RU2119267C1 - Устройство подавления многолучевого сигнала - Google Patents

Устройство подавления многолучевого сигнала Download PDF

Info

Publication number
RU2119267C1
RU2119267C1 RU94006781A RU94006781A RU2119267C1 RU 2119267 C1 RU2119267 C1 RU 2119267C1 RU 94006781 A RU94006781 A RU 94006781A RU 94006781 A RU94006781 A RU 94006781A RU 2119267 C1 RU2119267 C1 RU 2119267C1
Authority
RU
Russia
Prior art keywords
signal
weights
overflow
filter
iir filter
Prior art date
Application number
RU94006781A
Other languages
English (en)
Other versions
RU94006781A (ru
Inventor
Бенджмин Дитрих Чарльз
Original Assignee
Рка Томсон Лайсенсинг Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рка Томсон Лайсенсинг Корпорейшн filed Critical Рка Томсон Лайсенсинг Корпорейшн
Publication of RU94006781A publication Critical patent/RU94006781A/ru
Application granted granted Critical
Publication of RU2119267C1 publication Critical patent/RU2119267C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/211Ghost signal cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)

Abstract

Система подавления побочного изображения включает БИХ фильтр подавления побочного изображения и схему моделирования канала для генерирования на ее отводах весовых коэффициентов для программирования БИХ фильтра подавления побочного изображения. Схема моделирования канала включает средство для расчета суммы всех значений сгенерированных весовых коэффициентов. Если сумма превышает заранее заданное значение, указывая тем самым на неустойчивость БИХ фильтра, весовые коэффициенты соответствующим образом масштабируются, чтобы уменьшить эту сумму, уменьшая таким путем вероятность неустойчивой работы фильтра. Технический результат заключается в повышении устойчивости. 2 с. и 7 з.п.ф-лы, 4 ил.

Description

Изобретение относится к системам подавления побочного изображения, использующих фильтры с бесконечной импульсной характеристикой (IIR), и в частности к устройству, обеспечивающему устойчивое функционирование IIR фильтра в такой системе.
Система подавления побочного изображения обычно состоит из двух частей: программируемого фильтра и схемы для расчета модели канала передачи сигнала. Схема моделирования канала воспринимает переданный опорный сигнал и хранящийся в памяти эталонный опорный сигнал, определяя тем самым характеристики передающего канала (в частности характеристики, которые могут способствовать усилению многолучевого искажения). Используя такие характеристики, схема моделирования канала формирует коэффициенты для программирования программируемого фильтра, для того чтобы обеспечить прохождение сигнала с существенным подавлением многолучевого искажения. Более детальное описание способов моделирования канала можно посмотреть, например, в патенте США N 4 864 403, зарегистрированном 5 сентября 1989 года под названием "Adaptive Television Jhost Concellation System Including Filter Circuitry with Non. Integer Sfmple Delay" или GHOST REDUCTION BY REPRODUCTION by n. Komlya, IEEE Transactions on Consumer Electronics, Aug, 1992, Vol 38, No. 3, pp. 195 - 199. Программируемые фильтры обычно бывают двух типов: с конечной импульсной характеристикой (FIR) и бесконечной импульсной характеристикой (IIR). В некоторых системах подавления побочного изображения используют FIR фильтры, в других - IIR фильтры, но в большинстве систем используется сочетание обоих фильтров.
Как IIR, так и FIR фильтры для подавления побочного изображения используют линию задержки с ответвлениями, которая обеспечивает получение множества задержанных друг относительно друга сигналов. Задержанным сигналам присваиваются веса с помощью программируемых коэффициентов и весовые коэффициенты комбинируются, обеспечивая отфильтрованный выходной сигнал. FIR и IIR фильтры имеют по отношению друг к другу преимущества и недостатки, но хорошо известно, что FIR фильтрам присуща устойчивость, а в случае с IIR фильтрами с устойчивостью возникают проблемы. Настоящее изобретение направлено на устранение неустойчивости в системах подавления побочного изображения, которые используют фильтры подавления побочного изображения типа IIR.
Настоящее изобретение представляет собой систему подавления побочного изображения, включающую IIR фильтр подавления побочного изображения и схему моделирования канала для генерирования отводимых весовых коэффициентов, необходимых для программирования фильтра подавления побочного изображения. Схема для моделирования канала включает средство вычисления суммы значений всех сгенерированных весовых коэффициентов. Если сумма превышает заданное значение, указывая на неустойчивость IIR фильтра, весовые коэффициенты соответствующим образом масштабируются так, чтобы уменьшить сумму, стремясь таким образом уменьшить вероятность неустойчивости фильтра.
На фиг. 1 представлена структурная схема системы подавления побочного изображения, включающая настоящее изобретение.
На фиг. 2 представлена логическая схема детектора переполнения с поразрядным дополнением до двух, который может быть установлен в устройстве на фиг. 1.
Фиг. 3 и 4 представляют собой блок-схемы функционирования системы на фиг. 1.
Аппаратура для генерирования весовых коэффициентов для системы подавления побочного изображения достаточно хорошо известна специалистам, поэтому такая аппаратура здесь в деталях описываться не будет. Достаточно сказать, что типовая аппаратура для генерирования весовых коэффициентов включает специализированные программируемые микропроцессоры, которые можно запрограммировать для выполнения множества алгебраических функций.
Поэтому считаем, что специалистам по реализации аппаратуры для генерирования весовых коэффициентов не составит труда запрограммировать подобную аппаратуру для выполнения простых арифметических преобразований с однажды сформированными весовыми коэффициентами.
Обратимся к фиг. 1, где элементы 10 - 18 образуют базовую структуру известной системы подавления побочного изображения, в которой используются IIR фильтры подавления побочного изображения. Входной сигнал подается на шину 10, например, от системы антенна/тюнер. Входной сигнал подводится к блоку моделирования канала и управления 18, который реагирует на опорный сигнал подавления побочного изображения, включаемый на регулярно заданных интервалах во входной сигнал для генерирования весовых коэффициентов, которые подаются к фильтру подавления побочного изображения. Фильтр подавления побочного изображения состоит из сумматора 12, линии задержки с отводами 14, множества весовых схем 15 и сумматора 16. Входной сигнал подводится к сумматору 12, выход которого соединен с входом линии задержки с отводами. Сдвинутые по времени друг относительно друга копии сигнала, поступившего на вход линии задержки, получают доступ на соответствующие отводы и им присваиваются веса посредством значений коэффициентов, сгенерированных в блоке моделирования канала 18. Копии с присвоенными весами суммируются в сумматоре 16, результирующая сумма подается на второй вход сумматора 12. Если допустить, что весовые коэффициенты вычислены точно, то сигнал от сумматора 16, подаваемый ко второму входу сумматора 12, будет включать комбинацию составляющих, необходимых для подавления любого многолучевого искажения, попавшего во входной сигнал. Следует отметить, что, поскольку сигнал, подающийся обратно от сумматора 16, вводится для подавления составляющих входного сигнала, сумматор 12 может в действительности быть реализован как вычитатель. Реализован ли блок 12 как сумматор или как вычитатель зависит от соответствующих полярностей, присвоенных соответствующим весовым коэффициентам.
Для IIR фильтров подавления побочного изображения установлено, что если сумма всех значений весовых коэффициентов, присвоенных IIR фильтру подавления побочного изображения, больше единицы, то фильтр может стать неустойчивым. Для фильтров с тактированными элементами задержки устойчивость может быть предсказана посредством разложения передаточной функции фильтра и выявления наличия полюсов на комплексной плоскости, имеющих значение больше нуля. Устойчивость, в частности, зависит также от изменяющегося динамического диапазона входного сигнала и фиксированного динамического диапазона аппаратуры обработки. В телевизионных системах динамический диапазон принимаемых телевизионных сигналов различается от канала к каналу, поэтому IIR фильтр подавления побочного изображения может быть неустойчивым для одного, но устойчивым для другого канала.
В первом варианте реализации изобретения IIR фильтр подавления побочного изображения выполнен как безусловно устойчивый. В этом варианте реализации устройство управления и моделирования канала настроено для функционирования в соответствии с блок-схемой, показанной на фиг. 3. Устройство управления и моделирования канала, реагирующее на горизонтальную и вертикальную синхронизирующие составляющие входного сигнала, принимает (101) опорный сигнал подавления побочного изображения (GCR), содержащийся в канале 21 видеосигнала. Используя полученный GCR и хранящуюся эталонную версию GCR, рассчитываются (102) весовые коэффициенты для программирования IIR фильтра подавления побочного изображения, чтобы устранить побочные изображения, принимаемые в канал. Значения весовых коэффициентов суммируются (103), и результирующая сумма сравнивается с единицей (104). Если сумма меньше единицы, весовые коэффициенты подаются (105) на соответствующие весовые схемы IIR фильтра. Если сумма больше единицы, соответствующие весовые коэффициенты масштабируются (106) для уменьшения суммы коэффициентов.
Коэффициент масштабирования может иметь вид 1/(αS), где S - сумма весовых коэффициентов, а α - коэффициент, меньше или равный единице, но ближе к единице, например, 0,95. Коэффициент α можно сделать независящим от S и выбрать так, чтобы αS было бы не меньше, чем заранее заданное значение, например, 1.1. После того как весовые коэффициенты промасштабированы, они подаются (105) к соответствующим весовым схемам фильтра.
Весовые коэффициенты могут быть комплексными величинами, если фильтр подавления побочного изображения установлен для обработки квадратурных составляющих входного сигнала. В этом случае можно суммировать значения комплексных составляющих, чтобы уменьшить требования к аппаратуре. Положим, что коэффициенты C имеют вид
Ci = Xi + jYi.
Сумма коэффициентов определяется как
Figure 00000002

Использование этого значения для суммы имеет строгое ограничение, поскольку оно всегда будет превышать сумму действительных значений
Figure 00000003

Как было упомянуто выше, только из-за того, что сумма значений весовых коэффициентов превышает единицу, фильтр необязательно будет неустойчивым. Если неустойчивость отсутствует и коэффициенты масштабированы, подавление побочного изображения отчасти будет ухудшено. Таким образом, когда сумма значений весовых коэффициентов превышает единицу, желательно масштабировать эти коэффициенты, только если фильтр проявляет тенденцию к неустойчивости. Весовые коэффициенты используются для программирования фильтра, даже если их сумма превышает единицу, а затем фильтр проверяется на неустойчивость, и если неустойчивость обнаружена, коэффициенты масштабируются. Функционирование в этом режиме представлено блок-схемой на фиг. 4. Следует отметить, что функционирование, показанное на фиг. 4, допускает итеративное возрастающее масштабирование коэффициентов, до тех пор пока не будет устранена неустойчивость фильтра.
Один из методов определения тенденций к неустойчивости IIR фильтров заключается в контролировании сумматора 12 на предмет переполнения или потери значимости. Переполнение или потеря значимости появляется, например, в схемах поразрядного дополнения до двух, если две величины с одинаковой полярностью, поданные на входы сумматора, суммируются, и величина суммы будет больше той, которая может быть представлена в выходных битах сумматора. Аппаратура на фиг. 1 включает детектор переполнения/потери значимости 20. Детектор переполнения/потери значимости генерирует выходной сигнал, указывающий на переполнение/потерю значимости, который подается в схему моделирования канала и управления 18. Схема 18, восприняв сигнал, указывающий на переполнение/потерю значимости, масштабирует сгенерированные весовые коэффициенты, чтобы уменьшить сумму значений весовых коэффициентов. Заметим, что схема 18 может быть настроена так, чтобы автоматически масштабировать весовые коэффициенты, если их сумма превышает заранее заданную величину, большую единицы, и соответствующим образом масштабирует весовые коэффициенты, определяя переполнение/потерю значимости, если сумма коэффициентов больше единицы, но меньше заранее заданного значения.
Сумматор 16 может также выдавать переполнение/потерю значимости частичных сумм. Однако эти переполнения/потери значимости не будут влиять на устойчивость фильтра. Поэтому нет необходимости контролировать этот сумматор на предмет переполнения/потери значимости для обеспечения устойчивости фильтра. Однако переполнения/потери значимости, выявленные в сумматоре 16, могут повлиять на точность выполнения подавления побочного изображения. Так, при выполнении вышеописанной системы желательно контролировать сумматор 16 на предмет появления переполнения/потери значимости и в ответ на них масштабировать весовые коэффициенты. В этом случае коэффициент масштабирования может отличаться от того, который использовался при переполнении/потери значимости сумматора 12.
На фиг. 2 показан вариант детектора переполнения/потери значимости, который можно устанавливать в системах с поразрядным дополнением до двух. Эта схема реагирует на знаковые биты выборок, подаваемых на вход сумматора, и знаковый бит результата, полученного посредством сумматора. Переполнение возникает, когда две положительные входные величины образуют отрицательную выходную величину, а потеря значимости возникает тогда, когда две отрицательные входные величины образуют положительную выходную. Появление этих двух состояний выявляется с помощью двух логических элементов И (30, 32) и одного логического элемента ИЛИ (33). В системах с поразрядным дополнением до двух положительные числа имеют значение знаковых битов, равные логическому нулю, а отрицательные числа - логической единице. Определение состояния переполнения осуществляется логическим элементом И 32, на неинвертирующий вход которого подается выходной знаковый бит сумматора, а на соответствующие инвертирующие входы подаются два входных знаковых бита сумматора. Подобным же образом выполняется определение потери значимости посредством второго логического элемента И 30, к инвертирующему входу которого подводится выходной знаковый бит сумматора, а к соответствующим неинвертирующим входам подводятся два входных знаковых бита сумматора. Логические элементы 30 и 32 выдают логические сигналы высокого уровня на своих соответствующих выходах только при появлении переполнения или потери значимости соответственно. Выходы логических элементов И 30 и 32 подсоединены к соответствующим входам логического элемента ИЛИ 33, который обеспечивает появление на своем выходе сигнала комплексной проверки переполнения/потери значимости.
Сигнал переполнения/потери значимости, выдаваемый логическим элементом ИЛИ 33, можно непосредственно подать на схему 18 для управления масштабированием коэффициентов. Однако единичные появления переполнения/потери значимости не могут служит точным индикатором неустойчивости фильтра. Следовательно, желательно обработать выходной сигнал логического элемента ИЛИ 33, прежде чем подать на схему 18. Пример обработки сигнала переполнения/потери значимости показан на фиг. 2. В этом примере выход логического элемента ИЛИ 33 подсоединен к счетному входу двоичного счетчика 34. Вертикальная составляющая синхронизирующего сигнала подводится к точке сброса счетчика и с началом каждого интервала поля кадра сбрасывает счетчик в нуль. Таким образом счетчик 34 подсчитывает количество появлений переполнений/потерь значимости на каждом периоде поля кадра. Значащие биты более высоких разрядов счетчика 34 подводятся к соответствующим входам логического элемента 35, например биты 23 - 26. Логический элемент ИЛИ 35 выдает выходной сигнал переполнения/потери значимости всякий раз, когда появляется 8 или более указаний на переполнение/потерю значимости, обеспечиваемых логическим элементом ИЛИ 33 в течение интервала поля кадра. Другой пример обработки сигнала переполнения/потери значимости может включать получение сигнала переполнения/потери значимости только после того, как появилось заранее заданное количество указаний на переполнение/потерю значимости для следующих друг за другом выборок на интервале поля кадра.

Claims (9)

1. Устройство подавления многолучевого сигнала, содержащее источник входного сигнала и программируемый БИХ фильтр, отличающееся тем, что программируемый фильтр включает средство суммирования сигналов для объединения входного сигнала с выходным сигналом, выдаваемым БИХ фильтром, причем БИХ фильтр имеет множество весовых схем с соответствующими входами для приема весовых коэффициентов, при этом устройство содержит средство моделирования канала, воспринимающее входной сигнал для генерирования весовых коэффициентов, причем средство моделирования включает средство для суммирования значений сгенерированных весовых коэффициентов и средство для масштабирования весовых коэффициентов для уменьшения указанной суммы, если эта сумма превышает заранее заданную величину, и средство подачи масштабированных весовых коэффициентов к программируемому БИХ фильтру.
2. Устройство по п.1, отличающееся тем, что в нем заранее заданная величина больше единицы.
3. Устройство по п.1, отличающееся тем, что средство для масштабирования весовых коэффициентов включает средство, подсоединенное к БИХ фильтру, для определения возможной неустойчивости БИХ фильтра и выполнения масштабирования весовых коэффициентов, если выявлена возможная неустойчивость фильтра.
4. Устройство по п. 3, отличающееся тем, что средство для определения неустойчивости БИХ фильтра включает детектор переполнения сигнала, подключенный к средству суммирования сигналов.
5. Устройство по п.4, отличающееся тем, что детектор переполнения сигнала включает средство для обработки сигнала, индицирующего переполнение таким образом, что масштабирование весовых коэффициентов производится только при появлении заранее заданных условий переполнения.
6. Устройство по п.1, отличающееся тем, что средство для масштабирования включает средство для генерирования масштабного коэффициента, пропорционального обратной величине суммы весовых коэффициентов.
7. Устройство подавления многолучевого сигнала, содержащее источник входного сигнала, программируемый БИХ-фильтр, отличающееся тем, что программируемый фильтр включает средство суммирования сигналов для объединения входного видеосигнала с выходным сигналом, выдаваемым БИХ фильтром, причем БИХ фильтр имеет множество весовых схем с соответствующими входами для приема весовых коэффициентов, при этом устройство содержит средство моделирования канала, воспринимающее входной видеосигнал для генерирования весовых коэффициентов, средство, подсоединенное к средству суммирования сигналов для генерирования сигнала переполнения, указывающего наличие превышения динамического диапазона средства суммирования сигналов, детектирующее средство, воспринимающее сигнал переполнения, для масштабирования сгенерированных весовых коэффициентов таким образом, чтобы сумма значений масштабированных весовых коэффициентов была бы меньше, чем сумма значений немасштабированных весовых коэффициентов, если превышен динамический диапазон суммирования, и средство для замены весовых коэффициентов на масштабированные весовые коэффициенты.
8. Устройство по п.7, отличающееся тем, что детектирующее средство включает средство для обработки сигнала переполнения таким образом, что масштабирование весовых коэффициентов производится только после того, как динамический диапазон средства суммирования превышен заранее заданное количество раз в течение заданного интервала.
9. Устройство по п.7, отличающееся тем, что средство для масштабирования включает средство для генерирования масштабного коэффициента, пропорционального обратной величине суммы весовых коэффициентов.
RU94006781A 1993-03-03 1994-03-01 Устройство подавления многолучевого сигнала RU2119267C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/025,496 US5335020A (en) 1993-03-03 1993-03-03 IIR ghost cancelling system with reduction of filter instability
US025,496 1993-03-03

Publications (2)

Publication Number Publication Date
RU94006781A RU94006781A (ru) 1995-12-20
RU2119267C1 true RU2119267C1 (ru) 1998-09-20

Family

ID=21826418

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94006781A RU2119267C1 (ru) 1993-03-03 1994-03-01 Устройство подавления многолучевого сигнала

Country Status (11)

Country Link
US (1) US5335020A (ru)
EP (1) EP0614311B1 (ru)
JP (1) JP3578793B2 (ru)
KR (1) KR100290194B1 (ru)
CN (1) CN1043109C (ru)
DE (1) DE69420162T2 (ru)
MY (1) MY110395A (ru)
RU (1) RU2119267C1 (ru)
SG (1) SG82534A1 (ru)
TR (1) TR27397A (ru)
TW (1) TW245856B (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128539A (en) * 1994-08-30 2000-10-03 Texas Instruments Incorporated Method and apparatus for forming image scaling filters
US5623319A (en) * 1995-10-05 1997-04-22 Philips Electronics North American Corp. Ghost cancellation reference signal detection and synchronization circuit
US6377308B1 (en) * 1996-06-26 2002-04-23 Intel Corporation Method and apparatus for line-specific decoding of VBI scan lines
US5974363A (en) * 1997-04-09 1999-10-26 Lucent Technologies Inc. Self-testing of smart line cards
US5905659A (en) * 1997-10-07 1999-05-18 Rose; Ralph E. Training a recursive filter by use of derivative function
EP1575176A1 (en) * 2004-03-09 2005-09-14 Deutsche Thomson-Brandt Gmbh Arrangement for adaptive bit recovery
US7746924B2 (en) * 2006-05-09 2010-06-29 Hewlett-Packard Development Company, L.P. Determination of filter weights

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609568A (en) * 1970-06-08 1971-09-28 Bell Telephone Labor Inc Stable digital filter apparatus
US4127874A (en) * 1976-05-27 1978-11-28 Tokyo Shibaura Electric Co., Ltd. Apparatus for removing ghost signals from received video signals
JPS56100579A (en) * 1980-01-12 1981-08-12 Sony Corp Ghost eliminating device
JPS575441A (en) * 1980-06-13 1982-01-12 Sony Corp Ghost rejecting device
JPS5745778A (en) * 1980-09-02 1982-03-15 Fujitsu Ltd Automatic waveform equalizer for television signal
JPS57185727A (en) * 1981-05-12 1982-11-16 Victor Co Of Japan Ltd Rejector for waveform distortion
JPS58101576A (ja) * 1981-12-11 1983-06-16 Sony Corp ゴ−スト除去装置
JPS59198020A (ja) * 1983-04-25 1984-11-09 Sony Corp デイジタル信号処理装置
JPS59211388A (ja) * 1983-05-17 1984-11-30 Toshiba Corp ゴ−スト除去装置
JPS59214386A (ja) * 1983-05-19 1984-12-04 Sony Corp ゴ−スト除去装置
US4864403A (en) * 1988-02-08 1989-09-05 Rca Licensing Corporation Adaptive television ghost cancellation system including filter circuitry with non-integer sample delay
JP2755712B2 (ja) * 1989-08-17 1998-05-25 株式会社東芝 ゴースト除去装置およびゴースト除去方法
JPH03123276A (ja) * 1989-10-06 1991-05-27 Toshiba Corp ゴースト除去装置
JPH03145281A (ja) * 1989-10-30 1991-06-20 Toshiba Corp ゴースト除去装置
JPH0477180A (ja) * 1990-07-17 1992-03-11 Nec Corp ゴースト除去回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Красовский А.А. и др. Основы автоматики и технической кибернетики. - М. - Л.: Госэнергоиздат, 1962, с.217-222. 2. *

Also Published As

Publication number Publication date
DE69420162T2 (de) 1999-12-09
MY110395A (en) 1998-04-30
EP0614311B1 (en) 1999-08-25
JPH06303463A (ja) 1994-10-28
EP0614311A1 (en) 1994-09-07
US5335020A (en) 1994-08-02
TW245856B (ru) 1995-04-21
KR100290194B1 (ko) 2001-05-15
JP3578793B2 (ja) 2004-10-20
KR940023176A (ko) 1994-10-22
TR27397A (tr) 1995-02-28
CN1102924A (zh) 1995-05-24
CN1043109C (zh) 1999-04-21
DE69420162D1 (de) 1999-09-30
SG82534A1 (en) 2001-08-21

Similar Documents

Publication Publication Date Title
US6396876B1 (en) Preprocessing process and device for motion estimation
EP0480507B1 (en) Method and apparatus for communication channel identification and signal restoration by sending a test signal used for channel impulse response calculation
US3749895A (en) Apparatus for suppressing limit cycles due to quantization in digital filters
JPS62231509A (ja) 適応型メジアン・フイルタ装置
JPH08288889A (ja) エコーキャンセラ装置
RU2119267C1 (ru) Устройство подавления многолучевого сигнала
Butler et al. Noniterative automatic equalization
JP2002033942A (ja) 画像信号の雑音抑制方法及びこの雑音抑制方法を用いた画像信号処理装置
Sripad et al. Quantization errors in floating-point arithmetic
IE842975L (en) Compensation method
JPH08317254A (ja) ゴースト除去装置
EP0384445B1 (en) Arithmetic unit using a digital filter
JP3089794B2 (ja) 適応フィルタによる未知システム同定の方法及び装置
US4931979A (en) Adding apparatus having a high accuracy
US4933978A (en) Method and apparatus for determining the value of a sample in the mth position of an ordered list of a plurality of samples
JPH06181424A (ja) ディジタルフィルタシステム
US7340020B2 (en) Method and apparatus for tracking invalid signals through a digital system
JP2538633B2 (ja) 適応フィルタ
JPH05304444A (ja) 適応フィルタによる未知システム同定の方法及び装置
RU2159958C1 (ru) Устройство обработки цветных изображений
Ivanović et al. An Extended Local Frequency Estimation-based Optimal Space/Spatial-Frequency Filter: Possibilities for Hardware Implementation and Appropriate Lengths of Registers
JPH0199378A (ja) ゴースト除去装置
JPH06181425A (ja) ディジタルフィルタ
JPS61219988A (ja) 映像信号処理回路
Fallvik Image restoration methods as preprocessing tools in digital stereo matching

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090302