RU2160227C2 - Монокристаллический карбид кремния и способ его получения - Google Patents

Монокристаллический карбид кремния и способ его получения Download PDF

Info

Publication number
RU2160227C2
RU2160227C2 RU99103350/12A RU99103350A RU2160227C2 RU 2160227 C2 RU2160227 C2 RU 2160227C2 RU 99103350/12 A RU99103350/12 A RU 99103350/12A RU 99103350 A RU99103350 A RU 99103350A RU 2160227 C2 RU2160227 C2 RU 2160227C2
Authority
RU
Russia
Prior art keywords
sic
crystal
complex
base
polycrystalline
Prior art date
Application number
RU99103350/12A
Other languages
English (en)
Other versions
RU99103350A (ru
Inventor
Кити Танино (JP)
Кития Танино
Original Assignee
Ниппон Пиллар Пэкинг Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниппон Пиллар Пэкинг Ко., Лтд. filed Critical Ниппон Пиллар Пэкинг Ко., Лтд.
Application granted granted Critical
Publication of RU2160227C2 publication Critical patent/RU2160227C2/ru
Publication of RU99103350A publication Critical patent/RU99103350A/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение предназначено для полупроводниковой техники и может быть использовано при получении полупроводниковых подложек для светоизлучающих диодов. На подложку - монокристаллический α-SiC- наносят методом термохимического осаждения из паровой фазы поликристаллический слой β-SiC. Температура осаждения 1300-1900°С. Комплекс монокристалл α-SiC-поликристалл β-SiC подвергают термообработке под давлением насыщенного пара SiC для превращения β-SiC в монокристалл. Температура термообработки 1800-2400°С. Монокристалл β-SiC ориентирован в том же направлении, что и кристаллографическая ось монокристалла α-SiC. Получают монокристалл большого размера, превосходящий по термостойкости, механической прочности, емкости, частоте, электрической прочности и стойкости к внешним воздействиям известные полупроводниковые материалы. 2 с. и 9 з.п.ф-лы, 3 ил.

Description

Изобретение относится к монокристаллическому карбиду кремния SiC и способу его получения, в частности к монокристаллическому SiC, используемому в качестве полупроводниковой подложки для светоизлучающего диода и электронного устройства или т.п., и к способу его получения.
Описание предшествующего уровня техники
SiC (карбид кремния) обладает исключительными свойствами: теплостойкостью и механической прочностью и высоким сопротивлением излучению. Кроме того, он позволяет легко контролировать валентность электронов и дырок посредством легирования какой-либо примесью. SiC имеет широкую запрещенную зону (например, монокристалл 6Н-SiC имеет запрещенную зону около 3,0 эВ, а монокристалл 4H-SiC имеет запрещенную зону около 3,26 эВ). Это позволяет обеспечить высокие показатели по емкости, частоте, электрической прочности диэлектрика и стойкости к окружающим условиям, которые недостижимы в существующих полупроводниковых материалах, таких как Si (кремний) и GaAs (арсенид галлия). Поэтому монокристаллический SiC заслуживает внимания как материал, который может стать полупроводниковым материалом для энергетических приборов следующего поколения.
Известен способ выращивания (получения) монокристаллического SiC такого типа методом сублимации и рекристаллизации с использованием затравочного кристалла, а также способ, при котором эпитаксиальное выращивание осуществляют в условиях высокой температуры на кремниевой подложке, используя метод химического осаждения из паровой фазы (метод ХОПФ), в результате чего получают монокристаллический кубический SiC (β-SiC).
Однако в этих известных методах скорость выращивания кристалла составляет всего 1 мкм/ч. Кроме того, недостатком метода сублимации и рекристаллизации является то, что в выращиваемом кристалле количество микроотверстий диаметром в несколько микрон, проходящих через кристалл в направлении роста, остается в пределах 100-1000 на см2. Такие микроотверстия называют микротрубчатыми дефектами, и они вызывают возникновение тока утечки при изготовлении полупроводникового устройства. Эти проблемы препятствуют практическому использованию монокристаллического SiC, имеющего более высокие характеристики, чем другие существующие полупроводниковые материалы, такие как SiC и GaAs.
При использовании высокотемпературного метода ХОПФ температура подложки достигает 1700-1900oC, чтобы обеспечить восстановительную атмосферу высокой чистоты. Поэтому данный метод трудно осуществим с точки зрения оборудования. Кроме того, эпитаксиальное выращивание ограничено по скорости.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Учитывая перечисленные выше недостатки известного уровня техники, в основу настоящего технического решения поставлена задача получения качественного монокристаллического SiC с минимальным количеством дефектов кристаллической решетки и микротрубчатых дефектов, которая решается посредством проведения высокотемпературной термообработки. Еще одной задачей изобретения является создание способа, позволяющего настолько повысить скорость выращивания монокристаллического SiC, чтобы обеспечить возможность получения монокристалла достаточной площади и тем самым ускорить его практическое применение в качестве полупроводникового материала.
Предложенный монокристаллический SiC отличается тем, что комплекс, в котором поликристаллический слой, состоящий из атомов Si и C, сформирован на поверхности основы из монокристаллического SiC, подвергают термообработке, обеспечивающей превращение поликристаллов поликристаллического слоя в монокристалл и выращивание монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллической основы.
Согласно изобретению комплекс, содержащий основу из монокристаллического SiC и поликристаллический слой, сформированный на поверхности основы, подвергают высокотемпературной термообработке, обеспечивающей фазовое превращение поликристаллов поликристаллического слоя, блокирование проникновения примесей извне между основой из монокристаллического SiC и поликристаллическим слоем, ориентацию кристалла в том же направлении, что и кристаллографическая ось монокристаллического SiC основы, и образование единого целого с монокристаллом основы, что позволяет выращивать качественный монокристалл большой площади с весьма ограниченным количеством дефектов кристаллической решетки и микротрубчатых дефектов. Тем самым обеспечивается возможность ускорить практическое применение монокристаллического SiC, который превосходит по емкости, частоте, электрической прочности диэлектрика и устойчивости к внешним воздействиям существующие полупроводниковые материалы, такие как Si (кремний) и GaAs (арсенид галлия), и может использоваться как полупроводниковый материал для энергетических приборов.
Предложенный способ получения монокристаллического SiC заключается в том, что наносят поликристаллический слой, состоящий из атомов Si и C, на поверхность основы из монокристаллического SiC, подвергают комплекс термообработке для превращения поликристаллов поликристаллического слоя в монокристалл, обеспечивая тем самым выращивание как единое целое монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллического SiC основы.
Этот аспект изобретения обеспечивает такой же результат, как и первое изобретение, а именно облегчает выращивание качественного монокристаллического SiC с минимальным количеством дефектов кристаллической решетки и микротрубчатых дефектов с высокой эффективностью с точки зрения площади и количества, а это позволяет стабильно производить и поставлять в промышленных масштабах монокристаллический SiC, являющийся полупроводниковым материалом с очень высокими характеристиками.
В предложенном способе получения монокристаллического SiC поликристаллический слой, входящий в состав комплекса, является поликристаллическим слоем β-SiC, выращенным на поверхности основы из монокристаллического SiC методом термохимического осаждения из паровой фазы, и температура термохимического осаждения поликристаллического слоя β-SiC из паровой фазы составляет от 1300 до 1900oC. При этом получается монокристаллический SiC высокой чистоты и высокого качества, имеющий минимальное количество дефектов кристаллической решетки и микротрубчатых дефектов, а также блокируется проникновение и диффузия примесей между основой из монокристаллического SiC и поликристаллическим слоем на ее поверхности.
Перечень фигур чертежей
Фиг. 1 схематически изображает комплекс перед термообработкой для получения монокристаллического SiC согласно изобретению,
фиг. 2 изображает увеличенный вид основной части перед термообработкой для получения монокристаллического SiC,
фиг. 3 изображает увеличенный вид основной части монокристаллического SiC после термообработки.
Подробное описание предпочтительных вариантов реализации изобретения
В дальнейшем описывается вариант реализации изобретения. На фиг.1 схематически показан комплекс M перед термообработкой монокристаллического SiC. Комплекс M формируют путем наращивания слоя 2 из поликристаллического кубического β-SiC на поверхность основы 1 из монокристаллического гексагонального α-SiC (типа 6Н или 4Н) методом термохимического осаждения из паровой фазы (в дальнейшем именуемого как метод термического ХОПФ) при температуре в интервале 1300-1900oC. Как ясно видно на микроснимке протравленного участка на фиг.2, на стадии наращивания слоя 2 поликристаллического β-SiC поликристаллы 4 поликристаллического слоя 2 β-SiC наращиваются на поверхности основы 1 из монокристаллического α-SiC, содержащего дефекты кристаллической решетки, при этом основа 1 из монокристаллического α-SiC и слой 2 из поликристаллического β-SiC контактируют друг с другом по граням кристаллов разной формы, так что ясно видна линейная межфазная граница 3.
После этого весь комплекс M подвергают термообработке под давлением насыщенного пара SiC при температуре от 1900 до 2400oC, предпочтительно, 2000-2200oC. При этом поликристаллы 4 слоя 2 поликристаллического β-SiC претерпевают фазовое превращение в α-SiC, ориентированный в том же направлении, что и кристаллографическая ось монокристаллического α-SiC основы 1, и объединяются в единое целое с монокристаллом основы 1 монокристаллического SiC, в результате чего выращивается большой монокристалл 5.
Когда комплекс M, в котором поликристаллы 4 поликристаллического слоя 2 β-SiC сформированы на поверхности основы 1 монокристаллического α-SiC методом термического ХОПФ, подвергается термообработке, описанной выше, в поверхности межфазной границы 3 происходит рост кристалла, в основном твердофазный, при котором колебания кристаллической решетки, происходящие на поверхности межфазной границы 3, изменяют расположение атомов. В результате, как ясно показано на микроснимке протравленного участка на фиг.3, можно получить монокристаллический SiC высокого качества, практически лишенный дефектов кристаллической решетки и микротрубчатых дефектов (10 или меньше на 1 см2), с гарантированным большим размером в смысле площади.
В этом варианте в качестве основы из монокристаллического SiC использована основа 1 из монокристаллического α-SiC. Альтернативно можно использовать, например, спеченный элемент из α-SiC или спеченный элемент из монокристаллического β-SiC. Слой 2 из поликристаллического кубического β-SiC, который наращивается на поверхности основы 1 из монокристаллического α-SiC методом термического ХОПФ, используется в качестве поликристаллического слоя. Альтернативно можно использовать, например, слой из поликристаллического кубического α-SiC, спеченный элемент из SiC высокой чистоты или аморфный слой высокой чистоты (1014 атм/см3 или ниже), что также позволит получить монокристаллический SiC высокого качества, как и в описанном выше варианте.
В качестве монокристаллического α-SiC основы 1 можно использовать SiC типа 6Н или 4Н. При использовании SiC типа 6Н монокристалл, полученный в результате превращения поликристаллов слоя 2 из поликристаллического β-SiC в α-SiC в процессе термообработки, легко выращивается в той же форме, что и монокристалл типа 6Н. Когда используется основа 1 из монокристалла типа 4Н, происходит легкое превращение и выращивание монокристалла в той же форме, что и монокристалл типа 4Н.
Предпочтительно, чтобы температура термообработки комплекса M была в пределах 1900-2400oC, а время обработки составляло 1-3 часа. При температуре термообработки ниже 1900oC кинетическая энергия атомов не может передаваться большей части SiC, образующего межфазную границу. При температуре выше 2400oC образуется тепловая энергия, которая превосходит энергию разложения SiC, и происходит разложение самих монокристаллов SiC.
Промышленная применимость
Предложенный способ, согласно которому комплекс, содержащий поликристаллический слой, состоящий из атомов Si и C, сформированный на поверхности основы из монокристаллического SiC, подвергают термообработке, обеспечивающей выращивание как единое целое монокристалла большого размера, ориентированного в том же направлении, что и кристаллографическая ось монокристаллического SiC основы, позволяет получить монокристалл высокого качества, обладающий исключительной термостойкостью и механической прочностью и обеспечивающий высокие показатели по емкости, частоте, электрической прочности диэлектрика и стойкости к внешним воздействиям, которые недостижимы в известных полупроводниковых материалах, при этом обеспечивается высокая эффективность и стабильность в смысле площади и количества.

Claims (11)

1. Монокристаллический SiC, отличающийся тем, что комплекс, содержащий поликристаллический слой, состоящий из атомов Si и C, сформированный на поверхности основы из монокристаллического SiC, подвергнут термообработке, обеспечивающей превращение поликристаллов поликристаллического слоя в монокристалл и выращивание монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллической основы.
2. Монокристаллический SiC по п.1, отличающийся тем, что упомянутой основой из монокристаллического SiC, входящей в состав упомянутого комплекса, является монокристаллический α-SiC.
3. Монокристаллический SiC по п.1, отличающийся тем, что упомянутый поликристаллический слой, входящий в состав комплекса, является слоем поликристаллического β-SiC, выращенным на поверхности основы из монокристаллического SiC методом термохимического осаждения из паровой фазы.
4. Монокристаллический SiC по п.3, отличающийся тем, что температура термохимического осаждения из паровой фазы упомянутого слоя поликристаллического β-SiC составляет 1300 - 1900oC.
5. Способ получения монокристаллического SiC, отличающийся тем, что наносят поликристаллический слой, состоящий из атомов Si и C, на поверхность основы из монокристаллического SiC, и подвергают упомянутый комплекс термообработке для превращения поликристаллов упомянутого поликристаллического слоя в монокристалл, обеспечивая тем самым выращивание как единое целое монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллической основы.
6. Способ получения монокристаллического SiC по п.5, отличающийся тем, что монокристаллический α-SiC используется в качестве упомянутой основы из монокристаллического SiC, входящей в состав упомянутого комплекса.
7. Способ получения монокристаллического SiC по п.5, отличающийся тем, что слой поликристаллического β-SiC, выращенный на поверхности упомянутой основы из монокристаллического SiC методом термохимического осаждения из паровой фазы, используется в качестве упомянутого поликристаллического слоя, входящего в состав упомянутого комплекса.
8. Способ получения монокристаллического SiC по п.7, отличающийся тем, что температура термохимического осаждения из паровой фазы упомянутого слоя поликристаллического β-SiC составляет 1300 - 1900oC.
9. Способ получения монокристаллического SiC по п.7, отличающийся тем, что термообработку упомянутого комплекса проводят при температуре, превосходящей температуру термохимического осаждения из паровой фазы при формировании упомянутого поликристаллического слоя, и при давлении насыщенного пара SiC.
10. Способ получения монокристаллического SiC по п.9, отличающийся тем, что температура термообработки упомянутого комплекса составляет 1900 - 2400oC.
11. Способ получения монокристаллического SiC по п.9, отличающийся тем, что температура термообработки упомянутого комплекса составляет 2000 - 2200oC.
RU99103350/12A 1997-05-23 1998-05-20 Монокристаллический карбид кремния и способ его получения RU2160227C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/170902 1997-05-23
JP17090297A JP3296998B2 (ja) 1997-05-23 1997-05-23 単結晶SiCおよびその製造方法

Publications (2)

Publication Number Publication Date
RU2160227C2 true RU2160227C2 (ru) 2000-12-10
RU99103350A RU99103350A (ru) 2000-12-20

Family

ID=15913459

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99103350/12A RU2160227C2 (ru) 1997-05-23 1998-05-20 Монокристаллический карбид кремния и способ его получения

Country Status (6)

Country Link
US (1) US6153165A (ru)
EP (1) EP0921214B1 (ru)
JP (1) JP3296998B2 (ru)
DE (1) DE69825397T2 (ru)
RU (1) RU2160227C2 (ru)
WO (1) WO1998053125A1 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003027B2 (ja) * 1997-06-25 2000-01-24 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
CN1231003A (zh) * 1997-06-27 1999-10-06 日本皮拉工业株式会社 单晶SiC及其制造方法
JP3043689B2 (ja) * 1997-11-17 2000-05-22 日本ピラー工業株式会社 単結晶SiC及びその製造方法
JP4043003B2 (ja) * 1998-02-09 2008-02-06 東海カーボン株式会社 SiC成形体及びその製造方法
JP2884085B1 (ja) * 1998-04-13 1999-04-19 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
DE69916177T2 (de) 1998-05-29 2005-04-14 Denso Corp., Kariya Verfahren zur Herstellung eines Siliziumkarbid-Einkristalls
JP3248071B2 (ja) * 1998-10-08 2002-01-21 日本ピラー工業株式会社 単結晶SiC
US6436186B1 (en) 1999-07-30 2002-08-20 Nissin Electric Co., Ltd. Material for raising single crystal SiC and method of preparing single crystal SiC
JP3087070B1 (ja) * 1999-08-24 2000-09-11 日本ピラー工業株式会社 半導体デバイス製作用単結晶SiC複合素材及びその製造方法
TW464977B (en) * 2000-11-03 2001-11-21 United Microelectronics Corp Method for peeling off silicon carbide layer
JP4716558B2 (ja) 2000-12-12 2011-07-06 株式会社デンソー 炭化珪素基板
US6706114B2 (en) 2001-05-21 2004-03-16 Cree, Inc. Methods of fabricating silicon carbide crystals
TWI229897B (en) * 2002-07-11 2005-03-21 Mitsui Shipbuilding Eng Large-diameter sic wafer and manufacturing method thereof
JP4418879B2 (ja) * 2003-03-10 2010-02-24 学校法人関西学院 熱処理装置及び熱処理方法
JP3741283B2 (ja) * 2003-03-10 2006-02-01 学校法人関西学院 熱処理装置及びそれを用いた熱処理方法
JP5415853B2 (ja) * 2009-07-10 2014-02-12 東京エレクトロン株式会社 表面処理方法
CN111416020A (zh) * 2020-04-03 2020-07-14 晶科能源科技(海宁)有限公司 一种提高n型类单晶电池效率的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590130A (en) * 1984-03-26 1986-05-20 General Electric Company Solid state zone recrystallization of semiconductor material on an insulator
DE4234508C2 (de) * 1992-10-13 1994-12-22 Cs Halbleiter Solartech Verfahren zur Herstellung eines Wafers mit einer monokristallinen Siliciumcarbidschicht
JP3003027B2 (ja) * 1997-06-25 2000-01-24 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
CN1231003A (zh) * 1997-06-27 1999-10-06 日本皮拉工业株式会社 单晶SiC及其制造方法
JP3043689B2 (ja) * 1997-11-17 2000-05-22 日本ピラー工業株式会社 単結晶SiC及びその製造方法
JP2884085B1 (ja) * 1998-04-13 1999-04-19 日本ピラー工業株式会社 単結晶SiCおよびその製造方法

Also Published As

Publication number Publication date
EP0921214A1 (en) 1999-06-09
EP0921214B1 (en) 2004-08-04
DE69825397D1 (de) 2004-09-09
US6153165A (en) 2000-11-28
JPH10324600A (ja) 1998-12-08
DE69825397T2 (de) 2005-01-13
EP0921214A4 (en) 2000-08-23
JP3296998B2 (ja) 2002-07-02
WO1998053125A1 (fr) 1998-11-26

Similar Documents

Publication Publication Date Title
RU2160227C2 (ru) Монокристаллический карбид кремния и способ его получения
RU2160329C1 (ru) МОНОКРИСТАЛЛ SiC И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Kong et al. Epitaxial growth of β‐SiC thin films on 6H α‐SiC substrates via chemical vapor deposition
TW526300B (en) SiC single crystal and method for growing the same
US6053973A (en) Single crystal SiC and a method of producing the same
JP3003027B2 (ja) 単結晶SiCおよびその製造方法
CN102037164A (zh) 在低度偏轴碳化硅基片上的外延生长及利用其制造的半导体器件
JP3254559B2 (ja) 単結晶SiCおよびその製造方法
US6187279B1 (en) Single crystal SIC and method of producing the same
RU99103350A (ru) Монокристаллический карбид кремния и способ его получения
JP3248071B2 (ja) 単結晶SiC
JP2001181095A (ja) SiC単結晶およびその成長方法
JP3254557B2 (ja) 単結晶SiCおよびその製造方法
JP2917143B1 (ja) 単結晶SiCおよびその製造方法
JP2981879B2 (ja) 単結晶SiCおよびその製造方法
JP2896667B1 (ja) 単結晶SiC及びその製造方法
JP3043687B2 (ja) 単結晶SiC及びその製造方法
JP2936481B1 (ja) 単結晶SiCおよびその製造方法
JP2939615B2 (ja) 単結晶SiC及びその製造方法
JP2917149B1 (ja) 単結晶SiCおよびその製造方法
YOO et al. Epitaxial growth of thick single crystalline cubic silicon carbide by sublimation method
JP2964080B1 (ja) 単結晶SiCおよびその製造方法
Yoo et al. Polytype change of silicon carbide at high temperatures
JPH1160392A (ja) SiC複合体およびその製造方法ならびに単結晶SiC
Kawai et al. 6H-SiC Homoepitaxial Growth and Optical Property of Boron-and Nitrogen-Doped Donor-Acceptor Pair (DAP) Emission of 1º-Off Substrate by Closed-Space Sublimation Method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050521