JPH0776348B2 - 高温還元性ガスの精製方法 - Google Patents

高温還元性ガスの精製方法

Info

Publication number
JPH0776348B2
JPH0776348B2 JP62127236A JP12723687A JPH0776348B2 JP H0776348 B2 JPH0776348 B2 JP H0776348B2 JP 62127236 A JP62127236 A JP 62127236A JP 12723687 A JP12723687 A JP 12723687A JP H0776348 B2 JPH0776348 B2 JP H0776348B2
Authority
JP
Japan
Prior art keywords
gas
regeneration
temperature reducing
absorbent
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62127236A
Other languages
English (en)
Other versions
JPS63291986A (ja
Inventor
義孝 新田
稔夫 中山
裕三 白井
裕光 松田
徹 瀬戸
俊邦 世良
貢 末弘
淳次 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP62127236A priority Critical patent/JPH0776348B2/ja
Publication of JPS63291986A publication Critical patent/JPS63291986A/ja
Publication of JPH0776348B2 publication Critical patent/JPH0776348B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温還元性ガスの精製方法に関し、たとえば石
炭ガス化プロセスの生成ガスのような高温の還元性ガス
混合物中に含まれる硫化水素を合理的に除去する方法に
関する。
〔従来の技術〕
近年、石油資源の枯渇、価格の高騰から燃料(又は原
料)の多様化が叫ばれ、石炭や重質油(タールサンド
油、オイルシエール油、大慶重油、マヤ原油、或いは減
圧残油など)の利用技術の開発が進められている。石炭
や重質油をガス化して発電や燃料及び合成原料とする方
法はその代表的な一例である。
しかし、このガス化生成ガスには原料の石炭や重質油に
よつて違うが数100〜数1000ppmの硫化水素を含み、これ
は公害防止上或いは後流機器の腐食や触媒の被毒防止の
ため是非、除去が必要である。
この硫化水素除去プロセスに必要な具備条件は次のとお
りである。
(1) ガス化生成ガスは高温(炉出口。1000〜2000
℃、一部熱回収されても300〜500℃)高圧(加圧式ガス
炉の場合)であり、後流の発電(ガスタービンとスチー
ムタービンを組合せた複合サイクル発電方式)や、燃料
及び合成原料として使用する場合も殆んど高温、高圧で
使う場合が多いので、その間に入る硫化水素除去プロセ
スも高温、高圧の乾式法が熱経済上有利である。ちなみ
に石炭ガス化発電の場合、乾式法と湿式法では発電効率
で4〜5%の差があると云われている。
(2) 副産物は取扱上或いは市場性からみて、そのニ
ーズに合つたものにすることが好ましい。ガス化プロセ
スが発電や燃料及び合成原料に使われ始めると、その副
産物量は莫大な量となり、関連市場へのインパクトは大
きく副産物の形は重要な因子である。
(3) プロセスが簡単で合理的であることが必要であ
る。実用化に当つては、最終的にはプラントの経済性
(固定費+運転費)で評価されるので、プロセスが簡単
で経済性に優れていることが最も重要である。
(4) プラントの安定運転に関する信頼性が高いこと
が必要である。発電プラントや化学プラントに組み込ま
れているため、プラントの安定運転性に関しては一年以
上の信頼性の高いものであることが必要である。
また硫化水素ガスの処理方法としては、次のようなもの
が既に知られている。
i) 湿式法 a) 吸収・脱離法:低温、高圧でメタノールやポリエ
チレングリコールなどの溶剤で吸収し、高温、低圧で脱
離する方法で、レクチゾール法、セレクゾール法などが
ある。
b) 吸収酸化法:炭酸カリなどのアルカリ性水溶液に
吸収し触媒の存在下で空気が部分酸化し単体硫黄を生成
させる方法で、タカハツクス法、ストレツトフオード法
などがある。
ii) 乾式法 a) 鉄や亜鉛などの金属酸化物で高温で硫化物として
吸着除去する方法であり、アイアンボツクス法などがあ
る。
b) 硫化水素を一部酸化して亜硫酸ガスとの混合ガス
とし、触媒の存在下で高温で反応させ単体硫黄とする方
法であり、クラウス法などがある。
上記、i)のa),b)の方法は、コークス炉ガス(CO
G)や石油精製工程でのガス精製に実用化されている
が、一般にガスの冷却、除じんや、混入する不純物(タ
ール、ナフタリン、ハロゲン、NH3,HCN,COSなど)によ
る閉塞や、吸収液の汚染、劣化を防ぐために前処理装置
が非常に複雑であり、既に述べたようにガスを冷却する
ために熱経済上不利である。更に廃水処理の問題もあ
る。
ii)の乾式法はガス化生成ガスの処理に有利な方法であ
る。しかしb)のクラウス法は石油精製工程で広く用い
られているが、一般に数10%以上の高濃度ガスに適用さ
れ、通常のクラウス法では反応平衡上処理ガス中に硫化
水素や亜硫酸ガスを少量含むためさらにこのテールガス
処理が必要であり、そのまゝの適用は困難である。a)
は高温のガス化生成ガスの処理には有利な方法である
が、吸着剤の再生使用に粉化や劣化の問題があり、又高
温乾式処理のニーズも低かつたことから、吸着剤を再生
循環使用する本格的な実用装置は今まで殆んどない。
本発明者らはガス化生成ガスの処理方法に関する上記の
如きニーズに対応して、乾式脱硫剤や還元触媒の開発及
び処理プロセスの最適化の研究を進め還元性ガス中の硫
化水素除去方法として、イオウ化合物を吸着した吸収剤
を酸素含有ガスで再生する工程、次いで再生された吸収
剤を高温還元性ガスで外吸収剤前後の精製の対象となる
還元ガス濃度が同一になるまで還元する工程、次いで該
高温還元性ガスを通気して該吸収剤で該イオウ化合物を
吸着除去する工程を連続的に繰り返すことにより精製ガ
ス中の還元性ガス濃度を安定化させることを特徴とする
高温還元性ガスの精製法を提案した。(特願昭60−0854
12号) 〔発明が解決しようとする問題点〕 特願昭60−085412号の発明では反応器を再生工程から吸
着脱硫工程への切替えの間に還元工程を追加してプロセ
スガスの一部を添加することによつて再生工程でFe2O3
までに酸化された酸化鉄をあらかじめFe3O4,FeOまで還
元しておくことによつて、次に反応器を吸着脱硫工程に
切替えた時に激しいFe2O3の還元によるプロセスガス中
のH2,COガスの消費による一時的なガス濃度変動を防ご
うとするものである。
しかるに、さらに実際の操作においては、この吸着脱
硫、再生、還元工程のバルブ切替えを単純に行うと各工
程の残留ガスが混合して、一時的にガス組成が変動し、
また加圧状態が異なるため一時的なガス流量の変動が起
り得るのでこれを防ぐための工夫が必要である。
次に、吸着脱硫工程完了時の反応器内高圧(例えば20
kg/cm2G)残存ガスは回収利用する必要がある。通常N2
ガスなどでパージするが、回収率も低く多量のパージガ
スを必要とし得策でなく、経済性向上のためにはパージ
操作を省くことが望ましい。
また、吸着脱硫を行つていた反応器内にはガス化生成
ガス、再生を行つていた反応器内には酸素を含む酸化性
ガスが存在するため、そのまゝ混合させると燃焼による
温度上昇や圧力増加などのトラブルの原因となるため、
通常、工程切替時にN2ガスなどの不活性ガスによるガス
パージを行うが、多量のパージガスを必要とし得策でな
く、経済性向上のためにはパージ操作を省くことが望ま
しい。
〔発明の目的〕
本発明はこれらの従来法に於ける未検討点〜を詳細
に検討し、実用性を高めようとするものである。
〔問題点を解決するための手段〕
本発明は高温還元性ガス中に含まれるイオウ化合物を吸
着除去する方法において、 該イオウ化合物を吸着した吸収剤を酸素含有ガスで
再生する再生工程、次いで再生された吸収剤を高温還元
性ガスの一部を用いて還元する還元工程、次いで還元さ
れた吸収剤を用いて高温還元ガス中の該イオン化合物を
吸着除去する脱硫工程を連続的に繰り返す方法であつ
て、 吸着による脱硫工程から再生工程への切替え操作で
は反応器内に残存した所定圧を有する高温還元性ガスを
減圧によつて系外に抜き出して回収した後、酸素含有再
生ガスを所定圧になる迄添加イオウ化合物を吸着した吸
収剤の再生を開始させ、 再生工程から還元工程への切替操作では、反応器内
に残存した所定圧を有する高温再生ガスを減圧によつて
後処理工程に抜き出した後に、前記吸収工程から再生工
程への切換時に系外に回収した高温還元性ガスを所定圧
になるまで添加して再生吸収剤の還元を開始させる ことを特徴とする高温還元性ガスの精製方法である。
本発明方法の一実施態様を第1図によつて説明する。
ガス化炉で部分燃焼ガス化されたH2及びCOを主成分とす
るガス化ガス1は除じんされてイオウ化合物を除去する
工程に導かれる。この除じん後のガス化ガス1は石炭の
種類やガス化条件によつて異なるが、数10〜数1000ppm
のH2SやCOS,NH3,HCNなどを含んでおり、ガス温度はガス
化炉出口のスチームヒータ等による熱回収で250〜500
℃、圧力はガス化炉の形式によつて異なるが常圧〜2.5a
taである。
本発明では除じん後のガス化ガス1を、Fe,Zn,Mo,Mn,C
u,W等の金属酸化物からなる吸収剤9を充填した第1の
反応器である吸収塔6に流路切替バルブ10を介して通気
することでガス化ガス1中のイオウ化合物は硫化物とし
て吸着除去され一方第2の反応器である再生塔7では吸
着塔6と同一の吸着剤9が充填されており、イオウ化合
物の吸着により破過に達した吸収剤9に流路切替バルブ
17を介して酸素含有ガス(例えば空気)2を通気して、
次式に示すような焙焼反応により吸収剤9を再生される
と同時に流路切替バルブ20を介して濃厚なSO2ガス5を
得る。この時流路切替バルブ11,14,23,26は閉になつて
いる。
4FeS+7O2→2Fe2O3+4SO2 ……(1) 上記反応は発熱反応であり酸素含有ガス2の通気と同時
に急激に起るので、該再生塔7の出口ガスを循環ライン
4で循環させながら、再生反応に必要な酸素を低濃度で
全体に均一に供給するなどにより温度をコントロールす
ることが好ましい。この再生温度は250〜600℃で行わ
れ、吸収剤9から放散された濃厚なSO2ガス5は硫酸製
造原料として利用するか、あるいは単体硫黄や固体の硫
黄化合物として回収される工程に導かれる。また湿式脱
硫法で石膏として回収することもできる。
吸収剤9は粒状、円柱状、ハニカム状、板状などのいず
れの形状でも良く、アルミナ、チタニア、シリカ、ゼオ
ライトなどの多孔質の耐熱性基材に上述の金属酸化物を
担持したものが使用される。
Fe2O3を吸収剤成分とした場合の脱硫反応式は下記のと
おりであり、 Fe3O4+CO+3H2S→3FeS+3H2O+CO2 ……(2) Fe3O4+H2+3H2S→3FeS+4H2O ……(3) ガス化ガス1に共存する微量のCOSは下記式に示す反応
でH2Sに転化して吸着除去されるか、Fe3O4との吸着反応
で除去される。
COS+H2O→CO2+H2S ……(4) Fe3O4+H2+3COS→3FeS+H2O+3CO2 ……(5) Fe3O4+CO+3COS→3FeS+4CO2 ……(6) 脱硫反応温度は250〜450℃、SV値(ガス流量Nm3/h/吸収
剤容量m3)は1,000〜20,0001/h程度で、ガス中のH2Sの9
0%以上が除去され、吸収塔6の流路切替バルブ25を介
して精製ガス3が得られる。この時流路切替バルブ13,1
6,19,22は閉になつている。
さらに第3の反応器である還元塔8では吸収塔6、再生
塔7と同一の吸収剤9が充填されており、再生処理で金
属酸化物の状態にされた吸収剤9に除じん後のガス化ガ
ス1の一部(数%程度)を流路切替バルブ15を介して通
気させて、主として下記の(7)式還元反応を行わせ
る。この還元反応は精製ガス3中のH2,CO濃度が一定に
なるまでの予備還元反応であり、流路切替バルブ24を介
して除じん後のガス化ガス1に戻される。この時流路切
替バルブ12,18,21は閉になつている。
3Fe2O3+H2→2Fe3O4+H2O ……(7) このような予備還元反応の段階では(2),(3),
(5),(6)式のH2S,COSの吸着反応も同時に行る
が、(7)式の反応の方が(2),(3),(5),
(6)式の反応より早いので予備還元反応終了後は除じ
ん後のガス化ガス1の通気を停止して、次工程の吸着反
応開始のために待期させておく。
さて、本実施態様において、各反応器(吸収塔、再生
塔、還元塔)はバルブ切替えで繰り返して使用する。
ガス切替え時にガス化ガス1の流量及び組成変動がない
ようにするため、反応器内のガス置換(又はパージ)に
対し、下記方式を採用する。
(1) 即ちガス吸収工程完了時の吸収塔6内高圧(例
えば20kg/cm2G)残存ガスは、所定圧力(例えば5kg/cm2
G)以下になるまでガス抜きを行う。
この場合バルブ25は閉、バルブ22は開となる。吸収塔6
から排出された残存ガス28はガス冷却器31を塔つてコン
プレツサ32により、元の圧力(20kg/cm2G)に昇圧され
ガスホルダ33に蓄える。ガスホルダ33出口ガス29は適当
に精製ガス2に合流させる。
吸収塔6内はガス排出後は、5kg/cm2G程度のガス化ガス
1が残存するが、このガスはバージすることなく次の再
生工程に入る。このように当初の吸収塔6内圧力は5kg/
cm2G以下であるが、圧力が所定圧力(例えば20kg/cm
2G)に上がるまで再生ラインに酸素含有ガス2を徐々に
導入して再生系を循環し、吸収剤9の酸化(再生)反応
を促進させ、吸収塔6が600℃以上に達すると残存ガス
中の主成分CO,H2等が反応して各々CO2,H2O等に転化され
る。残存ガス中の可燃分が全て反応した後本格的に再生
運転を行う。すなわち、循環ライン4、バルブ16、吸収
塔6、吸収剤9、バルブ19のラインに酸素含有ガス2を
循環し、一部ガス5は後流の湿式脱硫系で処理する。
(第1図においては、この状態を再生塔7まわりに図示
してある。この場合には上記酸素含有ガス2の循環は、
循環ライン4、バルブ17、再生塔7、吸収剤9、バルブ
20によつて行われている。) (2) 一方再生工程終了時の吸収塔6内には、濃縮さ
れたSO2ガス(約7〜8%SO2)が高圧(例えば20kg/cm2
G)にて残存している。このままガス抜きせずに還元工
程に切替えると一次的に精製ガス3に混入するため脱硫
率の低下を招く。
従つて再生工程終了直前には、吸収塔6内圧力を大気圧
近くまで減圧しSO2ガスを抜き出す必要がある。この放
出SO2ガス5は後流の湿式排脱系など後処理工程に導入
する。
(3) 再生工程を完了した後は還元工程に移行させ
る。
当初吸収塔6内は減圧下(大気圧)にあるので、所定圧
力(例えば20kg/cm2G)に上がるまでガス化ガス1を導
入する。以後還元工程の運転開始となる。ガス流量及び
組成変動がないようガス吸収操作は連続して切替えるよ
うにするが、再生→還元の当初に一時(吸収塔6内を20
kg/cm2Gに昇圧する間)若干ガス量の減少が起こるが、
次に説明する方法でこの問題は解決できる。
前述したように、ガス吸収工程完了時の吸収塔6内高圧
残存ガスはガス抜きで所定圧力(例えば5kg/cm2G以下)
に減圧後、ガス冷却器31を経てコンプレツサ32にて所定
圧力(元の圧力20kg/cm2G)に昇圧されてガスホルダ33
に貯蔵されている。
このガスホルダ33ガスは還元工程切替(反応器内昇圧)
時、タイマー操作でライン29又はライン34を使つて、精
製ガス3又は粗ガス1ラインに戻される。上記操作をと
ることにより、再生→還元移行時のガス量減少を防止す
ることができる。
(4) 吸収→再生→還元→吸収……を繰返す。吸収と
還元は常に連続運転となるよう操作し、その結果再生工
程にて一部SO2ガス流れの不連続が起こるが、後流の湿
式脱硫には連続ガス流れとなるようその分空気を送り込
むことにより対処できる。
尚還元工程に導入するガス化ガスは必要最小限におさえ
ること(例えば5%程度)とし、吸収剤の還元(Fe2O3
→Fe3O4)を主目的としたものである。
〔発明の効果〕
以上述べたように本発明方法によれば精製処理しようと
する高温還元性ガス中のH2,COなどの燃料源を一時的に
減少させることなく、またガス化ガス流量も変動させる
ことなく、安定させて次工程に供給できるイオウ化合物
の除去精製法である。
【図面の簡単な説明】
第1図は本発明方法の実施例を説明するための図であ
る。 3……精製ガス 4……循環ライン 5……SO2ガス 6……No.1吸収塔 7……No.2再生塔 8……No.3還元塔 9……吸収剤 10〜27……流路切替バルブ 28……吸収塔残存ガス 29……ガスホルダー出口ガス 30……還元用ガス化ガス 31……ガス冷却器 32……ガスコンプレツサー 33……ガスホルダー 34……戻しガスライン
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10J 3/00 F 3/02 J 3/54 J (72)発明者 瀬戸 徹 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 世良 俊邦 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 末弘 貢 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 藤木 淳次 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】高温還元性ガス中に含まれるイオウ化合物
    を吸着除去する方法において、 該イオウ化合物を吸着した吸収剤を酸素含有ガスで
    再生する再生工程、次いで再生された吸収剤を高温還元
    性ガスの一部を用いて還元する還元工程、次いで還元さ
    れた吸収剤を用いて高温還元ガス中の該イオン化合物を
    吸着除去する脱硫工程を連続的に繰り返す方法であつ
    て、 吸着による脱硫工程から再生工程への切替え操作で
    は反応器内に残存した所定圧を有する高温還元性ガスを
    減圧によつて系外に抜き出して回収した後、酸素含有再
    生ガスを所定圧になる迄添加しイオウ化合物を吸着した
    吸収剤の再生を開始させ、 再生工程から還元工程への切替操作では、反応器内
    に残存した所定圧を有する高温再生ガスを減圧によつて
    後処理工程に抜き出した後に、前記吸収工程から再生工
    程への切換時に系外に回収した高温還元性ガスを所定圧
    になるまで添加して再生吸収剤の還元を開始させる ことを特徴とする高温還元性ガスの精製方法。
JP62127236A 1987-05-26 1987-05-26 高温還元性ガスの精製方法 Expired - Lifetime JPH0776348B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127236A JPH0776348B2 (ja) 1987-05-26 1987-05-26 高温還元性ガスの精製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127236A JPH0776348B2 (ja) 1987-05-26 1987-05-26 高温還元性ガスの精製方法

Publications (2)

Publication Number Publication Date
JPS63291986A JPS63291986A (ja) 1988-11-29
JPH0776348B2 true JPH0776348B2 (ja) 1995-08-16

Family

ID=14955081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127236A Expired - Lifetime JPH0776348B2 (ja) 1987-05-26 1987-05-26 高温還元性ガスの精製方法

Country Status (1)

Country Link
JP (1) JPH0776348B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790141B2 (ja) * 1989-05-18 1995-10-04 川崎重工業株式会社 乾式脱硫・脱じん方法
JPH0593519A (ja) * 1991-04-02 1993-04-16 Mitsubishi Heavy Ind Ltd ガス化複合発電プラント
US6254766B1 (en) * 1999-08-25 2001-07-03 Phillips Petroleum Company Desulfurization and novel sorbents for same
US6271173B1 (en) * 1999-11-01 2001-08-07 Phillips Petroleum Company Process for producing a desulfurization sorbent
US6338794B1 (en) * 1999-11-01 2002-01-15 Phillips Petroleum Company Desulfurization with zinc titanate sorbents
JP4533515B2 (ja) * 2000-08-16 2010-09-01 三菱重工業株式会社 合成ガスの製造方法

Also Published As

Publication number Publication date
JPS63291986A (ja) 1988-11-29

Similar Documents

Publication Publication Date Title
US4884396A (en) Desulfurizing agent and process for treating hydrogen sulfide containing gas, coal gasification system and power generation system based on coal gasification using the desulfurizing agent
US4053554A (en) Removal of contaminants from gaseous streams
US4251495A (en) Process for purifying a hydrogen sulfide containing gas
US4041130A (en) Process for desulfurization of coke oven gas
EP0159730A2 (en) Process for the removal of sulphur compounds from off-gases
JPH0776348B2 (ja) 高温還元性ガスの精製方法
JPH0817906B2 (ja) 高温還元性ガスの精製プロセスにおけるイオウ回収方法
JP2865845B2 (ja) 高温還元性ガスの精製方法
GB2190683A (en) Method for purifying high-temperature reducing gas
KR101489852B1 (ko) 합성가스 내 황 회수 장치 및 방법
JP2001523564A (ja) 発電プラント脱硫処理において湿式石灰/石灰石テールガスからso2を減少させる方法
JPH06228573A (ja) 石炭ガス化プラントのテールガス処理法
JP2633886B2 (ja) 脱硫剤とそれを用いた硫化水素含有ガスの処理法
JP2651381B2 (ja) 高温還元性ガスの精製方法
EP0514941A1 (en) Process for the separation of sulphur oxides from offgases
SU1582975A3 (ru) Способ очистки газов от меркаптанов
JPS59207807A (ja) 石炭と反応させる亜硫酸ガス含有ガスの製造方法
US4321242A (en) Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle
JPH0659377B2 (ja) 高温還元性ガスの精製法
JPH10273681A (ja) 乾式脱硫装置
JPH01203020A (ja) 高温還元性ガスの精製方法
JPH07106293B2 (ja) 高温還元性ガスの精製方法
JP2617561B2 (ja) 高温還元性ガスの精製方法
JP2575771B2 (ja) 高温ガスの乾湿式脱硫方法
EP1116511A1 (en) Method for removing sulfur compounds from gas mixtures