RU2063404C1 - Способ получения ароматических полиэфиров - Google Patents
Способ получения ароматических полиэфиров Download PDFInfo
- Publication number
- RU2063404C1 RU2063404C1 RU94008257A RU94008257A RU2063404C1 RU 2063404 C1 RU2063404 C1 RU 2063404C1 RU 94008257 A RU94008257 A RU 94008257A RU 94008257 A RU94008257 A RU 94008257A RU 2063404 C1 RU2063404 C1 RU 2063404C1
- Authority
- RU
- Russia
- Prior art keywords
- mol
- bis
- sulfone
- polymer
- alkaline agent
- Prior art date
Links
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Использование: для получения ароматических полиэфирсульфонов, полиэфир кетонов и их сополимеров, используемых в качестве суперконструкционных полимерных материалов. Сущность изобретения: проводят реакцию нуклеофильного замещения эквимолекулярных количеств полиароматического нуклеофильного реагента с дигалоидароматическим соединением в среде апротонного растворителя при нагревании в присутствии K2CO3 в сочетании с эквимолекулярной смесью Na2S • 9H2O и Al2O3 или SiO2 в количестве от 0,5 до 5,0 моль на 1,0 моль K2CO3.
Description
Изобретение относится к получению ароматических полиэфиров - полиэфирсульфонов, полиэфиркетонов и их сополимеров, применяемых в качестве суперконструкционных полимерных материалов в авиационной, космической, радиоэлектронной, автомобильной и других отраслях промышленности.
Известен способ получения полиэфирсульфонов, полиэфиркетонов и их сополимеров взаимодействием хлорангидридов многоядерных ароматических кислот с электронодонорными диарилэфирами в присутствии Льюисовских оснований в апротонных растворителях при нагревании. К недостаткам метода относится применение труднодоступных хлорангидридов, необходимость утилизации HCl, выделяющегося при разложении комплекса, и использовании значительных количеств воды, требующих утилизации [1]
Метод нуклеофильной поликонденсации состоит во взаимодействии нуклеофильного реагента с дигалоидароматическими соединениями, в которых атом галоида активирован присутствием электроноакцепторных групп. При этом образование полимера может осуществляться в одну или две стадии.
Метод нуклеофильной поликонденсации состоит во взаимодействии нуклеофильного реагента с дигалоидароматическими соединениями, в которых атом галоида активирован присутствием электроноакцепторных групп. При этом образование полимера может осуществляться в одну или две стадии.
При двухстадийном процессе на первой стадии при взаимодействии водных растворов щелочей с бис-фенолами образуется фенолят, который на второй стадии, реагируя с дигалоидароматическим соединением, образует полимер.
Известен способ получения полиэфиркетонов взаимодействием 1,0 моль смеси бис-фенолов с гидроксидами, карбонатами или бикарбонатами Li, Na, K или Cs в среде полярного растворителя с удалением воды, возможно в виде азеотропных смесей, к образовавшимся средним солям добавляют 0,7 1,0 моль дигалоидного соединения и проводят поликонденсацию при нагревании за 10 100 ч. В качестве растворителей применяют диметилсульфоксид, сульфолан, дифенилсульфон, диметилацетамид и др. К недостаткам метода относятся возможность получения только полиэфиркетонов, необходимость азеотропной отгонки воды при значительной длительности процесса [2]
Известен способ получения высокомолекулярного полиэфирсульфона при взаимодействии эквимолярных количеств 3,3',5,5'-тетраалкил-4,4'-диоксидифенила и дихлордифенилсульфона в апротонном растворителе в присутствии K2CO3 с азеотропной отгонкой воды при нагревании в течении 64 ч.
Известен способ получения высокомолекулярного полиэфирсульфона при взаимодействии эквимолярных количеств 3,3',5,5'-тетраалкил-4,4'-диоксидифенила и дихлордифенилсульфона в апротонном растворителе в присутствии K2CO3 с азеотропной отгонкой воды при нагревании в течении 64 ч.
В одностадийном процессе при одновременной загрузке всех компонентов проводят ступенчатый подъем температуры до температуры синтеза, осуществляют выдержку до достижения требуемого значения вязкости и выделение полимера известными способами [3]
Известен способ получения сополимеров полиэфиркетонов, содержащих не менее 10 сульфоновых фрагментов, высокотемпературным взаимодействием в среде дифенилсульфона эквимольных смесей бис-фенола с ароматическими дигалоидными соединениями; при этом получаемые полимеры имеют приведенную вязкость 0,8 - 3,0 дл/г, оптическую плотность менее 1,0. Однако, в процессе поликонденсации используется предварительно полученная дикалиевая соль бис-фенола [4]
Во всех рассмотренных выше работах описано получение либо полиэфирсульфонов, либо полиэфиркетонов, либо их сополимеров. Следует отметить, что применение только одного Na2CO3 или K2CO3 приводит либо к большой продолжительности процесса, либо к получению полимеров низкого качества, соответственно.
Известен способ получения сополимеров полиэфиркетонов, содержащих не менее 10 сульфоновых фрагментов, высокотемпературным взаимодействием в среде дифенилсульфона эквимольных смесей бис-фенола с ароматическими дигалоидными соединениями; при этом получаемые полимеры имеют приведенную вязкость 0,8 - 3,0 дл/г, оптическую плотность менее 1,0. Однако, в процессе поликонденсации используется предварительно полученная дикалиевая соль бис-фенола [4]
Во всех рассмотренных выше работах описано получение либо полиэфирсульфонов, либо полиэфиркетонов, либо их сополимеров. Следует отметить, что применение только одного Na2CO3 или K2CO3 приводит либо к большой продолжительности процесса, либо к получению полимеров низкого качества, соответственно.
В патенте Великобритании N 1586972, C 3 R 36 P 2, 1981 и Евр. заявке N 0 001 879, C 08 G 65/40, 1982 описано получение термопластичных полиэфиркетонов и ароматических полиэфиров, содержащих сульфоновые и кетоновые группы, с использованием смеси Na2CO3 с K2CO3.
В соответствии с Евр. заявкой N 0 001 879 получают термопластичные полиэфиркетоны, содержащие повторяющиеся звенья общей формулы -C6H4-A-C6H4-O-C6H4 -CO-C6H4-O-, где A простая связь, O, S, SO2, CO или двухвалентный углеводородный радикал.
Процесс получения осуществляют взаимодействием в относительно безводных условиях бис-фенолов с ароматическими дигалоидными соединениями, в которых атом галоида активирован присутствием -CO- или SO2-групп, в среде дифенилсульфона при нагревании с использованием в качестве щелочного агента смеси Na2CO3 с солями, содержащими K, Rb, Cs, так, чтобы полученный полимер имел вязкость не менее 0,7 и оптическую плотность не более 0,35.
Наиболее близким по технической сущности к заявляемому способу является способ получения ароматических полиэфиров (полиэфирсульфонов, полиэфиркетонов и их сополимеров) взаимодействием эквимолярной смеси бис-фенола и ароматического дигалоидного соединения со смесью Na2CO3 и второго карбоната, содержащего щелочной металл более высокого атомного номера, в котором на 1,0 моль Na2CO3 приходится до 0,2 грамм-атомов с более высокой атомной массой. При этом общее количество щелочного агента составляет не менее 1,0 моль на моль бис-фенола. Выделение полимера проводят отмывкой обычными способами от образовавшихся солей и растворителя [5]
Однако описанная выше система щелочного агента не обеспечивает получение качественных полимеров в промышленно приемлемых условиях для различных видов ароматических полиэфиров: синтез полиэфирсульфонов в низкокипящих растворителях протекает с малой скоростью, а синтез полиэфиркетонов возможен только при температурах выше 250oC.
Однако описанная выше система щелочного агента не обеспечивает получение качественных полимеров в промышленно приемлемых условиях для различных видов ароматических полиэфиров: синтез полиэфирсульфонов в низкокипящих растворителях протекает с малой скоростью, а синтез полиэфиркетонов возможен только при температурах выше 250oC.
Задачей изобретения является разработка способа получения ароматических полиэфиров с использованием универсального щелочного агента, позволяющего проводить синтез как в среде низкокипящих, так и высококипящих растворителей с получением качественных полимеров в промышленно приемлемых условиях.
Указанная задача решается так, что в способе получения ароматических полиэфиров реакцией нуклеофильного замещения эквимолекулярных количеств полиароматического нуклеофильного реагента с дигалоидароматическим соединением в среде апротонного растворителя при нагревании в присутствии щелочного агента в качестве последнего используют K2CO3 в сочетании с эквимолекулярной смесью Na2S•9H2O и Al2O3 или SiO2 в количестве от 0,5 до 5,0 мол. на 1,0 моль K2CO3.
В качестве полиароматического нуклеофильного реагента используют соединения общей формулы X-C6H4-(Q-C6H4)n-Y, где X OH, SH; Y OH, SH, F, Cl; Q простая связь, SO2, CO, S, CH3-C-CH3, SO2-C6H4; n 0, 1, 2.
Наиболее предпочтительными являются гидрохинон, 4,4'-диоксидифенилсульфон, 4,4'-диоксидифенил, 2,2'-бис-(4-гидроксифенил)пропан, 4,4'-диоксибензофенон, 4,4'-диоксидифенилсульфид, 4-хлор, 4'-оксидифенилсульфон.
В качестве дигалоидного ароматического соединения используют соединения общей формулы Z-C6H4-P-C6H4-Z, где Z F, Cl; P SO2, CO, S, SO2-C6H4-C6H4-SO2,
CO-C6H4-CO, CO-C6H4-C6H4-CO.
CO-C6H4-CO, CO-C6H4-C6H4-CO.
Наиболее предпочтительными являются 4,4'-дифтордифенилсульфон, 4,4'-дихлордифенилсульфон, 4,4'-бис-(4-хлорфенилсульфонил)-дифенил, 4,4'-дифторбензофенон, 4,4'-дихлорбензофенон, 1,4-бис-(4-фторбензоил)бензол.
Предпочтительное количество используют щелочного агента составляет от 1,05 до 1,3 моль на 1,0 моль нуклеофильного реагента.
Наиболее предпочтительными растворителями являются диметилсульфоксид, диметилацетамид, N-метилпирролидон, диметилсульфон, дифенилсульфон, сульфолан.
Регулирование молекулярной массы получаемых полимеров осуществляют добавлением к мономерам либо моногалоидных соединений ряда диарилсульфонов или диарилкетонов, либо избытком используемого дигалоидароматического соединения.
После окончания синтеза полимеры выделяют обычным способом отмывки мелкодисперсного порошка от растворителя синтеза и образовавшейся смеси солей.
Пример 1.
В четырехгорловую колбу, снабженную мешалкой, термометром, капилляром для подачи инертного газа и прямым холодильником, загружают 11,0 г гидрохинона (0,1 моль), 22,1 г 4,4-дифторбензофенона (0,105 моль), 14,5 г K2CO3 (0,105 моль), 1,0 мол. смеси, состоящей из 0,48 г Na2S•9H2O (0,002 моль) и 0,204 г Al2O3 (0,02 моль), 0,251 г монохлордифенилсульфона (0,001 моль) и 60 г дифенилсульфона. Реакционную колбу помещают в баню со сплавом Вуда и синтез полиэфиркетона ведут по следующему режиму: выдержка при 200oC 0,5 ч; подъем температуры до 250oC и выдержка при этой температуре до полного прекращения отгона воды; подъем температуры до 320oC и выдержка при этой температуре 4 ч. По окончании синтеза реакционную массу сливают в поддон, охлаждают, измельчают до размера частиц не более 200 μ и отмывают от дифенилсульфона четырехкратной промывкой ацетоном и горячей водой от смеси солей.
Полученный полиэфиркетон имеет приведенную вязкость 0,2 дл/г, измеренную в серной кислоте с плотностью 1,84 г/см при концентрации полимера 1,0 г в 100 мл. Оптическая плотность 1 раствора в серной кислоте, измеренная при длине волны 550 нм и толщине кюветы 10 мм, составляет 0,2. Показатель текучести расплава, измеренный на приборе ИИРТ при 370oC и нагрузке 10,5 кг, в пределах 6,5 6,9 г/10 мин. Ударная вязкость, измеренная на образце, отлитом в виде цилиндра диаметром 5,0 нм, 170 Кдж/м2.
Пленка полимера, отпрессованная при температуре 370oC, имеет светло-бежевый цвет, является эластичной. Гель-фракция при растворении полимера в серной кислоте отсутствует.
Пример 2.
В колбу как в примере 1 загружают 25,0 г 4,4'-диоксидифенилсульфона (0,1 моль), 28,9 г 4,4'-дихлорфенилсульфона (0,101 моль), 15,2 г K2CO3 (0,110 моль), 0,5 мол. смеси, состоящей из 0,24 г Na2S•9H2O (0,001 моль) и 0,102 г Al2O3 (0,001 моль), 0,251 г монохлордифенилсульфона (0,001 моль) и 120 мл диметилацетамида. Реакционную колбу помещают в масляную баню и осуществляют нагрев реакционной массы до 165 175oC. Отгонку ацетамида прекращают при достижении температуры паров отгона, равной температуре кипения диметилацетамида, при этом заменяют прямой холодильник на обратный и продолжают нагрев в течение 8 12 ч до набора требуемого значения вязкости. Затем в реакционную массу добавляют 100 мл диметилацетамида, перемешивают до гомогенизации и осуществляют выделение полимера высаживанием в воду. Полученный полимер освобождается от растворителя синтеза и образовавшихся солей 4-кратной промывкой горячей водой.
Полученный полифэфирсульфон имеет приведенную вязкость 0,65 дл/г, измеренную в диметилформамиде при концентрации 1,0 г полимера в 100 мл. Ударная вязкость 208 Кдж/м2. Показатель текучести расплава при температуре 360oC и нагрузке 2,16 кг в пределах 4,5 4,7 г/10 мин. Отношение Mw/Mn, измеренное методом гель-проникающей хроматографии на жидкостном хроматографе фирмы "Khayep" с УФ-детектором (254 нм), снабженном колонками, наполненными сорбентом Бондагель (E-1000, E-500, E-125, E-Linear), составляет при концентрации 0,1 в диметилформамиде 1,78.
Пример 3.
Синтез и выделение полимера ведут, как в примере 1, только вместо гидрохинона загружают 25,0 г 4,4'-диоксидифенилсульфона (0,1 моль) при количестве щелочного агента 1,3 моль на моль бис-фенола, состоящего из 17,9 г K2CO3 и 5,0 мол. смеси, состоящей из 1,2 г Na2•9H2O и 0,51 г Al2O3.
Полученный сульфон-кетоновый сополимер имеет следующие характеристики:
приведенная вязкость в H2SO4 составляет 0,72 дл/г;
оптическая плотность составляет 0,09;
показатель текучести расплава при 370oC составляет 3,4 4,1 г /10 мин;
ударная вязкость составляет 220 Кдж/м2;
полимер, опрессованный в виде пленки, имеет светло-желтый цвет, прозрачен, не имеет гель-фракции и является эластичным.
приведенная вязкость в H2SO4 составляет 0,72 дл/г;
оптическая плотность составляет 0,09;
показатель текучести расплава при 370oC составляет 3,4 4,1 г /10 мин;
ударная вязкость составляет 220 Кдж/м2;
полимер, опрессованный в виде пленки, имеет светло-желтый цвет, прозрачен, не имеет гель-фракции и является эластичным.
Пример 4.
Синтез и выделение полимера ведут, как в примере 2, только вместо 4,4'-дихлорфенилсульфона загружают 22,1 г 4,4'-дифторбензофенона (0,101 моль) при количестве щелочного агента 1,2 моль на моль бис-фенола, состоящего из 16,5 г K2CO3 и 3,0 мол. смеси, состоящей из 0,72 г Na2S•9H2O и 0,306 г Al2O3.
Полученный сульфон-кетоновый сополимер имеет следующие характеристики:
приведенная вязкость в H2SO4 составляет 0,68 дл/г;
оптическая плотность составляет 0,03;
показатель текучести расплава при 370oC составляет 4,2 4,3 г/10 мин;
ударная вязкость составляет 207 Кдж/м2;
полимерная пленка имеет светло-желтый цвет, прозрачна и не имеет гель-фракции и является эластичной.
приведенная вязкость в H2SO4 составляет 0,68 дл/г;
оптическая плотность составляет 0,03;
показатель текучести расплава при 370oC составляет 4,2 4,3 г/10 мин;
ударная вязкость составляет 207 Кдж/м2;
полимерная пленка имеет светло-желтый цвет, прозрачна и не имеет гель-фракции и является эластичной.
Пример 5 (контрольный).
Синтез и выделение полимера ведут, как в примере 1, только без добавления Na2S•9H2O с Al2O3.
Полученный полиэфиркетон имеет следующие характеристики:
приведенная вязкость в H2SO4 составляет 0,92 дл/г;
оптическая плотность составляет 1,85;
показатель текучести расплава при 370oC 3,8 4,0 г/10 мин;
ударная вязкость составляет 47 дж/м2;
содержание гель-фракции составляет 12
полимер опрессованный в виде пленки имеет бежево-коричневый цвет и является хрупким.
приведенная вязкость в H2SO4 составляет 0,92 дл/г;
оптическая плотность составляет 1,85;
показатель текучести расплава при 370oC 3,8 4,0 г/10 мин;
ударная вязкость составляет 47 дж/м2;
содержание гель-фракции составляет 12
полимер опрессованный в виде пленки имеет бежево-коричневый цвет и является хрупким.
Пример 6 (контрольный).
Синтез и выделение полимера ведут, как в примере 1, только без добавления Na2S•9H2O.
Полученный полиэфиркетон имеет следующие характеристики:
приведенная вязкость в H2SO4 составляет 1,3 дл/г;
оптическая плотность составляет 2,4;
показатель текучести расплава при 370oC составляет 1,2 1,3 г/10 мин;
содержание гель-фракции составляет 14
полимер, опрессованный в виде пленки, имеет серо-коричневый цвет и является хрупким при изгибе;
ударная вязкость составляет 37 Кдж/м2.
приведенная вязкость в H2SO4 составляет 1,3 дл/г;
оптическая плотность составляет 2,4;
показатель текучести расплава при 370oC составляет 1,2 1,3 г/10 мин;
содержание гель-фракции составляет 14
полимер, опрессованный в виде пленки, имеет серо-коричневый цвет и является хрупким при изгибе;
ударная вязкость составляет 37 Кдж/м2.
Пример 7.
Синтез и выделение полимера ведут, как в примере 2, только вместо 4,4'-диоксидифенилсульфона загружают 22,8 г дифенилолпропана и вместо диметилацетамида берут диметилсульфоксид.
Полученный полисульфон имеет следующие характеристики:
приведенная вязкость в хлороформе составляет 0,48 дл/г;
отношение Mw / Mn в диметилформамиде составляет 1,8;
ударная вязкость составляет 195 Кдж/м2.
приведенная вязкость в хлороформе составляет 0,48 дл/г;
отношение Mw / Mn в диметилформамиде составляет 1,8;
ударная вязкость составляет 195 Кдж/м2.
Пример 8 (контрольный).
Синтез и выделение полимера ведут, как в примере 7, только без добавления смеси Na2S•9H2O и Al2O3.
Полученный полисульфон имеет следующие характеристики:
приведенная вязкость в хлороформе составляет 0,43 дл/г;
отношение Mw/Mn в диметилформамиде составляет 2,65;
ударная вязкость составляет 97 Кдж/м2.
приведенная вязкость в хлороформе составляет 0,43 дл/г;
отношение Mw/Mn в диметилформамиде составляет 2,65;
ударная вязкость составляет 97 Кдж/м2.
Пример 9.
Синтез и выделение полимера ведут, как в примере 1, только вместо гидрохинона загружают смесь, состоящую из 5,5 г гидрохинона и 9,3 г 4,4'-диоксидифенила, а вместо дифторбензофенона загружают смесь, состоящую из 11,01 г 4,4'-дифторбензофенона (0,0505 моль) и 25,4 г 4,4'-бис-(4-хлорфенилсульфонил)дифенила (0,0505 моль).
Полученный сульфон-кетоновый сополимер имеет следующие характеристики:
приведенная вязкость в H2SO4 составляет 1,4 дл/г;
оптическая плотность составляет 0,05;
показатель текучести расплава при 370oC составляет 9,6 г/10 мин;
ударная вязкость составляет 195 Кдж/м2;
полимер, отпрессованный в виде пленки, имеет светло-бежевый цвет, является прозрачным и не имеет гель-фракции.
приведенная вязкость в H2SO4 составляет 1,4 дл/г;
оптическая плотность составляет 0,05;
показатель текучести расплава при 370oC составляет 9,6 г/10 мин;
ударная вязкость составляет 195 Кдж/м2;
полимер, отпрессованный в виде пленки, имеет светло-бежевый цвет, является прозрачным и не имеет гель-фракции.
Пример 10.
Синтез и выделение полимера ведут, как в примере 1, только вместо гидрохинона загружают 21,6 г 4,4'-диоксидифенила (0,1 моль), а вместо дифторбензофенона загружают смесь, состоящую из 14,49 г 4,4'-дихлордифенилсульфона (0,0505 моль) и 25,4 г 4,4'-бис-4(4-хлорфенилсульфонил)-дифенила (0,0505 моль).
Приведенный полиариленсульфон имеет следующие характеристики:
приведенная вязкость в диметилформамиде составляет 0,53 дл/г;
отношение Mw/Mn в диметилформамиде составляет 1,73;
ударная вязкость составляет 197 Кдж/м2;
показатель текучести расплава при 370oC составляет 4,7 г/10 мин.
приведенная вязкость в диметилформамиде составляет 0,53 дл/г;
отношение Mw/Mn в диметилформамиде составляет 1,73;
ударная вязкость составляет 197 Кдж/м2;
показатель текучести расплава при 370oC составляет 4,7 г/10 мин.
Пример 11.
Синтез ведут, как в примере 2, только вместо диоксидифенилсульфона загружают 22,8 г дифенилолпропана, а вместо дихлордифенилсульфона загружают 50,8 г 4,4'-бис-(4-хлорфенилсульфонил)дифенила (0,101 моль).
Полученный полиариленсульфон имеет следующие характеристики:
приведенная вязкость в хлороформе составляет 0,48 дл/г;
соотношение Mw/Mv>n<D> в диметилформамиде составляет 1,83;
ударная вязкость составляет 163 Кдж/м2;
показатель текучести расплава при 370oC составляет 3,2 3,4 г/10 мин.
приведенная вязкость в хлороформе составляет 0,48 дл/г;
соотношение Mw/Mv>n<D> в диметилформамиде составляет 1,83;
ударная вязкость составляет 163 Кдж/м2;
показатель текучести расплава при 370oC составляет 3,2 3,4 г/10 мин.
Пример 12 (контрольный).
Синтез ведут как в примере 1, только вместо гидрохинона загружают 25,0 г 4,4'-диоксидифенилсульфона (0,1 моль), вместо бензофенона 28,9 г 4,4'-дихлордифенилсульфона (0,101 моль), используя в качестве щелочного агента смесь 11,12 г Na2CO3 (0,105 моль) и 1,38 г K2CO3 (0,01 моль).
Полученный полиэфирсульфон имеет следующие характеристики:
приведенная вязкость в диметилформамиде 0,81 дл/г;
соотношение Mw/Mn в диметилформамиде 2,73;
ударная вязкость 135 Кдж/м2;
показатель текучести расплава при 360oC 3,5 3,7 г/10 мин.
приведенная вязкость в диметилформамиде 0,81 дл/г;
соотношение Mw/Mn в диметилформамиде 2,73;
ударная вязкость 135 Кдж/м2;
показатель текучести расплава при 360oC 3,5 3,7 г/10 мин.
Пример 13 (контрольный).
Синтез и выделение полимера ведут как в примере 2, только без добавления Al2O3.
Полученный полиэфирсульфон имеет следующие характеристики:
приведенная вязкость в диметилформамиде 0,43 дл/г;
соотношение MW/Mn в диметилформамиде 2,43;
ударная вязкость 143 Кдж/м2;
показатель текучести расплава при 360oC 3,1 3,3 г/10 мин.
приведенная вязкость в диметилформамиде 0,43 дл/г;
соотношение MW/Mn в диметилформамиде 2,43;
ударная вязкость 143 Кдж/м2;
показатель текучести расплава при 360oC 3,1 3,3 г/10 мин.
Как видно из представленных примеров, способ по изобретению позволяет получать качественные полиэфиркетоны, полиэфирсульфоны и их сополимеры при параметрах, удовлетворяющих требованиям промышленности:
полиэфиркетоны характеризуются высокими механическими характеристиками (ударная вязкость в пределах от 130 до 220 Кдж/м2), низким показателем цветности (не более 0,5) и отсутствием гель-фракции, отпрессованные пленки имеют светло-бежевый цвет и являются эластичными при изгибе;
полиэфирсульфоны, которые могут быть получены с использованием как высококипящих, так и низкокипящих растворителей (в прототипе использован только высококипящий растворитель дифенилсульфон), характеризуются высоким значением ударной вязкости (163 208 Кдж/м2) при более узком молекулярно-массовом распределении (порядка 1,8), превосходя по указанным показателям полиэфирсульфон, полученный в соответствии с прототипом (контрольный пример 12).
полиэфиркетоны характеризуются высокими механическими характеристиками (ударная вязкость в пределах от 130 до 220 Кдж/м2), низким показателем цветности (не более 0,5) и отсутствием гель-фракции, отпрессованные пленки имеют светло-бежевый цвет и являются эластичными при изгибе;
полиэфирсульфоны, которые могут быть получены с использованием как высококипящих, так и низкокипящих растворителей (в прототипе использован только высококипящий растворитель дифенилсульфон), характеризуются высоким значением ударной вязкости (163 208 Кдж/м2) при более узком молекулярно-массовом распределении (порядка 1,8), превосходя по указанным показателям полиэфирсульфон, полученный в соответствии с прототипом (контрольный пример 12).
Следует отметить, что предлагаемая система щелочного агента проявляет синергический эффект: при использовании каждого компонента в отдельности K2CO3 (контрольный пример 5), Al2O3 (контрольный пример 6) и Na2S•9H2O (контрольный пример 13) полученные полимеры имеют более низкие характеристики по сравнению с полимерами, получаемыми с использованием изобретения.
Claims (7)
1. Способ получения ароматических полиэфиров реакцией нуклеофильного замещения эквимолекулярных количеств полиароматического нуклеофильного реагента с дигалоидароматическим соединением в присутствии щелочного агента, содержащего K2CO3, в среде апротонного растворителя при нагревании, отличающийся тем, что в качестве щелочного агента используют K2CO3 в сочетании с эквимолекулярной смесью Na2S•9H2O и Al2O3 или SiO2 в количестве от 0,5 до 5,0 моль на 1,0 моль K2CO3.
2. Способ по п.1, отличающийся тем, что в качестве полиароматического нуклеофильного реагента используют соединения общей формулы XC6H4 (QC6H4)n-Y,
где X OH, SH, Y OH, SH, F, Cl,
Q простая связь, SO2, CO, S, CH3 C CH3, SO2 C6H4 -,
n 0,1,2.
где X OH, SH, Y OH, SH, F, Cl,
Q простая связь, SO2, CO, S, CH3 C CH3, SO2 C6H4 -,
n 0,1,2.
3. Способ по п.2, отличающийся тем, что в качестве полиароматического нуклеофильного реагента используют соединение, выбранное из группы, содержащей гидрохинон, 4,4'-диоксидифенилсульфон, 4,4'-дигидроксидифенил, 2,2-бис-(4-гидроксифенил)пропан, 4,4'-дигидроксибензофенон, 4,4'-диоксидифенилсульфид, 4-хлор-4-оксидифенилсульфон.
4. Способ по п.1, отличающийся тем, что в качестве дигалоидароматического соединения используют соединения общей формулы Z C6H4 P - C6H4 Z, где Z F, Cl, P SO2, CO, S, SO2 - C6H4 C6H4 SO2, CO C6H4 CO, CO C6H4 C6H4 CO.
5. Способ по п.4, отличающийся тем, что в качестве дигалоидароматического соединения используют соединение, выбранное из группы 4,4'-дифтордифенилсульфон, 4,4'-дихлордифенилсульфон, 4,4'-дифторбензофенон, 4,4'-дихлорбензофенон, 4,4'-бис-(4-хлорфенилсульфонил)-дифенил, 1,4-бис-(4-фторбензоил)-бензол.
6. Способ по п. 1, отличающийся тем, что щелочной агент используют в количестве от 1,05 до 1,3 моля на 1,0 моль нуклеофильного реагента.
7. Способ по п.1, отличающийся тем, что в качестве апротонного растворителя используют соединение, выбранное из группы диметилсульфоксид, диметилацетамид, N-метилпирролидон, диметилсульфон, дифенилсульфон, сульфолан.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU94008257A RU2063404C1 (ru) | 1994-03-10 | 1994-03-10 | Способ получения ароматических полиэфиров |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU94008257A RU2063404C1 (ru) | 1994-03-10 | 1994-03-10 | Способ получения ароматических полиэфиров |
Publications (2)
Publication Number | Publication Date |
---|---|
RU94008257A RU94008257A (ru) | 1995-11-10 |
RU2063404C1 true RU2063404C1 (ru) | 1996-07-10 |
Family
ID=20153364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU94008257A RU2063404C1 (ru) | 1994-03-10 | 1994-03-10 | Способ получения ароматических полиэфиров |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2063404C1 (ru) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446185C2 (ru) * | 2006-05-15 | 2012-03-27 | Эвоник Дегусса Гмбх | Способ получения полиариленэфиркетонов |
RU2669790C1 (ru) * | 2017-11-28 | 2018-10-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения ароматических сополиариленэфирсульфонов |
RU2684328C1 (ru) * | 2018-09-18 | 2019-04-08 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Одностадийный способ получения ароматического полиэфира |
RU2688142C1 (ru) * | 2018-09-18 | 2019-05-20 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Ароматические сополиэфирсульфонкетоны и способ их получения |
RU2688942C1 (ru) * | 2018-09-18 | 2019-05-23 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Способ получения полиэфирсульфонов |
RU2691394C1 (ru) * | 2018-09-18 | 2019-06-13 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Ароматические сополиэфирсульфонкетоны и способ их получения |
RU2698716C1 (ru) * | 2019-02-26 | 2019-08-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Ароматические огнестойкие сополиариленэфиркетоны и способ их получения |
RU2698719C1 (ru) * | 2019-02-12 | 2019-08-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Ароматические сополиэфирсульфонкетоны и способ их получения |
RU2704260C1 (ru) * | 2019-03-12 | 2019-10-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения сополиполифениленсульфидсульфонов |
RU2709448C1 (ru) * | 2019-06-21 | 2019-12-17 | Акционерное общество "Институт пластмасс имени Г.С. Петрова" | Полимерная композиция на основе термопластичного ароматического полиэфирэфиркетона |
RU2710365C1 (ru) * | 2019-02-19 | 2019-12-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Ароматические сополиэфирсульфонкетоны повышенной огнестойкости |
RU2712182C1 (ru) * | 2019-04-01 | 2020-01-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения капсулированных полигидроксиэфиров и сополигидроксиэфиров |
RU2712181C1 (ru) * | 2019-04-01 | 2020-01-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения капсулированных полигидроксиэфиров и сополигидроксиэфиров |
-
1994
- 1994-03-10 RU RU94008257A patent/RU2063404C1/ru active
Non-Patent Citations (1)
Title |
---|
Европейская заявка N 0194062, кл. C 08 G 65/40, опубл. 1986. Заявка Японии N 59-164236, кл. C 08 G 65/34, опубл. 1984. Патент США N 4156068, кл. C 08 G 75/23, опубл. 1979. Патент Великобритании N 1414422, кл. C 08 G 65/40, опубл. 1975. Патент Великобритании N 1586972, кл. C 08 G 95/40, опубл. 1982. * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446185C2 (ru) * | 2006-05-15 | 2012-03-27 | Эвоник Дегусса Гмбх | Способ получения полиариленэфиркетонов |
RU2669790C1 (ru) * | 2017-11-28 | 2018-10-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения ароматических сополиариленэфирсульфонов |
RU2684328C1 (ru) * | 2018-09-18 | 2019-04-08 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Одностадийный способ получения ароматического полиэфира |
RU2688142C1 (ru) * | 2018-09-18 | 2019-05-20 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Ароматические сополиэфирсульфонкетоны и способ их получения |
RU2688942C1 (ru) * | 2018-09-18 | 2019-05-23 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Способ получения полиэфирсульфонов |
RU2691394C1 (ru) * | 2018-09-18 | 2019-06-13 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Ароматические сополиэфирсульфонкетоны и способ их получения |
RU2698719C1 (ru) * | 2019-02-12 | 2019-08-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Ароматические сополиэфирсульфонкетоны и способ их получения |
RU2710365C1 (ru) * | 2019-02-19 | 2019-12-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Ароматические сополиэфирсульфонкетоны повышенной огнестойкости |
RU2698716C1 (ru) * | 2019-02-26 | 2019-08-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Ароматические огнестойкие сополиариленэфиркетоны и способ их получения |
RU2704260C1 (ru) * | 2019-03-12 | 2019-10-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения сополиполифениленсульфидсульфонов |
RU2712182C1 (ru) * | 2019-04-01 | 2020-01-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения капсулированных полигидроксиэфиров и сополигидроксиэфиров |
RU2712181C1 (ru) * | 2019-04-01 | 2020-01-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Способ получения капсулированных полигидроксиэфиров и сополигидроксиэфиров |
RU2709448C1 (ru) * | 2019-06-21 | 2019-12-17 | Акционерное общество "Институт пластмасс имени Г.С. Петрова" | Полимерная композиция на основе термопластичного ароматического полиэфирэфиркетона |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK169523B1 (da) | Sej, krystallinsk og termoplastisk aromatisk polyetherketon og fremgangsmåde til fremstilling deraf | |
RU2063404C1 (ru) | Способ получения ароматических полиэфиров | |
JP4842434B2 (ja) | 改良されたポリ(ビフェニルエーテルスルホン) | |
RU2394848C1 (ru) | Способ получения ароматических полиэфиров | |
JP7003050B2 (ja) | 溶融抽出によるポリアリールエーテルの脱塩 | |
US4751274A (en) | Preparation of aromatic block copolyethers | |
US4169178A (en) | Production of aromatic polyethers | |
US4307222A (en) | Process for preparing polyarylene polyethers and a novel polyarylene polyether | |
JP6771470B2 (ja) | 溶融抽出を用いるポリアリールエーテルの脱塩 | |
EP0193187B1 (en) | Process for preparing crystalline aromatic polyetherketones | |
EP0185317A2 (en) | Crystalline aromatic polyketone and process for producing the same | |
IE902869A1 (en) | Process for the preparation of an aromatic polyether in the¹presence of finely divided condensation auxiliaries | |
JPS627730A (ja) | 結晶性芳香族ポリエ−テルケトンの製造方法 | |
JPH03174445A (ja) | 芳香族ポリエーテルの製造方法 | |
RU2311429C2 (ru) | Способ получения статистических сополимеров полифениленсульфидсульфонов | |
JPS62148524A (ja) | 熱可塑性芳香族ポリエ−テルの製造方法 | |
US4801657A (en) | Process for producing polyarylethers by forming an alkylated intermediate | |
US4803258A (en) | Thermoplastic aromatic polyether-pyridine and process for preparing same | |
JPS6337123A (ja) | 熱可塑性芳香族ポリエ−テルピリジンおよびその製造方法 | |
GB1569602A (en) | Production of aromatic polymers | |
JP3694978B2 (ja) | 芳香族ポリエーテルの製造方法 | |
JPH03285916A (ja) | ポリエーテル系共重合体およびその製造方法 | |
JPS62253627A (ja) | 耐熱性樹脂及びその製法 | |
JPH07113061B2 (ja) | 新規ポリエーテルケトン系共重合体 | |
JPS61197632A (ja) | 結晶性芳香族ポリエ−テルケトンの製法 |