改質器
 14-2 第2改質器
 15 脱硝装置(脱硝部)
 16 熱交換器
 17 冷却装置
 18 CO2回収装置(CO2回収部)
 21 天然ガス
 22 燃焼排ガス
 23 改質ガス
 24 水蒸気
 26 燃焼空気
 28 還元剤注入器
 29 還元剤
 30 冷却水
 40 アンモニアおよびメタノールの製造システム
 41 COシフト反応装置(COシフト反応部)
 42 炭酸ガス除去装置(炭酸ガス除去部)
 43 メタン化装置(メタン化部)
 44-1、44-2 圧縮機(第2圧縮部)
 45 水素分離装置(水素分離部)
 46 アンモニア合成塔(アンモニア合成部)
 47 メタノール合成塔(メタノール合成部)
 51 シフトガス
 52、53 CO2除去ガス
 55 アンモニア
 56 メタノール
 60 尿素およびメタノールの製造システム
 61 尿素合成塔
 62 尿素
 L11、L21 原料ガス分岐ライン
 L12 燃焼排ガス排出ライン
 L13-1~L13-4 原料ガス供給ライン
 L14 水蒸気供給ライン
 L15 空気供給ライン
 L31 炭酸ガス供給ライン
 L32 水素供給ライン
 L33 炭酸ガス分岐供給ライン

Claims (6)

  1.  炭化水素、硫黄を含む原料ガスを圧縮する第1圧縮部と、
     圧縮された前記原料ガスを加熱する熱交換部と、
     加熱された前記原料ガス中に含まれる硫黄分を除去する脱硫部と、
     前記原料ガス中の前記炭化水素をCOとCO2との何れか一方または両方に改質し、COとCO2との何れか一方または両方を含む改質ガスを生成する改質部と、
     圧縮された前記原料ガスを前記原料ガスの流れ方向に対して前記脱硫部の上流側と下流側との何れか一方または両方から抜き出して、前記改質部で加熱に用いる燃焼用燃料として供給する原料ガス分岐ラインと、
     前記改質部で燃焼により発生した燃焼排ガスを排出する燃焼排ガス排出ラインと、
    を有し、
     前記熱交換部が前記燃焼排ガス排出ラインに設けられ、前記燃焼排ガスは圧縮された前記原料ガスの加熱媒体として用いられることを特徴とする改質装置。
  2.  請求項1において、
     前記改質部が、
     前記原料ガスに水蒸気を供給して、前記原料ガス中の炭化水素をCO、CO2の何れか一方または両方に一次改質する第1の改質部と、
     燃焼空気と前記原料ガス分岐ラインから供給される圧縮された前記原料ガスとを用いて、前記第1の改質部で一次改質後の前記原料ガス中の炭化水素をCO、CO2の何れか一方または両方に二次改質して改質ガスとする第2の改質部と、
    を有することを特徴とする改質装置。
  3.  請求項1または2において、
     前記燃焼排ガス排出ラインの前記改質部と前記熱交換部との間に設けられ、前記改質部で生成された燃焼排ガス中に含まれるNOxを除去する脱硝部と、
     前記燃焼排ガス排出ラインの前記燃焼排ガスの流れ方向に対して前記熱交換部よりも下流側に設けられ、前記燃焼排ガス中に含まれるCO2を除去するCO2回収部と、
    の何れか一方または両方を有することを特徴とする改質装置。
  4.  請求項1乃至3の何れか1つに記載の改質装置と、
     前記改質ガスを用いて化成品を製造する化成品生成部と、
    を有することを特徴とする化成品の製造装置。
  5.  前記化成品生成部が、
     前記改質ガス中のCOをCO2に転化し、CO2を含むシフトガスを生成するCOシフト反応部と、
     前記シフトガス中のCO2を分離する炭酸ガス除去部と、
     前記炭酸ガス分離部でCO2が分離されたCO2除去ガス中のCO2をメタン化してメタンを生成するメタン化部と、
     前記メタン化部で生成した前記メタンを圧縮する複数の第2圧縮部と、
     何れかの前記第2圧縮部から排出される高圧の前記改質ガスからH2を分離する水素分離部と、
     前記第2圧縮部で水素が分離された前記メタンを用いてアンモニアを製造するアンモニア合成部と、
     前記炭酸ガス除去部で分離されたCO2と前記第2圧縮部で分離されたH2とを原料としてメタノールを合成するメタノール合成部と、
    を有し、
     アンモニアおよびメタノールを製造することを特徴とするアンモニアおよびメタノールの製造システム。
  6.  請求項5に記載のアンモニアおよびメタノールの製造システムと、
     前記アンモニア合成部で得られたアンモニアを用いて尿素を合成する尿素合成部と、
     前記炭酸ガス除去部から前記メタノール合成部に供給されるCO2の一部を前記尿素合成部に供給する炭酸ガス分岐供給ラインと、
    を有することを特徴とする尿素およびメタノールの製造システム。
PCT/JP2012/073374 2012-09-12 2012-09-12 改質装置およびそれを備えた化成品の製造装置 WO2014041645A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2012/073374 WO2014041645A1 (ja) 2012-09-12 2012-09-12 改質装置およびそれを備えた化成品の製造装置
EP13837204.0A EP2896596A4 (en) 2012-09-12 2013-09-03 REFORMING APPARATUS AND METHOD, APPARATUS FOR MANUFACTURING CHEMICALS COMPRISING THE REFORMING APPARATUS, AND METHOD FOR MANUFACTURING CHEMICALS
CN201380044698.0A CN104583121B (zh) 2012-09-12 2013-09-03 重整装置、重整方法、具有重整装置的化工产品的制造装置以及化工产品的制造方法
JP2014535496A JP5863979B2 (ja) 2012-09-12 2013-09-03 改質装置及び改質方法、改質装置を備えた化成品の製造装置及び化成品の製造方法
US14/423,637 US9737868B2 (en) 2012-09-12 2013-09-03 Reforming device and reforming method, and device for manufacturing chemical products equipped with reforming device and method for manufacturing chemical products
MYPI2015700548A MY182107A (en) 2012-09-12 2013-09-03 Reforming device and reforming method, and device for manufacturing chemical products equipped with reforming device and method for manufacturing chemical products
RU2015106410A RU2606606C2 (ru) 2012-09-12 2013-09-03 Установка риформинга, способ риформинга, установка для получения химических продуктов, снабженная установкой риформинга, и способ получения химических продуктов
PCT/JP2013/073705 WO2014042042A1 (ja) 2012-09-12 2013-09-03 改質装置及び改質方法、改質装置を備えた化成品の製造装置及び化成品の製造方法
US15/377,596 US10258960B2 (en) 2012-09-12 2016-12-13 Reforming device and method for manufacturing chemical products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073374 WO2014041645A1 (ja) 2012-09-12 2012-09-12 改質装置およびそれを備えた化成品の製造装置

Publications (1)

Publication Number Publication Date
WO2014041645A1 true WO2014041645A1 (ja) 2014-03-20

Family

ID=50277799

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/073374 WO2014041645A1 (ja) 2012-09-12 2012-09-12 改質装置およびそれを備えた化成品の製造装置
PCT/JP2013/073705 WO2014042042A1 (ja) 2012-09-12 2013-09-03 改質装置及び改質方法、改質装置を備えた化成品の製造装置及び化成品の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073705 WO2014042042A1 (ja) 2012-09-12 2013-09-03 改質装置及び改質方法、改質装置を備えた化成品の製造装置及び化成品の製造方法

Country Status (6)

Country Link
US (2) US9737868B2 (ja)
EP (1) EP2896596A4 (ja)
CN (1) CN104583121B (ja)
MY (1) MY182107A (ja)
RU (1) RU2606606C2 (ja)
WO (2) WO2014041645A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105367383A (zh) * 2014-08-25 2016-03-02 蒋小华 一种甲醇生产工艺
CN112850645A (zh) * 2021-02-08 2021-05-28 赛鼎工程有限公司 焦炉煤气深度净化制合成氨的系统及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001036B (zh) 2014-11-25 2019-05-28 托普索公司 一种通过烟气再循环生成合成气的方法
JP2016150931A (ja) * 2015-02-19 2016-08-22 出光興産株式会社 軽質オレフィンの製造方法
CN106553996B (zh) * 2015-09-30 2018-07-03 中国石油化工股份有限公司 一种甲烷化干重整耦合生产co、h2的方法及装置
CN106606927B (zh) * 2015-10-22 2019-08-20 中国石油化工股份有限公司 蒸汽裂解生产低碳烯烃产生的裂解烟气的脱硝方法及其脱硝系统
AU2018233670B2 (en) * 2017-03-12 2022-04-28 Haldor Topsøe A/S Co-production of methanol, ammonia and urea
GB201705487D0 (en) 2017-04-05 2017-05-17 Johnson Matthey Plc Process
CN107226571A (zh) * 2017-06-06 2017-10-03 李宜立 脱硫废水处理系统及脱硫废水处理方法
US11021373B2 (en) 2018-05-11 2021-06-01 Jgc Corporation Ammonia production plant and ammonia production method
CN110606467B (zh) * 2019-10-11 2022-12-09 上海齐耀动力技术有限公司 一种甲醇重整制氢工艺及系统
CN112403154A (zh) * 2019-11-05 2021-02-26 中冶长天国际工程有限责任公司 一种烟气多污染物协同净化工艺及装置
US11242785B2 (en) * 2020-06-30 2022-02-08 Saudi Arabian Oil Company Process to capture SOx onboard vehicles and ships
CN111992172B (zh) * 2020-08-03 2022-04-19 界首市南都华宇电源有限公司 一种用于氨水配制的收集装置及其收集方法
EP3974378A1 (en) * 2020-09-25 2022-03-30 Yara International ASA Method for heating a feed of natural gas to a steam reformer and system and use thereof
CN114146535B (zh) * 2021-12-20 2022-10-14 蒲城清洁能源化工有限责任公司 一种用于处理低温甲醇洗系统含氨甲醇的工艺
CN115818572A (zh) * 2022-12-27 2023-03-21 西南化工研究设计院有限公司 一种烃类二氧化碳纯氧重整制取合成气的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234517A (ja) * 1993-02-09 1994-08-23 Toyo Eng Corp アンモニア及びメタノールの併産方法
JPH11263740A (ja) * 1997-11-27 1999-09-28 Toyo Eng Corp メタノ−ルの製造方法
JP2000169411A (ja) * 1998-12-08 2000-06-20 Jgc Corp ジメチルエーテルの製造装置及びその方法
JP2001122812A (ja) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd メタノール製造装置及び製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572046A (en) * 1965-10-22 1971-03-23 Braun & Co C F Apparatus for purification of raw ammonia synthesis gas
SU579220A1 (ru) * 1975-12-18 1977-11-05 Предприятие П/Я Р-6603 Способ паровой каталитической конверсии углеводородов
JP4168210B2 (ja) 1998-08-14 2008-10-22 三菱瓦斯化学株式会社 メタノール・アンモニア併産方法
CN1321136A (zh) * 1999-09-10 2001-11-07 大金工业株式会社 氢气发生装置及使用该装置的燃料电池
JP4533515B2 (ja) * 2000-08-16 2010-09-01 三菱重工業株式会社 合成ガスの製造方法
RU2203214C1 (ru) * 2001-12-28 2003-04-27 Закрытое акционерное общество "ДитГаз" Способ получения метанола
RU2258691C1 (ru) * 2004-02-04 2005-08-20 Лапкин Александр Николаевич Способ получения метанола
EP1750836A4 (en) * 2004-05-28 2008-04-02 Hyradix Inc METHOD FOR PRODUCING HYDROGEN BY PARTIAL OXIDATION / STEAM REFORMING
US7037485B1 (en) 2004-11-18 2006-05-02 Praxair Technology, Inc. Steam methane reforming method
US20060199051A1 (en) * 2005-03-07 2006-09-07 Dingrong Bai Combined heat and power system
EP2089493A2 (de) * 2006-11-09 2009-08-19 Paul Scherrer Institut Verfahren und anlage zur verstromung fester biomasse
US7650939B2 (en) * 2007-05-20 2010-01-26 Pioneer Energy, Inc. Portable and modular system for extracting petroleum and generating power
DE102007038760B3 (de) * 2007-08-16 2009-01-02 Dge Dr.-Ing. Günther Engineering Gmbh Verfahren und Anlage zur Herstellung von Synthesegas aus Biogas
US20090155639A1 (en) * 2007-12-17 2009-06-18 Jingyu Cui System and process for generating electrical power
US8163046B2 (en) * 2008-03-28 2012-04-24 IFP Energies Nouvelles Start-up process for a unit for producing highly thermally-integrated hydrogen by reforming a hydrocarbon feedstock
US8377154B2 (en) * 2010-05-18 2013-02-19 Kellogg Brown & Root Llc Gasification system and process for maximizing production of syngas and syngas-derived products
JP5643712B2 (ja) * 2011-04-14 2014-12-17 本田技研工業株式会社 燃料電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234517A (ja) * 1993-02-09 1994-08-23 Toyo Eng Corp アンモニア及びメタノールの併産方法
JPH11263740A (ja) * 1997-11-27 1999-09-28 Toyo Eng Corp メタノ−ルの製造方法
JP2000169411A (ja) * 1998-12-08 2000-06-20 Jgc Corp ジメチルエーテルの製造装置及びその方法
JP2001122812A (ja) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd メタノール製造装置及び製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105367383A (zh) * 2014-08-25 2016-03-02 蒋小华 一种甲醇生产工艺
CN112850645A (zh) * 2021-02-08 2021-05-28 赛鼎工程有限公司 焦炉煤气深度净化制合成氨的系统及方法
CN112850645B (zh) * 2021-02-08 2022-09-06 赛鼎工程有限公司 焦炉煤气深度净化制合成氨的系统及方法

Also Published As

Publication number Publication date
US10258960B2 (en) 2019-04-16
RU2015106410A (ru) 2016-09-10
CN104583121A (zh) 2015-04-29
US9737868B2 (en) 2017-08-22
EP2896596A4 (en) 2016-06-29
RU2606606C2 (ru) 2017-01-10
CN104583121B (zh) 2016-10-12
EP2896596A1 (en) 2015-07-22
US20170096333A1 (en) 2017-04-06
US20150202589A1 (en) 2015-07-23
MY182107A (en) 2021-01-18
WO2014042042A1 (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
WO2014041645A1 (ja) 改質装置およびそれを備えた化成品の製造装置
AU2018364702B2 (en) Systems and methods for production and separation of hydrogen and carbon dioxide
US20230174377A1 (en) Process for the production of hydrogen
CA2657669C (en) Steam-hydrocarbon reforming method with limited steam export
US9102534B2 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
US9216903B2 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
CN107021454B (zh) 用于制氢的方法
US9561968B2 (en) Methods and systems for producing and processing syngas in a pressure swing adsorption unit and making ammonia therefrom
CN115667132A (zh) 用于生产氢气的方法
KR20240017359A (ko) 이산화탄소 배출량을 낮추면서 증기 개질에 의해 순수 수소를 생산하기 위한 방법 및 플랜트
JP5863979B2 (ja) 改質装置及び改質方法、改質装置を備えた化成品の製造装置及び化成品の製造方法
WO2020078688A1 (en) Carbon recycling in steam reforming process
WO2022253459A1 (en) Process and plant for producing pure hydrogen by steam reforming with reduced carbon dioxide emissions
WO2024156797A1 (en) Method for production of blue ammonia
JP2015157721A (ja) 改質装置及び改質設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP