RU2198924C2 - Премерсацидин, промерсацидин, днк (варианты), вектор (варианты), способ получения мерсацидина - Google Patents
Премерсацидин, промерсацидин, днк (варианты), вектор (варианты), способ получения мерсацидина Download PDFInfo
- Publication number
- RU2198924C2 RU2198924C2 RU95115686/13A RU95115686A RU2198924C2 RU 2198924 C2 RU2198924 C2 RU 2198924C2 RU 95115686/13 A RU95115686/13 A RU 95115686/13A RU 95115686 A RU95115686 A RU 95115686A RU 2198924 C2 RU2198924 C2 RU 2198924C2
- Authority
- RU
- Russia
- Prior art keywords
- mersacidine
- promersacidin
- mature
- mercacidin
- dna
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/50—Cyclic peptides containing at least one abnormal peptide link
- C07K7/54—Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
- C07K7/56—Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Saccharide Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Abstract
Изобретение относится к биотехнологии и касается пептидного антибиотика мерсацидина и его предшественников - премерсацидина и промерсацидина, кодирующих их ДНК, векторов, содержащих эти ДНК, и генно-инженерного способа получения зрелого мерсацидина. Зрелый мерсацидин применим в качестве пептидного антибиотика против заражения пищевых продуктов метициллинрезистентным Staphylococcus aureus или для лечения инфекций, вызываемых Staphylococcus aureus у человека и животных. Изобретение может быть применимо также для получения модифицированных производных мерсацидина со смещенным антибиотическим спектром или отличающихся эффективностью. Изобретение позволяет повысить экспрессию мерсацидина или его производных. 11 с.п. ф-лы, 3 ил.
Description
Изобретение касается в особенности последовательности структурного гена пептидного антибиотика мерсацидина. Секвенирование показало, что премерсацидин состоит из необычно длинной (48 аминокислот) лидерной последовательности и пропептидной части из 20 аминокислот, которая модифицируется во время биосинтеза до зрелого лантибиотика.
Мерсацидин относится к группе бактерицидных пептидов, которые были названы лантибиотиками, что означает, что эти пептиды содержат редкие аминокислоты лантионин и/или 3-метиллантионин. Дополнительные модифицированные аминокислоты, такие как дегидроаланин и дегидробутирин, обычно встречаются, тогда как S -аминовинилцистеин и лизиноаланин обнаружены только в некоторых лантибиотиках (G. Yung (1991), Angew. Chem. Int. Ed. Engl. 30: 1051-1068). Лантибиотики продуцируются грамположительными бактериями и происходят из синтезированных рибосомами препептидов. Структурные гены лантибиотиков были обнаружены на бактериальной хромосоме (например, субтилин и циннамицин) или они ассоциированы с подвижными элементами, такими как транспозоны (например, низин) или большими плазмидами (например, эпидермин и Рер5). Препептиды состоят из N-концевой лидерной последовательности, которая отщепляется после экспорта из клетки-продуцента, и С-концевого пропептида, который пост-трансляционно модифицируется до зрелого лантибиотика (G. Yung (1991), Supra). В первой стадии модификации остатки серина и треонина дегидратируются с образованием дегидроаланина (Dha) или дегидробутирина (Dhb), соответственно (H. -P. Weil еt al. (1990), Eur. Y. Biochem. 194: 217-223). Затем SH-группы остатков цистеина реагируют с двойными связями Dha или Dhb с образованием лантионинов или метиллантионинов, соответственно.
Мерсацидин был выделен из культурального супернатанта Bacillus Spec. HIL У-85, 54728 и вызвал интерес вследствие его значительной эффективности in vivo против метициллин-резистентного Staphylococcus aureus (MRSA) (S. Chatterjee et al. (1992), Y. Antibiotics 45: 839-845). Он представляет собой самый малый по размеру лантибиотик, изолированный до настоящего времени (1825 Да), синтезированный из пропептида из 20 аминокислот, и содержит 3 остатка метиллантионина, один дегидроаланин и один S-амино-винил-2-метилцистеин (фиг.1А) (S. Chatterjee (1992), Y. Antibiotics 45: 832-838). Мерсацидин не несет результирующего заряда и имеет в целом гидрофобные свойства. Недавние результаты показывают, что мерсацидин препятствует биосинтезу пептидогликана. Наиболее вероятно, что это происходит на уровне трансгликозилирования через механизм, который отличается от механизма действия антибиотиков, применяемых в настоящее время против MRSА.
Таким образом, данное изобретение касается премерсацидина, имеющего аминокислотную последовательность, показанную на фиг.2, от аминокислоты 1 по аминокислоту 68, и промерсацидина, имеющего аминокислотную последовательность, показанную на фиг.2, от аминокислоты 49 по аминокислоту 68.
Следующим вариантом данного изобретения являются ДНК, кодирующие премерсацидин или промерсацидин, в частности ДНК, имеющие нуклеотидную последовательность, показанную на фиг.2 от 22 по 225, кодирующую премерсацидин, или от 166 по 225, кодирующую промерсацидин; вектор, содержащий эту ДНК, и клетка-хозяин, содержащая этот вектор.
Другим вариантом данного изобретения является способ получения премерсацидина, промерсацидина или зрелого мерсацидина генноинженерными методами, обычно известными специалисту в данной области, т.е. подходящую клетку-хозяин, содержащую эти ДНК, кодирующие премерсацидин или промерсацидин, культивируют при подходящих условиях с последующим выделением премерсацидина, промерсацидина или зрелого мерсацидина, экспрессируемых клеткой-хозяином, предпочтительно грамположительной бактерией, такой как Bacillus, Streptomyces или Streptococcus.
Наконец, пептиды премерсацидин, или промерсацидин, или их гены согласно данному изобретению могут быть использованы для получения зрелого мерсацидина, как описано, например, в WO 90/00558.
Зрелый мерсацидин применим, например, в качестве пептидного антибиотика для сохранения пищевых продуктов против метициллин-резистентного Staplylococcus aureus или в качестве антибиотика для лечения инфекций, вызываемых Staphylococcus aureus, у животных или человека. Данное изобретение может быть применено также для получения производных мерсацидина, модифицированных в аминокислотной последовательности, со смещенным антибиотическим спектром или отличающейся эффективностью. Кроме того, изобретение открывает пути к повышенной экспрессии мерсацидина или его производных при помощи генной инженерии.
Описание чертежей
Фиг.1: А) Структура лантибиотика мерсацидина;
В) Вероятная последовательность препептида и последовательность зонда из 51 основания, который был применен для идентификации структурного гена.
Фиг.1: А) Структура лантибиотика мерсацидина;
В) Вероятная последовательность препептида и последовательность зонда из 51 основания, который был применен для идентификации структурного гена.
Фиг. 2: Нуклеотидная последовательность структурного гена MRSA лантибиотика мерсацидина и дедуцированная аминокислотная последовательность препептида. Сайт связывания рибосом впереди стартового кодона АТG отделен перегородками и сайт процессинга отмечен стрелкой. Вероятный rho-независимый терминатор подчеркнут.
Фиг. 3: Сравнение лидерных последовательностей нескольких лантибиотиков. Консервативные последовательности отмечены жирным шрифтом.
Пример
1. Клонирование структурного гена мерсацидина
Вероятная последовательность пропептида мерсацидина (фиг.1,В) была дедуцирована из структуры мерсацидина и на основе общей информации о биосинтезе лантибиотиков. Был синтезирован изображенный предполагаемый зонд из 51 основания на основе предпочтительного использования кодонов Bacillus на PCR-Mate® (Applied Biosystems, Weiterstadt, FRG) и помечен диоксигенином (Boehringer Mannheim, Mannheim, FRG) (фиг.1,В). Аминобутирильные остатки (Abus - половина метиллантионина) происходят из треонинов, тогда как остатки аланина (Аlаs - половина метиллатионина) кодируются как цистеин в пропептиде. S-аминовинил-2-метилцистеин, образующий концевую кольцевую структуру, вероятно, образован из метиллантионина, который окислительно декарбоксилировался, как было показано для эпидермина, содержащего С-концевой S-аминовинилцистеин (J.Kupke еt al. (1992), Y. Bacteriol, 174: 5354-5361).
1. Клонирование структурного гена мерсацидина
Вероятная последовательность пропептида мерсацидина (фиг.1,В) была дедуцирована из структуры мерсацидина и на основе общей информации о биосинтезе лантибиотиков. Был синтезирован изображенный предполагаемый зонд из 51 основания на основе предпочтительного использования кодонов Bacillus на PCR-Mate® (Applied Biosystems, Weiterstadt, FRG) и помечен диоксигенином (Boehringer Mannheim, Mannheim, FRG) (фиг.1,В). Аминобутирильные остатки (Abus - половина метиллантионина) происходят из треонинов, тогда как остатки аланина (Аlаs - половина метиллатионина) кодируются как цистеин в пропептиде. S-аминовинил-2-метилцистеин, образующий концевую кольцевую структуру, вероятно, образован из метиллантионина, который окислительно декарбоксилировался, как было показано для эпидермина, содержащего С-концевой S-аминовинилцистеин (J.Kupke еt al. (1992), Y. Bacteriol, 174: 5354-5361).
Поскольку плазмиды не могли быть обнаружены в штамме-продуценте, хромосомную ДНК готовили, как описано Marmur (Y. Marmur (1961), Y. Mol. Biol. 3: 208-218), за исключением того, что проводили только одну экстракцию хлороформом и одно осаждение и что ДНК затем растворяли в буфере для уравновешивания колонки и очищали на колонке Qiagen-tip® 100 (Qiagen, Hilden, FRG). При 51oС одну полосу 2 т.п.н. из продукта расщепления хромосом Hind 111 гибридизировали с зондом в блоте по Саузерну (E.M. Southern (1975), Y. Mol. Biol. 98: 503-517). Фрагменты размером от 1,9 до 2,3 т.п.н. вырезали из геля, элюировали при помощи BIOTRAP® (Schleicher and Schiill, Dassel, FRG) и субклонировали в pU С18 (С. Yanisch - Perron et al. (1985), Yene 33: 103-109) в Е. coli. Плазмиды некоторых рекомбинантных колоний готовили по методу Beinboim and Doly (H.C. Beinboim and Y. Dolly (1979), Nucl. Acids Res. 7: 1513-1523), расщепляли Hind 111 и гибридизировали с зондом. Один из клонов, который дал положительный сигнал, анализировали далее при помощи продуктов расщепления с различными ферментами и последующих блотов по Саузерну. Наконец, фрагмент 1,3 т. п. н. Есо R1- Hind 111 был субклонирован в pEMBL 18 и pEMBL 19 (Z. Dente et аl. (1983), Nucleic Acids Res. 11: 1645-1655) в Е. coli. Кроме того, фрагмент 0,6 т.п.н. ЕсоRV клонировали в вектор рС U1 (Y. Augustin еt al. (1992), Eur. Y. Biochem, 204: 1149-1154) после сайт-направленного мутагенеза сайта ЕсоR1 в сайт EcoRV с применением набора (кита) для трансформирующего сайт-направленного мутагенеза (Clontech, Рalo Alto, USA).
2. Нуклеотидная последовательность структурного гена мерсацидина, mrSA
Фрагмент 0,6 т.п.н. секвенировали на A.L.F. автоматическом секвенаторе ДНК (Рharmacia, Brussels, Belgium) при помощи метода дидезокси-терминации цепи (F. Sander et al. (1977), Рroс. Natl. Acad. Sci. USA 74: 5463-5467) из двухцепочечной ДНК; в качестве праймеров использовали универсальный праймер и обращенный праймер кита для секвенирования AutoRead (Pharmacia, Brussels, Belgium) и два синтетических олигонуклеотида 5' -(ТСТСТТССАТТТТТТТG)3' и 5' -(АААТСАААТТААСАААТАС) 3'. Нуклеотидная последовательность структурного гена мерсацидина, mrSА, показана на фиг.2. Потенциальный сайт связывания рибосом (АGGGGG) был обнаружен на 8 п.н. влево (в направлении 3'-5') от стартового кодона ATG открытой рамки считывания. С-концевая часть этой последовательности соответствует опубликованной первичной структуре мерсацидина (S. Chatterjee et al. (1992), Y. Antibiotics 45: 832-838) и его предложенной пропептидной последовательности. N-концевая часть состоит из лидерной последовательности из 48 аминокислот (стрелка на фиг.2). Промерсацидин состоит из 20 аминокислот. Таким образом, полная длина препептида равна 68 аминокислотам с рассчитанной молекулярной массой 7228 Да. На восемь оснований справа (в направлении 5' - 3') от стоп-кодона ТАА была обнаружена шпилечная структура с величиной свободной энергии -86,7 кдж.моль-1 и размером стебля (ножки) 14 п. н. Эта структура могла бы служить в качестве rho-независимого терминатора во время транскрипции, т.к. за ней следует последовательность ТТТАТТ (фиг.2).
Фрагмент 0,6 т.п.н. секвенировали на A.L.F. автоматическом секвенаторе ДНК (Рharmacia, Brussels, Belgium) при помощи метода дидезокси-терминации цепи (F. Sander et al. (1977), Рroс. Natl. Acad. Sci. USA 74: 5463-5467) из двухцепочечной ДНК; в качестве праймеров использовали универсальный праймер и обращенный праймер кита для секвенирования AutoRead (Pharmacia, Brussels, Belgium) и два синтетических олигонуклеотида 5' -(ТСТСТТССАТТТТТТТG)3' и 5' -(АААТСАААТТААСАААТАС) 3'. Нуклеотидная последовательность структурного гена мерсацидина, mrSА, показана на фиг.2. Потенциальный сайт связывания рибосом (АGGGGG) был обнаружен на 8 п.н. влево (в направлении 3'-5') от стартового кодона ATG открытой рамки считывания. С-концевая часть этой последовательности соответствует опубликованной первичной структуре мерсацидина (S. Chatterjee et al. (1992), Y. Antibiotics 45: 832-838) и его предложенной пропептидной последовательности. N-концевая часть состоит из лидерной последовательности из 48 аминокислот (стрелка на фиг.2). Промерсацидин состоит из 20 аминокислот. Таким образом, полная длина препептида равна 68 аминокислотам с рассчитанной молекулярной массой 7228 Да. На восемь оснований справа (в направлении 5' - 3') от стоп-кодона ТАА была обнаружена шпилечная структура с величиной свободной энергии -86,7 кдж.моль-1 и размером стебля (ножки) 14 п. н. Эта структура могла бы служить в качестве rho-независимого терминатора во время транскрипции, т.к. за ней следует последовательность ТТТАТТ (фиг.2).
3. Характеристика препептида мерсацидина
Лантибиотики подразделяются на две группы (G. Yung (1991) Supra). Лантибиотики типа А представляют собой удлиненные амфифильные пептиды, которые образуют временные поры в мембранах чувствительных к ним бактерий (H.-G. Sahl (1991), Роrе formotion in bacterial membranes by cationic lantibiotics, p. 347-358, In G. Yung and H.-G. Sahl (ed.) Hisin and novel lantibiotics, Escom, Zeiden). Лантибиотики типа В представляют собой глобулярные пептиды, продуцируемые Streptomyces, которые имеют молекулярные массы менее 2100 Да и высоко гомологичны по их аминокислотной последовательности и кольцевой структуре, которая включает в себя конденсацию "головки" с "хвостом" (G. Yung (1991), Supra). До сих пор мерсацидин не мог быть отнесен ни к одной из этих групп (G. Вierbaum and H.-G. Sahl (1993), Zbl. Bakt. 278: 1-22). В этом отношении особый интерес представляет сравнение последовательности препептида мерсацидина с последовательностями лантибиотиков типа А и типа В.
Лантибиотики подразделяются на две группы (G. Yung (1991) Supra). Лантибиотики типа А представляют собой удлиненные амфифильные пептиды, которые образуют временные поры в мембранах чувствительных к ним бактерий (H.-G. Sahl (1991), Роrе formotion in bacterial membranes by cationic lantibiotics, p. 347-358, In G. Yung and H.-G. Sahl (ed.) Hisin and novel lantibiotics, Escom, Zeiden). Лантибиотики типа В представляют собой глобулярные пептиды, продуцируемые Streptomyces, которые имеют молекулярные массы менее 2100 Да и высоко гомологичны по их аминокислотной последовательности и кольцевой структуре, которая включает в себя конденсацию "головки" с "хвостом" (G. Yung (1991), Supra). До сих пор мерсацидин не мог быть отнесен ни к одной из этих групп (G. Вierbaum and H.-G. Sahl (1993), Zbl. Bakt. 278: 1-22). В этом отношении особый интерес представляет сравнение последовательности препептида мерсацидина с последовательностями лантибиотиков типа А и типа В.
Две общие характеристики лидерных последовательностей лантибиотиков были сохранены в мерсацидине: i) в лидерной последовательности нет цистеина (G. Yung (1991), Supra); ii) склонность к α-спирали предсказана для С-концевой части лидерной последовательности. Такие структурные элементы были также предсказаны и продемонстрированы для лидерных последовательностей пептидов лантибиотиков типа А при помощи измерений кругового дихроизма в смесях трифторэтанол/вода (A.G. Beck-Sickinger and G. Yung. Synthesis and Conformational аnalysis of lantibiotic leader-, рro - аnd prepeptide р.218-230. In G. Yung and H. -G. Sahl (ed. ). Nisin and novel lantibiotics, Escom, Leiden 1991). Во всех других отношениях лидерная последовательность мерсацидина отличается от лидерных последовательностей лантибиотиков типа А, описанных к настоящему времени. Как показано на фиг.3, она скорее похожа по длине и распределению заряда (48 аминокислот/12 зарядов) на необычно длинный лидер (59 аминокислот, 11 зарядов) лантибиотика типа В циннамицин (C. Kaletta et al. (1989), Рер5, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch. Microbiol. 152: 16-19). В противоположность этому типичная высокозаряженная лидерная последовательность лантибиотика типа А, например лидерный пептид Рер5, содержит 10 заряженных остатков всего лишь в 26 аминокислотах (С. Kaletta et al. (1989), Supra). Консервативные последовательности лантибиотиков типа А (например, мотив FD/NLD/Е,) не обнаружены в лидерном пептиде мерсацидина. Сайт расщепления протеазной лидерной последовательности мерсацидина (-4M--3E--2A--1A-+1C) отличается от консервативного сайта лантибиотиков типа А (фиг.3). Здесь мы находим либо сайт расщепления типа низина (-1, положительно заряженная аминокислота; -2, пролин; -3, отрицательно заряженная или полярная аминокислота и -4, гидрофобная) или сайты расщепления, содержащие гидрофобный глицин, лактицина 481 Y.-C. Piard et al. (1993), Y. Biol. Ghem., 268, 16361-16368 или стрептококцина A-FF 22 (W.Z. Hynes et al. (1993). Appl. Env. Microbiol. 59: 1969-1971). Сайт расщепления (-3А--2F--1А) циннамицина (C. Kalletta et al. (1989), Supra) согласуется с правилом (-3A--2X--1A) для белков, секретируемых через Sес-путь. В заключение можно отметить, что препептид мерсацидина не обнаруживает гомологии с консервативными последовательностями лидерных последовательностей лантибиотиков типа А. Имеется сходство с препептидом циннамицина в длине и распределении заряда, но нет очевидной гомологии последовательности на уровне аминокислот. Мерсацидин меньше, чем лантибиотики типа А, не заряжен положительно и он не деполяризует мембраны, а скорее ингибирует биосинтез пептидогликана. Это, в дополнение к свойствам лидерного пептида, свидетельствует о том, что мерсацидин более близок к лантибиотикам типа В, чем типа А. Недавно были выяснены последовательность и мостиковый паттерн другого лантибиотика - актагардина, который также ингибирует биосинтез клеточной стенки (S. Somma et al. , Antimicrob. Agents Chemother, 11: 396-401, 1977). Сравнение с мерсацидином показывает, что одно кольцо почти полностью сохранено в обоих лантибиотиках. Ввиду сильной гомологии охарактеризованных до настоящего времени лантибиотиков типа В дурамицина А, В, С, анковенина и циннамицина, эти пептиды могли бы также рассматриваться как структурные разновидности, подобно тому, как это наблюдалось для эпидермина и галлидермина или низина А и низина Z. Таким образом, мы предполагаем, что мерсацидин и актагардин должны быть классифицированы как лантибиотики типа В и что обозначение лантибиотиков типа В не должно относиться исключительно к структурным разновидностям дурамицина, но должно охватывать также небольшие глобулярные лантибиотики, которые несут низкий заряд и ингибируют активность ферментов.
Claims (11)
1. Премерсацидин, имеющий аминокислотную последовательность, показанную на фиг.2, с 1 по 68 аминокислоту.
2. Промерсацидин, имеющий аминокислотную последовательность, показанную на фиг.2, с 49 по 68 аминокислоту.
3. ДНК, кодирующая охарактеризованный в п.1 премерсацидин, используемый для получения промерсацидина.
4. ДНК, кодирующая премерсацидин, используемый для получения промерсацидина, с нуклеотидной последовательностью, показанной на фиг.2, с 22 по 225 нуклеотид.
5. ДНК, кодирующая охарактеризованный в п.2 промерсацидин, используемый для получения зрелого мерсацидина.
6. ДНК, кодирующая промерсацидин, используемый для получения зрелого мерсацидина, с нуклеотидной последовательностью, показанной на фиг.2, со 166 по 225 нуклеотид.
7. Плазмидный вектор для экспрессии премерсацидина, включающий ДНК по п. 3 или 4.
8. Плазмидный вектор для экспрессии промерсацидина, включающий ДНК по п. 5 или 6.
9. Способ получения зрелого мерсацидина, включающий культивирование подходящей грамположительной прокариотической клетки-хозяина, содержащей последовательность ДНК по любому из пп.3-6, при подходящих условиях и выделение конченого продукта.
10. Премерсацидин, охарактеризованный в п.1, используемый в качестве предшественника для получения зрелого мерсацидина.
11. Промерсацидин, охарактеризованный в п.2, используемый для получения зрелого мерсацидина.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94114298A EP0700998B1 (en) | 1994-09-12 | 1994-09-12 | Recombinant mersacidin and a method for production |
EP94114298.6 | 1994-09-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95115686A RU95115686A (ru) | 1998-05-27 |
RU2198924C2 true RU2198924C2 (ru) | 2003-02-20 |
Family
ID=8216276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95115686/13A RU2198924C2 (ru) | 1994-09-12 | 1995-09-11 | Премерсацидин, промерсацидин, днк (варианты), вектор (варианты), способ получения мерсацидина |
Country Status (19)
Country | Link |
---|---|
US (1) | US5667991A (ru) |
EP (1) | EP0700998B1 (ru) |
JP (1) | JPH0898695A (ru) |
KR (1) | KR100394289B1 (ru) |
CN (1) | CN1149287C (ru) |
AT (1) | ATE255165T1 (ru) |
AU (1) | AU696450B2 (ru) |
CA (1) | CA2157975C (ru) |
CZ (1) | CZ285741B6 (ru) |
DE (1) | DE69433357T2 (ru) |
DK (1) | DK0700998T3 (ru) |
ES (1) | ES2207636T3 (ru) |
FI (1) | FI120100B (ru) |
HU (1) | HU216619B (ru) |
IL (1) | IL115242A0 (ru) |
NZ (1) | NZ272960A (ru) |
PT (1) | PT700998E (ru) |
RU (1) | RU2198924C2 (ru) |
SI (1) | SI9500270B (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2498995C2 (ru) * | 2008-04-02 | 2013-11-20 | Санофи-Авентис | Пептиды с большим числом мостиковых связей, выделяемые из actinomadura namibiensis |
RU2506272C2 (ru) * | 2008-11-24 | 2014-02-10 | Сентинелла Фармасьютикалз, Инк. ("Сентинелла") | Лантибиотические карбоксиамидные производные с усиленной антибактериальной активностью |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6775320B1 (en) | 1999-03-12 | 2004-08-10 | Aware, Inc. | Method and a multi-carrier transceiver supporting dynamic switching between active application sets |
US6498808B1 (en) * | 1999-03-12 | 2002-12-24 | Aware, Inc. | Seamless rate adaptive multicarrier modulation system and protocols |
US6861236B2 (en) | 2002-05-24 | 2005-03-01 | Applied Nanosystems B.V. | Export and modification of (poly)peptides in the lantibiotic way |
GB0406870D0 (en) * | 2004-03-26 | 2004-04-28 | Novacta Biosystems Ltd | Improvements relating to the production of lantibiotics |
US7592308B2 (en) | 2004-03-26 | 2009-09-22 | Novacta Biosystems Limited | F3W variants of the lantibiotic mersacidin and its use |
JP2009509519A (ja) * | 2005-09-27 | 2009-03-12 | ノヴァクタ バイオシステムズ リミティッド | ランチビオティックメルサシジンの変種およびそれらの使用 |
GB0600928D0 (en) | 2006-01-17 | 2006-02-22 | Novacta Biosystems Ltd | Improvements relating to lantibiotics |
GB0714029D0 (en) | 2007-07-18 | 2007-08-29 | Novacta Biosystems Ltd | Lantibiotic-based compounds having antimicrobial activity |
GB0714030D0 (en) | 2007-07-18 | 2007-08-29 | Novacta Biosystems Ltd | The use of type-B lantibiotic-based compounds having antimicrobial activity |
CN102348718B (zh) | 2009-01-14 | 2015-06-03 | 诺瓦克塔生物系统有限公司 | 去氧阿肽加定衍生物 |
EP2393829A1 (en) | 2009-02-04 | 2011-12-14 | Novacta Biosystems Limited | Actagardine derivatives |
GB201001688D0 (en) | 2010-02-02 | 2010-03-17 | Novacta Biosystems Ltd | Compounds |
GB201013513D0 (en) | 2010-08-11 | 2010-09-22 | Novacta Biosystems Ltd | Formulations |
CN106188253B (zh) * | 2016-08-26 | 2020-08-18 | 上海交通大学 | 抗菌肽Lexapeptide及其制备方法和用途 |
US20220125860A1 (en) | 2019-02-05 | 2022-04-28 | Elanco Us Inc. | Probiotic compositions comprising lactobacillus reuteri strains and methods of use |
CN111235119B (zh) * | 2020-03-05 | 2021-11-23 | 苏州十一方生物科技有限公司 | 一种融合抗菌蛋白的制备及应用 |
CN114457102B (zh) * | 2022-02-24 | 2023-12-26 | 重庆市畜牧科学院 | 用于编码分泌型Mersacidin的基因表达盒及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5218101A (en) * | 1988-07-05 | 1993-06-08 | The University Of Maryland | Leader sequence inducing a post-translational modification of polypeptides in bacteria, and gene therefor |
IN167138B (ru) * | 1988-08-17 | 1990-09-01 | Hoechst India |
-
1994
- 1994-09-12 EP EP94114298A patent/EP0700998B1/en not_active Expired - Lifetime
- 1994-09-12 ES ES94114298T patent/ES2207636T3/es not_active Expired - Lifetime
- 1994-09-12 PT PT94114298T patent/PT700998E/pt unknown
- 1994-09-12 AT AT94114298T patent/ATE255165T1/de active
- 1994-09-12 DK DK94114298T patent/DK0700998T3/da active
- 1994-09-12 DE DE69433357T patent/DE69433357T2/de not_active Expired - Lifetime
-
1995
- 1995-09-01 SI SI9500270A patent/SI9500270B/sl not_active IP Right Cessation
- 1995-09-08 US US08/524,677 patent/US5667991A/en not_active Expired - Lifetime
- 1995-09-08 NZ NZ272960A patent/NZ272960A/en not_active IP Right Cessation
- 1995-09-08 CN CNB951162330A patent/CN1149287C/zh not_active Expired - Fee Related
- 1995-09-08 CZ CZ952318A patent/CZ285741B6/cs not_active IP Right Cessation
- 1995-09-08 FI FI954220A patent/FI120100B/fi not_active IP Right Cessation
- 1995-09-08 AU AU30554/95A patent/AU696450B2/en not_active Ceased
- 1995-09-11 CA CA002157975A patent/CA2157975C/en not_active Expired - Fee Related
- 1995-09-11 IL IL11524295A patent/IL115242A0/xx not_active IP Right Cessation
- 1995-09-11 JP JP7232356A patent/JPH0898695A/ja active Pending
- 1995-09-11 HU HU9502643A patent/HU216619B/hu not_active IP Right Cessation
- 1995-09-11 RU RU95115686/13A patent/RU2198924C2/ru not_active IP Right Cessation
- 1995-09-12 KR KR1019950029599A patent/KR100394289B1/ko not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
J. ANTIBIOTICS, 1992, №45, р.832-838. S. CHATTERJEE et al. "Mersacidin Zantibiotic from culture of Bacillus sp. HIL J-85, 54728". ЩЕЛКУНОВ С.Н. Конструирование гибридных молекул ДНК. - Новосибирск, Наука, 1984, с.164. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2498995C2 (ru) * | 2008-04-02 | 2013-11-20 | Санофи-Авентис | Пептиды с большим числом мостиковых связей, выделяемые из actinomadura namibiensis |
RU2506272C2 (ru) * | 2008-11-24 | 2014-02-10 | Сентинелла Фармасьютикалз, Инк. ("Сентинелла") | Лантибиотические карбоксиамидные производные с усиленной антибактериальной активностью |
Also Published As
Publication number | Publication date |
---|---|
IL115242A0 (en) | 1995-12-31 |
JPH0898695A (ja) | 1996-04-16 |
DE69433357T2 (de) | 2004-09-09 |
HUT73800A (en) | 1996-09-30 |
DK0700998T3 (da) | 2004-03-29 |
AU3055495A (en) | 1996-03-28 |
SI9500270A (en) | 1996-04-30 |
ES2207636T3 (es) | 2004-06-01 |
CA2157975A1 (en) | 1996-03-13 |
FI120100B (fi) | 2009-06-30 |
ATE255165T1 (de) | 2003-12-15 |
KR960010863A (ko) | 1996-04-20 |
AU696450B2 (en) | 1998-09-10 |
NZ272960A (en) | 1996-05-28 |
KR100394289B1 (ko) | 2003-10-22 |
EP0700998A1 (en) | 1996-03-13 |
CZ285741B6 (cs) | 1999-10-13 |
DE69433357D1 (de) | 2004-01-08 |
HU9502643D0 (en) | 1995-11-28 |
CZ231895A3 (en) | 1996-03-13 |
CN1149287C (zh) | 2004-05-12 |
US5667991A (en) | 1997-09-16 |
FI954220A (fi) | 1996-03-13 |
PT700998E (pt) | 2004-03-31 |
EP0700998B1 (en) | 2003-11-26 |
FI954220A0 (fi) | 1995-09-08 |
SI9500270B (sl) | 2002-02-28 |
CA2157975C (en) | 2008-11-18 |
HU216619B (hu) | 1999-07-28 |
CN1131192A (zh) | 1996-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2198924C2 (ru) | Премерсацидин, промерсацидин, днк (варианты), вектор (варианты), способ получения мерсацидина | |
Martínez-Bueno et al. | Determination of the gene sequence and the molecular structure of the enterococcal peptide antibiotic AS-48 | |
Hastings et al. | Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum | |
Engelke et al. | Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier | |
Kanatani et al. | Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus | |
Schnell et al. | Analysis of genes involved in the biosynthesis of lantibiotic epidermin | |
Diep et al. | The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system | |
Schubert et al. | P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity | |
Bierbaum et al. | Construction of an expression system for engineering of the lantibiotic Pep5 | |
Saraiva et al. | Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis PD6. 9 | |
AU2001264038C1 (en) | Anti-listeria bacteriocin | |
JP2002504825A (ja) | 新規な抗菌性ポリペプチド及び使用方法 | |
EP1169340B1 (en) | Lantibiotic | |
US6218362B1 (en) | Lantibiotic from Streptococcus mutans and uses thereof | |
Popowska et al. | Characterization of Listeria monocytogenes protein Lmo0327 with murein hydrolase activity | |
Kanatani et al. | Cloning and nucleotide sequence of the gene for acidocin 8912, a bacteriocin from Lactobacillus acidophilus TK8912 | |
Oswald et al. | A sporulation gene in Coxiella burnetii? | |
US6043219A (en) | Broad spectrum chemotherapeutic peptide | |
US6475771B1 (en) | Antimicrobial polypeptides and methods of use | |
ES2349072T3 (es) | Lactobacilus de una bacteriocina anti-listeria. | |
Frey¹ et al. | Frequency of lantibiotic production among |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20130912 |