RU2158310C2 - Реагент (варианты), библиотека реагентов, способы проведения анализа - Google Patents

Реагент (варианты), библиотека реагентов, способы проведения анализа Download PDF

Info

Publication number
RU2158310C2
RU2158310C2 RU96103646/13A RU96103646A RU2158310C2 RU 2158310 C2 RU2158310 C2 RU 2158310C2 RU 96103646/13 A RU96103646/13 A RU 96103646/13A RU 96103646 A RU96103646 A RU 96103646A RU 2158310 C2 RU2158310 C2 RU 2158310C2
Authority
RU
Russia
Prior art keywords
reagents
oligonucleotide
reagent
analyzed
library
Prior art date
Application number
RU96103646/13A
Other languages
English (en)
Other versions
RU96103646A (ru
Inventor
САТЕРН Эдвин (GB)
Сатерн Эдвин
м Джонатан КАММИНС Уиль (GB)
Джонатан Камминс Уильям
Original Assignee
Оксфорд Джин Текнолоджи Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Оксфорд Джин Текнолоджи Лимитед filed Critical Оксфорд Джин Текнолоджи Лимитед
Publication of RU96103646A publication Critical patent/RU96103646A/ru
Application granted granted Critical
Publication of RU2158310C2 publication Critical patent/RU2158310C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1075Isolating an individual clone by screening libraries by coupling phenotype to genotype, not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6872Methods for sequencing involving mass spectrometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/912Absidia

Abstract

Изобретение относится к биотехнологии и может быть использовано для определения аналитов. Реагент включает в себя а) анализируемый компонент, состоящий, по меньшей мере, из двух анализируемых остатков, и связанный с b) компонентом-меткой, включающим в себя, по меньшей мере, одну или более репортерных групп, подходящих для проведения масс-спектрометрии, где репортерная группа обозначает анализируемый остаток, причем репортерная группа в каждом положении компонента-метки выбирается так, чтобы она обозначала анализируемый остаток в определенном положении анализируемого компонента. Множество таких реагентов, каждый из которых включает в себя отличный от других анализируемый компонент, образуют библиотеку реагентов, которую можно использовать для анализов исследуемого вещества. Анализ компонентов-меток позволяет установить природу анализируемых компонентов, связанных с исследуемым веществом. Секвенирование нуклеиновых кислот с применением библиотеки реагентов позволяет установить последовательность исследуемой нуклеиновой кислоты. 7 с. и 15 з.п. ф-лы, 5 ил. 4 табл.

Description

В биологических и химических анализах часто используются анализируемые молекулы, меченные "репортерными" группами. Настоящее изобретение предлагает реагенты, имеющие по меньшей мере две группы аналитов, связанные с одной или более репортерными группами. Такие реагенты могут быть использованы способом, описанным ниже, что позволяет получить гораздо более полную информацию, чем с использованием простых меченных аналитов. Можно закодировать репортерные группы таким образом, чтобы реагенты, несущие множество групп аналитов и множество репортерных групп, можно было подвергать комбинаторному синтезу и использовать одновременно, а репортерные группы в процессе анализа отщепляются.
В патенте WO 93/06121 (Affymax) описана библиотека синтетических олигомеров, состоящая из множества различных членов, причем каждый член включает в себя олигомер, состоящий из последовательности мономеров, связанных с одной или более метками, идентифицирующими последовательности мономеров в олигомере. Связующее звено между олигомером и меткой-идентификатором, предпочтительно, включает в себя твердую частицу. Меткой-идентификатором, предпочтительно, является олигонуклеотид.
В работе Proc. Natl. Acad Sci., Vol. 89, N 12, 15 июня 1992 г., стр. 5381-5383 (S. Brenner и R.A.Lerner) описан химический способ комбинаторного кодирования для создания библиотеки реагентов, каждый из которых содержит генетическую олигонуклеотидную метку.
В работе "Rapid Communications in Mass Spectrometry", Vol. 6, стр. 369-372 (1992), авторов G.R.Parr и др. описана масс-спектрометрия на матрице с использованием лазерного десорбционного/ионизационного спектрометра, применяемая для анализа синтетических олигодезоксирибонуклеотидов.
В работе "Nucleic Acids Research", Vol. 21, N 15, от 25 июня 1993 г., стр. 3347-3357, авторы E.Nordhoff и др., описана ионная стабильность нуклеиновых кислот при проведении масс-спектрометрии на матрице с использованием лазерного десорбционного/ионизационного спектрометра ИК-диапазона.
В одном аспекте настоящее изобретение относится к реагенту, который включает в себя:
а) анализируемый компонент, состоящий по меньшей мере из двух анализируемых остатков, и связанный с
б) компонентом-меткой, который включает одну или более репортерных групп, которые можно обнаружить методом масс-спектрометрии, за исключением олигонуклеотидов, где репортерная группа обозначает анализируемый остаток, причем эта репортерная группа в каждом положении компонента-метки выбрана так, чтобы она обозначала анализируемый остаток в определенном положении анализируемого компонента.
Предпочтительно, анализируемый компонент связан с компонентом-меткой связью, которая может расщепляться, например, под действием света. При этом может присутствовать линкерная группа, к которой присоединены и анализируемый компонент, и компонент-метка. В предпочтительном варианте анализируемый компонент представляет собой цепь из n-го числа анализируемых остатков, а компонент-метка представляет собой цепь, содержащую до n-числа групп-репортеров, причем репортерная группа в каждом положении цепи метки выбрана так, чтобы эта группа могла обозначать анализируемый остаток в соответствующем положении цепи аналита. При этом "n" представляет собой целое число, равное, по крайней мере, 2, а предпочтительно от 3 до 20.
Настоящее изобретение может быть использовано для определения всех аналитов, представляющих интерес. Такими аналитами являются, но не ограничиваются ими, белковая пептидная цепь, где анализируемые остатки представляют собой остатки аминокислот; цепь нуклеиновых кислот/олигонуклеотидов, где анализируемые остатки представляют собой нуклеотидные остатки; углеводородные цепи, где анализируемые остатки представляют собой остатки сахаров. Помимо этого, аналит может представлять собой класс небольших молекул, обладающих биологической, фармакологической или терапевтической активностью. Например, это может быть центральная часть молекулы, в которой различные замещающие группы, например алкилы, сложные эфиры, амины, простые эфиры и т.п. могут быть замещены метками для проведения масс-спектрометрии, причем такое замещение производится на комбинаторной основе.
Компонент-метка и/или какая-либо одна или все репортерные группы в этой метке должны обладать такими свойствами, чтобы их можно было наблюдать/обнаружить/проанализировать с целью получить информацию о природе анализируемого компонента и/или анализируемых остатков в этом компоненте.
В одном из вариантов осуществления настоящего изобретения реагент имеет формулу A-L-R, где A представляет собой цепь, состоящую из n-го числа анализируемых остатков, образующих анализируемый компонент, L представляет собой линкер, R представляет собой цепь, содержащую до n-го числа репортерных групп, образующих компонент-метку, и n равно от 2 до 20, причем компонент-метка содержит информацию, указывающую на местонахождение анализируемых остатков в анализируемом компоненте.
Компонент-метка состоит из одной или более репортерных групп, различаемых по массе, что позволяет производить анализ этих групп с применением масс-спектрометрии. Репортерные группы могут иметь различную химическую природу, и поэтому их можно различать по молекулярной массе. Или же репортерные группы могут быть химически идентичными, но отличаться друг от друга тем, что содержат различные изотопы (например, 12C/13C и 1H/2H, о чем будет сказано ниже). Компонент-метка и/или репортерные группы пригодны для анализа методом масс-спектрометрии, например, после отщепления их от реагента фотохимическим или иным методом.
Преимущества масс-спектрометрии, как системы обнаружения, состоят в следующем: она обладает высокой чувствительностью, т.е. для получения хорошего сигнала достаточно несколько сотен молекул; широким динамическим диапазоном и высокой разрешающей способностью, т.е. при разрешении свыше 0,01 можно различать молекулы в диапазоне масс от 100 до 200000 Дальтон; разнообразием применения - можно легко проводить анализы химических структур самых разных молекул; возможностью исследовать аналиты путем сочетания масс-спектрометрии с другими методами, например с методом десорбции с лазерным сканированием; а также возможностью проводить не только качественный, но и количественный анализ.
Таким образом, метод использования масс-мечения сочетает в себе достоинства метода с использованием радиоактивных меток и метода флюоресценции, и обладает дополнительными свойствами, которые предполагают новые виды применения.
В другом аспекте настоящее изобретение включает в себя также библиотеку вышеуказанных реагентов, причем такая библиотека состоит из множества реагентов, каждый из которых включает в себя отличающийся от других анализируемый компонент из n-го числа анализируемых остатков.
Например, библиотека может состоять из 4n числа реагентов, каждый из которых включает в себя отличную от других олигонуклеотидную цепь из n-го числа нуклеотидных остатков. Реагенты данной библиотеки могут присутствовать в виде их смеси друг с другом в растворе.
В другом аспекте настоящее изобретение относится к методу проведения анализа, состоящего из следующих стадий: получение исследуемого вещества; инкубирование исследуемого вещества с указанной библиотекой реагентов в таких условиях, при которых, по меньшей мере, один реагент связывается с исследуемым веществом; удаление несвязанных реагентов; отщепление компонента-метки каждого связанного реагента; анализ отщепленных компонентов-меток, который позволяет получить информацию о природе анализируемых компонентов, связанных с исследуемым веществом.
Исследуемое вещество может быть иммобилизовано, что является удобным способом отделения связанных реагентов от несвязанных. В одном аспекте осуществления изобретения исследуемое вещество может представлять собой организм или ткань или группу клеток, а анализ может быть осуществлен с целью выявления семейства лекарственных препаратов-кандидатов. В другом аспекте осуществления изобретения исследуемое вещество может представлять собой нуклеиновую кислоту, и этот вариант будет подробно рассмотрен ниже.
Сущность изобретения поясняют иллюстрации.
Фиг. 1 демонстрирует общую схему синтеза реагентов настоящего изобретения.
Фиг. 2 иллюстрирует реагенты с тремя различными системами цепей-меток, содержащих репортерные группы.
Фиг. 3a представляет собой схему синтеза кодированных олигонуклеотидов.
Фиг. 3b представляет собой схему считывания кода цепи-метки.
Фиг. 4 представляет собой диаграмму, иллюстрирующую анализ последовательности с применением постепенного лигирования.
Фиг. 5 представляет собой схему удлинения последовательности, считываемой с применением гибридизации с олигонуклеотидами.
Разъяснения к фиг. 1 и 2 даны в конце настоящего описания.
Ссылки относятся к приведенным ниже примерам осуществления изобретения, где описано, каким образом заявленный способ может быть применен для анализа последовательностей нуклеиновых кислот и для скрининга лекарственных препаратов-кандидатов.
Синтез кодированных меток
Принцип, на котором основан способ одновременного мечения множества аналитов, аналогичен принципу, предложенному в работе Brenner and Lerner (1992) для кодирования пептидов с присоединенными последовательностями нуклеиновых кислот. Основная идея авторов указанной работы состоит в том, чтобы добавить метку, которая может быть амплифицирована с помощью полимеразной цепной реакции и считана путем секвенирования полученной молекулы ДНК.
Структура реагентов лучше всего может быть проиллюстрирована способом их получения. Синтез начинается с того, что двухвалентный или многовалентный линкер поэтапно удлиняют в одном направлении, чтобы присоединить к аналиту остаток, и в другом направлении, чтобы присоединить специфичные к остатку репортерные группы (фиг. 1). Предположим, мы хотим получить смесь органических соединений, вводя различные остатки на каждом этапе синтеза. Например, смесь может включать в себя набор пептидов с различными последовательностями аминокислот или олигонуклеотиды с различными последовательностями оснований, или набор вариантов, обладающих различной фармакологической активностью и различными группами, присоединенными к структуре кора; в каждом случае мы хотим пометить каждый структурный вариант уникальной меткой. Это достигается за счет разделения синтеза на каждом этапе, когда различные остатки добавляют к интересующему соединению, и за счет добавления соответствующих остатков к метке.
Для примера предположим, что мы хотим получить смесь 4096 гексануклеотидов, каждый из которых будет иметь уникальную метку. Четыре образца двухвалентных линкеров должны быть соединены с каждым основанием и с уникальной для каждого основания репортерной группой (фиг. 3a). После этого четыре образца перемешивают, разделяют на четыре части и процесс повторяют. В результате получают набор динуклеотидов, каждый из которых имеет уникальную метку. Процесс повторяют до тех пор, пока не будут завершены шесть этапов присоединения.
Линкерные и репортерные группы
Линкер должен иметь одну группу, которая совместима с синтезом аналита, а именно гидроксильную группу, аминогруппу или сульфидрильную группу, пригодные для инициации синтеза олигонуклеотида; аналогичные группы можно использовать для инициации другого вида синтеза - например, синтеза полипептидов. Для некоторых классов соединений желательно начать с "центрального" соединения, которое образует часть аналита. Выбор группы (групп) для инициации присоединения репортерных групп зависит от природы этих групп и от типа химических реакций, используемых для их присоединения. Тип химических реакций должен быть совместим с типом реакций, используемых для синтеза аналита. Например, для синтеза олигонуклеотидов можно использовать ряд альтернативных вариантов. При обычном способе синтеза используются бензоильная и изопропильная группы для защиты оснований, кислотолабильные тритильные группы для временной защиты 5'-OH-групп в процессе присоединения, и бета-цианоэтильные группы для защиты фосфатов. Способ, используемый для присоединения репортерных групп, не должен оказывать неблагоприятное воздействие на эти защитные группы или на другие связи в олигонуклеотиде, а на синтез меток не должны оказывать влияние реакции присоединения, окисления и отщепления защитных групп, используемые при удлинении олигонуклеотида.
Присоединение мономеров-репортеров или блокирование цепи может оставаться незавершенным на каждом этапе (фиг. 2, B и C), что позволяет присоединить аналит к гнездовому множеству структур-репортеров. Это позволяет легче вычислить структуру аналита, исходя из композиции метки (фиг. 1; фиг. 3). Для облегчения синтеза желательно, чтобы линкер был присоединен к твердому носителю посредством связи, которая может разрушаться, не приводя к разрушению аналита или репортерных групп. В альтернативном варианте линкер может нести группу, такую как заряженная группа или липофильная группа, которая позволяет отделять промежуточные соединения и конечный продукт от реагентов.
Репортерные группы могут быть самыми различными, главное, чтобы можно было считывать композицию или последовательность метки методом масс-спектрометрии. Можно использовать группы с различной атомной или формульной массой, такие как алифатические цепи различной длины или с различным изотопным составом. Используя метиленовые группы, меченные изотопами, можно присвоить группу с уникальной формульной массой каждому из четырех различных репортеров (таблица 1).
Если взять в качестве примера олигонуклеотиды, то эти метки образуют набор, который позволяет считывать основание в каждом положении олигонуклеотида по возрастанию массы продуктов, являющихся частью серии (таблица 2). Все последовательности олигонуклеотидов будут давать уникальные серии масс фрагментов-меток, если при добавке репортерной группы самое малое увеличение массы превышает разницу между самой малой и самой крупной группой-репортером.
Для масс-спектрометрии желательно иметь простой способ отщепления цепи метки от аналита. Для этого существует несколько путей. Для олигонуклеотидных и пептидных аналитов применяют расщепление фотолабильных связей под действием света; ферментативное расщепление, например, эфирной связи; расщепление с применением свободных радикалов.
Еще одно условие заключается в том, что метки должны быть совместимы с химическими и биохимическими процессами, применяемыми в процессе анализа: в примере с олигонуклеотидами, используемыми для молекулярной гибридизации, или в примере с предлагаемыми методами секвенирования, метки должны быть растворимыми и не должны ингибировать определенные ферментные реакции, которые применяются в ходе анализа. Как показывает практика, олигоэтиленгликольные связи, схожие с метиленовыми аналогами, показанными в таблице 1, совместимы с молекулярной реассоциацией олигонуклеотидов. Более того, такие связи совместимы с, по меньшей мере, некоторыми ферментными реакциями, поскольку, как мы показали, олигонуклеотиды, связанные на стекле гексаэтиленгликольным линкером, можно преобразовать в 5'-фосфомономерный эфир, обработав их полинуклеотид-киназой и аденозин-5'-трифосфатом.
Желательные свойства линкера
Для целей настоящего изобретения желательно, чтобы молекула линкера обладала следующими свойствами.
Должна существовать возможность связать эту молекулу с твердым носителем так, чтобы в результате циклов синтеза получать аналит и соответствующие метки, не прибегая при этом к сложным процедурам очистки промежуточных соединений. После завершения циклов синтеза линкер должен удаляться из твердого носителя так, чтобы аналит и метки оставались в целости. В качестве функциональной группы для синтеза метки следует использовать такую группу, которая позволит осуществить прямой синтез меток, различаемых с помощью масс-спектрометрии.
Линкер должен иметь защищенные функциональные группы, что позволит удлинять аналит и метки по-отдельности в условиях, при которых химические реакции, используемые для удлинения одного из этих компонентов, не оказывают действия на другой компонент.
Желательно, чтобы линкер имел заряженную группу, благодаря чему масс-спектрометрию можно будет проводить при отсутствии матрицы. Для этой цели желательно, чтобы метки образовывали достаточно летучие соединения, которые можно будет выпаривать в масс-спектрометре без применения сложных технологий, таких как электрораспыление. Метки должны давать либо стабильные ионы, либо такие ионы, которые образуют характерные структуры, так чтобы их можно было использовать для идентификации соответствующего аналита.
Связь между меткой и аналитом должна быть расщепляемой под действием света, чтобы метки можно было непосредственно отщеплять в масс-спектрометре с помощью облучения лазером, а последующее отщепление до полного удаления меток (что необходимо для биохимических процессов, таких как лигирование) можно было бы произвести просто с помощью облучения лампой.
Предпочтительно, чтобы связанные продукты реакций растворялись в водных растворителях, что позволит использовать их в биохимических реакциях.
Примеры, описанные в настоящей заявке, иллюстрируют линкеры, обладающие вышеуказанными свойствами.
Фотоотщепляемая группа
Фотоотщепляемая группа основана на известной фотолабильной орто-нитробензильной группе. Эта группа используется в качестве защитной для фосфатной группы и 2'-гидроксильной группы в синтезе олигонуклеотидов /см. работу Pillai "Синтез 1" (1980)/. Сама по себе орто-нитробензильная группа не обладает достаточной функциональностью для последующего соединения с линкером между метками и аналитом. Подходящими источниками является выпускаемый промышленностью 5-гидрокси-2-нитробензиловый спирт. Известно, что группы OMe можно ввести в 5,4-положение без существенного снижения фотолабильных свойств (см. работу Pillai). Поэтому 5-гидрокси-2-нитробензиловый спирт был использован в качестве исходного вещества для удлинения ДНК путем синтеза из бензилового спирта и цепи линкера до присоединения меток из эфира путем присоединения к 5-гидроксильной группе.
Требование, предъявляемое к функциональной группе, состоит в том, что эта группа должна быть подходящей для комбинаторного синтеза аналитов и меток. Таким образом, для синтеза метки требуется, чтобы линкер имел ответвление, идущее от фотоотщепляемой группы до нужной функциональной группы. Желательно также проводить комбинаторный синтез на твердом носителе. Таким образом, ответвление линкера должно быть двухвалентным в функциональных группах и иметь ортогональные защитные группы, чтобы можно было в процессе синтеза осуществлять селективные преобразования. Предпочтительные реагенты-метки имеют гликольные/эфирные связи. С целью проведения синтеза олигонуклеотиды обычно присоединяют к носителю из стекла с контролируемой пористостью, дериватизированного длинноцепочечными аминогруппами посредством 3'-гидрокси-связи и сложного эфира янтарной кислоты. Таким образом, нужные функциональные группы представляют собой спирты.
Было синтезировано нижеследующее промежуточное соединение:
Figure 00000002

Это соединение включает ароматический линкер, несущий:
- метокситритильную группу (-CH2ODMT) для синтеза аналита;
- орто-нитрогруппу для фотоотщепления;
- O-трет-бутилдифенилсилильную группу (OTBDPS) для синтеза меток;
- группу третичного амина для преобразования в положительно заряженную группу для анализа методом масс-спектрометрии;
- N-гидроксисукцинимидильную группу для присоединения к носителю.
В тех случаях, когда аналитом является пептид, то вышеуказанные условия претерпевают лишь незначительные изменения. 2-нитробензильная группа является стабильной в условиях почти всех реакций, применяемых для синтеза этой группы и пептидов, поэтому для синтеза пептидов в качестве фотолабильных групп были использованы аналогичные группы (см. работу Pillai и приведенные в ней ссылки). Имеется уже несколько смол, пригодных для синтеза пептидов с различными типами расщепления. Защитные группы с прямоугольной цепью для синтеза аналита и метки должны быть основаны на трет-бутоксикарбонильной и 2-метоксиэтоксиметильной группах. Трет-бутоксикарбонильная группа может быть использована для защиты аминогруппы в аминокислотах, причем расщепление можно производить путем обработки трифторуксусной кислотой.
2-метоксиэтоксиметил можно использовать для защиты групп-меток и меток, основанных на 1,n-алкилдиольных производных с различными массами, как описано выше. Как было показано, отщепление трет-бутоксикарбонильных групп совместимо с защитными 2-метоксиэтоксиметильными группами. 2-метоксиэтоксиметильные группы можно селективно отщеплять с помощью бромида цинка в дихлорметане. Хотя приведенное выше описание иллюстрирует способ, однако специалистам должно быть ясно, что вышеуказанный список ортогональных защитных групп не является исчерпывающим и приведен здесь в качестве примера.
Обнаружение и анализ групп-репортеров
Фотоотщепление является предпочтительным способом отсоединения меток от аналитов: оно занимает мало времени и может быть проведено на веществах в сухом состоянии, а кроме того, в этом случае может быть использован сканирующий лазер для получения изображений очень малого масштаба, достаточного для определения внутриклеточных характеристик (см. de Vries et al., 1992), поэтому предлагаемый способ можно использовать для обнаружения положений конкретных аналитов, использованных для "мечения" поверхности или внутренних частей клеток, или же различных клеток в срезе ткани, например, если требуется получить изображение взаимодействий между лигандами, напр., лекарств-кандидатов и их рецепторов.
Фоточувствительные защитные группы можно получить для самых различных остатков химических соединений (см. Pillai, 1980). Фотолабильная орто-нитробензильная группа, которую можно использовать в качестве защитной группы для широкого круга соединений, является идеальной исходной точкой для создания линкера для многих аналитов, в том числе пептидов и олигонуклеотидов. В примере с олигонуклеотидами эта группа обеспечивает фоточувствительную связь, которая может быть разрушена с использованием определенного количества вещества, с образованием гидроксильной группы. Это позволит олигонуклеотидам, лишенным защитных групп, принять участие в удлинении посредством лигирования, как указано ниже в описании способа секвенирования. Более того, известно, что такие группы стабильны в процессе синтеза олигонуклеотидов. Необходимо модифицировать бензильное кольцо, чтобы получить группу, которую можно использовать для инициации синтеза меток; при этом репортерные группы, такие как олигоэтиленгликольные группы, описанные выше, не оказывают влияния на реакцию фотохимического отщепления орто-нитробензоильной группы (Pillai, цит. работа). В ароматическое кольцо можно ввести другие группы, которые повысят способность к отщеплению; такие группы можно использовать и для того, чтобы присоединить заряженную группу (группы), что позволит упростить анализ в масс-спектрометре. Современные масс-спектрометры способны проводить измерения нескольких сотен молекул с разрешением более одного Дальтона в сотне, с максимальной суммарной массой в 200 кДа. Предпочитаемый фотолабильный линкер, в котором положительно заряженная группа R может быть непосредственно соединена с ароматическим кольцом, или может присутствовать в одном из ответвлений линкера, может иметь следующий вид:
Figure 00000003

Методы измерения
Анализ предлагаемых молекулярных меток может быть проведен одним из нескольких методов масс-спектроскопии. Несмотря на то, что во многих случаях желательно отщеплять метки от аналита, не обязательно делить метки на фрагменты; а в ряде случаев это даже нежелательно, т.к. может вызвать путаницу. Последние достижения в области масс-спектрометрии позволяют измерять очень крупные молекулы без фрагментации; а поскольку можно создать такой линкер, который легко расщепляется, причем в таких условиях, когда остальная часть метки остается стабильной, то следует избегать фрагментации метки в процессе измерения. Группа аналита в большинстве случаев будет обладать меньшей летучестью, чем метка, а часто эта группа будет связана с твердым носителем, благодаря чему она не будет вступать в реакции в процессе масс-спектрометрии.
Описанный выше линкер очень лабилен к облучению фотонами в условиях, которые не вызывают расщепления большинства ковалентных химических связей. Подходящий измерительный инструмент описан в литературе /de Vries и др., 1992/. Этот инструмент использует лазер, который может быть сфокусирован вниз на точку менее 1 мкм. Изображения до 250 мм сканируются путем перемещения платформы, которую можно выставить на 0,1 мкм. Этот инструмент позволяет также производить ионизацию образцов, подлежащих измерению, путем освещения ионизирующим лазером поперек поверхности платформы так, чтобы лазер взаимодействовал с образцами, инициированными десорбционным лазером. Эта способность инструмента могла бы оказаться полезной для осуществления способа настоящего изобретения, если было бы невозможно включить заряженный остаток в метки, или если для считывания меток требовалась бы фрагментация.
В другом варианте осуществления изобретения предлагается способ секвенирования исследуемой нуклеиновой кислоты, который включает в себя следующие стадии:
a) получение олигонуклеотида, иммобилизованного на носителе,
b) гибридизация исследуемой нуклеиновой кислоты с иммобилизованным олигонуклеотидом,
c) инкубирование гибрида (b) с библиотекой, в которой реагенты смешаны вместе в растворе так, чтобы олигонуклеотидная цепь первого реагента библиотеки образовала гибрид с исследуемой нуклеиновой кислотой, соседствующей с иммобилизованным олигонуклеотидом,
d) лигирование соседних олигонуклеотидов до образования лигированного первого реагента,
e) удаление прочих нелигированных реагентов,
f) отщепление и анализ фрагмента-метки лигированного первого реагента в качестве индикатора последовательности первой части исследуемой нуклеиновой кислоты.
Примеры применения
Чтобы проиллюстрировать возможные применения изобретения, мы хотим показать, каким образом кодированные олигонуклеотиды можно использовать для анализа нуклеиновых кислот.
1. Определение последовательности нуклеиновой кислоты путем поэтапного лигирования (фиг. 4).
Последовательность, которую необходимо определить, сначала гибридизировали на этапе (b) с получением олигонуклеотида, присоединенного к твердому носителю. Если ДНК, подлежащая секвенированию, была клонирована в однонитевой вектор, такой как бактериофаг М 13, то "затравочный" олигонуклеотид на твердом носителе может стать частью последовательности этого вектора. На этапе (c) твердый носитель, несущий гибриды из этапа (b), инкубировали с раствором кодированных олигонуклеотидных реагентов, например с вышеуказанной библиотекой, включающей все последовательности данной длины, скажем, 4096-гексануклеотиды (в общем, 4n n-меры). На этапе (d) лигаза вводится таким образом, чтобы гексануклеотид, комплементарный к первым шести основаниям в исследуемой ДНК, соединялся с иммобилизованным "затравочным" олигонуклеотидом. На этом этапе первый кодированный олигонуклеотидный реагент из библиотеки присоединяется путем лигирования своей олигонуклеотидной цепи к иммобилизованному "затравочному" олигонуклеотиду; этот реагент далее будет называться "лигированным первым реагентом".
На этапе (e) нелигированные реагенты удаляют, например, промывкой. На этапе (f) линкер лигированного первого реагента разрушают, чтобы отщепить цепь-метку, которую отделяют и анализируют в качестве индикатора последовательности первой части исследуемой ДНК.
Предпочтительно, чтобы после удаления линкера на конце первой олигонуклеотидной цепи оказалась гидроксильная или фосфатная группа, которую можно лигировать с олигонуклеотидной цепью второго реагента. Можно воспользоваться несколькими способами разрушения линкера, включая фотохимический и ферментный способы, а также химический гидролиз; в результате такого разрушения получают 3'-гидроксильную или 5'-фосфатную группу, которая необходима для последующего лигирования. После этого повторяют этапы (c), (d), (e), (f). На этих этапах производится гибридизация второго реагента из библиотеки, лигирование, отделение и анализ цепи-метки лигированного второго реагента, в результате чего получают следующую 3'-гидроксильную или 5'-фосфатную группу, необходимую для последующего лигирования. Этот процесс можно повторять до тех пор, пока вся последовательность ДНК не будет считана, или пока выход реакции не станет слишком малым для последующих операций.
Четыре этапа этой последовательности схематично показаны на фиг. 4. Первая схема соответствует ситуации в конце этапа (e) первого цикла. Вторая схема соответствует ситуации в конце этапа (f). Третья схема соответствует положению в конце этапа (c) второго цикла. Четвертая схема соответствует ситуации в конце этапа (d) второго цикла. Показано, что метод носит циклический характер.
2. Секвенирование нуклеиновых кислот множества кодирующих нитей ДНК путем секвенциального лигирования
При удлинении, описанном в первом примере, предполагается, что анализы множества последовательностей будут производиться одновременно. Например, индивидуальные клоны ДНК, подлежащие секвенированию, могут быть иммобилизованы следующим образом:
a) можно использовать подставку с иглами, на конце каждой из которых иммобилизован один и тот же олигонуклеотидный вектор. Индивидуальный клон исследуемой ДНК гибридизируют с олигонуклеотидом, иммобилизованным на конце каждой отдельной иглы. Затем подставку с иглами, на которых находятся указанные гибриды, ингибируют с библиотекой кодированных олигонуклеотидных реагентов в растворе, который содержит также ингредиенты для лигирования. В результате этого этапа каждая игла несет различный лигированный реагент. В заключение цепь-метку каждого лигированного реагента отделяют и анализируют вышеуказанным способом. Если иглы на подставке расположены подходящим образом, то их можно погрузить в лунки планшетов для микротитрования; причем первый планшет содержит матрицы, подлежащие секвенированию, второй планшет содержит библиотеку реагентов и раствор для лигирования, а третий - реагент для отщепления цепей-меток от игл.
b) Альтернативно поверхность можно покрыть "затравочным" олигонуклеотидом, предпочтительно ковалентно присоединенным своим 5'-концом или в какой-либо другой точке. Индивидуальные клоны ДНК, подлежащей секвенированию, наносят на расположенные на расстоянии друг от друга участки носителя, покрытого олигонуклеотидом, так, чтобы каждый индивидуальный клон исследуемой ДНК гибридизировался с олигонуклеотидом, иммобилизованным в одном из местоположений носителя. Затем носитель инкубируют с раствором, содержащим библиотеку реагентов и ингредиентов для лигирования. Нелигированные реагенты удаляют. После этого линкер каждого лигированного реагента на каждом положении носителя отщепляют, метки удаляют и анализируют.
Отщепление желательно осуществлять таким образом, как лазерная десорбция, которая может быть направлена на малые участки поверхности. Преимущество этого подхода состоит в том, что он позволяет одновременно проводить анализ большого числа последовательностей ДНК.
3. Расширение способов определения последовательностей за счет гибридизации олигонуклеотидов
a) Схема 1.
Способы нанесения ДНК с высокой плотностью на мембраны хорошо известны /Hoheisel и др. , 1992; Ross и др., 1992/. Для того, чтобы получить фингерпринт молекул и определить последовательность, олигонуклеотиды следует наносить либо поодиночке, либо небольшими группами, чтобы не затруднять интерпретацию характеристик гибридизации; следовательно, только небольшая часть кодирующих нитей дает сигналы в каждом цикле анализов. Если сигнал от каждой гибридизации, содержащий кодированную информацию, позволяет обнаружить ее последовательность, то можно применить более сложные измерения и получить больше информации по каждому циклу гибридизации. Состав смеси будет зависеть от длины кодирующих нитей ДНК и от того, насколько точно метод анализа позволяет определять последовательности в смешанных нуклеотидах.
Нуклеиновокислотные зонды, кодированные указанными метками для масс-спектрометрии или группами-репортерами, будут очень эффективны в тех случаях, когда желательно использовать множество зондов, например, при определении "отпечатков пальцев" ДНК или при анализе мутации. Метки для проведения масс-спектрометрии позволяют проводить анализ сложных структур.
Несколько различных зондов, каждый из которых имеет свою уникальную метку, пригодную для проведения масс-спектрометрии, можно использовать вместе в типичных анализах методом гибридизации нуклеиновых кислот. Последовательность каждого отдельного зонда, подвергнутого гибридизации, можно определить в присутствии других зондов, благодаря разделению и разрешению меток в масс-спектре.
В данном аспекте настоящее изобретение предлагает способ секвенирования исследуемой нуклеиновой кислоты, включающий в себя следующие этапы:
i) получение исследуемой нуклеиновой кислоты, иммобилизованной на носителе. Предпочтительно, индивидуальные клоны исследуемой нуклеиновой кислоты иммобилизуют на носителе на расстоянии друг от друга;
ii) инкубирование иммобилизованной исследуемой нуклеиновой кислоты из этапа i) со множеством вышеописанных кодированных олигонуклеотидных реагентов так, чтобы олигонуклеотидные цепи разных реагентов гибридизировались с исследуемой нуклеиновой кислотой на носителе;
iii) удаление негибридизированных реагентов;
iv) отделение и анализ фрагмента-метки каждого реагента, которые являются индикаторами последовательности части исследуемой нуклеиновой кислоты.
После этого предпочтительно используют библиотеку реагентов, причем гибридизацию, лигирование, отщепление и анализ повторяют несколько раз для получения дополнительной информации о последовательностях исследуемой нуклеиновой кислоты.
b) Схема 2.
Можно установить последовательности нуклеиновой кислоты по набору дуплексов, образующихся при их гибридизации с массивом олигонуклеотидов. Длина последовательности, которую можно определить, приблизительно равна корню квадратному из размера массива: если используется массив из всех 65536 октануклеотидов, то последовательность, подлежащая определению, должна составлять около 200 п. о. /Southern и др., 1992/. Такое ограничение размера обусловлено тем, что в последовательности, подлежащей определению, ни один набор из восьми оснований не должен встречаться более одного раза. Массив и его применение для определения последовательности описаны в Заявке на международный патент N WO 89/10977; а способ получения массива олигонуклеотидов, иммобилизованных, например, своими 5'- или 3'-концами на поверхности, описан в Заявке на международный патент N WO 90/03382.
Способ настоящего изобретения позволяет определить последовательности гораздо большей длины. В этом аспекте осуществления изобретения способ включает в себя следующие этапы:
a) получение массива олигонуклеотидов, иммобилизованных на носителе на определенном расстоянии друг от друга, причем олигонуклеотид на одном участке должен отличаться от олигонуклеотидов на других участках. Желательно, чтобы была известна последовательность олигонуклеотида, иммобилизованного посредством ковалентной связи на каждом разнесенном участке носителя,
b) инкубирование исследуемой нуклеиновой кислоты с массивом иммобилизованных олигонуклеотидов так, чтобы на одном или более из разнесенных участков носителя образовались гибриды,
c) инкубирование гибридов из этапа b) с библиотекой кодированных олигонуклеотидных реагентов так, чтобы олигонуклеотидная цепь реагента из библиотеки гибридизировалась с исследуемой нуклеиновой кислотой, соседней с каждым иммобилизованным олигонуклеотидом,
d) лигирование соседних олигонуклеотидов с образованием лигированных реагентов на одном или нескольких разнесенных участках носителя,
e) удаление нелигированных реагентов,
f) выделение и анализ фрагмента-метки каждого лигированного реагента, как индикаторов последовательности, являющейся частью исследуемой нуклеиновой кислоты.
Желательно, чтобы отщепление цепи-метки в каждом положении проводилось фотохимическим способом с помощью лазера. Желательно производить анализ цепи-метки с помощью масс-спектрометрии. Желательно повторить несколько раз этапы гибридизации, лигирования, отщепления и анализа, как описано выше, чтобы получить дополнительную информацию о последовательности в исследуемой нуклеиновой кислоте.
Предпочтительный порядок действий показан на четырех схемах, изображенных на фиг. 5. На первой схеме показано начало этапа b). На второй схеме показано положение в конце этапа b) - часть исследуемой нуклеиновой кислоты гибридизировалась со связанным олигонуклеотидом, образующим часть массива. На третьей схеме показано положение в конце этапа c), а на четвертой схеме показано положение в конце этапа d); реагент из библиотеки гибридизирован с исследуемой нуклеиновой кислотой и лигирован с иммобилизованным олигонуклеотидом.
Такой усовершенствованный способ дает прекрасные результаты. При условии, что способ, используемый для считывания меток, позволяет производить анализ смеси, одно только увеличение длины на длину, равную длине олигонуклеотидов в массиве, позволяет увеличить считываемую длину до величины, равной квадрату этого значения. В этом случае длина, которую можно считать из массива октануклеотидов, удлиненных на восемь оснований, составляет около 60000 оснований.
Сравнение анализа по методу гибридизации с меченными олигонуклеотидами с другими методами
a) Методы, основанные на применении геля
Наиболее совершенный прибор для автоматического анализа последовательности позволяет считывать около 40000 оснований в день. Сюда не входит время, затрачиваемое на биологические и биохимические процессы, необходимые для проведения реакций соединений, загружаемых на гель. Если предположить, что матрицы можно наносить на поверхность с плотностью одна на квадратный миллиметр /Hoheisel и др., 1992; Ross и др., 1992/, то 10000 матриц можно нанести на площадь в 100 х 100 мм. После гибридизации в каждой ячейке будет несколько фмоль меченных олигонуклеотидов, так что один импульс лазера в 2 нс может высвободить достаточно меток для считывания, но даже если мы предположим, что нам потребуется 100 импульсов, то суммарное время для считывания ячейки составит несколько мсекунд, так что все 10000 ячеек можно будет считать за несколько минут. Если олигонуклеотиды представляют собой гексамеры, то можно будет получить необработанные данные по 60000 оснований. Для определения последовательности эти данные будут не столь информативными, как эквивалентные необработанные данные, полученные способом, основанным на применении геля, потому что последний способ позволяет считывать непрерывные последовательности гораздо большей длины. Но данное преимущество способов, основанных на использовании гелей, исчезнет, если мы сможем считывать из массива последовательности, длину которых можно увеличить с помощью нескольких циклов анализа. Но основное преимущество способа, основанного на использовании массивов, состоит в том, что он позволяет параллельно считывать тысячи матриц одновременно; число матриц, которое можно проанализировать способом, основанным на использовании гелей, ограничено шириной геля и составляет менее пятидесяти.
b) Применяемые в настоящее время способы, основанные на использовании массивов.
Основные недостатки применяемых в настоящее время способов, основанных на использовании массивов, состоят в следующем.
a) Последовательность, которую можно считать из массива размером N, равна только около
Figure 00000004
так что большинство ячеек в массиве остаются пустыми. Добавив меченные олигонуклеотиды, можно считывать практически полный массив, так что можно будет получать информацию из большинства ячеек. Дополнительная информация от меток помогает устранить ошибки, возникающие из-за появления множества коротких нитей в исследуемой последовательности (таблица 3).
b) Длина последовательности, которую считывают в результате каждого взаимодействия с олигонуклеотидами при гибридизации, обязательно ограничена длиной олигонуклеотида. Это вызывает проблемы при считывании повторяющихся последовательностей, таких как серии из одного основания. Если мы расширим рамки считывания, используя лигирование, то это позволит производить считывание до последующего лигирования.
c) Из существующих в настоящее время способов определения последовательностей способ, основанный на использовании радиоактивности, обладает высокой чувствительностью и высоким разрешением; способ, основанный на флуоресценции, обладает высокой чувствительностью и высоким разрешением; но оба эти способа не позволяют производить анализы с достаточной скоростью. Предлагаемое использование масс-спектрометрии может повысить разрешающую способность, скорость и чувствительность анализа, а также дополнительно предоставляет возможность считывать последовательности меток.
Аналиты, обладающие потенциальной фармакологической активностью
Многие лекарственные препараты специфичны к определенным тканям. Их действие часто зависит от взаимодействия с рецептором на поверхности клетки. Есть семейства лекарственных препаратов, основанные на минимальных структурах; например, некоторые структуры, состоящие из коротких пептидов. Желательно получить возможность выявлять лекарства-кандидаты для того, чтобы пронаблюдать, на какие клетки или ткани они могут влиять. Желательно иметь возможность выявлять множество лекарств-кандидатов одновременно. Используя библиотеки аналитов, меченных метками с кодированной массой, можно выявлять взаимодействия путем изучения клеток или тканей в масс-спектрометре. Если метки присоединены посредством фотолабильных защитных групп, то можно получать изображения целого животного или участка ткани, используя отщепление методом лазерного сканирования в сочетании с масс-спектрометрией.
Приведенные ниже примеры иллюстрируют настоящее изобретение.
Примеры 1-6 показывают этапы в соответствии с приведенной ниже Схемой реакций 1, синтеза соединения (8), включающего в себя ароматический линкер, несущий: метилокситритильную группу (-CH2ODMT) для синтеза аналита; орто-нитрогруппу для фотоотщепления; O-трет-бутил-дифенил-силильную группу (OTBDPS) для синтеза метки; группу третичного амина для преобразования в положительно заряженную группу для анализа методом масс-спектрометрии; а также N-гидроксисукцинимидильную группу для присоединения к носителю.
Примеры 7 и 8 показывают последующие этапы в соответствии с приведенной ниже Схемой реакций 2.
Примеры 9 и 10 показывают этапы в соответствии с приведенной ниже Схемой реакций 3 получения репортерных групп (13), основанных на пропан-1,3-диоле.
Примеры 11-13 показывают этапы в соответствии с приведенной ниже Схемой реакций 4, предусматривающие присоединение к соединению (6) защищенного пропан-1,3-диольного остатка в качестве репортерной группы.
Примеры 14-19 описывают получение, характеризацию и использование различных реагентов настоящего изобретения.
Общие положения
5-гидрокси-2-нитробензиловый спирт был приобретен у фирмы Aldrich, стекло с контролируемой пористостью, дериватизированное длинноцепочечными алкиламинами, было закуплено у фирмы Sigma. Безводные растворители относятся к материалам класса "Aldrich Sure Seal" и упакованы в атмосфере азота. Триэтиламин перед использованием был подвергнут предварительной перегонке из гидрида кальция и хранился в атмосфере азота. Другие растворители и реагенты могут быть закуплены у различных производителей.
Спектры 1H ЯМР были получены с помощью аппарата "Jeol" 270 МГц с использованием указанного в примерах растворителя, и тетраметилсилана в качестве стандарта.
Инфракрасные спектры были получены на приборе "Nicolet SDXC F.T. IR" при использовании либо таблетки из бромида калия, либо раствора хлороформа, как указано.
Температуру плавления определяли с помощью аппарата "Gallenkamp", причем полученные данные были некорректированными.
Тонкослойную хроматографию проводили на пластинках "Kieselgel 60F254" с алюминиевой подложкой, используя указанную систему растворителей. Пластины визуализировали ультрафиолетовым облучением и/или погружением в 3% раствор молибдофосфорной кислоты в этаноле с последующим нагревом струей горячего воздуха. Образцы, содержащие тритил, выглядели ярко-оранжевыми пятнами, спирты - голубыми пятнами.
Хроматографию на силикагеле производили методом флэш-хроматографии, размеры частиц 40 --> 63 мкм.
Аббревиатуры, используемые в схемах реакций и в тексте:
DMT ДМТ 4,41-диметокситритил
THF ТГФ тетрагидрофуран
TBDPS ТБДФС трет-бутилдифенилсилан
DMAD ДМАД 4-диметиламинопиридин
DCCI ДЦКИ дициклогексилдикарбодиимид
CH2Cl2 дихлорметан
CPG стекло с контролируемым размером пор
MeI иодометан
Tresyl трезил 2,2,2-трифторэтилсульфонил
ПРИМЕР 1
Синтез 5-гидрокси-O-(4,41-диметокситритил)-2-нитробензилового спирта (соединение 2, схема 1).
В 5-гидрокси-2-нитробензиловый спирт (5,11 г, 30,2 ммоля), растворенный в безводном пиридине (40 ммоль), добавили 4,41-диметокситритилхлорид (10,25 г, 30,2 ммоль) и закрыли колбу пробкой. Затем реакционную смесь оставляли, перемешивая, на 72 часа при комнатной температуре. Тонкослойная хроматография (эфир/петролейный эфир 40-60 градусов Цельсия, 65%/35%) показала присутствие нового материала, содержащего положительно заряженные тритильные группы с RF в 0,27, и исчезновение исходного спирта. Затем пиридин удаляли выпариванием в роторном испарителе, причем последние следы удаляли совместным выпариванием с толуолом (х2). Полученную смолу растворяли в этилацетате и раствор промывали водой (х1) и соляным раствором (х1). Затем раствор этилацетата высушивали безводным сульфатом магния и выпаривали до получения красновато-коричневой смолы. Смолу растворяли в CH2Cl2 (20 мл) и подвергали хроматографии на колонке с силикагелем (14 см х 6,5 см), которую элюировали смесью эфир/петролейный эфир при 40-60 градусах Цельсия, 65%/35%. Полученные фракции объединяли, а растворитель удаляли выпариванием в роторном испарителе с получением белого твердого вещества (13,49 мг, 95%, температура плавления 80-82 градуса Цельсия с разложением). Аналитический образец был получен перекристаллизацией из смеси хлороформ/петролейный эфир при 40-60 градусах Цельсия, температура плавления 134-7 градусов Цельсия с разложением.
1H ЯМР (270 МГц, CDCl3, δ): 3,79 (s, 6H, DMT-OCH3), 4,63 (s, 2H, CH2-ODMT), 6,77-6,85 (m, 5H, арил), 7,22-7,49 (m, 9H, арил), 7,63 (s, 1H, арил), 8,06 (d, 1H, J = 9,06 Гц, арил).
IR (диск KBr) 1610, 1509, 1447, 1334, 1248, 1090, 1060, 1033. 828 см-1.
ПРИМЕР 2
Синтез O-(4,41-диметокситритил)-5-/1-(3-бром-1-оксипропил)/-2- нитробензилового спирта (соединение 3, схема 1).
В соединение 2 (10,18 г, 21, 6 ммоль), растворенное в ацетоне (150 мл), добавили 1,3-дибромпропан (11 мл, 108 ммоль) и карбонат калия (4,47 г, 32,3 ммоль). Затем реакционную смесь нагревали до 80 градусов Цельсия в течение трех часов, после чего перемешивали при комнатной температуре еще в течение 16 часов. Тонкослойная хроматография (эфир/петролейный эфир, 40-60 градусов Цельсия, 60%/40%) показала полное исчезновение исходного материала и образование двух новых соединений, содержащих тритил; основной продукт RF 0,48, минорный продукт RF 0,23. Затем ацетон удаляли высушиванием в роторном испарителе, а полученный остаток распределяли между водой и дихлорметаном. Раствор дихлорметана отделяли и промывали соляным раствором. Затем раствор дихлорметана высушивали безводным сульфатом магния и выпаривали до получения смолы. Смолу растворяли в дихлорметане (20 мл) и наносили на колонку с силикагелем (6,5 см х 14 см), которую элюировали смесью эфира/петролейного эфира, 40-60 градусов Цельсия, 60%/40%. Полученные очищенные фракции объединяли, а растворитель удаляли высушиванием в роторном испарителе до получения соединения 3 в виде белого твердого вещества (8,18 г, 64%, температура плавления 132-4 градуса Цельсия, RF 0,48 эфир/петролейный эфир 40-60 градусов Цельсия, 60%/40%). Небольшой образец перекристаллизовывали из смеси этилацетат/петролейный эфир для проведения анализа, температура плавления 132-4 градуса Цельсия.
1H ЯМР (270 МГц, CDCl3, δ): 2,40 (m, 2H,
Figure 00000005
), 3,64 (t, 2H, J = 6,32 Гц,
Figure 00000006
), 3,79 (s, 6H,
Figure 00000007
), 4,27 (t, 2H, J = 6,04 Гц,
Figure 00000008
), 4,66 (s, 2H,
Figure 00000009
), 6,84 (d, 4H, J = 8,79 Гц, DMT арил), 7,20-7,50 (m, 10H, 9 DMT арил, 1 арил), 7,68 (s, 1H, арил), 8,1 (d, 1H, J = 9,06 Гц, арил).
IR (диск KBr) 1608, 1577, 1511, 1289, 1253, 1230, 1174, 1065, 1030 см-1.
ПРИМЕР 3
Синтез N-/O-(трет-бутилдифенилсилил)-2-оксиэтил)/-N-(2- гидроксиэтил)амина (соединение 5, схема 1)
В гидрид натрия (0,76 г 60% дисперсии в масле, 19 ммоль) в атмосфере N2 добавили безводный ТГФ (15 мл), а затем суспензию диэтаноламина (2 г, 19 ммоль) в ТГФ (30 мл); добавление производили с такой скоростью, с какой позволяло выделение водорода. Затем реакционную смесь перемешивали при комнатной температуре в течение 30 мин в атмосфере N2 и в течение этого времени образовывался серый осадок. Реакцию образования алкоксида останавливали путем добавления трет-бутилхлордифенилсилана (4,95 мл, 19 ммоль), после чего реакционную смесь перемешивали при комнатной температуре в течение двух часов в атмосфере N2. Тонкослойная хроматография (этилацетат) показала образование двух новых УФ-позитивных пятен, относящихся к исходному материалу, основной продукт с RF 0,05, минорный продукт с RF 0,60. ТГФ удаляли высушиванием в роторном испарителе, остаток растворяли в 0,1 М растворе бикарбоната натрия. Полученный продукт затем экстрагировали этилацетатом (х2). Экстракты этилацетата объединяли и промывали соляным раствором (х1). После этого раствор этилацетата высушивали безводным сульфатом магния и выпаривали с получением масла. Полученное масло наносили на колонку с силикагелем, которую элюировали раствором хлороформа/метанола, 90%/10%. Фракции с RF 0,33 объединяли и высушивали в роторном испарителе с получением соединения 5 в виде белого кристаллического твердого вещества (3,93 г, 60%, температура плавления 73->75 градусов Цельсия). Небольшое количество вещества перекристаллизовывали из раствора этилацетата/петролейного эфира, 40-60 градусов Цельсия, с целью проведения анализа; температура плавления 76->77 градусов Цельсия.
1H ЯМР (270 МГц, CDCl3, δ): 1,06 (s, 9H, tBu), 2,13 (brs, 1H,
Figure 00000010
D2O обмениваемый), 2,78 (m, 4H,
Figure 00000011
), 3,63 (t, 2H, J = 5,22 Гц,
Figure 00000012
), 3,78 (t, 2H, J = 5,22 Гц,
Figure 00000013
), 7,40 (m, 6H, арил), 7,66 (m, 4H, арил).
IR (диск, KBr) 3100, 1430, 1114, 1080, 969, 749, 738, 707 см-1.
ПРИМЕР 4
Синтез N-/O-(трет-бутилдифенилсилил)-2-оксиэтил/-N-/O-(3-(O-(4,41-диметокситритил)-1-оксиметил)-4-нитрофенил)-3-оксипропил/- N-(2-гидроксиэтил)амина (соединение 6, схема 1).
В соединение 3 (7,46 г, 12,6 ммоль), растворенное в 1-метил-2-пирролидиноне (65 мл), добавили соединение 5 (8,63 г, 25,2 ммоль). Реакционную смесь нагревали до 80 градусов Цельсия в течение 5 часов, а затем оставили охлаждаться с перемешиванием при комнатной температуре еще в течение 16 часов. Тонкослойная хроматография (этилацетат) показала образование новых продуктов, содержащих тритил, с RF 0,51, и остаточные количества двух исходных материалов. Реакционную смесь вылили в смесь воды (600 мл) и соляного раствора (100 мл), а затем продукт экстрагировали этилацетатом (3х200 мл). Экстракты этилацетата объединяли и высушивали безводным сульфатом магния. Затем этилацетат удаляли высушиванием в роторном испарителе с получением коричневой смолы, из которой медленно образовывался кристаллический продукт. Добавили минимальное количество этилацетата, чтобы растворить оставшуюся смолу так, чтобы кристаллический продукт можно было отфильтровать; получили бромистоводородную соль соединения 5. Затем раствор этилацетата поместили на колонку с силикагелем (13 см х 6,5 см), которую элюировали этилацетатом. В результате недостаточного разделения остатка соединения 3 и нужного продукта на этой колонке фракции, содержащие продукт, объединили и выпаривали с получением смолы. Смолу растворяли в минимальном количестве этилацетата и наносили на другую колонку с силикагелем (14 см х 6,5 см), используя градиентное элюирование, сначала смесью этилацетата/петролейного эфира, 40-60 градусов Цельсия, 50%/50%, затем - этилацетатом. Полученные фракции объединяли, а растворитель удаляли путем осушки в роторном испарителе с получением соединения 6 в виде смолы. Следовые количества растворителя удалили, вместив смолу на 1 час в высокий вакуум. Выход продукта составил 7,64 г, 71%.
1H ЯМР (270 МГц, CDCl3, δ): 1,04 (s, 9H, tBu), 1,79 (m, 2H,
Figure 00000014
), 2,7 (m, 6H,
Figure 00000015
), 3,56 (m, 2H,
Figure 00000016
), 3,75 (m, 2H,
Figure 00000017
), 3,78 (s, 6H,
Figure 00000018
), 4,12 (m, 2H,
Figure 00000019
), 4,64 (s, 2H,
Figure 00000020
), 6,74-6,85 (m, 5H, арил), 7,2-7,65 (m, 20H, арил), 8,05 (d, 1H, арил).
IR (диск KBr), 1608, 1579, 1509, 1287, 1251, 1232, 1112, 1092, 1064, 1035, 826, 754, 703, 613 см-1.
ПРИМЕР 5
Синтез N-/O-(трет-бутилдифенилсилил)-2-оксиэтил/-N-/O-(3-(O-(4,41-диметокситритил)-1-оксиметил)-4-нитрофенил)-3-оксипропил/- N-/O-(3-карбоксилатропионил))-2-оксиэтил/амина (соединение 7, схема 1).
В соединение 6 (5,64 г, 6,59 ммоль), растворенное в безводном дихлорметане (40 мл) и безводном пиридине (50 мл), добавили ангидрид винной кислоты (2,06 г, 20,6 ммоль) и диметиламинопиридин (210 мг, 1,72 ммоль), после чего колбу закрыли пробкой. Реакционную смесь перемешивали при комнатной температуре в течение 72 часов. Тонкослойная хроматография (метанол/этилацетат, 10%/90%) показала образование новых продуктов, содержащих тритил, RF 0,45, и исчезновение исходного материала. Растворитель удаляли высушиванием в роторном испарителе, а последние следы пиридина удаляли совместным выпариванием с толуолом (х2). Полученную смолу разделили между хлороформом и водой. Органическую фазу отделили, а водную фазу экстрагировали хлороформом (х1). Затем органические фазы объединили и промыли соляным раствором (х1). После этого раствор хлороформа высушили безводным сульфатом магния и выпаривали до получения смолы. Последние следы растворителя удаляли, поместив смолу под высокий вакуум на 1 час, в результате чего получали соединение 7, 6,75 г. Продукт использовали в последующей стадии без дальнейшей очистки.
1H ЯМР (270 МГц, CDCl3, δ): 1,0 (s, 9H, tBu), 1,9 (m, 2H,
Figure 00000021
), 2,5 (m, 4H,
Figure 00000022
), 2,7 (m, 6H,
Figure 00000023
), 3,7 (m, 2H,
Figure 00000024
), 3,75 (s, 6H,
Figure 00000025
), 4,1 (m, 4H,
Figure 00000026
и
Figure 00000027
), 5,6 (s, 2H,
Figure 00000028
), 6,7 (d, 1H, арил), 6,8 (d, 4H, арил), 7,2-7,7 (m, 20H, арил), 8,02 (d, 1H, арил).
IR (раствор CHCl3), 1736, 1608, 1579, 1509, 1288, 1251, 1232, 1175, 1158, 1112, 1093, 1065, 1035, 755, 703 см-1.
ПРИМЕР 6
Синтез N-/O-(трет-бутилдифенилсилил)-2-оксиэтил/-N-/O-(3-(O-(4,4-диметокситритил)-1-оксиметил)-4-нитрофенил)-3-оксипропил/-N- /O-(сукцинил-(3-карбоксилатпропионил)))-2-оксиэтил/амина (соединение 8, схема 1).
В соединение 7 (2,99 г, 3,13 ммоль), растворенное в безводном дихлорметане (30 мл), добавили дициклогексилкарбодиимид (0,710 г, 3,45 ммоль) и N-гидроксисукцинимид (0,396 г, 3,44 ммоль) и закрыли колбу пробкой. После этого реакционную смесь перемешивали при комнатной температуре в течение 18 часов, в течение которых образовывался белый осадок. Белый осадок отфильтровывали, а раствор дихлорметана промывали водой (х1) и соляным раствором (х1). Затем раствор дихлорметана высушивали безводным сульфатом магния и удаляли растворитель путем выпаривания в роторном испарителе до получения пены, 3,26 г (99%). Тонкослойная хроматография (этилацетат) обнаруживала присутствие только лишь продуктов, содержащих тритил, RF 0,74, и отсутствие каких-либо существенных загрязнений. Попытки получить аналитический образец путем обработки небольшого количества материала на колонке с силикагелем привели к разложению активного эфира до кислоты (соединение 7). Поэтому материал использовали на всех последующих стадиях без дальнейшей очистки.
1H ЯМР: (270 МГц, CDCl3, δ): 1,04 (s, 9H, tBu), 1,97 (m, 2H,
Figure 00000029
), 2,50-2,75 (m, 6H, сукцинил CH2 +
Figure 00000030
), 2,76-2,86 (m, 6H,
Figure 00000031
), 3,08 (m, 2H,
Figure 00000032
сукцинил), 3,77 (s, 6H,
Figure 00000033
), 3,86 (m, 2H,
Figure 00000034
), 4,1-4,2 (m, 4H, ArOCH2 +
Figure 00000035
), 4,63 (s, 2H,
Figure 00000036
), 6,7-6,9 (m, 5H, арил), 7,01-7,7 (m, 20H, арил), 8,05 (d, 1H, арил).
IR (диск KBr), 1742, 1713, 1509, 1288, 1251, 1211, 1175, 1090, 1067 см-1.
ПРИМЕР 7
Получение стекла с контролируемым размером пор, дериватизированного длинноцепочечными алкиламино-группами (соединение 9, схема 2).
Стекло с контролируемым размером пор, дериватизированное длинноцепочечными алкиламино-группами (фирмы "Sigma Chemical Co, 3,5 г), предварительно обрабатывали трихлоруксусной кислотой (1,5 г), растворенной в дихлорметане (50 мл) в течение 2,5 часов, промывали аликвотами дихлорметана (100 мл всего) и безводного эфира (100 мл всего) и высушивали под вакуумом. К носителю из пористого стекла с контролируемым размером пор добавили безводный пиридин (35 мл), диметиламинопиридин (42 мг, 344 мкмоль), триэтиламин (280 мкл, 201 ммоль) и соединение 8 (см. схему 1) (736 мг, 700 мкмоль). Затем смесь осторожно взбалтывали в течение 18 часов, после чего шарики многократно промыли пиридином (7 х 10 мл), метанолом (5 х 15 мл) и хлороформом (5 х 15 мл), а затем высушили под вакуумом.
ПРИМЕР 8
Метилирование третичных аминогрупп, присоединенных к носителю из стекла с контролируемым размером пор (соединение 10, схема 2).
К стеклу с контролируемым размером пор, дериватизированному длинноцепочечными алкиламино-группами (соединение 9, схема 2) (1,01 г) добавили безводный ТГФ (10 мл) и иодометан (0,5 мл, 8 ммоль). Затем смесь осторожно взбалтывали в течение 18 часов, после чего шарики многократно промыли безводным ТГФ (5 х 10 мл), а затем высушили под вакуумом.
ПРИМЕР 9
Синтез монозащищенных производных 1,3-пропандиола (соединения 12a и 12b, схема 3) - общая процедура
В гидрид натрия (1,05 г 60% дисперсии в масле, 26,3 ммоль) в атмосфере N2 добавили безводный ТГФ (10 мл), после чего по капле добавили производное 1,3-пропандиола (26,3 ммоль), растворенного в безводном ТГФ (20 мл). После перемешивания еще в течение 30 минут в атмосфере N2 образовался алкоксид, о чем свидетельствовало появление серого осадка. Реакцию прекратили, по капле добавив трет-бутилхлордифенилсилан (7,24 г, 26,3 ммоль), растворенный в безводном ТГФ (20 мл), после чего реакционную смесь перемешивали в атмосфере N2 еще в течение 40 минут. После этого ТГФ удаляли высушиванием в роторном испарителе, а остаток распределяли между дихлорметаном и 0,1 М раствором бикарбоната натрия. Раствор дихлорметана отделили и промыли соляным раствором (х1). Затем раствор дихлорметана высушили сульфатом магния и выпарили до получения масла. Это масло нанесли на колонку с силикагелем (16 см х 5 см), которую элюировали смесью эфира/петролейного эфира, 40-60 градусов Цельсия, 30%/70%. Полученные фракции объединили и выпарили в роторном испарителе с получением целевого производного 1,3-пропандиола.
Более подробно соединения описаны ниже.
12a 1-O-трет-бутилдифенилсилил-1,3-пропандиол, белое кристаллическое вещество, RF 0,21 эфир/петролейный эфир 40->60 градусов Цельсия, 30%/70%, 7,61 г, 92%, температура плавления 40->42 градуса Цельсия.
IR (диск KBr) 3400, 1448, 1112, 822, 734, 702, 689, 506, 488 см-1.
1H ЯМР (270 МГц, CDCl3,
Figure 00000037
): 1,06 (s, 9H, tBu), 1,80 (m, 2H,
Figure 00000038
), 2,45 (t, 1H, OH), 3,84 (m, 4H,
Figure 00000039
), 7,40 (m, 6H, арил), 7,68 (m, 4H, арил).
12b 2-метил-1-O-трет-бутилдифенилсилил-1,3-пропандиол. Бесцветное масло, RF 0,21 эфир/петролейный эфир 40->60 градусов Цельсия, 30%/70%, 6,60 г, 77%.
IR (тонкая пленка) 3400, 1472, 1428, 1087, 1040, 823, 740, 702 см-1.
1H ЯМР (270 МГц, CDCl3, δ): 0,82 (d, 3H, J = 6,87 Гц,
Figure 00000040
), 1,06 (s, 9H, tBu), 2,0 (m, 1H,
Figure 00000041
), 2,68 (t, 1H, OH), 3,64 (m, 4H,
Figure 00000042
(CH3)
Figure 00000043
), 7,40 (m, 6H, арил), 7,68 (m, 4H, арил).
См. работу P.G.McDougal et al., JOC, 51, 3388 (1986), где описаны общие процедуры моносилилирования симметричных 1,n-диолов.
ПРИМЕР 10
Синтез производных треслата (соединения 13a и 13b, схема 3) - общие процедуры.
В спиртовое производное (4,94 ммоль), растворенное в безводном дихлорметане (10 мл) и сухом триэтиламине (0,84 мл, 6,03 ммоль), в атмосфере N2 и охлажденное до температуры с -15 градусов Цельсия до -30 градусов Цельсия, добавили по капле в течение 20-40 минут 2,2,2-трифторэтилсульфонилхлорид (1 г, 5,48 ммоль) в безводном дихлорметане (5 мл). Реакция завершилась после дополнительного перемешивания в течение 30 минут в атмосфере N2 при температуре от -15 до -30 градусов Цельсия. Затем реакционную смесь переносили в делительную воронку и промыли охлажденными льдом 1,0 М соляной кислотой (х1), водой (х1) и соляным раствором (х1). После этого раствор дихлорметана осушали сульфатом магния, а растворитель выпарили в роторном испарителе с получением треслата. Треслаты хранили при -20 градусах Цельсия в атмосфере N2.
Подробное описание соединений приведено ниже.
13a 1-O-трет-бутилдифенилсилил-3-O-трезил-1,3-пропандиол. Белое кристаллическое твердое вещество, 1,74 г, 77%, температура плавления 34-35 градусов Цельсия. 3 мл этой реакционной смеси удалили до проведения дополнительных реакций.
1H ЯМР (270 МГц, CDCl3, δ): 1,06 (s, 9H, tBu), 1,97 (m, 2H,
Figure 00000044
), 3,77 (t, 2H, J = 5,49 Гц,
Figure 00000045
)-Si), 3,84 (q, 2H, J = 8,79 Гц,
Figure 00000046
), 4,54 (t, 2H, J = 6,05 Гц, трезил O-CH2), 7,42 (m, 6H, арил), 7,64 (m, 4H, арил).
IR (диск KBr) 1386, 1329, 1274, 1258, 1185, 1164, 1137, 1094, 941, 763, 506 см-1.
13b 2-метил-1-O-трет-бутилдифенилсилил-3-O-трезил-1,3-пропандиол. Бесцветное масло, 2,57 г, 99%
1H ЯМР (270 МГц, CDCl3, δ): 0,97 (d, 3H, J = 6,87 Гц, CH3), 1,06 (s, 9H, tBu), 2,10 (m, 1H,
Figure 00000047
), 3,6 (m, 2H,
Figure 00000048
), 3,8 (q, 2H, J = 8,79 Гц,
Figure 00000049
), 4,40 (m, 2H, трезил-O-CH2), 7,40 (m, 6H, арил), 7,64 (m, 4H, арил).
Более подробное описание общего процесса получения треслатов см. в работе R.K.Crossland et al., JACS, 93, 4217 (1971).
ПРИМЕР 11
Синтез N-/ацетокси-2-оксиэтил/-N-/O-(3-(O-(4,41- диметокситритил)-1-оксиметил)-4-нитрофенил)-3-оксипропил/-N-/2- гидроксиэтил/амина (соединение 15, схема 4).
В соединение 11 (1,72 г, 1,92 ммоль), растворенное в безводном ТГФ (20 мл), добавили фторид тетрабутиламмония (0,55 мл раствора 1М в ТГФ, 1,92 ммоль). Затем реакционную смесь перемешивали в течение двух часов при комнатной температуре. После этого реакционную смесь разбавляли водой (50 мл), а ТГФ удаляли высушиванием в роторном испарителе. Затем водный раствор экстрагировали хлороформом (х1). Органический раствор высушивали безводным сульфатом натрия и выпаривали до получения смолы. Полученный продукт очищали хроматографией на силикагеле, элюируя колонку этилацетатом. Фракции полученного продукта объединяли и выпаривали в роторном испарителе, в результате чего получали соединение 12 в виде бесцветной смолы, которая медленно кристаллизовывалась: 0,73 г, 58%, температура плавления 95->97 градусов Цельсия, RF 0,26 этилацетат.
1H ЯМР (270 МГц, CDCl3, δ): 1,75 (brs, 1Н,
Figure 00000050
), 2,0->2,1 (m, 5H, O2CCH3 +
Figure 00000051
), 2,70->2,81 (m, 6H,
Figure 00000052
), 3,58 (m, 2H,
Figure 00000053
), 3,79 (s, 6H,
Figure 00000054
), 4,17 (m, 4H,
Figure 00000055
), 4,64 (s, 2H,
Figure 00000056
), 6,83 (d, 4H, DMT-арил), 7,2-7,5 (m, 10H, арил), 7,69 (s, 1H, арил), 8,10 (d, 1H, арил).
IR (диск KBr) 3459, 1738, 1608, 1577, 1506, 1444, 1313, 1288, 1250, 1230, 1175, 1154, 1070, 1035, 984 см-1.
ПРИМЕР 12
Синтез N-/O-(трет-бутилдифенилсилил)-2-оксиэтил/-N-/O-(3-(O- (4,41-диметокситритил)-1-оксиметил)-4-нитрофенил)-3-оксипропил/- N-/ацетокси-2-оксиэтил/амина (соединение 14, схема 4).
В соединение 6 (1,73 г, 2,02 ммоль), растворенное в безводном пиридине (10 мл), добавили уксусный ангидрид (0,5 мл, 4,54 ммоль) и 4-диметиламинопиридин (55 мг, 0,45 ммоль), после чего колбу закрыли пробкой. Затем реакционную смесь перемешивали при комнатной температуре в течение 16 часов, после чего провели анализ с применением тонкослойной хроматографии (метанол/этилацетат 5%/95%), который показал полное исчезновение исходного материала и образование нового тритил-содержащего пятна, RF 0,80. Пиридин удаляли высушиванием в роторном испарителе, а оставшиеся следы удаляли совместным выпариванием с толуолом (х2). Полученную смолу разделяли между хлороформом и водой. Раствор хлороформа отделяли и промывали соляным раствором (х1). Затем раствор хлороформа высушивали безводным сульфатом магния и растворитель выпаривали в роторном испарителе до получения бесцветной смолы, 1,94 г. Полученный материал был достаточно чистым для того, чтобы использовать его в следующих реакциях без дополнительной очистки.
1H ЯМР (270 МГц, CDCl3, δ): 1,04 (s, 9H, tBu), 1,9 (m, 2H,
Figure 00000057
), 2,01 (s, 3H, O2CCH3), 2,74 (m, 6H,
Figure 00000058
), 3,7 (m, 2H,
Figure 00000059
), 3,8 (s, 6H,
Figure 00000060
), 4,1 (m, 4, CH2O), 4,63 (s, 2H,
Figure 00000061
), 6,78 (d, 1H, арил), 6,83 (d, 4H, DMT арил), 7,2-7,8 (m, 20H, арил), 8,05 (d, 6H, арил).
ПРИМЕР 13
Синтез N-/ацетокси-2-оксиэтил/-N-/O-(3-(O-(4,41- диметокситритил)-1-оксиметил)-4-нитрофенил)-3-оксипропил/- N-/O-(трет-бутилдифенилсилил)-3-оксо-6-оксигексил/амина (соединение 16, схема 4).
В соединение 12 (66 мг, 0,10 ммоль), растворенное в безводном ацетонитриле (5 мл), добавили карбонат калия (55 мг, 0,4 ммоль) и соединение 13a (1 мл реакционной смеси, приблизительно 0,30 ммоль); после чего колбу закрыли трубкой, через которую производили осушение хлоридом кальция. Затем реакционную смесь перемешивали в течение 22 часов, после чего карбонат калия отфильтровывали, а растворитель удаляли высушиванием в роторном испарителе. Полученное масло помещали на колонку с силикагелем (14 х 1 см), продукт элюировали смесью эфира/петролейного эфира 40->60 градусов Цельсия, 75%/25%. Очищенные фракции продукта соединяли и выпаривали до получения прозрачной смолы, 6 мг, 6%, RF 0,47 в смеси эфира/петролейного эфира 40->60 градусов Цельсия, 80%/20%.
1H ЯМР (270 МГц, CDCl3, δ): 1,05 (s, 9H, tBu), 1,8 (m, 2H,
Figure 00000062
), 1,9 (m, 5H,
Figure 00000063
+
Figure 00000064
), 2,76-2,92 (m, 6H,
Figure 00000065
), 3,51 (t, 2H, J = 6,6 Гц,
Figure 00000066
), 3,79 (s, 6H, DMT-OCH3), 3,85 (m, 2H,
Figure 00000067
), 4,12-4,23 (m, 4H,
Figure 00000068
+
Figure 00000069
), 4,64 (s, 2H,
Figure 00000070
), 6,83 (m, 5H, 1 арил + DMT-арил), 7,23->7,50 (m, 16H, арил), 7,68 (m, 4H, арил), 8,10 (d, 1H, J = 9,06 Гц, арил).
Указанное ниже соединение было синтезировано аналогичным способом с использованием треслата 13b.
N-/ацетокси-2-оксиэтил/-N-/O-(3-(O-(4,4'-диметокситритил)-1- оксиметил)-4-нитрофенил)-3-оксипропил/-N-/O-(трет-бутилдифенилсилил)-5- метил-3-оксо-6-оксигексил/амин.
Соединение представляло собой прозрачную смолу, RF 0,53 в смеси эфира/петролейного эфира, 40->60 градусов Цельсия, 80%/20%.
1H ЯМР (270 МГц, CDCl3, δ): 0,88 (d, 3H,
Figure 00000071
), 1,00 (s, 9H, tBu), 1,9->2,1 (m, 6H, O2CCH3 +
Figure 00000072
+
Figure 00000073
), 2,7->3,0 (m, 6H,
Figure 00000074
), 3,4->3,7 (m, 4H,
Figure 00000075
), 3,79 (s, 6H, DMT-OCH3), 4,0->4,4 (m, 6H, CH2O-), 4,64 (s, 2H,
Figure 00000076
), 6,83 (m, 5H, арил), 7,2->7,7 (m, 20H, арил), 8,01 (d, 1H, арил).
ПРИМЕР 14
Синтез олигонуклеотидов на твердом носителе
Стекло с контролируемой пористостью, несущее линкеры 9 и 10 (соединения 9 и 10 по схеме 2) загружали в колонки, используемые в автоматическом синтезе олигонуклеотидов (AB1 381A); использованные количества вещества обеспечивали синтез в масштабе 0,2 или 1 мкмоль. Колонки вставляли в автоматический синтезатор, который программировали на соответствующие циклы. Использовали два различных типа нуклеотидных предшественников: нормальные фосфорамидиты с диметокситритильными защитными группами на 5'-гидроксилах; "переполяризованные синтоны"*) с 5'-фосфорамидитами и диметокситритильными защитными группами на 3'-гидроксилах. Список олигонуклеотидов, синтезированных на этих носителях, показан в таблице 4, где R9 и R10 получают из соединений 9 и 10 соответственно. Выходы контролировали по количеству диметокситритильных групп, высвобождаемых при каждом взаимодействии. Эти выходы соответствовали выходам, полученным на носителях из стекла с контролируемым размером пор, использованных для обычного синтеза олигонуклеотидов.
ПРИМЕР 15
Синтез меток в условиях, при которых аналит остается интактным.
После синтеза 5'R9T5 на носителе 9 твердый носитель разделяли, часть обрабатывали раствором 5 мМ фторида тетрабутиламмония в ТГФ в течение 10 минут при комнатной температуре для удаления трет-бутилдифенилсилильной защитной группы. Оба образца обрабатывали 29% аммиаком при комнатной температуре в течение ночи до удаления продуктов реакции из твердого носителя. Аммиак удаляли под вакуумом, а твердый остаток растворяли в воде. ВЭЖХ указывала на успешное удаление силильной защитной группы с удерживанием 4,41-диметокситритильной группы. Этот пример показывает, что две защитные группы можно удалить в условиях, когда другая защитная группа остается; более того, что при удалении защитных групп не повреждается цепь олигонуклеотида.
ПРИМЕР 16
Биохимические реакции с меченными аналитами.
16a. Ферментное фосфорилирование меченных олигонуклеотидов.
Во многих случаях желательно иметь олигонуклеотиды, имеющие фосфатную группу на 5'-конце. Такая группа необходима в том случае, если олигонуклеотид предполагается использовать в качестве донора в реакции лигирования; она может быть так же использована для введения радиоактивной группы с целью определить биохимические свойства вещества. Олигонуклеотиды A5, A10 и T5 получили с метками R9 и R10 на 3'-концах, причем в одних соединениях защитные силильные группы были удалены, а в других - нет (это достигалось благодаря тому, что олигонуклеотиды, еще находящиеся на твердом носителе, обрабатывали раствором 5 мМ фторида тетрабутиламмония в ацетоне; при комнатной температуре, в течение 15 минут). Эти олигонуклеотиды фосфорилировали с использованием полинуклеотидкиназы T4 и гамма-33P-аденозин-5'-трифосфата с применением стандартных протоколов, рекомендованных поставщиком. Тонкослойная хроматография продуктов реакции на целлюлозе, пропитанной полиэтиленимином (PEl), и проявленной в 0,5 М растворе бикарбоната аммония, показала в каждом случае, что меченный фосфор почти полностью был перенесен на олигонуклеотид.
16b. Ферментное лигирование меченных олигонуклеотидов.
В некоторых видах применения меченных олигонуклеотидов они могут быть успешно лигированы к рецепторам. В приведенных ниже тестах мы показали, что меченные олигонуклеотиды могут принимать участие в ферментном лигировании:
(1) Олигонуклеотиды, имеющие метку на 5'-конце.
В этом тесте матрица представляла собой 5'-ATCAAGTCAGAAAAATATATA (последовательность N 1). Эту матрицу гибридизировали с донором - 3'-TAGTTCAGTC (последовательность N 2), который фосфорилировали на конце 5', используя радиоактивный фосфор. Провели четыре реакции лигирования, каждую с модификацией последовательности T5, которую можно лигировать с фосфорилированным 5' концом донора, после гибридизации с серией 5 A's в матрице. Использованные в реакции четыре олигоT'a отличалась по природе своих концов 5'. Один имел диметокситритильную группу, присоединенную через гидроксил. Второй и третий имели метки R9 и R10, присоединенные к концам 5' посредством фосфодиэфирной связи. Четвертый представлял собой позитивный контроль, с нормальной 5'OH. Негативный контроль не имел олигоT'a. Реакции лигирования осуществляли с помощью T4-лигазы в соответствии с инструкцией поставщика. Реакции контролировали методами тонкослойной хроматографии на полиэтиленимин-целлюлозе, проявленной в растворе 0,75 М бикарбоната аммония. Все четыре реакции дали дополнительное пятно на хроматограмме, которое обладало меньшей мобильностью по сравнению с донором; при этом, как и ожидалось, негативный контроль не дал дополнительного пятна. Это показывает, каким образом олигонуклеотиды с различными метками могут участвовать в реакциях лигирования, специфичных к последовательностям.
В работе Cozzarelli и др. (1967) показано, что полинуклеотиды, присоединенные к твердым носителям, можно лигировать к акцептору в присутствии комплементарной матрицы.
ПРИМЕР 17
Гибридизация меченных олигонуклеотидов с олигонуклеотидами, связанными с твердым носителем.
Пример 16b показывает, что меченные олигонуклеотиды могут участвовать в реакциях лигирования, в результате чего можно сделать вывод, что они могут участвовать также в формировании дуплексов в растворе, поскольку от этого процесса зависит лигирование. Описанный ниже эксперимент показывает, что они могут образовывать дуплексы также с олигонуклеотидами, связанными с твердым носителем. T10 был синтезирован на поверхности листа аминированного полипропилена в соответствии с инструкцией фирмы-производителя. Известно, что этот процесс дает около 10 пмоль олигонуклеотида на кв. мм. На поверхность дериватизированного полипропилена нанесли раствор A10 (65 ммоль на микролитр), меченного на 5'-конце 33P, а на 3'-конце - меткой R10, в 3,5 М хлориде тетраметиламмония, и оставили на ночь при температуре 4 градуса Цельсия. После промывки в гибридизирующем растворителе было обнаружено, что около третьей части зонда было гибридизировано со связанным олиго-dT. Это приближается к теоретическому пределу гибридизации и свидетельствует о том, что олигонуклеотиды, содержащие метки, могут с высокой степенью эффективности принимать участие в реакциях гибридизации.
ПРИМЕР 18
Фотолиз меток.
Возможность удалять метки фотолизом намного повышает эффективность метода: это позволяет проводить непосредственный анализ путем лазерной десорбции в масс-спектрометре; это позволяет простым способом удалять метки для проведения других биохимических или химических реакций.
18a. Объемный фотолиз.
Известно, что нитробензильная группа лабильна к облучению при 305 нм. Растворы R10A10 и R10T5 в воде облучали на расстоянии 2 см от трансиллюминатора в течение 20 минут в условиях, при которых, как известно, не происходит разрушения нуклеиновых кислот. ВЭЖХ анализ показал наличие предполагаемых продуктов фоторасщепления и отсутствие обнаружимых остатков исходного соединения.
18b. Фотолиз, вызванный облучением лазером в масс-спектрометре.
Образцы R10T5 и T5R10 осаждали на металлической мишени масс-спектрометра при масс-спектроскопии по времени пролета ("Finnigan Lasermat") без добавления матрицы. Спектр показал наличие одного насыщенного пика вблизи массы 243 в режиме положительно заряженных ионов, который отсутствовал в других образцах.
ПРИМЕР 19
Идентификация различных меток, присоединенных к разным аналитам, с использованием методов масс-спектрометрии.
Последовательность из пяти тимидиновых остатков, содержащих диметокситритильную группу, присоединенную в качестве метки к 3'-концу, синтезировали обычным способом на твердой фазе, но с применением "переполяризованных синтонов". В масс-спектрометре это соединение дало большой и яркий пик у массы 304 в режиме положительно заряженных ионов. Напротив, последовательность из десяти аденазиновых остатков, несущих метку, обозначенную выше как R10, дала большой и очевидный пик на массе 243 в режиме положительно заряженных ионов. В обоих случаях лазерную десорбцию проводили в отсутствии матрицы. В обоих случаях пики отсутствовали при анализе олигонуклеотидов, не имеющих меток. Эти примеры показывают, что очень просто идентифицировать последовательность аналита по наличию пика в спектрограмме, который дает метка, введенная в процессе синтеза аналита, а также что характерные метки легко идентифицировать по различиям в их массе.
РАЗЪЯСНЕНИЯ К ФИГУРАМ
Фиг. 1. Общая схема синтеза молекул с специфичными метками.
Синтез начинается с линкера (L), который имеет по меньшей мере один сайт для присоединения групп для синтеза аналита, и один сайт для синтеза метки. (Линкер может быть также обратимо присоединен к твердому носителю в процессе синтеза, и этот линкер может иметь сайты для генерации групп, таких как заряженные группы, которые также могут использоваться при анализе). Pa и Pr представляют собой временные защитные группы, используемые, соответственно, для защиты предшественника аналита и репортерных групп. Эти защитные группы можно удалить различными способами обработки. Например, Pa может представлять собой кислотную или основную группу, такую как тритил, F-MOC или t-BOC, а Pr представляет собой группу, которую можно удалить обработкой фторидом. Например, такую группу, как силильный остаток. Группы U-Z также могут иметь защитные группы, которые должны быть стабильными к реагентам, используемым для удаления групп Pa и Pr. Для присоединения различных типов аналитов применяются разные способы: для синтеза олигонуклеотидов и пептидов можно использовать стандартные способы.
На фиг. 2 описаны три различных типа меток. На первой схеме каждое удлинение метки осуществляется с применением репортерной группы, которая специфична для позиции и для типа остатка, добавленного к аналиту. Для этой схемы блокировка не обязательна.
На второй и третьей схемах положение определяется суммарной массой репортера, достигаемой на стадии синтеза в тот момент, когда к аналиту добавляется остаток. В этом случае важно частично прекратить удлинение метки путем блокировки части молекулы. Вторая и третья схемы отличаются друг от друга способом добавления репортерных групп. На второй схеме эти группы в агентах удлинения; на третьей - в "кэпах".
Фиг. 2. Три типа молекуло-специфичных меток.
A. Иллюстрируются метки из репортерных групп (E), которые определяют как положение (подстрочные знаки), так и идентичность (надстрочные знаки) групп в аналите (U-Z). Такой набор может образовывать серию алифатических цепей с возрастающей формульной массой, которая определяет положение: например, метилен для положения 1, этилен для положения 2, пропилен для положения 3 и т. д. Их можно разделять на группо-специфичные типы по различным составам изотопов углерода и водорода: например, есть шесть различных изотопных составов CH2, как показано в таблице 1. Четыре из них отличаются на одну массовую единицу и их легко различить методом масс-спектрометрии. Можно предложить и другие способы дифференцированного мечения, например, либо положение, либо группу можно метить репортерными группами с разными зарядами. Такие группы можно отделять и распознавать разными способами, включая масс-спектрометрию.
B. Показанные метки, полученные частичным синтезом, при котором любая структура аналита присоединяется к серии меток; первый член серии имеет репортерную группу, специфичную к первой группе аналита; второй член имеет первую репортерную группу плюс вторую репортерную группу, специфичную ко второй группе аналита, и т.д. Такие серии очень просто получить, используя два вида предшественников для удлинения метки: один предшественник защищен обратимо блокирующей группой, а второй предшественник предотвращает дальнейшее удлинение. Например, смесь RX и P-(CH2)nX, где R представляет собой нереакционноспособную алифатическую группу, такую как метил или этил, P представляет собой обратимо защитную группу, а X является активированным остатком, который может взаимодействовать с группой, защищенной P. Те молекулы, которые были "блокированы" нереакционноспособными алифатическими группами, не будут принимать участия в следующем цикле деблокирования и удлинения.
На схеме B группо-специфичная информация заключена в остатках, использованных для удлинения. Как и в A, информацию можно получить с помощью масс-изотопов. Например, каждое добавление остатка CH2, меченного изотопами C и H, к p-(CH2)nX, дает дополнительные сайты, которые могут давать различие в массе репортеров. Массы групп (CH2)n могут варьироваться в пределах от 14 н до 17 н, и в этом диапазоне имеется 4 + 3(n-1) значений массы. Для этиленовой группы имеется семь различных значений массы в пределах от 28 до 34, а для пропиленовой группы таких значений десять - от 42 до 51.
C. Показан другой способ введения группо-специфичной информации; в данном случае эта информация содержится в терминаторе цепи - "кэпе", как указано в B. Здесь снова различия в массе можно добиться путем мечения алифатического остатка. Информацию о положениях можно получить, определив, на какой длине был добавлен терминатор. Предположим, что E представляет собой (CH2)2-O, а терминаторами являются меченные изотопами метильные группы с формульными массами от 15 до 19. Каждое удлинение будет добавлять 44 массовых единицы к репортеру. Диапазон масс для самого короткого репортера будет от 44 + 15 = 59 до 44 + 19 = 63. Диапазон масс для второго положения будет от 88 + 15 = 103 до 88 + 19 = 107, и так далее до шестой позиции, где диапазон масс будет составлять от 284 + 15 = 299 до 284 + 19 = 303. В этом диапазоне значения не перекрывают друг друга, и видно, что количество репортеров и диапазон можно расширить, используя терминаторы и удлинение с большим числом атомов.
Список литературы
1. Brenner, S. and Lerner, R.A. (1992). Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89: 5381-5383.
2. Drmanac, R., Labat, I., Brukner, I., and Crkvenjakov, R. (1989). Sequencing of megabase plus DNA by hybridization: Theory of the method. Genomics 4: 114-128.
3. Pillai, V. N. R. (1980). Photoremovable protecting groups in organic chemistry. Synthesis 39: 1-26.
4. Hoheisel, J.D., Maier, E., Mott, R., McCarthy, L., Grigoriev, A.V., Schalkwyk, L.C., Nitzetic, D., Francis, F. and Lehrach, H. (1993) High resolution cosmid and P1 maps spanning the 14 Mbp genome of the fission yeast Schizosaccharomvces pombe. Cell 73: 109-120.
5. Khrapko, K. R. , Lysov, Yu. P., Khorlyn, A. A., Shick, V. V., Florentiev, V. L. , and Mirzabekov. (1989). An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 256: 118-122.
6. Patchornik, A., Amit, B. and Woodward, R. B. (1970). Photosensitive protecting groups. J. AMER. Chem. Soc. 92:21: 6333-6335.
7. Ross, M. T., Hoheisel, J.D., Monaco, A.P., Larin, Z., Zehetner, G., and Lehrach, H. (1992) High density gridded Yac filters; their potential as genome mapping tools. In "Techniques for the analysis of complex genomes". Anand, R. ed. (Academic Press) 137-154.
8. Southern, E. M. (1988). Analyzing Polynucleotide Sequences. International Patent Application PCT GB 89/00460.
9. Southern, E.M., Maskos, U. and Elder, J.K. (1992). Analysis of Nucleic Acid Sequences by Hybridization to Arrays of Oligonucleotides: Evaluation using Experimental Models. Genomics 12: 1008-1017.
10. de Vries, M. S. , Elloway, D.J., Wendl, R.H., and Hunziker, H.E. (1992). Photoionisation mass spectrometer with a microscope laser desorption source, Rev. Sci. Instrum. 63(6): 3321-3325.
11. Zubkov, A. M., and Mikhailov, V. G. (1979). Repetitions of s-tuples in a sequence of independent trials. Theory Prob. Appl. 24, 269-282.
12. Cozzarelli, N. R. , Melechen, N.E., Jovin, T.M. and Kornberg, A. (1967). BBRC, 28, 578-586.

Claims (22)

1. Реагент, представляющий собой анализируемый олигонуклеотид, имеющий, по меньшей мере, два нуклеотидных остатка, соединенный с компонентом-меткой, содержащим одну или более репортерных групп, пригодных для обнаружения масс-спектрометрией и обозначающих каждая определенный нуклеотидный остаток в определенном положении олигонуклеотида.
2. Реагент по п.1, отличающийся тем, что олигонуклеотид связан с компонентом-меткой фоторасщепляемой связью.
3. Реагент, представляющий собой анализируемый олигонуклеотид, связанный через линкер с компонентом-меткой, содержащий репортерные группы, пригодные для обнаружения масс-спектрометрией и обозначающие каждая определенный нуклеотидный остаток в определенном положении олигонуклеотида, и имеющий следующий общий вид:
A - L - R,
где A - олигонуклеотид, состоящий, по меньшей мере, из 2 анализируемых нуклеотидных остатков;
R - компонент-метка, содержащий одну или более репортерных групп;
L - линкер, содержащий ароматическую группу, несущую гидроксильную группу, аминогруппу или сульфогруппу, предназначенную для синтеза анализируемого олигонуклеотида, реакционноспособную группу для синтеза компонента-метки и ортонитрогруппу, предназначенную для фоторасщепления.
4. Реагент по п.3, отличающийся тем, что олигонуклеотид содержит 2 - 20 нуклеотидных остатков, а компонент-метка содержит 2 - 20 репортерных групп.
5. Реагент по любому из пп.1 - 3, отличающийся тем, что олигонуклеотид имеет заряженную группу, предназначенную для анализа масс-спектроскопией.
6. Библиотека реагентов, включающая реагенты, содержащие различные олигонуклеотиды, отличающаяся тем, что реагенты представляют собой реагенты по пп.1 - 3.
7. Библиотека по п. 6, отличающаяся тем, что состоит из 4n числа реагентов, каждый из которых включает в себя отличающийся от других анализируемый компонент, представляющий собой отличающуюся от других олигонуклеотидную цепь, состоящую из n-го числа нуклеотидов.
8. Библиотека по п.7, отличающаяся тем, что реагенты смешаны в растворе.
9. Способ проведения анализа, включающий получение исследуемого вещества, инкубирование вещества с библиотекой реагентов, удаление несвязанных реагентов, извлечение компонента-метки из связанных реагентов с последующим анализом компонента-метки, отличающийся тем, что в качестве библиотеки реагентов используют библиотеку по пп.6 - 8.
10. Способ проведения анализа по п.9, отличающийся тем, что исследуемое вещество представляет собой организм, или ткань, или группу клеток.
11. Способ секвенирования исследуемой нуклеиновой кислоты, предусматривающий получение олигонуклеотида, иммобилизованного на носителе, гибридизацию исследуемой нуклеиновой кислоты с иммобилизованным олигонуклеотидом и анализ рузультатов, отличающийся тем, что исследуемую нуклеиновую кислоту, гибридизованную с иммобилизованным олигонуклеотидом, инкубируют в присутствии библиотеки реагентов по пп.6 - 8 с образованием гибрида между олигонуклеотидной цепью первого реагента библиотеки с исследуемой нуклеиновой кислотой в части, прилегающей к иммобилизованному олигонуклеотиду, примыкающие олигонуклеотиды лигируют с образованием лигированного первого реагента, затем нелигированные реагенты удаляют, компонент-метку извлекают из лигированного первого реагента и анализируют.
12. Способ по п.11, отличающийся тем, что полученный гибрид вновь инкубируют в присутствии библиотеки реагентов по пп.6 - 8 с образованием гибрида второго реагента библиотеки с частью исследуемой нуклеиновой кислоты, прилегающей к олигонуклеотиду первого реагента, затем проводят лигирование, удаление нелигированных реагентов, отщепление и анализ компонента-метки второго реагента.
13. Способ по п.11 или 12, отличающийся тем, что олигонуклеотид иммобилизуют на концах серии игл-носителей, индивидуальный клон исследуемой ДНК гибридизуют с олигонуклеотидом на каждой отдельной игле, после инкубирования с библиотекой реагентов и лигирования получают серию лигированных реагентов, причем разные иглы несут разные лигированные реагенты, затем компонент-метку отделяют и анализируют.
14. Способ по п.11 или 12, отличающийся тем, что индивидуальный клон исследуемой ДНК гибридизуют с олигонуклеотидом, иммобилизованным на отдельном участке носителя, расположенном на некотором расстоянии от других участков, после инкубирования с библиотекой реагентов и лигирования получают серию лигированных реагентов, причем различные участки носителя несут различные лигированные реагенты, затем компонент-метку отделяют и анализируют.
15. Способ по п.11 или 12, отличающийся тем, что получают матрицу олигонуклеотидов, иммобилизованных на участках носителя, находящихся на расстоянии друг от друга, при этом олигонуклеотид, находящийся на одном участке, отличается от олигонуклеотида на других участках.
16. Способ по п.15, отличающийся тем, что последовательность олигонуклеотида, иммобилизованного посредством ковалентной связи, известна.
17. Способ анализа исследуемой ДНК, предусматривающий получение исследуемой ДНК, иммобилизованной на носителе, инкубирование иммобилизованной ДНК с реагентами, удаление несвязанных реагентов и анализ результатов, отличающийся тем, что в качестве реагентов используют библиотеку реагентов по пп.6 - 8, на стадии инкубирования получают гибрид исследуемой ДНК с реагентом, а компонент-метку связанного реагента извлекают и анализируют.
18. Способ по п.17, отличающийся тем, что полученный гибрид исследуемой ДНК и реагента дополнительно инкубируют с библиотекой реагентов по пп.6 - 8 с образованием гибридов ДНК с различными реагентами, затем примыкающие олигонуклеотиды, гибридизованные с исследуемой ДНК, лигируют, а нелигированные реагенты удаляют.
19. Способ по п.17 или 18, отличающийся тем, что индивидуальные клоны исследуемой нуклеиновой кислоты иммобилизуют на участках носителя, расположенных на расстоянии друг от друга.
20. Способ по любому из пп.9 - 19, отличающийся тем, что компонент-метку отделяют от реагента методом фотоотщепления.
21. Способ по любому из пп.9 - 20, отличающийся тем, что анализ компонента-метки проводят с помощью масс-спектрометрии.
22. Набор для проведения анализа, включающий носитель, имеющий два или более находящихся на расстоянии друг от друга участка, индивидуальные клоны, иммобилизованные на находящихся на расстоянии друг от друга участках носителя, реагент, отличающийся тем, что в качестве реагента содержит реагент по пп. 1 - 5, способный гибридизоваться с индивидуальными клонами исследуемой ДНК.
RU96103646/13A 1993-07-30 1994-08-01 Реагент (варианты), библиотека реагентов, способы проведения анализа RU2158310C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB939315847A GB9315847D0 (en) 1993-07-30 1993-07-30 Tag reagent and assay method
GB9315847.5 1993-07-30

Publications (2)

Publication Number Publication Date
RU96103646A RU96103646A (ru) 1998-10-10
RU2158310C2 true RU2158310C2 (ru) 2000-10-27

Family

ID=10739735

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96103646/13A RU2158310C2 (ru) 1993-07-30 1994-08-01 Реагент (варианты), библиотека реагентов, способы проведения анализа

Country Status (16)

Country Link
US (4) US5770367A (ru)
EP (2) EP0778280B1 (ru)
JP (1) JP3289911B2 (ru)
CN (1) CN1088758C (ru)
AT (2) ATE159767T1 (ru)
AU (1) AU695349B2 (ru)
CA (1) CA2168010C (ru)
DE (2) DE69431967D1 (ru)
DK (1) DK0711362T3 (ru)
ES (1) ES2108479T3 (ru)
FI (1) FI960403A0 (ru)
GB (1) GB9315847D0 (ru)
HU (1) HU220967B1 (ru)
NO (1) NO960370L (ru)
RU (1) RU2158310C2 (ru)
WO (1) WO1995004160A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592673C2 (ru) * 2003-12-17 2016-07-27 ГЛЭКСОСМИТКЛАЙН ЭлЭлСи Биологически активное соединение, содержащее кодирующий олигонуклеотид, и библиотека соединений

Families Citing this family (258)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
EP0834576B1 (en) 1990-12-06 2002-01-16 Affymetrix, Inc. (a Delaware Corporation) Detection of nucleic acid sequences
US5605798A (en) * 1993-01-07 1997-02-25 Sequenom, Inc. DNA diagnostic based on mass spectrometry
GB9315847D0 (en) 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
US6401267B1 (en) 1993-09-27 2002-06-11 Radoje Drmanac Methods and compositions for efficient nucleic acid sequencing
CN1128884C (zh) * 1993-09-27 2003-11-26 阿奇发展公司 有效进行核酸测序的方法和组合物
US6015880A (en) * 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
US5679773A (en) * 1995-01-17 1997-10-21 Affymax Technologies N.V Reagants and methods for immobilized polymer synthesis and display
WO1996000378A1 (en) * 1994-06-23 1996-01-04 Affymax Technologies N.V. Photolabile compounds and methods for their use
US5604097A (en) * 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
US6974666B1 (en) 1994-10-21 2005-12-13 Appymetric, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA
US5891742A (en) * 1995-01-19 1999-04-06 Chiron Corporation Affinity selection of ligands by mass spectroscopy
GB9504598D0 (en) * 1995-03-03 1995-04-26 Imp Cancer Res Tech Method of nucleic acid analysis
GB9507238D0 (en) * 1995-04-07 1995-05-31 Isis Innovation Detecting dna sequence variations
US5750341A (en) * 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
US5624711A (en) * 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
US5830655A (en) 1995-05-22 1998-11-03 Sri International Oligonucleotide sizing using cleavable primers
GB9517661D0 (en) * 1995-08-30 1995-11-01 Smithkline Beecham Plc Novel compounds
US5780231A (en) * 1995-11-17 1998-07-14 Lynx Therapeutics, Inc. DNA extension and analysis with rolling primers
US5763175A (en) * 1995-11-17 1998-06-09 Lynx Therapeutics, Inc. Simultaneous sequencing of tagged polynucleotides
EP0992511B1 (en) 1996-01-23 2009-03-11 Operon Biotechnologies, Inc. Methods and compositions for determining the sequence of nucleic acid molecules
EP0962464A3 (en) * 1996-01-23 2004-02-11 Qiagen Genomics, Inc. Methods and compositions for detecting binding of ligand pair using non-fluorescent label
EP0962537B1 (en) * 1996-01-23 2009-06-17 Operon Biotechnologies, Inc. Methods for analyzing nucleic acid molecules utilizing sizing techniques
US6027890A (en) 1996-01-23 2000-02-22 Rapigene, Inc. Methods and compositions for enhancing sensitivity in the analysis of biological-based assays
NZ331044A (en) * 1996-01-23 1999-02-25 Rapigene Inc Methods and compositions for determining the sequence of nucleic acid molecules
US6613508B1 (en) 1996-01-23 2003-09-02 Qiagen Genomics, Inc. Methods and compositions for analyzing nucleic acid molecules utilizing sizing techniques
US6312893B1 (en) 1996-01-23 2001-11-06 Qiagen Genomics, Inc. Methods and compositions for determining the sequence of nucleic acid molecules
AU717330B2 (en) * 1996-01-23 2000-03-23 Qiagen Genomics, Inc. Methods and compositions for detecting binding of ligand pair using non-fluorescent label
WO1997033000A1 (en) * 1996-03-04 1997-09-12 Genetrace Systems, Inc. Methods of screening nucleic acids using mass spectrometry
CA2242171A1 (en) * 1996-04-08 1997-10-16 Glaxo Group Limited Mass-based encoding and qualitative analysis of combinatorial libraries
JP4034351B2 (ja) 1996-04-25 2008-01-16 バイオアレイ ソリューションズ エルエルシー 粒子近接表面の光制御した動電学的アッセンブリ
US5958342A (en) * 1996-05-17 1999-09-28 Incyte Pharmaceuticals, Inc. Jet droplet device
US5777324A (en) * 1996-09-19 1998-07-07 Sequenom, Inc. Method and apparatus for maldi analysis
US5965363A (en) * 1996-09-19 1999-10-12 Genetrace Systems Inc. Methods of preparing nucleic acids for mass spectrometric analysis
US7094609B2 (en) 1996-09-20 2006-08-22 Burstein Technologies, Inc. Spatially addressable combinatorial chemical arrays in encoded optical disk format
ATE319855T1 (de) * 1996-12-10 2006-03-15 Sequenom Inc Abspaltbare, nicht-flüchtige moleküle zur massenmarkierung
US6699668B1 (en) * 1997-01-15 2004-03-02 Xzillion Gmbh & Co. Mass label linked hybridisation probes
CA2277786A1 (en) * 1997-01-15 1998-07-23 Brax Group Limited Mass label linked hybridisation probes
AU728805B2 (en) * 1997-01-15 2001-01-18 Xzillion Gmbh & Co. Kg Nucleic acid sequencing
GB9707980D0 (en) 1997-04-21 1997-06-11 Brax Genomics Ltd Characterising DNA
WO1999002726A1 (en) * 1997-07-11 1999-01-21 Brax Group Limited Characterising nucleic acid
GB9714716D0 (en) 1997-07-11 1997-09-17 Brax Genomics Ltd Characterising nucleic acids
WO1999002728A1 (en) * 1997-07-11 1999-01-21 Brax Group Limited Characterising nucleic acids
US6248521B1 (en) 1997-07-22 2001-06-19 Qiagen Genomics, Inc. Amplification and other enzymatic reactions performed on nucleic acid arrays
CA2297681A1 (en) 1997-07-22 1999-02-04 Kristen Moynihan Apparatus and methods for arraying solution onto a solid support
PT990047E (pt) * 1997-07-22 2003-10-31 Qiagen Genomics Inc Metodos e composicoes para a analise de acidos nucleicos por espectroscopia de massa.
NZ501774A (en) 1997-07-22 2002-02-01 Qiagen Genomics Inc Computer method and system for correlating known characteristics of biomolecules to molecular tags with unique molecular weights that are associated with the biomolecule
GB9718921D0 (en) * 1997-09-05 1997-11-12 Brax Genomics Ltd Catalytically generated mass labels
US6607878B2 (en) 1997-10-06 2003-08-19 Stratagene Collections of uniquely tagged molecules
US6101946A (en) * 1997-11-21 2000-08-15 Telechem International Inc. Microarray printing device including printing pins with flat tips and exterior channel and method of manufacture
JP2001526381A (ja) * 1997-12-05 2001-12-18 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ マトリックス補助レーザー脱着/イオン化質量分光分析による核酸の同定方法
EP1728776A3 (en) * 1998-01-05 2006-12-13 Neogenesis, Inc. Method for identifying a member of a mass-coded combinatorial library
US6207861B1 (en) 1998-01-05 2001-03-27 Neogenesis, Inc. Method for producing and screening mass coded combinatorial libraries for drug discovery and target validation
EP2241541A1 (en) 1998-01-05 2010-10-20 Neogenesis, Inc. Method for identifying a member of a mass-coded combinatorial library
US6265163B1 (en) * 1998-01-09 2001-07-24 Lynx Therapeutics, Inc. Solid phase selection of differentially expressed genes
WO1999037663A1 (en) * 1998-01-27 1999-07-29 California Institute Of Technology Method of detecting a nucleic acid
EP1068216B1 (en) 1998-05-15 2003-12-10 Isis Innovation Limited Libraries of oligomers labelled with different tags
US6104028A (en) * 1998-05-29 2000-08-15 Genetrace Systems Inc. Volatile matrices for matrix-assisted laser desorption/ionization mass spectrometry
US7399844B2 (en) 1998-07-09 2008-07-15 Agilent Technologies, Inc. Method and reagents for analyzing the nucleotide sequence of nucleic acids
US6218118B1 (en) 1998-07-09 2001-04-17 Agilent Technologies, Inc. Method and mixture reagents for analyzing the nucleotide sequence of nucleic acids by mass spectrometry
US5998175A (en) * 1998-07-24 1999-12-07 Lumigen, Inc. Methods of synthesizing and amplifying polynucleotides by ligation of multiple oligomers
US6232067B1 (en) 1998-08-17 2001-05-15 The Perkin-Elmer Corporation Adapter directed expression analysis
US6423493B1 (en) * 1998-10-26 2002-07-23 Board Of Regents The University Of Texas System Combinatorial selection of oligonucleotide aptamers
US20040242521A1 (en) * 1999-10-25 2004-12-02 Board Of Regents, The University Of Texas System Thio-siRNA aptamers
WO2000056937A2 (en) * 1999-03-25 2000-09-28 Hyseq, Inc. Solution-based methods and materials for sequence analysis by hybridization
AU4051300A (en) * 1999-04-02 2000-10-23 Tropix, Inc. High throughput and high sensitivity detection assays
US7244559B2 (en) * 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7211390B2 (en) * 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
JP3668075B2 (ja) * 1999-10-12 2005-07-06 光夫 板倉 遺伝物質シーケンス決定用懸濁系、その懸濁系を用いた遺伝物質シーケンス決定方法およびその懸濁系を用いたSNPs高速スコアリング方法
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
JP2004502923A (ja) 2000-02-22 2004-01-29 ジェノスペクトラ,インコーポレイティド マイクロアレイの製造方法と製造装置
US20040014102A1 (en) * 2000-02-22 2004-01-22 Shiping Chen High density parallel printing of microarrays
JP2003529056A (ja) * 2000-02-22 2003-09-30 ジェノスペクトラ,インコーポレイティド マイクロアレイ作製技術及び装置
GB0006141D0 (en) 2000-03-14 2000-05-03 Brax Group Ltd Mass labels
DE10021204A1 (de) * 2000-04-25 2001-11-08 Epigenomics Ag Verfahren zur hochparallelen Analyse von Polymorphismen
WO2001094639A1 (en) * 2000-06-08 2001-12-13 The Regents Of The University Of California Address/capture tags for flow-cytometry based minisequencing
US6660229B2 (en) 2000-06-13 2003-12-09 The Trustees Of Boston University Use of nucleotide analogs in the analysis of oligonucleotide mixtures and in highly multiplexed nucleic acid sequencing
US9709559B2 (en) 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
WO2001098765A1 (en) 2000-06-21 2001-12-27 Bioarray Solutions, Ltd. Multianalyte molecular analysis
US6680203B2 (en) * 2000-07-10 2004-01-20 Esperion Therapeutics, Inc. Fourier transform mass spectrometry of complex biological samples
US20060057565A1 (en) * 2000-09-11 2006-03-16 Jingyue Ju Combinatorial fluorescence energy transfer tags and uses thereof
US6627748B1 (en) 2000-09-11 2003-09-30 The Trustees Of Columbia University In The City Of New York Combinatorial fluorescence energy transfer tags and their applications for multiplex genetic analyses
EP2311855A3 (en) 2000-10-06 2011-05-11 Novozymes Inc. Bacillus licheniformis YvnA negative strain
US9708358B2 (en) 2000-10-06 2017-07-18 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding DNA and RNA
AU2001296645A1 (en) 2000-10-06 2002-04-15 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding dna and rna
US7635571B2 (en) * 2000-12-07 2009-12-22 Siemens Healthcare Diagnostics Products Gmbh Amplified signal in binding assays
US20040121310A1 (en) * 2002-12-18 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in forensic studies
US7718354B2 (en) * 2001-03-02 2010-05-18 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US20030027135A1 (en) * 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US20040121309A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in blood, bodily fluids, and bodily tissues
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US20040121314A1 (en) * 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in containers
AU2002306777C1 (en) * 2001-03-19 2008-04-24 President And Fellows Of Harvard College Evolving new molecular function
US7108985B2 (en) * 2001-04-03 2006-09-19 Thermo Finnigan, Llc Methods and kits useful for the simplification of complex peptide mixtures
EP1401850A1 (en) 2001-06-20 2004-03-31 Nuevolution A/S Nucleoside derivatives for library preparation
US7262063B2 (en) 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US7402286B2 (en) * 2001-06-27 2008-07-22 The Regents Of The University Of California Capillary pins for high-efficiency microarray printing device
US6855538B2 (en) * 2001-06-27 2005-02-15 The Regents Of The University Of California High-efficiency microarray printing device
EP1417475A4 (en) * 2001-07-06 2006-06-28 454 Corp METHOD FOR ISOLATING INDEPENDENT, PARALLEL CHEMICAL MICRORE ACTIONS USING A POROUS FILTER
US20030087309A1 (en) * 2001-08-27 2003-05-08 Shiping Chen Desktop drug screening system
US10539561B1 (en) 2001-08-30 2020-01-21 Customarray, Inc. Enzyme-amplified redox microarray detection process
US20030054396A1 (en) * 2001-09-07 2003-03-20 Weiner Michael P. Enzymatic light amplification
EP1425586B1 (en) * 2001-09-14 2007-11-21 Electrophoretics Limited Mass labels
WO2003034029A2 (en) 2001-10-15 2003-04-24 Bioarray Solutions, Ltd. Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection
US20070264641A1 (en) * 2001-10-15 2007-11-15 Li Alice X Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection
US6902921B2 (en) 2001-10-30 2005-06-07 454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US20050124022A1 (en) * 2001-10-30 2005-06-09 Maithreyan Srinivasan Novel sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US6956114B2 (en) 2001-10-30 2005-10-18 '454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US20030124599A1 (en) * 2001-11-14 2003-07-03 Shiping Chen Biochemical analysis system with combinatorial chemistry applications
GB0129012D0 (en) 2001-12-04 2002-01-23 Solexa Ltd Labelled nucleotides
US7057026B2 (en) * 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
GB0131014D0 (en) 2001-12-28 2002-02-13 James Peter Method for molecule-mlecule analysis
WO2003078625A2 (en) 2002-03-15 2003-09-25 Nuevolution A/S An improved method for synthesising templated molecules
US9126165B1 (en) 2002-04-24 2015-09-08 The University Of North Carolina At Greensboro Nucleic acid arrays to monitor water and other ecosystems
US8383342B2 (en) 2002-04-24 2013-02-26 The University Of North Carolina At Greensboro Compositions, products, methods and systems to monitor water and other ecosystems
US7214492B1 (en) 2002-04-24 2007-05-08 The University Of North Carolina At Greensboro Nucleic acid arrays to monitor water and other ecosystems
US8048623B1 (en) 2002-04-24 2011-11-01 The University Of North Carolina At Greensboro Compositions, products, methods and systems to monitor water and other ecosystems
GB0210535D0 (en) * 2002-05-08 2002-06-19 Novartis Ag Organic compounds
AU2003240436A1 (en) * 2002-06-20 2004-01-06 Nuevolution A/S Microarrays displaying encoded molecules
US7074597B2 (en) * 2002-07-12 2006-07-11 The Trustees Of Columbia University In The City Of New York Multiplex genotyping using solid phase capturable dideoxynucleotides and mass spectrometry
AU2003247266A1 (en) 2002-08-01 2004-02-23 Nuevolution A/S Multi-step synthesis of templated molecules
WO2004016767A2 (en) * 2002-08-19 2004-02-26 The President And Fellows Of Harvard College Evolving new molecular function
US11008359B2 (en) 2002-08-23 2021-05-18 Illumina Cambridge Limited Labelled nucleotides
US7414116B2 (en) 2002-08-23 2008-08-19 Illumina Cambridge Limited Labelled nucleotides
EP3363809B1 (en) 2002-08-23 2020-04-08 Illumina Cambridge Limited Modified nucleotides for polynucleotide sequencing
EP1572978A4 (en) * 2002-10-16 2006-05-24 Univ Texas COMBINATORIAL BANKS OF APTAMERS WITH OLIGONUCLEOTIDE OLIGONUCLEOTIDE PHOSPHOROTHIOATE AND PHOSPHORODITHIOATE GROUPS RELATED TO BALLS
CN106337046B (zh) 2002-10-30 2021-03-23 纽韦卢森公司 合成双功能复合物的方法
US20040091850A1 (en) * 2002-11-08 2004-05-13 Travis Boone Single cell analysis of membrane molecules
US7526114B2 (en) 2002-11-15 2009-04-28 Bioarray Solutions Ltd. Analysis, secure access to, and transmission of array images
JP2006516193A (ja) 2002-12-06 2006-06-29 アイシス・ファーマシューティカルス・インコーポレーテッド ヒトおよび動物における病原体の迅速な同定方法
AU2003297859A1 (en) * 2002-12-13 2004-07-09 The Trustees Of Columbia University In The City Of New York Biomolecular coupling methods using 1,3-dipolar cycloaddition chemistry
DE60330406D1 (de) 2002-12-19 2010-01-14 Nuevolution As Durch quasizufallsstrukturen und funktionen geführte synthesemethode
US7575865B2 (en) * 2003-01-29 2009-08-18 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
WO2004070007A2 (en) * 2003-01-29 2004-08-19 454 Corporation Method for preparing single-stranded dna libraries
JP2004235111A (ja) * 2003-01-31 2004-08-19 Ebara Corp イオン伝導体及びその製造方法
WO2004074429A2 (en) 2003-02-21 2004-09-02 Nuevolution A/S Method for producing second-generation library
EP2236606B1 (en) * 2003-03-20 2013-11-06 Nuevolution A/S Ligational encoding of small molecules
GB0306756D0 (en) * 2003-03-24 2003-04-30 Xzillion Gmbh & Co Kg Mass labels
US8017323B2 (en) * 2003-03-26 2011-09-13 President And Fellows Of Harvard College Free reactant use in nucleic acid-templated synthesis
US20050233390A1 (en) * 2003-04-09 2005-10-20 Allen John W Device including a proteinaceous factor, a recombinant proteinaceous factor, and a nucleotide sequence encoding the proteinaceous factor
US8046171B2 (en) 2003-04-18 2011-10-25 Ibis Biosciences, Inc. Methods and apparatus for genetic evaluation
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
EP1623020A4 (en) * 2003-05-09 2007-05-09 Sigma Aldrich Co GENOMIC AND PROTEOMIC APPROACHES FOR THE DEVELOPMENT OF CELL CULTURE MEDIA
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
EP1635693A2 (en) * 2003-05-23 2006-03-22 Board Of Regents, The University Of Texas System High throughput screening of aptamer libraries for specific binding to proteins on viruses and other pathogens
CA2526690C (en) * 2003-05-23 2014-01-14 Board Of Regents The University Of Texas System Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting ap-1 transcription factors
WO2005003778A2 (en) * 2003-07-02 2005-01-13 Nuevolution A/S A method for identifying a synthetic molecule having affinity towards a target
EP1648909A4 (en) * 2003-07-24 2008-11-12 Univ Texas THIOAPTAMERS FOR DISCOVERING PHYSIOLOGICAL PATHWAYS AND NEW THERAPEUTIC STRATEGIES
GB0320059D0 (en) * 2003-08-27 2003-10-01 Solexa Ltd A method of sequencing
US20050069895A1 (en) * 2003-08-29 2005-03-31 Applera Corporation Compositions, methods, and kits for fabricating coded molecular tags
US7198900B2 (en) * 2003-08-29 2007-04-03 Applera Corporation Multiplex detection compositions, methods, and kits
US20050048498A1 (en) * 2003-08-29 2005-03-03 Applera Corporation Compositions, methods, and kits for assembling probes
US8394945B2 (en) 2003-09-11 2013-03-12 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
WO2005029705A2 (en) 2003-09-18 2005-03-31 Bioarray Solutions, Ltd. Number coding for identification of subtypes of coded types of solid phase carriers
DE602004023960D1 (de) 2003-09-18 2009-12-17 Nuevolution As Methode zur Gewinnung struktureller Informationen kodierter Moleküle und zur Selektion von Verbindungen
EP1664722B1 (en) 2003-09-22 2011-11-02 Bioarray Solutions Ltd Surface immobilized polyelectrolyte with multiple functional groups capable of covalently bonding to biomolecules
NZ547492A (en) 2003-10-28 2009-12-24 Bioarray Solutions Ltd Optimization of gene expression analysis using immobilized capture probes of different lengths and densities
PT1694859E (pt) 2003-10-29 2015-04-13 Bioarray Solutions Ltd Análise de ácidos nucleicos multiplexada através de fragmentação de adn de cadeia dupla
US20050239102A1 (en) * 2003-10-31 2005-10-27 Verdine Gregory L Nucleic acid binding oligonucleotides
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
WO2005069762A2 (en) 2004-01-09 2005-08-04 Novozymes Inc. Bacillus licheniformis chromosome
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
EP1730307A4 (en) * 2004-03-03 2008-11-05 Univ Columbia PHOTOSPACTABLE FLUORESCENZ NUCLEOTIDES FOR DNA SEQUENCING ON A MEASUREMENT BASED BY STATION-SPECIFIC COUPLING SCHEME CONSTRUCTED CHIP
US8119336B2 (en) 2004-03-03 2012-02-21 Ibis Biosciences, Inc. Compositions for use in identification of alphaviruses
ATE447020T1 (de) 2004-03-22 2009-11-15 Nuevolution As Ligationscodierung unter verwendung von oligonukleotidbausteinen
US20050239134A1 (en) * 2004-04-21 2005-10-27 Board Of Regents, The University Of Texas System Combinatorial selection of phosphorothioate single-stranded DNA aptamers for TGF-beta-1 protein
WO2006073436A2 (en) * 2004-04-29 2006-07-13 The Trustees Of Columbia University In The City Of New York Mass tag pcr for multiplex diagnostics
CA2567839C (en) 2004-05-24 2011-06-28 Isis Pharmaceuticals, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
JP2008514900A (ja) * 2004-07-30 2008-05-08 アデザ・バイオメデイカル・コーポレイシヨン 疾病および他の状態のマーカーとしての癌胎児性フィブロネクチンならびに癌胎児性フィブロネクチンの検出のための方法
US7848889B2 (en) 2004-08-02 2010-12-07 Bioarray Solutions, Ltd. Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification
US20060102471A1 (en) * 2004-11-18 2006-05-18 Karl Maurer Electrode array device having an adsorbed porous reaction layer
KR20070112785A (ko) * 2005-02-01 2007-11-27 에이젠코트 바이오사이언스 코오포레이션 비드-기초 서열화를 위한 시약, 방법, 및 라이브러리
CA2600184A1 (en) 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US20070034513A1 (en) 2005-03-25 2007-02-15 Combimatrix Corporation Electrochemical deblocking solution for electrochemical oligomer synthesis on an electrode array
US9394167B2 (en) 2005-04-15 2016-07-19 Customarray, Inc. Neutralization and containment of redox species produced by circumferential electrodes
US8486629B2 (en) 2005-06-01 2013-07-16 Bioarray Solutions, Ltd. Creation of functionalized microparticle libraries by oligonucleotide ligation or elongation
WO2007007192A1 (en) 2005-06-07 2007-01-18 Centre National De La Recherche Scientifique (Cnrs) Use of ionic matrices for maldi mass spectrometry analysis of tissue sections
US9169510B2 (en) 2005-06-21 2015-10-27 The Trustees Of Columbia University In The City Of New York Pyrosequencing methods and related compositions
CA2616281C (en) 2005-07-21 2014-04-22 Isis Pharmaceuticals, Inc. Methods for rapid identification and quantitation of mitochondrial dna variants
GB0515323D0 (en) 2005-07-26 2005-08-31 Electrophoretics Ltd Mass labels
GB0517097D0 (en) 2005-08-19 2005-09-28 Solexa Ltd Modified nucleosides and nucleotides and uses thereof
GB0518585D0 (en) 2005-09-12 2005-10-19 Electrophoretics Ltd Mass labels
US20070065877A1 (en) 2005-09-19 2007-03-22 Combimatrix Corporation Microarray having a base cleavable succinate linker
US8855955B2 (en) * 2005-09-29 2014-10-07 Custom Array, Inc. Process and apparatus for measuring binding events on a microarray of electrodes
EP1957983A4 (en) * 2005-11-21 2010-03-24 Univ Columbia MULTIPLEX DIGITAL IMMUNOCAPTURE USING LIBRARY OF PHOTOCLIVABLE MASS MARKERS
WO2007061981A2 (en) * 2005-11-21 2007-05-31 Lumera Corporation Surface plasmon resonance spectrometer with an actuator-driven angle scanning mechanism
ES2897529T3 (es) 2005-12-01 2022-03-01 Nuevolution As Métodos de codificación enzimática para la síntesis eficiente de bibliotecas grandes
US7463358B2 (en) * 2005-12-06 2008-12-09 Lumera Corporation Highly stable surface plasmon resonance plates, microarrays, and methods
EP1991694B1 (en) * 2006-02-13 2016-04-13 Fluidigm Canada Inc. Element-tagged oligonucleotide gene expression analysis
EP2007907A2 (en) * 2006-04-19 2008-12-31 Applera Corporation Reagents, methods, and libraries for gel-free bead-based sequencing
WO2007146158A1 (en) * 2006-06-07 2007-12-21 The Trustees Of Columbia University In The City Of New York Dna sequencing by nanopore using modified nucleotides
EP2064332B1 (en) 2006-09-14 2012-07-18 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US8399188B2 (en) 2006-09-28 2013-03-19 Illumina, Inc. Compositions and methods for nucleotide sequencing
WO2008066931A2 (en) 2006-11-29 2008-06-05 Novozymes, Inc. Bacillus licheniformis chromosome
GB2457402B (en) 2006-12-01 2011-10-19 Univ Columbia Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators
US7902345B2 (en) 2006-12-05 2011-03-08 Sequenom, Inc. Detection and quantification of biomolecules using mass spectrometry
US7893227B2 (en) * 2006-12-05 2011-02-22 Lasergen, Inc. 3′-OH unblocked nucleotides and nucleosides base modified with non-cleavable, terminating groups and methods for their use in DNA sequencing
US7897737B2 (en) 2006-12-05 2011-03-01 Lasergen, Inc. 3′-OH unblocked, nucleotides and nucleosides, base modified with photocleavable, terminating groups and methods for their use in DNA sequencing
US8133701B2 (en) * 2006-12-05 2012-03-13 Sequenom, Inc. Detection and quantification of biomolecules using mass spectrometry
WO2008104002A2 (en) 2007-02-23 2008-08-28 Ibis Biosciences, Inc. Methods for rapid forensic dna analysis
GB0704764D0 (en) 2007-03-12 2007-04-18 Electrophoretics Ltd Isobarically labelled reagents and methods of their use
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
EP2195452B1 (en) 2007-08-29 2012-03-14 Sequenom, Inc. Methods and compositions for universal size-specific polymerase chain reaction
US20090060786A1 (en) * 2007-08-29 2009-03-05 Gibum Kim Microfluidic apparatus for wide area microarrays
US20110014611A1 (en) * 2007-10-19 2011-01-20 Jingyue Ju Design and synthesis of cleavable fluorescent nucleotides as reversible terminators for dna sequences by synthesis
EP2209911B1 (en) 2007-10-19 2013-10-16 The Trustees of Columbia University in the City of New York Dna sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified nucleotide terminators and a deoxyinosine analogue with a reversible terminator group
GB0809488D0 (en) 2008-05-23 2008-07-02 Electrophoretics Ltd Mass spectrometric analysis
AU2009257369B2 (en) 2008-06-11 2015-03-26 Agilent Technologies, Inc. Nucleotides and nucleosides and methods for their use in DNA sequencing
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
WO2010033625A1 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
WO2010093943A1 (en) 2009-02-12 2010-08-19 Ibis Biosciences, Inc. Ionization probe assemblies
EA021797B1 (ru) 2009-02-13 2015-09-30 Икс-Чем, Инк. Способы создания и скрининга библиотек, кодируемых днк
CN102428191A (zh) * 2009-03-18 2012-04-25 塞昆纳姆股份有限公司 热稳定性内切核酸酶在产生报道分子中的应用
EP2454000A4 (en) 2009-07-17 2016-08-10 Ibis Biosciences Inc SYSTEMS FOR IDENTIFYING BIOLOGICAL SUBSTANCES
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
WO2011032040A1 (en) * 2009-09-10 2011-03-17 Centrillion Technology Holding Corporation Methods of targeted sequencing
US10174368B2 (en) * 2009-09-10 2019-01-08 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
EP2488656B1 (en) 2009-10-15 2015-06-03 Ibis Biosciences, Inc. Multiple displacement amplification
WO2011090793A2 (en) 2010-01-20 2011-07-28 Customarray, Inc. Multiplex microarray of serially deposited biomolecules on a microarray
US20110192723A1 (en) * 2010-02-08 2011-08-11 Genia Technologies, Inc. Systems and methods for manipulating a molecule in a nanopore
US9605307B2 (en) 2010-02-08 2017-03-28 Genia Technologies, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US9678055B2 (en) 2010-02-08 2017-06-13 Genia Technologies, Inc. Methods for forming a nanopore in a lipid bilayer
US8324914B2 (en) 2010-02-08 2012-12-04 Genia Technologies, Inc. Systems and methods for characterizing a molecule
WO2011127933A1 (en) 2010-04-16 2011-10-20 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
WO2012003478A2 (en) 2010-07-02 2012-01-05 Ventana Medical Systems, Inc. Detecting targets using mass tags and mass spectrometry
ES2641871T3 (es) 2010-12-17 2017-11-14 The Trustees Of Columbia University In The City Of New York Secuenciación de ADN mediante síntesis usando nucleótidos modificados y detección con nanoporos
US9121059B2 (en) 2010-12-22 2015-09-01 Genia Technologies, Inc. Nanopore-based single molecule characterization
US8962242B2 (en) 2011-01-24 2015-02-24 Genia Technologies, Inc. System for detecting electrical properties of a molecular complex
US9110478B2 (en) 2011-01-27 2015-08-18 Genia Technologies, Inc. Temperature regulation of measurement arrays
US9624539B2 (en) 2011-05-23 2017-04-18 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using Raman and infrared spectroscopy detection
BR112014005205A2 (pt) 2011-09-07 2017-03-21 X-Chem Inc métodos para etiquetar bibliotecas codificadas com dna
MX342195B (es) 2011-09-13 2016-09-20 Lasergen Inc Nucleótidos de terminación de rápida fotodescomposición 5-metoxi, 3' -oh no bloqueados y métodos para secuenciación de ácido nucleico.
US8986629B2 (en) 2012-02-27 2015-03-24 Genia Technologies, Inc. Sensor circuit for controlling, detecting, and measuring a molecular complex
EP2836604B1 (en) 2012-04-09 2021-09-15 The Trustees of Columbia University in the City of New York Method of preparation of nanopore and uses thereof
US9494554B2 (en) 2012-06-15 2016-11-15 Genia Technologies, Inc. Chip set-up and high-accuracy nucleic acid sequencing
EP2864502B1 (en) 2012-06-20 2019-10-23 The Trustees of Columbia University in the City of New York Nucleic acid sequencing by nanopore detection of tag molecules
NZ739931A (en) 2012-07-13 2019-08-30 X Chem Inc Dna-encoded libraries having encoding oligonucleotide linkages not readable by polymerases
US9605309B2 (en) 2012-11-09 2017-03-28 Genia Technologies, Inc. Nucleic acid sequencing using tags
US9759711B2 (en) 2013-02-05 2017-09-12 Genia Technologies, Inc. Nanopore arrays
DK2970356T3 (en) 2013-03-15 2018-08-27 Illumina Cambridge Ltd Modified nucleosides or nucleotides
WO2014144883A1 (en) 2013-03-15 2014-09-18 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
EP2971051A4 (en) * 2013-03-15 2017-03-01 The Trustees of Columbia University in the City of New York Method for detecting multiple predetermined compounds in a sample
US9551697B2 (en) 2013-10-17 2017-01-24 Genia Technologies, Inc. Non-faradaic, capacitively coupled measurement in a nanopore cell array
US9567630B2 (en) 2013-10-23 2017-02-14 Genia Technologies, Inc. Methods for forming lipid bilayers on biochips
CN109797199A (zh) 2013-10-23 2019-05-24 吉尼亚科技公司 使用纳米孔的高速分子感测
WO2015148402A1 (en) 2014-03-24 2015-10-01 The Trustees Of Columbia Univeristy In The City Of New York Chemical methods for producing tagged nucleotides
CN105131035B (zh) * 2015-08-05 2017-03-22 延边大学 氨基官能团化合物及糖链标记带正电荷质谱衍生化试剂
JP6657721B2 (ja) 2015-09-30 2020-03-04 ソニー株式会社 細胞の分析方法、細胞分析用チップ、細胞分析用試薬、細胞分析用キット及び細胞分析用装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258506A (en) * 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
IL86164A0 (en) * 1987-04-28 1988-11-15 Tamir Biotechnology Ltd Improved dna probes
GB8810400D0 (en) 1988-05-03 1988-06-08 Southern E Analysing polynucleotide sequences
US5003059A (en) * 1988-06-20 1991-03-26 Genomyx, Inc. Determining DNA sequences by mass spectrometry
GB8822228D0 (en) 1988-09-21 1988-10-26 Southern E M Support-bound oligonucleotides
EP0473984A1 (en) * 1990-09-07 1992-03-11 The Board Of Governors Of Wayne State University 1,2-Dioxetane compounds as chemiluminescent labels for organic and biological molecules
WO1993005183A1 (en) * 1991-09-09 1993-03-18 Baylor College Of Medicine Method and device for rapid dna or rna sequencing determination by a base addition sequencing scheme
CA2118806A1 (en) * 1991-09-18 1993-04-01 William J. Dower Method of synthesizing diverse collections of oligomers
GB9315847D0 (en) 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
WO2002092128A1 (en) 2001-05-11 2002-11-21 Genzyme Corporation Compositions and methods to regulate serum phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592673C2 (ru) * 2003-12-17 2016-07-27 ГЛЭКСОСМИТКЛАЙН ЭлЭлСи Биологически активное соединение, содержащее кодирующий олигонуклеотид, и библиотека соединений

Also Published As

Publication number Publication date
CN1088758C (zh) 2002-08-07
DE69406544T2 (de) 1998-02-26
WO1995004160A1 (en) 1995-02-09
AU695349B2 (en) 1998-08-13
US20010031472A1 (en) 2001-10-18
DE69431967D1 (de) 2003-02-06
US6218111B1 (en) 2001-04-17
EP0778280A3 (en) 1999-01-27
FI960403A (fi) 1996-01-29
ATE230409T1 (de) 2003-01-15
DK0711362T3 (da) 1997-12-22
US20020115091A1 (en) 2002-08-22
AU7269194A (en) 1995-02-28
ATE159767T1 (de) 1997-11-15
JP3289911B2 (ja) 2002-06-10
HUT73802A (en) 1996-09-30
GB9315847D0 (en) 1993-09-15
CN1131440A (zh) 1996-09-18
US6576426B2 (en) 2003-06-10
EP0711362B1 (en) 1997-10-29
NO960370L (no) 1996-03-28
JPH09501830A (ja) 1997-02-25
CA2168010C (en) 2002-10-01
DE69406544D1 (de) 1997-12-04
HU9600027D0 (en) 1996-03-28
FI960403A0 (fi) 1996-01-29
EP0778280A2 (en) 1997-06-11
ES2108479T3 (es) 1997-12-16
EP0711362A1 (en) 1996-05-15
HU220967B1 (hu) 2002-07-29
US5770367A (en) 1998-06-23
NO960370D0 (no) 1996-01-29
CA2168010A1 (en) 1995-02-09
EP0778280B1 (en) 2003-01-02

Similar Documents

Publication Publication Date Title
RU2158310C2 (ru) Реагент (варианты), библиотека реагентов, способы проведения анализа
US6780981B1 (en) Libraries of oligomers labeled with different tags
USRE41005E1 (en) Beads bound to a solid support and to nucleic acids
JP4963139B2 (ja) 固体支持体に核酸を固定化するための組成物および方法
JP2004510433A (ja) Dnaおよびrnaを解読するための大量並行方法
JPH08509872A (ja) 表面が活性化された、有機高分子を用いる生体高分子の合成
JP2006208400A (ja) 質量標識結合ハイブリダイゼーションプローブ
US6451998B1 (en) Capping and de-capping during oligonucleotide synthesis
US20030175781A1 (en) Method for controlling quality in the construction of oligomer arrays
JP2003508024A (ja) 核酸断片の特定方法
EP0721458B1 (en) Biopolymer synthesis utilizing surface activated, organic polymers
AU2002300406B9 (en) Compositions and Methods for Immobilizing Nucleic Acids to Solid Supports
US20060154253A1 (en) Method for the validated construction of arrays
Narayanaswami Development of oligonucleotide arrays and characterization of array surfaces using laser based mass spectrometry
AU9137998A (en) DNA sequencing by mass spectrometry
AU2005203605A1 (en) Compositions and methods for immobilizing nucleic acids to solid supports
JP2005172501A (ja) 飛行時間型二次イオン質量分析を用いた核酸塩基配列の決定方法

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20050916

MM4A The patent is invalid due to non-payment of fees

Effective date: 20100802