RU2247185C2 - Способ изготовления бумаги и картона - Google Patents

Способ изготовления бумаги и картона Download PDF

Info

Publication number
RU2247185C2
RU2247185C2 RU2002113774/04A RU2002113774A RU2247185C2 RU 2247185 C2 RU2247185 C2 RU 2247185C2 RU 2002113774/04 A RU2002113774/04 A RU 2002113774/04A RU 2002113774 A RU2002113774 A RU 2002113774A RU 2247185 C2 RU2247185 C2 RU 2247185C2
Authority
RU
Russia
Prior art keywords
water
polymer
soluble
suspension
monomer
Prior art date
Application number
RU2002113774/04A
Other languages
English (en)
Other versions
RU2002113774A (ru
Inventor
Барри ХЭРД Майкл (US)
Барри ХЭРД Майкл
Чэн И. ЧЭНЬ Гордон (US)
Чэн И. ЧЭНЬ Гордон
Original Assignee
Циба Спешалти Кемикэлз Уотер Тритментс Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22593556&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2247185(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Циба Спешалти Кемикэлз Уотер Тритментс Лимитед filed Critical Циба Спешалти Кемикэлз Уотер Тритментс Лимитед
Publication of RU2002113774A publication Critical patent/RU2002113774A/ru
Application granted granted Critical
Publication of RU2247185C2 publication Critical patent/RU2247185C2/ru

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition
    • D21H23/14Controlling the addition by selecting point of addition or time of contact between components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к технологии изготовления бумаги или картона. Способ включает приготовление целлюлозной суспензии, флокуляцию этой суспензии, механическую обработку суспензии сдвиговым усилием и повторную флокуляцию суспензии, дренирование суспензии на сетке с отливкой листа и последующую сушку этого листа. Суспензию флокулируют введением водорастворимого полимера с характеристической вязкостью свыше 3 дл/г в суспензию. Водорастворимый полимер проявляет реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 1,1. Изобретение обеспечивает улучшенное удерживание и дренирование на подвижной сетке. Улучшается процесс формования бумаги или картона. 9 з.п. ф-лы, 4 табл., 1 ил.

Description

Настоящее изобретение относится к способам изготовления бумаги и картона из целлюлозной волокнистой массы с использованием в качестве флокулянтов новых водорастворимых полимеров, а также к новым полимерам, применяемым при их осуществлении.
Во время изготовления бумаги и картона целлюлозную жидкую волокнистую массу дренируют на подвижной сетке (часто называемой сеткой бумагоделательной машины) для отливки листа, который затем сушат. Хорошо известно добавление в целлюлозную суспензию водорастворимых полимеров с целью вызвать эффект флокуляции целлюлозных твердых частиц и улучшить дренирование на подвижной сетке.
Для увеличения выработки бумаги многие современные бумагоделательные машины эксплуатируют с более высокими скоростями. Вследствие более высоких скоростей работы машины много внимания уделяют системам дренирования и удерживания, которые обеспечивают усиленное дренирование, одновременно с тем сохраняя оптимальные условия для удерживания и формования. Достижение оптимального баланса удерживания, дренирования, сушки и формования путем добавления единственной полимерной добавки, содействующей удерживанию, сопряжено с затруднениями технологического порядка, поэтому обычной практикой является последовательное добавление двух отдельных материалов.
В ЕР-А 235893 предлагается способ, в котором перед стадией обработки сдвиговым усилием в волокнистую массу для изготовления бумаги вводят водорастворимый практически линейный катионоактивный полимер, а затем, после завершения этой стадии обработки сдвиговым усилием, производят повторную флокуляцию добавлением бентонита. Осуществление этого способа обеспечивает возможность улучшенного дренирования, а также хороших формования и удерживания. Этот способ, который нашел промышленное воплощение на фирме Ciba Specialty Chemicals в виде технологии под товарным знаком
Figure 00000002
подтверждает свою эффективность в течение вот уже больше десятилетия.
Позднее были предприняты самые разнообразные попытки разработать варианты этого способа внесением небольших модификаций в один или несколько компонентов.
В US 5393381 описан способ изготовления бумаги или картона, в котором в суспензию волокон волокнистой массы добавляют водорастворимый разветвленный катионоактивный полиакриламид и бентонит. Этот разветвленный катионоактивный полиакриламид готовят полимеризацией в растворе смеси акриламида, катионоактивного мономера, агента образования ответвлений и регулятора степени полимеризации.
В US 5882525 описан способ, в котором в дисперсию суспендированных твердых частиц, например в волокнистую массу для изготовления бумаги, для высвобождения воды добавляют катионоактивный разветвленный водорастворимый полимер, коэффициент растворимости которого превышает примерно 30%). Этот катионоактивный разветвленный водорастворимый полимер готовят из таких же компонентов, как указанные в US 5393381, т.е. полимеризацией смеси акриламида, катионоактивного мономера, агента образования ответвлений и регулятора степени полимеризации.
В WO 9S/29604 описан способ изготовления бумаги, в котором в целлюлозную суспензию для образования хлопьев добавляют катионоактивную полимерную добавку, содействующую удерживанию, эти хлопья подвергают механическому разрушению, а затем проводят повторную флокуляцию суспензии добавлением раствора второй анионоактивной полимерной добавки, содействующей удерживанию. Эта анионоактивная полимерная добавка, содействующая удерживанию, представляет собой разветвленный полимер, который характеризуется как обладающий реологическим осцилляционным значением тангенса дельта при 0,005 Гц больше 0,7 или обладающий приведенной вязкостью по ВПУ (стеклянный вискозиметр с подвешенным уровнем) в деионизированной воде, которая по меньшей мере в три раза превышает приведенную вязкость по ВПУ в солевом растворе соответствующего полимера, полученного в отсутствие агента образования ответвлений. Обычно этот разветвленный анионоактивный водорастворимый полимер получают полимеризацией водорастворимого анионоактивного мономера или мономерной смеси в присутствии агента образования ответвлений в низкой концентрации. В сравнении со способами, ранее разработанными в данной области техники, осуществление этого способа обуславливает заметные улучшения удерживания.
В ЕР-А 308752 описан способ изготовления бумаги, в котором в композицию бумаги добавляют низкомолекулярный катионоактивный органический полимер, а затем коллоидный диоксид кремния и высокомолекулярный заряженный акриламидный сополимер с молекулярной массой по меньшей мере 500000. Из описания явствует указание на то, что наибольший диапазон молекулярных масс, которых достигают при получении низкомолекулярного катионоактивного полимера, добавляемого в композицию бумаги первым, составляет от 1000 до 500000. От таких низкомолекулярных полимеров ожидают непременного проявления характеристической вязкости до примерно 2 дл/г.
Однако существует потребность в дальнейшем усовершенствовании способов изготовления бумаги благодаря улучшению удерживания и сохранению или улучшению процесса формования.
Таким образом, первым объектом настоящего изобретения является способ изготовления бумаги, включающий приготовление целлюлозной суспензии, флокуляцию этой суспензии, механическую обработку суспензии сдвиговым усилием и необязательную повторную флокуляцию суспензии, дренирование суспензии на сетке с отливкой листа и последующую сушку этого листа, в котором суспензию флокулируют и/или повторно флокулируют введением водорастворимого полимера с характеристической вязкостью свыше 3 дл/г в суспензию, характеризующийся тем, что этот водорастворимый полимер проявляет реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 1,1.
Значение тангенса дельта при 0,005 Гц определяют с помощью вискозиметра с регулируемым напряжением по осцилляционному методу в водном растворе полимера в деионизированной воде концентрацией 1,5 мас.% после обработки в барабане в течение двух часов. В ходе проведения этого эксперимента применяют прибор Carrimed CSR 100, снабженный 6-сантиметровым акриловым конусом с углом конусности 1°58’ и значением усеченности 58 мкм (изделие обозначено позицией 5664). Объем используемого образца составляет приблизительно от 2 до 3 куб.см. С помощью плиты Пельтье температуру поддерживают на уровне 20,0±0,1°С. В диапазоне качания частоты от 0,005 до 1 Гц в 12 этапов на логарифмической основе применяют угловое смещение 5×10-4 радианов. Результаты определения G’ и G’’ регистрируют и используют для расчета значений тангенса дельта (G’’/G’).
Значение тангенса дельта представляет собой соотношение между модулем потерь (вязких) G’’ и динамическим модулем упругости (модулем накопления) G’ внутри системы.
Полагают, что при низких частотах (0,005 Гц) скорость деформирования образца достаточно низка для того, чтобы у линейных или разветвленных переплетенных цепей была возможность для расплетения. Сетчатые или поперечно сшитые системы характеризуются постоянным переплетением цепей и проявляют низкие значения тангенса дельта во всем широком диапазоне частот. Таким образом, для охарактеризовывания свойств полимеров в водной среде прибегают к низкочастотным (например, 0,005 Гц) измерениям.
Было установлено, что полимеры, которые проявляют реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 1,1, сообщают улучшенные рабочие характеристики в том, что касается улучшенного удерживания, при одновременном тем не менее сохранении хороших эксплуатационных свойств дренирования и формования. При создании настоящего изобретения было установлено также, что полимеры с высоким тангенсом дельта обеспечивают более эффективную флокуляцию целлюлозных волокон и других компонентов целлюлозной волокнистой массы для изготовления бумаги, обусловливая таким образом улучшенное удерживание.
В предпочтительной форме такой водорастворимый полимер проявляет реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 1,2 или 1,3. Более предпочтительный полимер обладает характеристической вязкостью больше 4 дл/г и значением тангенса дельта при 0,005 Гц больше 1,4 или 1,5. В некоторых случаях тангенс дельта может достигать значения 1,7 или 1,8 и даже 2,0 или больше. Таким образом, такой полимер проявляет высокое значение тангенса дельта.
Обладающий высоким значением тангенса дельта водорастворимый полимер может быть анионоактивным, неионогенным или амфотерным, а предпочтительно катионоактивным. Этот полимер получают полимеризацией водорастворимого мономера или водорастворимой мономерной смеси. Под водорастворимостью подразумевают то, что водорастворимый мономер или водорастворимая мономерная смесь характеризуется растворимостью в воде по меньшей мере 5 г в 100 мл воды. Полимер может быть эффективно получен по любому подходящему известному методу полимеризации, например полимеризацией в растворе, с образованием водного геля, который разрезают, сушат и измельчают с приготовлением порошка, или полимеризацией с обращенной фазой, как это представлено в ЕР-А 150933, ЕР-А 102760 или ЕР-А 126528.
Обладающий высоким значением тангенса дельта водорастворимый полимер может быть получен из водорастворимого мономера или мономерной смеси, включающей по меньшей мере один катионоактивный мономер и по крайней мере 2 мас.част./млн, предпочтительно от 5 до 200 мас.част./млн, в частности от 10 до 50 мас.част./млн, регулятора степени полимеризации.
В процессе изготовления бумаги в соответствии с изобретением водорастворимый полимер можно вводить в волокнистую массу для изготовления бумаги в качестве отдельного агента для обработки в процессе изготовления бумаги, хотя в предпочтительном варианте этот полимер можно добавлять в виде части многокомпонентной флокулянтной системы, с помощью которой целлюлозную суспензию флокулируют, а затем повторно флокулируют.
По одному варианту выполнения изобретения целлюлозную суспензию флокулируют водорастворимым полимером с тангенсом дельта при 0,005 Гц больше 1,1, а затем целлюлозную суспензию повторно флокулируют дополнительным добавлением водорастворимого полимера или, по другому варианту, другого флокулянтного материала. Перед повторной флокуляцией образовавшиеся хлопья необязательно разрушают, например, механической обработкой сдвиговым усилием. Этого можно добиться, например, пропусканием флокулированной целлюлозной суспензии через одно или несколько средств обработки со сдвиговым усилием, таких как центробежная сортировка, лопастный насос и т.д.
В другом варианте выполнения изобретения целлюлозную суспензию флокулируют введением флокулянтного материала и целлюлозную суспензию повторно флокулируют введением водорастворимого полимера со значением тангенса дельта при 0,005 Гц больше 1,1. Перед повторной флокуляцией хлопья необязательно разрушают.
Целлюлозную суспензию можно флокулировать введением флокулянта в суспензию в любой подходящей для добавления точке. Это может быть сделано, например, перед одной из стадий перекачки, перед центробежной сортировкой или даже после центробежной сортировки. Далее целлюлозную суспензию можно повторно флокулировать в любой приемлемой точке после ее флокуляции. Флокулянт и агент для повторной флокуляции можно добавлять в точках, находящихся в непосредственной близости, например, без какой-либо стадии обработки со сдвиговым усилием между точками введения. В предпочтительном варианте предусмотрена по меньшей мере одна стадия обработки со сдвиговым усилием (выбранная из стадий очистки, перекачки и смешения), разделяющая точки добавления флокулянта и агента для повторной флокуляции. Когда флокулянт добавляют перед стадией обработки со сдвиговым усилием, например перед лопастным насосом или центробежной сортировкой, флокулянт для повторной флокуляции необходимо и можно добавлять после этой стадии обработки со сдвиговым усилием. Это можно делать сразу же после стадии обработки со сдвиговым усилием или, что более обычно, дальше, после нее. Следовательно, флокулянт можно добавлять перед лопастным насосом, а агент для повторной флокуляции можно добавлять после центробежной сортировки. Таким образом, полимер с высоким значением тангенса дельта добавляют как флокулянт и/или как агент для повторной флокуляции.
Водорастворимый полимер с высоким значением тангенса дельта необходимо и можно добавлять в волокнистую массу в концентрации от 0,01 до 10 фунтов/т (от 5 до 5000 част./млн) в пересчете на сухую суспензию. В предпочтительном варианте полимер добавляют с расходом от 0,1 до 5 фунтов/т (от 50 до 2500 част./млн), преимущественно от 0,4 до 2 фунтов/т (от 100 до 1000 част./млн).
Когда обладающий высоким значением тангенса дельта водорастворимый полимер используют в процессе изготовления бумаги как часть многокомпонентной флокулянтной системы, его можно добавлять в форме флокулянтной системы и/или системы для повторного флокулирования. В соответствии с одним предпочтительным объектом изобретения такая многокомпонентная флокулянтная система включает обладающий высоким значением тангенса дельта водорастворимый полимер и другой флокулянтный материал. Этим флокулянтным материалом может служить любой из ряда, включающего водорастворимые полимеры, нерастворимый в воде полимерный микробисер, порошкообразные не подвергнутые варке полисахариды и неорганические материалы. Подходящие флокулянтные материалы включают неорганические материалы, такие как кремнийсодержащие материалы, квасцы, полиалюминийхлорид, алюминийхлоргидрат.
Когда флокулянтным материалом служит водорастворимый полимер, он может представлять собой любой приемлемый водорастворимый полимер, например биополимеры, такие как неионогенные, анионоактивные, амфотерные и катионоактивные крахмалы или другие полисахариды. Флокулянтным материалом может также являться любой приемлемый анионоактивный, катионоактивный, амфотерный или неионогенный синтетический водорастворимый полимер.
Флокулянтным материалом может быть кремнийсодержащий материал, который находится в форме анионоактивной композиции микрочастиц. К кремнийсодержащим материалам относятся частицы на кремнийдиоксидной основе, кремнийдиоксидные микрогели, коллоидный диоксид кремния, коллоидные растворы кремнекислоты, силикагели, полисиликаты, алюмосиликаты, полиалюмосиликаты, борсиликаты, полиборсиликаты, цеолиты и глины. Предпочтительными глинами являются набухающие глины; как правило, ими служат, например, глины типа бентонита. Предпочтительны набухающие в воде глины, к ним относятся глины, которые в воде подвергаются естественному набуханию, или глины, которые могут быть модифицированы, например, ионообменом для придания им набухаемости в воде. Подходящие набухающие в воде глины включают, хотя ими их список не ограничен, глины, часто упоминаемые как гекторит, смектиты, монтмориллониты, нонтрониты, сапонит, соконит, гормиты, аттапульгиты и сепиолиты. В качестве флокулянтного материала может быть использован бентонит, как это изложено в ЕР-А 235895 и ЕР-А 335575.
В другом варианте флокулянтным материалом служит коллоидный кремнезем, выбранный из полисиликатов и полиалюмосиликатов. К ним относятся полимикрочастицы поликремниевых микрогелей с удельной площадью поверхности больше 1000 м2/г, например водорастворимые полимикрочастицы полиалюмосиликатных микрогелей, которые описаны в US 5482693, или алюминированная поликремниевая кислота, которая описана в US 5176891 или WO-A 98/30753. Кроме того, в качестве флокулянтного материала может быть использована коллоидная кремниевая кислота, которая описана в US 4388150, или коллоидный кремнезем, который описан в WO 86/00100.
Флокулянтным материалом может также служить коллоидный борсиликат, например такой, как описанный в WO-A 99/16708. Коллоидный борсиликат можно приготовить введением разбавленного водного раствора силиката щелочного металла в контакт с катионообменной смолой с получением кремниевой кислоты, а затем получением целевого продукта смешением разбавленного водного раствора бората щелочного металла с гидроксидом щелочного металла, в результате чего образуется водный раствор, содержащий от 0,01 до 30% В2О3, значение рН которого составляет от 7 до 10,5.
По одному из вариантов выполнения изобретения предлагается способ изготовления бумаги из суспензии целлюлозной волокнистой массы, включающей наполнитель. В качестве наполнителя может быть использован любой из традиционно применяемых наполнительных материалов. Так, например, наполнителем может быть глина, такая как каолин, или наполнителем может быть карбонат кальция, которым мог бы служить измельченный карбонат кальция или, в частности, осажденный карбонат кальция, или может оказаться предпочтительным применение в качестве наполнительного материала диоксида титана. Примеры других наполнительных материалов включают также синтетические полимерные наполнители. Обычно целлюлозную волокнистую массу, включающую существенные количества наполнителя, труднее флокулировать. Это особенно верно в случаях наполнителей из частиц очень малого размера, таких как осажденный карбонат кальция. Таким образом, в соответствии с предпочтительным вариантом выполнения настоящего изобретения предлагается способ изготовления бумаги с наполнителем. Волокнистая масса для изготовления бумаги может включать любое подходящее количество наполнителя. Обычно целлюлозная суспензия включает по меньшей мере 5 мас.% наполнительного материала. Как правило, количество наполнителя составляет до 40% или больше, предпочтительно находится в пределах от 10 до 40%. Осуществление такого способа является путем изготовления бумаги, включающей большие количества наполнителя, например до 40% наполнителя, в сухом листе.
В качестве флокулянтного материала в сочетании с обладающим высоким значением тангенса дельта водорастворимым полимером может быть использован анионоактивный, неионогенный, катионоактивный или амфотерный разветвленный водорастворимый полимер, который получен из водорастворимого этиленово-ненасыщенного мономера или мономерной смеси и агента образования ответвлений. Так, например, этот разветвленный водорастворимый полимер может проявлять а) характеристическую вязкость свыше 1,5 дл/г и/или вязкость по Брукфилду в солевом растворе свыше примерно 2,0 мПа·с и б) реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 0,7. В предпочтительном варианте в качестве полимера может быть использован водорастворимый разветвленный анионоактивный полимер, который обладает характеристической вязкостью свыше 4 дл/г и значением тангенса дельта при 0,005 Гц больше 0,7, например такой, который описан в WO 98/29604.
По другому варианту флокулянтный материал, используемый в сочетании с обладающим высоким значением тангенса дельта водорастворимым полимером, включает сшитые анионоактивные или амфотерные полимерные микрочастицы, например так, как изложено в ЕР-А 462365 или ЕР-А 484617.
В особенно предпочтительном способе используют многокомпонентную флокулянтную систему, включающую катионоактивный с высоким значением тангенса дельта (т.е. с реологическим осцилляционным значением тангенса дельта по меньшей мере 1,1) водорастворимый полимерный флокулянт, а затем в качестве агента для повторной флокуляции анионоактивный флокулянтный материал. Анионоактивный флокулянт включает кремнийсодержащие материалы, такие как кремнеземы в форме микрочастиц, полисиликаты, анионоактивный полимерный микробисер и водорастворимые анионоактивные полимеры, включая как линейные, так и разветвленные водорастворимые полимеры.
Особенно предпочтительные обладающие высоким значением тангенса дельта водорастворимые полимеры для использования в процессе изготовления бумаги включают катионоактивные полимеры с характеристической вязкостью по меньшей мере 6 дл/г, например в пределах от 7 до 30 дл/г, более предпочтительно от 8 до 20 дл/г, в частности в интервале от 9 до 18 дл/г. Необходимо, чтобы эти полимеры проявляли реологическое осцилляционное значение тангенса дельта при 0,005 Гц в пределах от 1,3 до 2,0, предпочтительно в пределах от 1,5 до 1,8.
Наиболее предпочтительными катионоактивными полимерами являются сополимеры акриламида с метилхлоридной четвертичной аммониевой солью диметиламиноэтилакрилата. Вторым объектом изобретения является водорастворимый полимер с характеристической вязкостью по меньшей мере 3 дл/г, который получен из водорастворимого мономера или водорастворимой мономерной смеси, характеризующийся тем, что этот катионоактивный полимер проявляет реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 1,1, предпочтительно больше 1,2 или 1,3. Более предпочтительный полимер обладает характеристической вязкостью больше 4 дл/г и значением тангенса дельта при 0,005 Гц больше 1,4 или 1,5. В некоторых примерах значение тангенса дельта может достигать 1,7 или 1,8 и даже 2,0 или больше.
Такой полимер может быть анионоактивным, неионогенным или амфотерным, а предпочтительно катионоактивным. Этот полимер получают полимеризацией водорастворимого мономера или водорастворимой мономерной смеси. Под водорастворимостью подразумевают то, что водорастворимый мономер или водорастворимая мономерная смесь характеризуется растворимостью в воде по меньшей мере 5 г в 100 мл воды. Полимер может быть эффективно получен по любому подходящему методу полимеризации.
Когда водорастворимый полимер является неионогенным, этот полимер может быть получен с использованием одного или нескольких водорастворимых этиленово-ненасыщенных неионогенных мономеров, например из акриламида, метакриламида, гидроксиэтилакрилата, N-винилпирролидона. Предпочтительный полимер получают из акриламида.
Когда водорастворимый полимер является анионоактивным, этот полимер получают с использованием одного или нескольких этиленово-ненасыщенных анионоактивных мономеров или смеси одного или нескольких анионоактивных мономеров с одним или несколькими неионогенными вышеупомянутыми мономерами. Анионоактивными мономерами являются, например, акриловая кислота, метакриловая кислота, малеиновая кислота, кротоновая кислота, итаконовая кислота, винилсульфоновая кислота, аллилсульфоновая кислота, 2-акриламидо-2-метилпропансульфоновая кислота и ее соли. Предпочтительным полимером является сополимер акрилата натрия с акриламидом.
Предпочтительный водорастворимый полимер является катионоактивным, его получают с использованием одного или нескольких этиленово-ненасыщенных катионоактивных мономеров необязательно вместе с одним или несколькими упомянутыми в настоящем описании неионогенными мономерами. Катионоактивный полимер может быть также амфотерным при условии, что он включает больше катионных групп, чем анионных групп. Катионоактивные мономеры включают диалкиламиноалкил(мет)акрилаты, диалкиламиноалкил(мет)акриламиды, включая их кислотно-аддитивные и четвертичные аммониевые соли, диаллилдиметиламмонийхлорид. Предпочтительные катионоактивные мономеры включают метилхлоридные четвертичные аммониевые соли диметиламиноэтилакрилата и диметиламиноэтилметакрилата. Особенно предпочтительный полимер включает сополимер акриламида с метилхлоридными четвертичными аммониевыми солями диметиламиноэтилакрилата.
Этот полимер необходимо и можно готовить полимеризацией в эмульсии с обращенной фазой с необязательным последующим азеотропным обезвоживанием с получением дисперсии полимерных частиц в масле. По другому варианту полимер может быть получен в форме бисера полимеризацией в суспензии с обращенной фазой или в форме порошка полимеризацией в водном растворе с последующими дроблением, сушкой, а затем измельчением.
Водорастворимый полимер может быть получен из водорастворимого мономера или мономерной смеси, включающей по меньшей мере один катионоактивный мономер и регулятор степени полимеризации в количестве по меньшей мере 2 мас.част./млн, часто по крайней мере 5 мас.част./млн. Содержание регулятора степени полимеризации может достигать 10000 мас.част./млн, но обычно оно не превышает 2500 или 3000 мас.част./млн. Необходимое количество регулятора степени полимеризации может быть равным от 5 до 200 мас.част./млн, в частности содержание регулятора степени полимеризации может составлять от 10 до 50 мас.част./млн в пересчете на массу мономера.
В качестве регулятора степени полимеризации может быть использован любой приемлемый регулятор степени полимеризации, например гипофосфиты щелочных металлов, меркаптаны, такие как 2-меркаптоэтанол, яблочная кислота или тиогликолевая кислота. Обычно количества используемого регулятора степени полимеризации зависят, по-видимому, от эффективности конкретно используемого регулятора степени полимеризации. Так, например, целевые результаты могут быть достигнуты с применением от примерно 5 до 25 мас.част./млн тиогликолевой кислоты, от 10 до 50 мас.част./млн гипофосфита щелочного металла или от 500 до 2500 мас.част./млн яблочной кислоты.
Возможно включение вместе с мономером и регулятором степени полимеризации некоторого количества агента образования ответвлений. Однако, когда включают агент образования ответвлений, получение полимеров с целевыми реологическими свойствами сопряжено с увеличением затруднений технологического порядка. Следовательно, в предпочтительном варианте агент образования ответвлений, если его используют, включают в очень небольших количествах. Особенно предпочтительны водорастворимые полимеры, полученные практически в отсутствие агента образования ответвлений и сшивающего агента.
Особенно предпочтительные для использования в способе по изобретению полимеры включают катионоактивные полимеры с характеристической вязкостью в пределах от 6 до 18 дл/г, предпочтительно от 8 до 13 дл/г. Необходимо, чтобы такие полимеры проявляли реологическое осцилляционное значение тангенса дельта при 0,005 Гц в пределах от 1,3 до 2,0, предпочтительно в пределах от 1,5 до 1,8. Наиболее предпочтительными катионоактивными полимерами являются сополимеры акриламида и метилхлоридной четвертичной аммониевой соли диметиламиноэтилакрилата.
Отличительной особенностью настоящего изобретения является то, что полимеры с высоким значением тангенса дельта обладают также относительно высокими молекулярными массами, на что указывают высокие значения характеристической вязкости. Одним из путей получения такого водорастворимого полимера является полимеризация в растворе с использованием водного раствора мономеров. Обычно концентрация водного мономерного раствора должна находиться в пределах от 20 до 40%, предпочтительно от примерно 30 до 35%. Такой мономерный раствор должен также включать регулятор степени полимеризации, например гипофосфит натрия. Необходимо предпринять меры предосторожности для того, чтобы регулятор степени полимеризации использовать в целесообразных количествах, соответствующих условиям полимеризации. Если регулятор степени полимеризации применять в слишком большом количестве, молекулярная масса полимера и, следовательно, характеристическая вязкость обычно проявляют тенденцию становиться чрезмерно низкими. В случае недостаточного количества регулятора степени полимеризации достижение высоких значений тангенса дельта может быть сопряжено с затруднениями технологического порядка.
Если в качестве регулятора степени полимеризации используют гипофосфит натрия, его количество может достигать 200 мас.част./млн, а предпочтительно в интервале от 10 до 100 мас.част./млн, в частности от 10 до 50 мас.част./млн. В процесс вводят приемлемую инициаторную систему, например водный персульфат аммония, метабисульфит натрия или третичный бутилгидропероксид, необязательно с другими инициаторами. Когда гелеобразные полимеры готовят полимеризацией в растворе, инициаторы обычно вводят в мономерный раствор. В процесс можно, но необязательно, вводить термическую инициаторную систему. Термический инициатор, как правило, включает любое приемлемое инициаторное соединение, которое при повышенной температуре образует радикалы, например азосоединения, такие как азобисизобутиронитрил.
После того как полимеризация завершается, полимерному гелю дают возможность достаточно остыть для того, чтобы этот гель можно было перерабатывать обычным путем, т.е. вначале дроблением геля на небольшие кусочки, сушкой до практически обезвоженного полимера с последующим измельчением до порошкообразного состояния.
По другому варианту полимеры получают в виде бисера суспензионной полимеризацией или эмульсионной полимеризацией в эмульсии или дисперсии воды в масле, например, в соответствии с методом, который представлен в ЕР-А 150933, ЕР-А 102760 или ЕР-А 126528.
Сущность изобретения иллюстрируют следующие примеры.
Пример 1
Получение полимера А
В 100 маc.част. воды готовят водную мономерную смесь, включающую 21 маc.част. метилхлоридной четвертичной аммониевой соли диметиламиноэтилакрилата, 79 маc.част. акриламида, 1750 маc.част. мономерной диэтилентриаминпентауксусной кислоты, 3 мас.% мономерной адипиновой кислоты и 50 маc.част. гипофосфита натрия (регулятор степени полимеризации).
Эту водную мономерную смесь эмульгируют в 100 маc.част. углеводородной жидкости Exxsol D40, содержащей 2,4% сорбитанмоноолеата в пересчете на массу мономера и 1,25% полимерного стабилизатора EL 1599A (технически доступен на фирме Uniqema).
Соответствующее количество как третичного бутилгидропероксида (трет-БГП), так и метабисульфита натрия медленно вводят с расходом, достаточным для того, чтобы обусловить рост температуры со скоростью 2°С/мин. Как правило, расход мономера находится в пределах от 5 до 15 мас.част./млн.
После завершения полимеризации на стадии обезвоживания, осуществляемой при повышенной температуре и под пониженным давлением, из дисперсной фазы удаляют существенное количество воды и летучий растворитель.
Получение полимеров Б и В
Полимеры Б и В получают так же, как и полимер А, за исключением использования соответственно 0 и 20 маc.част./млн гипофосфита натрия.
Характеристика полимеров от А до В
У полимеров от А до В определяют реологическое осцилляционное значение тангенса дельта при 0,005 Гц и характеристическую вязкость. Реологические осцилляционные значения определяют в 2%-ных водных растворах с помощью вискозиметра AR 1000N. Характеристическую вязкость определяют приготовлением растворов полимеров разных концентраций в 1 н. NaCl при 25°С в соответствии со стандартным промышленным методом.
Результаты сведены в таблицу 1.
Таблица 1
Полимер част./млн гипофосфита натрия тангенс δ при 0,005 Гц Характеристическая вязкость (дл/г)
А 50 1,82 8,5
Б 0 0,94 14,7
В 20 1,21 10,9
Пример 2
В ходе проведения серии испытаний на лабораторной волокнистой массе для высокосортной бумаги с применением полимеров А, Б и В определяют значения удерживания при первом проходе. В каждом испытании 0,2%-ный раствор полимера вводят в количестве 0,5, 0,75 и 1 фунт/т волокнистой массы. Далее волокнистую массу обрабатывают сдвиговым усилием с помощью механической мешалки с последующим добавлением шлама активированного бентонита в концентрации 4 фунта/т.
Средние значения удерживания (%) при первом проходе представлены в процентах в таблице 2 и на фиг.1.
Таблица 2
Полимер Концентрация (фунты на тонну)
  0,5 0,75 1,0
А 87,50 92,60 96,60
Б 81,80 87,20 91,50
В 85,50 90,70 94,60
Совершенно очевидно, что полимеры А и В со значениями тангенса дельта соответственно 1,82 и 1,21 обуславливают более эффективное удерживание при первом проходе, чем полимер Б со значением тангенса дельта 0,94. Полимер А обеспечивает достижение наилучших показателей удерживания при первом проходе.
Пример 3
Аналогично примеру 1 готовят ряд полимеров, из которых три полимера получают с использованием 0 част./млн гипофосфита натрия как регулятора степени полимеризации, три полимера получают с использованием 20 част./млн гипофосфита натрия и три полимера получают с использованием 50 част./млн гипофосфита натрия как регулятора степени полимеризации. Для каждого полимера определяют характеристическую вязкость и реологические осцилляционные значения. С применением полимеров этого ряда повторяют пример 2 и определяют значения удерживания при первом проходе.
В таблице 3 представлены средние результаты для полимеров каждой группы, полученных при данном содержании гипофосфита натрия.
Таблица 3
Гипофосфит Na, част./млн Средняя характеристическая вязкость Среднее значение тангенса δ при 0,005 Гц Среднее удерживание за первый проход при концентрации 0,5 фунта/т Среднее удерживание за первый проход при концентрации 0,75 фунта/т Среднее удерживание за первый проход при концентрации 1 фунт/т
0 13,90 0,92 83,10 88,70 93,50
20 12,90 1,12 85,60 90,80 94,30
50 10,50 1,40 87,40 92,70 95,60
Можно четко видеть, что с повышением концентрации регулятора степени полимеризации проявляется тенденция к росту у полимеров эффективности удерживания. Полимеры, получаемые при более высокой концентрации регулятора степени полимеризации, проявляют повышенные значения тангенса дельта.
Пример 4
Пример 3 повторяют, но с использованием при получении ряда полимеров 0, 50, 100 и 150 част./млн гипофосфита натрия. В таблице 4 представлены средние показатели удерживания при первом проходе.
Таблица 4
Гипофосфит Na, част./млн Средняя характеристическая вязкость Среднее удерживание за первый проход при концентрации 0,5 фунта/т Среднее удерживание за первый проход при концентрации 0,75 фунта/т
0 16,9 80,7 87,8
50 10,6 85,4 91,7
100 11,6 85,6 90,45
150 8,8 84,2 90,9
Эти результаты показывают, что полимеры, полученные в присутствии 50 и 150 част./млн регулятора степени полимеризации, проявляют заметно улучшенный показатель удерживания при первом проходе в сравнении с полимером, полученным в отсутствие регулятора степени полимеризации.

Claims (10)

1. Способ изготовления бумаги или картона, включающий приготовление целлюлозной суспензии, флокуляцию этой суспензии, механическую обработку суспензии сдвиговым усилием и повторную флокуляцию суспензии, дренирование суспензии на сетке с отливкой листа и последующую сушку этого листа, в котором суспензию флокулируют введением водорастворимого полимера с характеристической вязкостью свыше 3 дл/г в суспензии, отличающийся тем, что этот водорастворимый полимер представляет собой катионоактивный полимер, который получен из водорастворимого мономера или мономерной смеси, содержащей по меньшей мере один катионоактивный мономер, где указанный полимер проявляет реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 1,1, рассчитанное в 1,5 мас.% водном растворе полимера, в котором целлюлозную суспензию повторно флокулируют введением флокулянтного материала, выбранного из группы, включающей кремнийсодержащий материал, который находится в форме анионоактивной композиции микрочастиц, анионоактивные полисахариды, анионоактивный синтетический водорастворимый полимер и сшитые анионоактивные полимерные микрочастицы, и в котором механическую обработку осуществляют пропусканием флокулированной целлюлозной суспензии через одно или несколько средств обработки со сдвиговым усилием, выбранных из таких средств, как центробежная сортировка и лопастной насос.
2. Способ по п.1, в котором водорастворимый катионоактивный полимер проявляет реологическое осцилляционное значение тангенса дельта при 0,005 Гц больше 1,2, рассчитанное в 1,5 мас.% водном растворе полимера.
3. Способ по п.1 или 2, в котором водорастворимый катионоактивный полимер проявляет характеристическую вязкость больше 4 дл/г и значение тангенса дельта при 0,005 Гц в пределах от 1,3 до 2,0, рассчитанное в 1,5 мас.% водном растворе полимера.
4. Способ по любому из пп.1-3, в котором водорастворимый катионоактивный полимер проявляет характеристическую вязкость по крайней мере 6 дл/г.
5. Способ по любому из пп.1-4, в котором водорастворимый мономер или мономерная смесь включает по меньшей мере один катионоактивный мономер и по крайней мере 2 мас.ч./млн регулятора степени полимеризации.
6. Способ по п.5, в котором регулятор степени полимеризации содержится в пределах от 5 до 200 мас.ч./млн.
7. Способ по п.5, в котором регулятор степени полимеризации содержится в пределах от 10 до 50 мас.ч./млн.
8. Способ по любому из пп.1-7, в котором флокулянтный материал представляет собой кремнийсодержащий материал, выбранный из группы, включающей частицы на кремнийдиоксидной основе, кремнийдиоксидные микрогели, коллоидный диоксид кремния, коллоидные растворы кремнекислоты, силикагели, полисиликаты, алюмосиликаты, полиалюмосиликаты, борсиликаты, полиборсиликаты, цеолиты и глины.
9. Способ по любому из пп.1-8, в котором флокулянтным материалом является кремнийсодержащий материал, который представляет собой набухающую в воде глину, выбранную из группы, включающей гекторит, смектиты, монтмориллониты, нонтрониты, сапонит, соконит, гормиты, аттапульгиты и сепиолиты.
10. Способ по любому из пп.1-7, в котором флокулянтный материал представляет собой анионоактивный разветвленный водорастворимый полимер, который получают с использованием водорастворимого этиленово-ненасыщенного анионоактивного мономера или мономерной смеси и агента образования ответвлений, и в котором полимер обладает характеристической вязкостью выше 4 дл/г и проявляет значение тангенса дельта при 0,005 Гц больше 0,7, рассчитанное в 1,5 мас.% водного раствора полимера.
RU2002113774/04A 1999-11-08 2000-11-02 Способ изготовления бумаги и картона RU2247185C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16423199P 1999-11-08 1999-11-08
US60/164,231 1999-11-08

Publications (2)

Publication Number Publication Date
RU2002113774A RU2002113774A (ru) 2004-08-20
RU2247185C2 true RU2247185C2 (ru) 2005-02-27

Family

ID=22593556

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002113774/04A RU2247185C2 (ru) 1999-11-08 2000-11-02 Способ изготовления бумаги и картона

Country Status (25)

Country Link
US (1) US6406593B1 (ru)
EP (1) EP1238160B2 (ru)
JP (1) JP3764388B2 (ru)
KR (1) KR100572137B1 (ru)
CN (1) CN1246527C (ru)
AR (1) AR026373A1 (ru)
AT (1) ATE318955T1 (ru)
AU (1) AU776011B2 (ru)
BR (1) BR0015371B1 (ru)
CA (1) CA2388967C (ru)
CZ (1) CZ297151B6 (ru)
DE (1) DE60026371T3 (ru)
DK (1) DK1238160T3 (ru)
ES (1) ES2258032T5 (ru)
HU (1) HU225718B1 (ru)
MX (1) MXPA02004495A (ru)
NO (1) NO332241B1 (ru)
NZ (1) NZ518467A (ru)
PL (1) PL206322B1 (ru)
PT (1) PT1238160E (ru)
RU (1) RU2247185C2 (ru)
SK (1) SK286444B6 (ru)
TW (1) TW527457B (ru)
WO (1) WO2001034907A1 (ru)
ZA (1) ZA200203517B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2609260C2 (ru) * 2011-04-26 2017-01-31 Соленис Текнолоджиз Кейман,Л.П. Средство для обезвоживания - простой эфир полиорганосиликона
US11306441B2 (en) 2017-09-08 2022-04-19 Solenis Technologies, L.P. Composition comprising cross-linked anionic, organic polymeric microparticles, its preparation and use in paper and paperboard making processes
RU2775389C2 (ru) * 2017-09-08 2022-06-30 Соленис Текнолоджиз Кеймэн, Л.П. Композиция, содержащая сшитые анионогенные органические полимерные микрочастицы, ее получение и применение в способах изготовления бумаги и картона

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189776B2 (en) * 2001-06-12 2007-03-13 Akzo Nobel N.V. Aqueous composition
FR2869626A3 (fr) * 2004-04-29 2005-11-04 Snf Sas Soc Par Actions Simpli Procede de fabrication de papier et carton, nouveaux agents de retention et d'egouttage correspondants, et papiers et cartons ainsi obtenus
US7955473B2 (en) 2004-12-22 2011-06-07 Akzo Nobel N.V. Process for the production of paper
US20060254464A1 (en) 2005-05-16 2006-11-16 Akzo Nobel N.V. Process for the production of paper
EP2322714A1 (en) * 2005-12-30 2011-05-18 Akzo Nobel N.V. A process for the production of paper
DE502006008051D1 (de) 2006-05-29 2010-11-18 Webasto Ag Kälte- und/oder wärmespeicher
KR20090064594A (ko) * 2006-09-27 2009-06-19 시바 홀딩 인크 규산질 조성물 및 제지시 이의 용도
JP2015533954A (ja) 2012-10-05 2015-11-26 スペシャリティ ミネラルズ (ミシガン) インコーポレイテッド 充填材懸濁液および紙の製造におけるその使用
BR112015007495A2 (pt) 2012-10-05 2017-07-04 Specialty Minerals Michigan Inc suspensão de carga e seu uso na fabricação de papel
FI126610B (en) 2015-01-27 2017-03-15 Kemira Oyj Particle polymer product and its use
CA3026422A1 (en) 2016-06-10 2017-12-14 Ecolab Usa Inc. Low molecular weight dry powder polymer for use as paper-making dry strength agent
WO2019027994A1 (en) 2017-07-31 2019-02-07 Ecolab Usa Inc. METHOD FOR APPLYING DRY POLYMER
WO2019118675A1 (en) 2017-12-13 2019-06-20 Ecolab Usa Inc. Solution comprising an associative polymer and a cyclodextrin polymer

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE432951B (sv) 1980-05-28 1984-04-30 Eka Ab Pappersprodukt innehallande cellulosafibrer och ett bindemedelssystem som omfattar kolloidal kiselsyra och katjonisk sterkelse samt forfarande for framstellning av pappersprodukten
US4506062A (en) 1982-08-09 1985-03-19 Allied Colloids Limited Inverse suspension polymerization process
GB8309275D0 (en) 1983-04-06 1983-05-11 Allied Colloids Ltd Dissolution of water soluble polymers in water
GB8401206D0 (en) * 1984-01-17 1984-02-22 Allied Colloids Ltd Polymers and aqueous solutions
SE8403062L (sv) 1984-06-07 1985-12-08 Eka Ab Forfarande vid papperstillverkning
GB8602121D0 (en) 1986-01-29 1986-03-05 Allied Colloids Ltd Paper & paper board
GB8602507D0 (en) 1986-02-01 1986-03-05 Micropore International Ltd Electric radiation heater
US5171891A (en) 1987-09-01 1992-12-15 Allied-Signal Inc. Oxidation of organic compounds having allylic or benzylic carbon atoms in water
US4795531A (en) 1987-09-22 1989-01-03 Nalco Chemical Company Method for dewatering paper
US4983698A (en) * 1987-12-23 1991-01-08 Exxon Chemical Patents Inc. Cationic polymers
EP0335575B2 (en) 1988-03-28 2000-08-23 Ciba Specialty Chemicals Water Treatments Limited Production of paper and paper board
MX18620A (es) 1988-12-19 1993-10-01 American Cyanamid Co Floculante polimerico de alto desempeño, proceso para su preparacion, metodo para la liberacion de agua de un dispersion de solidos suspendidos y metodo de floculacion de una dispersion de solidos suspendidos
US5167766A (en) 1990-06-18 1992-12-01 American Cyanamid Company Charged organic polymer microbeads in paper making process
DK0484617T4 (da) 1990-06-11 2002-03-18 Ciba Spec Chem Water Treat Ltd Tværbundne anioniske og amfotere polymere mikropartikler
US5126014A (en) * 1991-07-16 1992-06-30 Nalco Chemical Company Retention and drainage aid for alkaline fine papermaking process
FR2692292B1 (fr) 1992-06-11 1994-12-02 Snf Sa Procédé de fabrication d'un papier ou d'un carton à rétention améliorée.
US5266164A (en) * 1992-11-13 1993-11-30 Nalco Chemical Company Papermaking process with improved drainage and retention
US5707494A (en) 1994-03-14 1998-01-13 E. I. Du Pont De Nemours And Company Process for preparing water soluble polyaluminosilicates
US5482693A (en) 1994-03-14 1996-01-09 E. I. Du Pont De Nemours And Company Process for preparing water soluble polyaluminosilicates
SE9504081D0 (sv) * 1995-11-15 1995-11-15 Eka Nobel Ab A process for the production of paper
US6071379A (en) * 1996-09-24 2000-06-06 Nalco Chemical Company Papermaking process utilizing hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide as retention and drainage aids
EP0950138B1 (en) * 1996-12-31 2002-04-03 Ciba Specialty Chemicals Water Treatments Limited Processes of making paper and materials for use in this
EP1388522B1 (en) 1997-09-30 2016-09-14 Ondeo Nalco Company Colloidal borosilicates and their use in the production of paper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2609260C2 (ru) * 2011-04-26 2017-01-31 Соленис Текнолоджиз Кейман,Л.П. Средство для обезвоживания - простой эфир полиорганосиликона
US11306441B2 (en) 2017-09-08 2022-04-19 Solenis Technologies, L.P. Composition comprising cross-linked anionic, organic polymeric microparticles, its preparation and use in paper and paperboard making processes
RU2775389C2 (ru) * 2017-09-08 2022-06-30 Соленис Текнолоджиз Кеймэн, Л.П. Композиция, содержащая сшитые анионогенные органические полимерные микрочастицы, ее получение и применение в способах изготовления бумаги и картона

Also Published As

Publication number Publication date
CA2388967C (en) 2005-12-20
WO2001034907A1 (en) 2001-05-17
SK286444B6 (sk) 2008-10-07
MXPA02004495A (es) 2002-09-02
AU2354001A (en) 2001-06-06
NZ518467A (en) 2004-01-30
NO332241B1 (no) 2012-08-06
DE60026371D1 (de) 2006-04-27
EP1238160A1 (en) 2002-09-11
ES2258032T3 (es) 2006-08-16
AU776011B2 (en) 2004-08-26
CZ297151B6 (cs) 2006-09-13
PL354871A1 (en) 2004-03-08
DE60026371T3 (de) 2012-05-31
ZA200203517B (en) 2002-11-29
PL206322B1 (pl) 2010-07-30
US6406593B1 (en) 2002-06-18
DE60026371T2 (de) 2006-08-03
CN1387595A (zh) 2002-12-25
CA2388967A1 (en) 2001-05-17
HU225718B1 (en) 2007-07-30
KR100572137B1 (ko) 2006-04-19
KR20020059705A (ko) 2002-07-13
JP2003514140A (ja) 2003-04-15
ES2258032T5 (es) 2012-06-12
JP3764388B2 (ja) 2006-04-05
NO20022181D0 (no) 2002-05-07
DK1238160T3 (da) 2006-06-26
BR0015371A (pt) 2002-07-09
SK6282002A3 (en) 2002-12-03
HUP0203141A2 (en) 2003-04-28
BR0015371B1 (pt) 2010-12-14
ATE318955T1 (de) 2006-03-15
EP1238160B2 (en) 2012-02-22
AR026373A1 (es) 2003-02-05
PT1238160E (pt) 2006-06-30
CN1246527C (zh) 2006-03-22
TW527457B (en) 2003-04-11
CZ20021578A3 (cs) 2003-11-12
EP1238160B1 (en) 2006-03-01
NO20022181L (no) 2002-06-05

Similar Documents

Publication Publication Date Title
RU2246566C2 (ru) Способ изготовления бумаги и картона
RU2265097C2 (ru) Изготовление бумаги и картона
RU2247185C2 (ru) Способ изготовления бумаги и картона
RU2247184C2 (ru) Способ изготовления бумаги или картона
RU2247183C2 (ru) Способ изготовления бумаги и картона
KR101253375B1 (ko) 제지에서 개선된 보류도 및 배수성
WO2007001474A1 (en) Improved retention and drainage in the manufacture of paper
JP2008525665A (ja) 紙製造における改善された歩留まりおよび濾水
RU2287631C2 (ru) Способ изготовления бумаги и картона
KR20070103398A (ko) 제지에서 개선된 보류도 및 배수성
AU2011236003B2 (en) Improved retention and drainage in the manufacture of paper